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A BEST POSSIBLE TAUBERIAN THEOREM FOR THE
COLLECTIVE CONTINUOUS HAUSDORFF
SUMMABILITY METHOD

G. E. PETERSON

1. Introduction. The purpose of this paper is to prove that o(1/x) is the
best possible Tauberian condition for the collective continuous Hausdorff
method of summation. The analogue of this result for the collective (discrete)
Hausdorff method is known [1, pp. 229, ff.; 7, p. 318; 8, p. 254]. Our method
involves generalizing a well-known Abelian theorem of Agnew [2] to locally
compact spaces and then applying the analogue for integrals of a result
Lorentz obtained for series [6, Theorem 1].

2. Setting. Let T and X denote locally compact, non compact, ¢-compact
Hausdorff spaces. Let 77/ = 7'\U (0 ) and X’ = X U (0) denote the one-
point compactifications of 7" and X, respectively. Let B(7") denote the set
of locally bounded, complex valued Borel functions on 7" and let B_(T")
denote the bounded functions in B(7T").

Let (Ka)aca be a family of compact subsets of 7" such that (77 — K)aca
constitutes a fundamental system of neighbourhoods of o in 7”. By defining
a1 £ as if Ky, C K,,, the index set 4 becomes a directed set. Furthermore,
since 7" is o-compact, 4 is of sequential character [3, p. 94]. Let u be a complex
Borel measure on 7" and let f € B(7"). We will say that u(f) = fodp exists,
if and only if limAfKa fdu exists.

For each x € X, let u, be a complex Borel measure on 7. Suppose, further-
more, that u,(f) = ffduz, when considered as a function of x, is an element
of B(X) whenever f € B(T) and u,(f ) exists for every x € X. Under these
circumstances we define a summability method M by saying that f € B(T)
converges (M) to the value L if and only if u,(f ) = (Mf ) (x) exists for every
x € X and limg,ou.(f) = L. The domain D (M) of this method is the set
of f € B(T) which are such that [, fdu, exists for every x € X. Note that
since each u, is bounded, B, (7") C D(M) [12, p. 119]. The method M is
defined to be regular if and only if lim, .u.(f) = L whenever f € B(T)
and lim,,, f(f) = L. Necessary and sufficient conditions for regularity are
(see [9, p. 16]):

2.1) SupxeX”:”z“ =P <o,
(2.2) limgoopu: (f) = O for every f € B(T") of compact support,
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(2'3) .Urz(]-) =de[J,z—>1aSDC'——>OO,

where ||u|| = [rd|u].
In addition to regularity, we will need to assume that M satisfies the
following condition, which is somewhat stronger than (2.2).

(2.4) [ xd|p.| — 0 as x — oo for each compact K C 7.

We will say that the method M is equivalent to convergence on the set
& C B(T) provided that f € & N D(M) and lim,,, (Mf )(x) exists imply
that lim ., f (¢) exists.

3. General theorems.

TaEOREM 1. Suppose {E,} is a disjoint collection of Borel sets in T with
compact closures such that if K C T 1s compact then K is a subset of the union
of a finite number of the {E,}. Suppose {x.} is a sequence of elements of X such

that x, — © and
3.1) lim inf l:‘ f Aug,| — f dlpz,,l] =L>0.
N—>0 En T—En

Then a regular M sabisfying (2.4) is equivalent to convergence on functions
f € Bo(T) which satisfy

(3.2) f@) =buift€ E,\n=12,....
Furthermore, if we have the additional hypothesis
(3.3) Uz (E) = 0 if E is a Borel subset of T' — Qn,

where Q, = E;\U ... \JE,, then we can conclude that M 1is equivalent to
convergence on funcitons f € B(T') which satisfy (3.2).

Proof. For the first part of the theorem, suppose f € B, (") diverges and
satisfies (3.2). Let ¢ be any complex number. Then our hypotheses imply that

lim sup | f(¢) — ¢| = lim sup |b, — ¢| = R > 0.
1500 n->c0
Let o (x) = [rfdu,. Then for each

o)== [ (=t [ G—ddmte| [an-1].

Choose € > 0. Choose a compact set K C T such that |f(t) —¢| < R+ e
whenever ¢ ¢ K. Let p(x) = CU‘pox — 1]. Then by (2.1),

!‘T(x) - C] = — Ip(x)] + an (f"' C)d#r - fT—(E»UK) ]f'_ C‘dlﬂz|
B
(T—Ea)NK
206+ hu—cl | [ due| = ®R+0 [l
> 8(x) + |be — | L du| =R [ dlul =P,
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where
56) = = b@) = J 15 = ddlu.

By (2.3) and (2.4), §(x) — 0 as x — 0. For an increasing sequence of values
of n, we have |b, — ¢| > R — e. For such values of » we have

)=

Thus, for all sufficiently large such values of =,
lo(x,) — ¢ = 8(x,) — 2eP + R(L — ).

Therefore o (x,) + ¢ as » — 0, and since ¢ is arbitrary, o(x) diverges.

Now suppose (3.3) is satisfied. To establish the second part of the theorem,
we must show that if f € B(7') is unbounded then ¢ is divergent. Suppose
f € B(T") is unbounded. Then lim sup,,|0,] = % and there are an infinity
of n for which | f(t)| < |b,| for all ¢ € Q,.

For all sufficiently large such values of # and a given ¢ > 0,

lo(x) —¢| = 8(x) — P + R[ dyy Ay
En En

|o ()

I

f d.u:rn
Qﬂ

SR

> |ba| [I J‘Enfdl.cﬂ[n - L“E"dlﬂ-znl:l

Z |ba|[L — €]
Thus lim supselo (x)| = © and ¢ diverges.

If T'=1[0,0), a() is Lebesgue integrable and

s@) = ‘fot a(u)du,

then we will say that o(k(¢)) 4s ¢ Tauberian condition for M if and only if
a() = o(h(@)) and s(¢) summable (M) imply lim, s (¢) exists.

THEOREM 2. Suppose T = [0,0) and {i,} is a sequence in T such that
O0<th<ti<ta<...;t, — 0. Suppose h is a positive integrable function
defined on T such that

(3.4) f'"“ R(t)dt = 0(1) asn— oo,

n

Finally, suppose M is a regular summability method that is equivalent to con-
vergence on functions f € B(T') which satisfy

(3.5) f@&) = by if tn St < tyga.
Then o(h(t)) is a Tauberian condition for M.
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Proof. Suppose a (t) is integrable,
t
<) = [ atwydn, a@) = o@(®)
0

and s(¢) is summable (/). Define s* by
s*@) = s(t) b=t <l

J;la(u)du — J;tﬂ a(u)du

= jnn " la(u)|du

Then for ¢, =t <ty

ls@®) — s*(0)] =

It

o(1) f, " ) |du.

Therefore, by (3.4), s(t) — s*(¢) -0 as {— . Since M is regular,
M(s — s*) = Ms — Ms*— 0 as x — . But we have assumed that s is
summable (M) and hence Ms converges. It follows that Ms* converges, then
by hypothesis, that s* converges, and finally that s converges.

4. Application to Hausdorff methods. Let x(¢) be of bounded variation
on [0,1], x(1) = 1, x(0) = x(0+) = 0. Consider the summability method
M, from the space T = [0,0) to the space X = (0,00) defined by the

measures
t
< < <
(4.1) e (f) = {X (x) 0=t=x
0 x < t.
Then

N = [ 100 = | feix®.

It is easily shown that each M, is a regular summability method in the sense
of paragraph 2 and that (2.4) is satisfied. Furthermore these methods are
consistent. That is, if lim M,,(f) = L, and lim M,,(f) = L., then L, = L,
[see 13, p. 345; 5, p. 262, footnote]. Thus we may define the collective con-
tinuous Hausdorff method, 5, by saying that f is summable (5 ) to L if
and only if f is summable (M) to L for some x. (See [1, p. 229] where collective
(discrete) Hausdorff summability is defined.)

When we say that o(k(x)) is the best possible Tauberian condition for a
method M, we mean that o(%(x)) is a Tauberian condition for M, but O (% (x))
is not.

THEOREM 3. The best possible Tauberian condition for the collective continuous
Hausdorff method is o(1/x).
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Proof. Suppose a(x) is integrable, s(x) = [§a(u)du, a(x) = o(1/x) and
s(x) is summable (). Then s(x) is summable () for some x. Since
x(04) = x(0) = 0, we may choose 6§ € (0, 1) such that

J:d[x[ <1/2.

Letty =0, = 1,and ¢, = §,-1/8ifn > 1. Let E; = (0,1) and E, = [t,-1, t,)
if w > 1,and letx, = ¢, if » = 1. Then, with u, as in (4.1),

[l = Lt = [, x ()] - 7o ()
- | [axo] - [ axo)
[ axo| =2 f aix

> 0.
Thus (3.1) is satisfied and, furthermore, (3.3) is satisfied. By Theorem 1,
M, is equivalent to convergence on functions which satisfy

f(t):‘bn ift—1§t<tn.

%

But
in +1 1

f t_dt = loge(tyr1/ty) = loge 8,
1

n

thus (3.4) is satisfied, and by Theorem 2, 0(1/x) is a Tauberian condition
for M,. This implies that s converges and hence that o(1/x) is a Tauberian
condition for 5.

To show that 0(1/x) is best possible, we will exhibit a continuous Hausdorff
method for which O(1/x) is not a Tauberian condition. Let

jo 0st<1
x(t) =193 §st<3%
ll igst=1
and
0 0<t<1
a(t) = §m cos(w logs 3t) 1 <
o 3=t
tlog. 2

Then if x = %,
s(x) = f a(t)dt = sin (7 logs 3x),
0

so a(t) = 0(1/t) and s(x) diverges. However,

J:s(xt)dx(t) = 1(s(x/3) 4+ s(2x/3)) = 0if x = 1.

Thus M,s converges.
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Since Theorem 3 improves upon one of the author’s previous results
[10, Application D], it is now possible to use the results in [11] to prove the
following theorem.

THEOREM 4. If M, is a regular continuous Hausdorff method, if x(t) is
absolutely continuous, and if

1
f firdy () % 0
0

for all x, then O(1/x) is a Tauberian condition for K.

Proof. This follows from Theorem 3 and [11, Theorem 5] as in [11, Applica-
tion D].

It is reasonable to suppose that the ‘absolutely continuous’ hypothesis in
Theorem 4 could be removed by casting the theorems of [11] in the setting
of locally compact spaces.
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