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A BEST POSSIBLE TAUBERIAN THEOREM FOR THE 
COLLECTIVE CONTINUOUS HAUSDORFF 

SUMMABILITY METHOD 

G. E. PETERSON 

1. Introduction. The purpose of this paper is to prove that o(l /x) is the 
best possible Tauberian condition for the collective continuous Hausdorff 
method of summation. The analogue of this result for the collective (discrete) 
Hausdorff method is known [1, pp. 229, ff.; 7, p. 318; 8, p. 254]. Our method 
involves generalizing a well-known Abelian theorem of Agnew [2] to locally 
compact spaces and then applying the analogue for integrals of a result 
Lorentz obtained for series [6, Theorem 1]. 

2. Setting. Let T and X denote locally compact, non compact, cr-compact 
Hausdorff spaces. Let V = T U (co ) and Xf = X \J (oo ) denote the one-
point compactifications of T and X, respectively. Let B(T) denote the set 
of locally bounded, complex valued Borel functions on T and let Bœ(T) 
denote the bounded functions in B(T). 

Let (Ka)aeA be a family of compact subsets of T such that (Tf — Ka)a€A 

constitutes a fundamental system of neighbourhoods of oo in T'. By defining 
ai ^ a2 if Kai C K<x2, the index set A becomes a directed set. Furthermore, 
since T is <7-compact, A is of sequential character [3, p. 94]. Let ^ be a complex 
Borel measure on T and l e t / 6 B(T). We will say that /x(/ ) = JTfdfJL exists, 
if and only if limAJKafdn exists. 

For each x Ç. X, let nx be a complex Borel measure on T. Suppose, further­
more, that Hx(f) = JfdfXx, when considered as a function of x, is an element 
of B(X) whenever/ Ç B ( r ) and nx(f ) exists for every x f I . Under these 
circumstances we define a summability method M by saying t h a t / G B(JT) 
converges (M) to the value L if and only if ixx{f ) = (Mf ) (x) exists for every 
x £ X and l i m ^ ^ C / ) = L. The domain D(M) of this method is the set 
of / G B ( r ) which are such that jTfdfix exists for every x 6 X. Note that 
since each y.x is bounded, Bm(T) CD(M) [12, p. 119]. The method M is 
defined to be regular if and only if lim^00jux(/ ) = L whenever / £ B(T) 
and l i m ^ œ / ( 0 = L. Necessary and sufficient conditions for regularity are 
(see [9, p. 16]): 

(2.1) sup^xIkH = P < co, 

(2.2) Hm^00Mx(/ ) = 0 for every / £ B(T) of compact support, 
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(2.3) M<c(l) = JrdfJLx —> 1 as x —> oo , 

where \\nx\\ = JVd|/xz|. 
In addition to regularity, we will need to assume that M satisfies the 

following condition, which is somewhat stronger than (2.2). 

(2.4) ficdlfjixl —> 0 as x —> co for each compact K C T. 

We will say that the method M is equivalent to convergence on the set 
y C B ( r ) provided that / <G y C\D(M) and limx_>œ(Mf )(x) exists imply 
that lim j ^ / ^ ) exists. 

3. General theorems. 

THEOREM 1. Suppose {En} is a disjoint collection of Borel sets in T with 
compact closures such that if K C T is compact then K is a subset of the union 
of a finite number of the {En}. Suppose {xn} is a sequence of elements of X such 
that xw —> oo and 

(3.1) lim inf f dA - f d\ixXn\ = L > 0. 

Then a regular M satisfying (2.4) is equivalent to convergence on functions 
f G Bco(r) which satisfy 

(3.2) f{t) = bnifte En,n = 1, 2, . . . . 

Furthermore, if we have the additional hypothesis 

(3.3) MznOE) = 0 if E is a Borel subset of T — Qn, 

where ft = £ i U . . . U £ n , then we can conclude that M is equivalent to 
convergence on functions f Ç B(T) which satisfy (3.2). 

Proof. For the first part of the theorem, suppose/ 6 B0O(r) diverges and 
satisfies (3.2). Let c be any complex number. Then our hypotheses imply that 

lim sup | / ( 0 — c\ = lim sup \bn — c\ = R > 0. 
t->co n->oo 

Let a(x) — jrfdfXx- Then for each n 

o-(x) - c = I (f—c)dnx+ I (/—c)d/z* + c I d\xx-\ . 

Choose e > 0. Choose a compact set i£ C T such that |/(£) — c\ < R + e 
whenever t $ K. Let p(x) = c\jTdfxx — 1]. Then by (2.1), 

|a(«) - c| à - | P ( * ) | + f ( / - c)dJ - f | / - c | d k 
I *SEn I «^2T-(^nU^) 

- I (/ - c)dpt 
I «/(T-Er,)nK 

I ^Ma 

En I 

à 8(*) + \bn - c| 

è 8(*) + 16» - c| -R f d|M«| - eP, 
v r - p „ 
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where 

Ô(x)= - \p(x)\ - f \f-c\d\h\. 

By (2.3) and (2.4), 8 (x) —> 0 as x —» co. For an increasing sequence of values 
of n, we have \bn — c\ > R — e. For such values of n we have 

k(*) - c\ ^ d(pc) -eP + R\\ f dA - f |dM,| - € f dA. 

Thus, for all sufficiently large such values of n, 

\a(Xn) -c\^ ô(xn) - 2eP + R(L - e). 

Therefore a(xn) -A c as n —•» oo, and since c is arbitrary, cr(x) diverges. 
Now suppose (3.3) is satisfied. To establish the second part of the theorem, 

we must show that if / £ B(T) is unbounded then a is divergent. Suppose 
/ € B ( r ) is unbounded. Then lim s u p ^ J ^ I = co and there are an infinity 
of n for which | / (*) | ^ \K\ for all / 6 Q„. 

For all sufficiently large such values of n and a given e > 0, 

I f I 
k(*»)| = I fdHznl 

\ *J Qn I 

s f fdA - { \f\d\^\ 
\ *s En I *> Qn—En 

â |ô.|| f /d /J - f <%*„| | 
L I *J En I *JX-En J 

è I W - «] 
Thus lim s u p ^ œ k ( x ) | = co and a diverges. 

If T = [0, oo ), a(t) is Lebesgue integrable and 

sit) = I a(u)du, 
Jo 

then we will say that o(h(t)) is a Tauberian condition for M if and only if 
a{t) = oih(t)) and s(t) summable (M) imply limt^sty) exists. 

THEOREM 2. Suppose T = [0, oo ) and {tn} is a sequence in T such that 
0 < to < h < h < . . . ; tn —> co. Suppose h is a positive integrable junction 
defined on T such that 

f*tn+l 

(3.4) h(t)dt = 0(1) asn-^co. 
J tn 

Finally, suppose M is a regular summability method that is equivalent to con­
vergence on junctions j £ B(T) which satisjy 

(3.5) /(*) = bn ijtnSt< tn+1. 

Then o(h(t)) is a Tauberian condition jor M. 
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Proof. Suppose a{i) is integrable, 

s(t) = I a(u)du,a(t) = o(h(t)) 
Jo 

and s(t) is summable (ikf). Define s* by 

**(0 = s(tn) tn ^ t<tn+1. 

Then for tn ^ t < tn+i 

I a(u)du — I a{u)du 
•Jo «/o 

/»*n+l 

^ J \a(u)\du 

= o(l) f \h(u)\du. 
*J tn 

Therefore, by (3.4), s(t) — s*(t) —-> 0 as £—>oo. Since Af is regular, 
JW"(s — s*) = ikfs — Ifs*—>0 as x —*oo. But we have assumed that 5 is 
summable (M) and hence .Ms converges. I t follows that Ms* converges, then 
by hypothesis, that s* converges, and finally that s converges. 

4. Application to Hausdorff methods. Let x(0 be of bounded variation 
on [0, 1], x ( l ) = 1» x(0) = x ( 0 + ) = 0. Consider the summability method 
Mx from the space T = [0, oo ) to the space X = (0, oo ) defined by the 
measures 

(4.1) nM) 

Then 
( 0 x < t. 

(MJ)(x)= P / (0M)= f f(xt)dx(t). 
•Jo *J o 

I t is easily shown that each Mx is a regular summability method in the sense 
of paragraph 2 and that (2.4) is satisfied. Furthermore these methods are 
consistent. That is, if lim Mxi(f) = Li and lim MX2(f) = L2i then Li = L2 

[see 13, p. 345; 5, p. 262, footnote]. Thus we may define the collective con­
tinuous Hausdorff method, J^7, by saying that / is summable ( & ) to L if 
and only if/ is summable (Mx) to L for some x- (See [1, p. 229] where collective 
(discrete) Hausdorff summability is defined.) 

When we say that o(h(x)) is the best possible Tauberian condition for a 
method M, we mean that o(h(x)) is a Tauberian condition for M, but 0(h(x)) 
is not. 

THEOREM 3. The best possible Tauberian condition for the collective continuous 
Hausdorff method is o(l/x). 
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Proof, Suppose a(x) is integrable, s(x) = Jo a(u)du, a(x) = o(l/x) and 
s(x) is summable (34f). Then s(x) is summable (Mx) for some %. Since 
x ( 0 + ) = x(0) = 0, we may choose ô G (0, 1) such that 

d\x\ < l / 2 . 

Let /o = 0, h = 1, and /n = /„_i/5 if w > 1. Let £ i = (0, 1) and En = [4_i, 4) 
if n > 1, and let xn = tniî n ̂  1. Then, with /xx as in (4.1), 

I f dA - f <2K„| = I f" dx(;f)| - f'""^|x(f)| 
I ^ En I *SX-En ' " *n-l W I «^ 0 I \Xn/ \ 

= fdx(t)\ - fd\x(t)\ 

à f^xO) - 2 f'dlxWI 
I «/o 1 */o 

> 0 . 
Thus (3.1) is satisfied and, furthermore, (3.3) is satisfied. By Theorem 1, 
Mx is equivalent to convergence on functions which satisfy 

But 

I 
/ ( ; ) - bn if «„-! < t < tn. 

tn +1 -| 

jdt = loge^H-lAt) = loge 5, 

thus (3.4) is satisfied, and by Theorem 2, o(l/x) is a Tauberian condition 
for M"x. This implies that s converges and hence that o(l/x) is a Tauberian 
condition for^ 7 . 

To show that o(l/x) is best possible, we will exhibit a continuous Hausdorff 
method for which 0(1/x) is not a Tauberian condition. Let 

(o o ̂  * < ï 

U I ^ i g l 
and 

Then if x ^ J, 

0 

a ( 0 = S 7T C0S(7T lpg2 3/) 

( / loge 2 
i£t. 

s(x) = I a(t)dt = sin(7r log2 3x), 
Jo 

so a(t) = 0(1//) and s(x) diverges. However, 

«/o 
s(xt)dx{t) = §($(*/3) + s(2x/3)) = 0 if je è 1. 

Thus Mx5 converges. 
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Since Theorem 3 improves upon one of the author's previous results 
[10, Application D]> it is now possible to use the results in [11] to prove the 
following theorem. 

THEOREM 4. If Mx is a regular continuous Hausdorff method, if x (0 is 
absolutely continuous, and if 

Çtixdx(t) ^ 0 

for all x, then 0(1/x) is a Tauberian condition for K. 

Proof. This follows from Theorem 3 and [11, Theorem 5] as in [11, Applica­
tion D]. 

It is reasonable to suppose that the 'absolutely continuous' hypothesis in 
Theorem 4 could be removed by casting the theorems of [11] in the setting 
of locally compact spaces. 
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