5

Numerical Flatness and Stability Criteria

The aim of this chapter is to prove several characterizations of stable and
locally stable families f: (X,A) — S. An earlier result, established in (3.1),
has two assumptions:

e cvery fiber (X, A;) is semi-log-canonical, and

e Kx/s + Ais Q-Cartier.

In many applications, the first of these is given, but the second one can be quite
subtle.

Note that such difficulties arise already for surfaces, even if A = 0. Indeed,
we saw in Section 1.4 that there are flat, projective families g: X — C of
surfaces with quotient singularities that are not locally stable. In these cases
every fiber is log terminal, but K¢ is not Q-Cartier, although its restriction to
every fiber Kx/clx, = Kx, is Q-Cartier.

In all the examples in Section 1.4, this unexpected behavior coincides with a
jump in the self-intersection number of the canonical class of the fiber. Our aim
is to prove that this is always the case, as shown by the following simplified
version of (5.4). The main part of its proof is in Section 5.4.

Theorem 5.1 (Numerical criteria of stability) Let S be a connected, reduced
scheme over a field of characteristic 0, and f: X — S a flat, proper morphism
of pure relative dimension n. Assume that all fibers are semi-log-canonical
with ample canonical class Kx,. The following are equivalent:

(5.1.1) fis stable.

(5.1.2) Kxys is Q-Cartier and f-ample.

(5.1.3) nO(X,, o)gf]) is independent of s € S for every m > Q.

(5.1.4) f*(a)l)?;ls) is locally free for every m > 0.

(5.1.5) (K;‘_) is independent of s € S.
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Proof Note that once Kx/s is Q-Cartier, it is f-ample since the K, are ample.
Then (5.1.1) = (5.1.2) follows from (3.1.1).

The m = 1 case of (5.1.3) is proved in (2.69); the m > 2 cases follow
from (3.1.3) and the vanishing of higher cohomologies (11.34). Next (5.1.3)
= (5.1.4) by Grauert’s theorem. By Riemann—Roch (3.33), (K;’(J) is the lead-
ing term of h%(X,, "), thus (5.1.3) = (5.1.5). Finally (5.1.5) = (5.1.1) is a
special case of (5.4). O

If f: X — S is stable, then Kys is Q-Cartier, hence (KY ) is clearly inde-
pendent of s € S, but the converse is surprising. General theory says that
stability holds iff the Hilbert function y(Xj, Ox,(mKy,)) is independent of
s € §. Thus (5.1.2) asserts that if the leading coefficient of the Hilbert function
is independent of s, then the same holds for the whole Hilbert function. We
collect many similar results in this chapter; see Kollar (2015) for other such
examples.

The main theorems are stated in Section 5.1. Related results on simultane-
ous canonical models and modifications are discussed in Section 5.2. The key
claim is that, for families of slc pairs, local stability can fail only in relative
codimension 2, and it can be characterized by the constancy of just one inter-
section number. A similar numerical condition characterizes Cartier divisors
on flat families.

A series of examples in Section 5.3 shows that the assumptions of the
theorems are likely to be optimal in characteristic 0.

Numerical criteria for stability in codimension < 1 are discussed in Sec-
tion 5.5. For all of the main theorems the key step is to establish them for
families over smooth curves. This is done in Section 5.6. The numerical cri-
terion of global stability, and a weaker version of local stability are derived
in Section 5.6. The existence of simultaneous canonical models is studied in
Section 5.7, and we treat simultaneous canonical modifications in Section 5.8.

Going from families over smooth curves to families over higher dimen-
sional singular bases turns out to be quite quick, but several of the arguments,
presented in Section 5.9, rely heavily on the techniques and results of
Chapter 9.

Assumptions For all the main theorems of this chapter we work with vari-
eties over a field of characteristic 0, but the background results worked out in
Section 5.4 are established for excellent schemes.

5.1 Statements of the Main Theorems

We develop a series of criteria to characterize stable and locally stable (4.7)
morphisms using a few, simple, numerical invariants of the fibers.
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We follow the general set-up of (5.1), but we strengthen it in three ways:
e We add a boundary divisor A.
e We assume only that f is flat in codimension 1 on each fiber. The reason
for this is that many natural constructions (for instance flips, taking cones
or ramified covers) do not preserve flatness. Thus we frequently end up with
morphisms that are not known to be flat everywhere.
o We deal with local stability as well. A weak variant, involving several inter-
section numbers, is quite similar to the global case, but the sharper form
requires different considerations.

For the main results of this chapter we work with the following set-up, which
is a slight generalization of (3.28) and (4.2).

Notation 5.2 Let f: X — S be a proper morphism of pure relative dimension
n (2.71), and Z c X a closed subset with complement U := X \ Z such that
(5.2.1) codimy, (Z N X) > 2 forevery s € S,

(5.2.2) fly: U — S isflat, and

(5.2.3) depth, X > 2.

We also consider effective R-divisors A = >, b;B; on X, where the B; are
generically Cartier divisors (4.24). (Sheaf versions are studied in Section 5.4.)

We are mainly interested in cases where each fiber (X, Ay) is slc, but it turns
out to be very useful to work with the following more general set-up.

Assumption 5.3 Given f: (X,A) — S as in (5.2), we assume the following:
(5.3.1) flu: (U Aly) — S is locally stable,

(5.3.2) (Xg,A,) is slc for all generic points g € S, and

(5.3.3) every fiber has Ic normalization 7y : (X,, Dy + Ay) — (X, Ay).

Note that (X, D, + A,) is defined over U, by (1), and this determines D +
A, since X, \ U, has codimension > 2. Thus it makes sense to ask whether
(Xy, Dy + Ay) is 1c or not.

The next result generalizes (5.1) to pairs. Its proof is given in (5.42).

Theorem 5.4 (Numerical criterion of stability) We use the notation of (5.2). In
addition to (5.3.1-3) assume that S is a reduced scheme over a field of char 0,
and Kz + Dy + A is ample for every s € S. Then

5.4.1) v(s) = ((KX\- + D, + AS)") is an upper semi-continuous function, and
5.4.2) f: (X,A) — S is stable iff v(s) is locally constant on S .

The local version is the following, to be proved in (5.27) and (5.54).
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Theorem 5.5 (Numerical criterion of local stability) We use the notation of
(5.2). In addition to (5.3.1-3) assume that S is a reduced scheme over a field
of char O, and H is a relatively ample Cartier divisor class on X. Then

(5.5.1) va(s) := (7rf;H”’2 < (Kx, + D + AS)Z) is upper semi-continuous, and
(5.52) f: (X,A) — S is locally stable iff v,(s) is locally constant on S.

Note that the functions (7;H") and (7;H""' - (K + Dy + A,)) are always
locally constant, but (r;H"™ - (K. + D, + Ay)’) are neither upper nor lower
semi-continuous for i > 3.

A key part of the proof of (5.5) is to show that local stability is essentially a
two-dimensional question. The following, proved in (5.54), generalizes (2.7).

Theorem 5.6 (Local stability in codimension > 3) (Kollar, 2013a, Thm.18)
Using the notation and assumptions of (5.2-5.3), let S be a reduced scheme of
char 0. Assume also that codimy (Z N X,) > 3 for every s € S.

Then f: (X,A) — S is locally stable.

One can also restate this as a converse of the Bertini-type result (2.13).

Corollary 5.7 Notation and assumptions as in (5.2-5.3), let S be a reduced
scheme of char 0. Assume in addition that the relative dimension is n > 3 and
fla: (H,Alg) — S is locally stable, where H C X is a relatively ample Cartier
divisor. Then f: (X,A) — S is also locally stable. O

Comment As we noted in (2.14), (11.17) implies that f: (X,H + A) — §,
and hence also f: (X,A) — §, are locally stable in a neighborhood of H. The
unexpected new claim is that local stability holds everywhere.

A variant of (5.4) holds for arbitrary divisors and for non-slc fibers, but we
have to assume that f is flat with S, fibers. On the other hand, this holds over
any base scheme.

Theorem 5.8 (Numerical criterion for relative line bundles) Kollar (2016a)
Let S be a reduced scheme, f: X — S a flat, proper morphism of pure relative
dimension n with S, fibers, and Z C X a closed subset such that codimy,
(ZNX,)>2forevery s € S. Let A be an f-ample line bundle on X.

Let Ly be a line bundle on U := X \ Z and assume that, for every s € S, the
restriction Lyl|y, extends to a line bundle Ly on X;. Then
(5.8.1) dy(s) := (A’S"2 . Lf) is an upper semi-continuous function on S, and
(5.8.2) Ly extends to a line bundle on X iff d>(s) is locally constant on S .
Furthermore, if Ly is ample for every s, then
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(5.8.3) d(s) := (L}) is an upper semi-continuous function on S, and
(5.8.4) Ly extends to a line bundle on X iff d(s) is locally constant on S.

5.2 Simultaneous Canonical Models and Modifications

Given a morphism f: X — §, we would like to know when the canonical
models (or the canonical modifications) of the fibers form a flat family; see
(5.9) and (5.15) for the precise definitions.

As we discussed in Section 1.5, the canonical models of the fibers need
not form a flat family, not even for locally stable morphisms. We develop
numerical criteria, after some definitions.

Definition 5.9 (Simultaneous canonical model) Let f: (X,A) — S be a mor-
phism as in (5.2). Assume that (5.3.1) holds, and every fiber has log canonical
normalization 7, : (X, As) — (X, Ay). Its simultaneous canonical model is a

diagram
\ (5.9.1)
f I

where f5¢: (X%, A%) — § is stable, and ¢ o 7 (X, Ay) - (X5, A) is the
canonical model (over s), as in (11.26), for every s € S.

Warning A “‘simultaneous” canonical model is not the same as a “relative”
canonical model (11.26). For both notions K + A is relatively ample, but the
former requires the singularities of the fibers to be Ic, the latter the singularities
of the total space to be lc. Neither implies the other.

For a pure dimensional, proper morphism f: X — S, the simultaneous
canonical model of resolutions f**: X*** — § is defined analogously. Here
we require that each ¢,: X, --» X} be obtained by first taking a resolution
X: — red X;, and then the disjoint union of the canonical models of those
irreducible components that are of general type.

5.9.2 (Some known cases) Let f: X — S be flat, projective with § reduced.
Assume that X; is of general type and has canonical singularities for some
s € S. Then a simultaneous canonical model exists over an open neighborhood
s€S8°cS;see (1.37). The A # 0 case is more subtle, see (5.20) and (5.48).

04 See Comment 5.9.3.
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5.9.3 (Comment on the conductor) Note that we do not add the conductor of
s to A,. If the fibers are normal in codimension 1 then D, (the divisorial part
of the conductor) is 0, hence our notion is the only sensible one. In general,
however, one has a choice, and the simultaneous slc model, to be defined in
(5.51), seems a better concept when Dy # 0.

We give criteria for the existence of simultaneous canonical models in terms
of the volume (10.31) of the canonical class of the fibers. Note that if Y is a
proper scheme of dimension n then vol(Kyr) is independent of the choice of
the resolution Y* — Y, and it equals the self-intersection number ((Ky«)").
Similarly, if (¥, A) is log canonical then vol(Ky + A) = ((Ky- + A°)").

Theorem 5.10 (Numerical criterion for simultaneous canonical models I) Let

S be a seminormal scheme of char0, and f: X — S a proper morphism of

pure relative dimension n. Then

(5.10.1) v(s) := vol(K(x,y) is a lower semicontinuous function on S, and

(5.10.2) f: X — S has a simultaneous canonical model of resolutions iff v(s)
is locally constant (and positive).

The key case, when S is a smooth curve, is settled in (5.44); the general
case is in (5.55). This is a surprising result on two accounts. First, cohomology
groups almost always vary upper semicontinuously; the lower semicontinuity
in this setting was first observed and proved by Nakayama (1986, 1987). Sec-
ond, usually it is easy to generalize similar proofs from smooth varieties to
klt or lc pairs, but here adding any boundary can ruin the argument and the
conclusion. Example 5.19 shows that S needs to be seminormal.

The following is a similar result for normal Ic pairs, but the lower semicon-
tinuity of (5.10) changes to upper semicontinuity.

Theorem 5.11 (Numerical criterion for simultaneous canonical models IT) Let
S be a seminormal scheme of charQ, and f: (X,A) — S as in (5.2). Assume
furthermore that

(5.11.1) fly: U — S is smooth with irreducible fibers,

(5.11.2) every fiber has Ic normalization ry: (X, Ay) — (X,, Ay), and
(5.11.3) the canonical models ¢ : (X;, Ay) - (X6, AS) exist.

Then

(5.11.4) v(s) := vol(Kx, + Ay) is an upper semicontinuous function on S, and

(5.11.5) f: (X,A) = S has a simultaneous canonical model iff v(s) is locally
constant.
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The proof is given in (5.46), and (5.55).

One should think of (5.11) as a generalization of (5.4), but there are differ-
ences. In (5.11) we allow only fibers that are smooth in codimension 1, and S
is assumed seminormal. (The extra assumption (3) is expected to hold always.)
However, the key difference is in the proofs given in Section 5.9. While the
proof of (5.4) uses only the basic theory of hulls and husks, we rely on the
existence of moduli spaces of pairs in order to establish (5.11).

Both (5.10) and (5.11) apply to f: X — S iff the normalizations of the
fibers have canonical singularities. In this case, f is locally stable (2.8), and
the plurigenera — and hence the volume — are locally constant (1.37).

A key ingredient of the proofs of (5.10-5.11) is the following charac-
terization of canonical models. We prove a more general version of it in
(10.36).

Proposition 5.12 Let X be a smooth proper variety of dimension n. Let Y be a
normal, proper variety birational to X, and D an effective R-divisor on Y such
that Ky + D is R-Cartier, nef and big. Then

(5.12.1) vol(Ky) < vol(Ky + D) = ((Ky + D)"), and

(5.12.2) equality holds iff D = 0 and Y has canonical singularities.

For surfaces, the existence criterion of simultaneous canonical modifications
is proved in Kollar and Shepherd-Barron (1988, Sec.2). In higher dimensions,
we need to work with a sequence of intersection numbers and with their
lexicographic ordering.

Definition 5.13 Let X be a proper scheme of dimension n, and A, B R-Cartier
divisors on X. Their sequence of intersection numbers is

I(A,B) := ((A"),...,(A"" - BY),...,(B") e R""

Definition 5.14 The lexicographic ordering of length n + 1 real sequences is

(ao, - .-, an) < (bo, ..., bn).
This holds if either a; = b; for every i, or there is an » < n such that a; = b; for
i < r,buta, < b,. For polynomials we define an ordering

fO=<gl) & f(r)<gH)Vr>0.
We use = to denote identity of sequences or polynomials. Note that

Yt < Y bit" " S (ag, ..., an) = (bo, ..., by).

If we have proper schemes X, X" of dimension n, R-Cartier divisors A, B on X
and A’, B’ on X’, then
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IA,B)<I(A,B) & (tA+B)" < (1A’ + B')".

We will consider functions that associate a sequence or a polynomial to all
points of a scheme X. Using the above definitions, it makes sense to ask if such
a function is upper/lower semicontinuous for < or not.

Definition 5.15 (Simultaneous canonical modification) Let f: X — S be a
morphism of pure relative dimension n, and A = }’ a;D; a generically Q-Cartier
effective divisor on X. A simultaneous canonical modification is a proper mor-
phism p*™: (X3, A*™) — (X, A) such that f o p*™: (X5 A*™) — § is
locally stable, and

P (M) (AM)) = (X, Ay)

is the canonical modification (11.29) for every s € S.
A simultaneous log canonical modification p*™: (X3, AS*™) — (X, A) is
defined analogously.

In the following result we need to assume that the base scheme is seminor-
mal; see (5.21) for some examples.

Theorem 5.16 (Numerical criterion for simultaneous canonical modification)
We use the notation of (5.2). In addition to (5.3.1), assume that S is a seminor-
mal scheme of char 0, and H is a relatively ample Cartier divisor class on X.
For s € S let p{": (X", AS") — (X, A,) denote the canonical modification of
the fiber (Xy, Ay). Then

(5.16.1) I(s) := I(7;Hs, Kxon + AS™) is lower semi-continuous for <, and
(5.16.2) f: (X,A) — S has a simultaneous canonical modification iff 1(s) is

locally constant.

There is also a similar condition for simultaneous log canonical and semi-
log-canonical modifications (5.52), but these only apply when Kx;s + A is
Q-Cartier.

5.3 Examples

Here we present a series of examples that show that the assumptions of the
Theorems in Sections 5.1-5.2 are close to being optimal, except that the
characteristic 0 assumption is probably superfluous.

The following is the simplest example illustrating the difference between
being Cartier and fiber-wise Cartier.
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Example 5.17 Consider the family of quadrics

X=()cz—y2+zz—t2wz=0)CIP>3 XA, and D=(x-y=z—-tw=0).

Xyzw

Here Xj is a quadric cone, and X; is a smooth quadric for ¢ # 0. The divisor D
is Cartier, except at the origin, where it is not even Q-Cartier. However D is
a line on a quadric cone, hence 2Dy = (x —y = t = 0) is Cartier. It is easy to
compute that

L= 0x(-2D) = (x—y,z— tw)* - Ox

is locally free outside the origin and not locally free at the origin, but the
reflexive hull of its restriction

LY := Ox,(=2Dy) = (x - y) - O,
is locally free. The natural restriction map gives an identification
Ox(=2D)lx, = (x,y,2) - Ox,(=2Dg) C Ox,(=2Dy).

Note that the self-intersection number of the fibers of D also jumps. For ¢ # 0
we have (D7) = 0, but (D]) = 1/2.

It is harder to get examples where the self-intersections in (5.8) are locally
constant, yet the divisor is not Cartier, but, as we see next, this can happen even
for the canonical class. Thus in (5.8) one needs to assume that the fibers of f
are S, and in (5.4) that the fibers are slc.

Example 5.18 (See (2.35) or Kollér (2013b, 3.8—14) for the notation and basic
results on cones.) Let X ¢ PV be a smooth, projective variety of dimension n
and Ly = Ox(1). Let C(X) := C,(X, Lx) denote the projective cone over X
with vertex v and natural ample line bundle L¢(x). Let H C X be a smooth
hyperplane section, and C(H) := C,(H, Ly) the projective cone over H. Note
that
(L) = (L) = (L) = (L)

The canonical class of C(X) is Cartier iff Ky ~ mc(Ly) for some m € Z. In
this case KC(X) ~ (m— l)Cl(LC(X)).

We can think of H as sitting in X ¢ C(X). The pencil of hyperplanes contain-
ing H ¢ C(X) gives a morphism of the blow-up p: Y := ByC(X) — P! such
that ¥, =~ X for t # 0, and the normalization ¥, of Y is isomorphic to C(H).
However, if H'(X, Ox) # 0 then Y, is not normal. For instance, this happens
if X is the product of nonhyperelliptic curves of genus > 2 with its canonical
embedding. Thus, if these hold, then
(5.18.1) Y;is smooth and Ky, is ample for ¢ # 0,
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(5.18.2) Y, is not normal, the normalization ¥y — Y is an isomorphism
except at v, Ky, is locally free and ample and
(5.18.3) (K;l’,) = (K;o) (where n = dim X).

The next example shows that (5.10) fails if S is not seminormal.

Example 5.19 Let S be a local, reduced, nonseminormal scheme with semi-
normalization S” — §. Choose an embedding of S’ into the moduli space
of automorphism-free curves of genus g for some g. Let p’: X’ — S’ be the
resulting smooth family. This induces a family p: X" — S’ — § that satisfies
the assumptions of (5.10). However, there is no simultaneous canonical model
since p’: X’ — S’ does not descend to p: X — S.

The next examples show that there does not seem to be a log version of
(5.10) for families with reducible fibers, not even for families of curves.

Example 5.20 Let g: S — C be a smooth family of curves, and D; C S a set
of n disjoint sections. Set A := ) d;D;. Pick a point O € C, the fiber over it is
(S0, 2. dilp:i]) where p; = S¢ N D;. The “log volume” is 2g(So) — 2 + > d;.

Let: S' — S be the blow up of all the points p; with exceptional curves
E; and set A' := m;'A. The central fiber of g': (S,',A") —» Cis (5),0) +
2.i(Ei, di[p’]). Its normalization consists of S (with no boundary points) and
E; ~ P!, each with one marked point of multiplicity d;. Thus the “log volume”
of the central fiber is now 2g(S ) — 2; the effect of the boundary vanished.

One can try to compensate for this by adding the double point divisor Dj.
This variant of the “log volume” is now 2g(S o) —2+n. This formula remembers
only the number of the sections, not their coefficients. Even worse, we can blow
up m other points on S, then the “log volume” formula gives 2g(S o) —2+n+m.

In general, there does not seem to be a sensible and birationally invariant
way do define the “log volume” of degenerations.

In (5.16), the base scheme is assumed to be seminormal. The reason for this
is that canonical modifications do have unexpected infinitesimal deformations.

Example 5.21 (Deformation of canonical modifications) We give an example
of a normal, projective variety with isolated singularities and canonical mod-
ification X" — X such that the trivial deformation of X can be lifted to a
nontrivial deformation of X™.

Consider the isolated hypersurface singularity

X=X, = (] + - +x,+ 2 =0) c AL
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Let p: Y := BoX — X denote the blow-up of the origin. Then Y is smooth,
the exceptional divisor is the cone E = (x} +--- + x;, = 0) C P" and Ngy =
Op(—1). We compute that a(E, X, ,,0) = n—r. Thus X,,, is canonical iff r < n,
and Y is the canonical modification for r > n.

We claim that p: Y — X has a nontrivial deformation over X X; Spec k[&].
The trivial deformation is obtained by blowing up

(x1 =+ = X541 = 0) C X Xy Spec k[e].
The nontrivial deformation is obtained by blowing up
Z:=(x; ==X, =Xp41 — € =0) C X X Spec kle].

We need to check that X is equimultiple along the blow-up center. Introducing
a new coordinate y := x,,] — &, the equations become

Zi=(xj=-=x,=y=0C(x]+-+x,+y" + @+ Dey =0),

thus X x; Spec k[¢] is clearly equimultiple along Z.

Note that £ C Y has a unique extension E, to a deformation Y, of Y since
H'(E, Ngy) = 0. The blow-up ideal is then the push-forward of the ideal sheaf
of E,. Thus different blow-up ideals give different deformations of Y.

The following examples show that the existence of simultaneous canonical
modifications is more complicated for pairs.

Example 5.22 In P? consider a line L ¢ P? and a family of degree 8 curves C,
such that C has four nodes on L plus an ordinary 6-fold point outside L, and
C, is smooth and tangent to L at four points for ¢ # 0.

Let ,: S, — P? denote the double cover of P? ramified along C,. Note that
Ks, = n;0(1), thus (Kfr) = 2. For each t, the preimage n;'(L) is a union of
two curves D; + D;. Our example is the family of pairs (S, D;). We claim that,
(5.22.1) there is a log canonical modification (S'™, DI™) — (S, D,), and
(5.22.2) ((Kslcm + Dl™M)?) = 1, yet
(5.22.3) there is no simultaneous log canonical modification.

If t # 0 then S; and D, are smooth. Furthermore D,, D, meet transversally at
four points, thus (D,-D!) = 4. Using ((D,;+D})?) = 2, we obtain that (D?) = -3.
Thus ((Ks, + D;)?) = 1.

If t=0 then §¢ is singular at 5 points. Do, Dj meet transversally
at four singular points of type Aj, thus (Do - Dj)=2. This gives that
(D})=-1. Thus ((Ks, + Dg)*)=3. The pair (So,Dp) is lc away from
the preimage of the 6-fold point. Let g: To— S denote the minimal
resolution of this point. The exceptional curve E is smooth, has genus 2 and
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(E?) = -2. Thus Kr, = q¢"Ks, — 2E hence (T, E + Dy) is the log canonical
modification of (S, Dy), and

(K, + E + Do)?*) = ((¢"Ks, — E + Do)*) = ((Ks, + Do)*) + (E*) = 1.

Thus ((Kgin + DIm)2) = 1 for every t.

Nonetheless, the log canonical modifications do not form a flat family.
Indeed, such a family would be a family of surfaces with ordinary nodes, so
the relative canonical class would be a Cartier divisor. However, (K_%/) = 2 for
t # 0, but (K%O) = ((¢"'Ks, — 2E)?) = —6.

Example 5.23 We start with a family of quadric surfaces Q, c P* where Q,
is a cone, and Q, is smooth for # # 0. We take six families of lines Li such that
for t = 0 we have six distinct lines, and for ¢ # 0 two of them — L}, Lt2 —are
from one ruling of the quadric, the other four from the other ruling. S, denotes
the double cover of Q, ramified along the six lines L! + - - + L.

For ¢ # 0 the surface S, has ordinary nodes and (Kg,) = 0. For t = 0 the
surface S has a unique singular point. Its minimal resolution g: Tp — Spis a
double cover of F, ramified along six fibers. Thus (K%O) = —4. Thus the canon-
ical modifications do not form a flat family. The log canonical modification of
So is (To, Eg) where E is the g-exceptional curve. Thus ((Kz, + Eo)*) = 0.

The numerical condition is satisfied, but the log canonical modifications do
not form a flat family since T = S{™ is smooth, but S ™ = is singular for
t # 0. However, there is a flat family that is a weaker variant of a simultaneous
log canonical modification.

This is obtained by replacing the singular quadric Qp with its resolution
QO = F,. Let E C T denote the —2-section, and |F| the ruling. One can arrange
that L!, L? degenerate to F' + E for F' € |F|, and the others degenerate to fibers
FJ. This way a flat limit of the double cover S is obtained as the double cover
of F, ramified along F' + --- + F® + 2E. This is a semi-log-canonical surface
whose normalization is the log canonical modification of S .

5.4 Mostly Flat Families of Line Bundles

We investigate sheaves that are known to be invertible in codimension 1; a
topic we already encountered in Section 2.6. This leads to the proofs of (5.5)
and (5.8). Many of the results proved here are developed for arbitrary coherent
sheaves in Chapter 9.
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Definition 5.24 (Mostly flat family of line bundles) Let f: X — S be a
morphism and L a mostly flat divisorial sheaf (3.28). We say that L is a mostly
flat family of line bundles if the hull L of L (3.27.1) is locally free over the
hull ﬁgx of Oy,. (In most cases of interest f has S, fibers, and then ﬁfi = Ox,.)

A mostly flat family of line bundles L on X is called fiber-wise ample if LY
is ample for every s € S. See (5.17) for typical examples.

Our aim is to find conditions to ensure that a mostly flat family of line
bundles is a flat family of line bundles.

Lemma 5.25 Let f: X — S be a proper morphism of pure relative dimension
n, A a relatively ample line bundle on X, and L a mostly flat family of fiber-wise
ample line bundles. Then

(5.25.1) s & (AL - (L)) is upper semi-continuous for every i, and

(5.25.2) if s > (L") is constant, then so is every (AL - (LHy"=).

Proof As we noted in (5.24), there is a dense open subset S ° C red S such that
L|x- is a line bundle. Thus the functions s — (A% - (L )"~") are locally constant
on S°, hence constructible on S by Noetherian induction.

It remains to check upper semicontinuity when (0 € §) is the spectrum of a
DVR. We may assume that X is S,.

Ly is also S, hence Ly — Lg’ is an injection. By semicontinuity we have
R°(Xo, L) > h°(Xo, Lo) > h°(X,, L,). Applying this to powers of L and taking
the limit, we obtain that VOl(LOH ) > vol(L,) by (10.31). If L is fiber-wise ample,
then volume equals the self-intersection number, so ((LOH ) = ((Lg )"). This
shows upper semicontinuity for i = 0.

For i > 0, we prove (1) by induction on n. We may assume that S is local,
and A is relatively very ample. Let Y C X be a hypersurface cut out by a general
section of A. By (4.26), the restriction L|y is a mostly flat family of fiber-wise
ample line bundles on Y — S. Furthermore

(AL (LAY = (Y - AL (LY = (AT (@Y, (5.25.3)

the latter is constructible and upper semi continuous by induction.
In order to see (2), note that L ®A~" is also a mostly flat family of fiber-wise
ample line bundles for m > 1, and

m"(LIY") = Z,(0) (AL - (" @ A=HEY'). (5.25.4)

By (1), all summands on the right are constructible and upper semi continuous.
Therefore, if the sum is constant as a function of s, then so is every summand.
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Finally note that

(@ @AY = By~ D (7)(AL - (L)), (5.25.5)
If the left side is constant for m > 1, as a function of s, then every summand
on the right is constant. O

Remark 5.25.6 Let f: X — S be a proper morphism of pure relative dimension
n, and L a line bundle on X. It is not well understood when the function s —
vol(Ly) is constructible; see Lesieutre (2014); Pan and Shen (2013).

5.26 (Proof of 5.8) The assertions (5.8.1) and (5.8.3) are proved in (5.25.1).
Furthermore, (5.25.2) shows that (5.8.2) implies (5.8.4).

Thus it remains to prove (5.8.2). We start with the case when S is the
spectrum of a DVR; this implies the general case by (4.34).

Our argument has three parts. The first step, when the relative dimension is
2, is done in (5.28).

The next step is induction on the dimension. We may assume that S is local
and A is relatively very ample. Let ¥ C X be a general hypersurface cut out by
a general section of A. Then (4.26) ensures that L”|y = (L|y)". The restriction
Lly is a mostly flat family of fiber-wise ample line bundles on ¥ — S and, as
we noted in (5.25.3),

(A2 (L) = (Aly)! ™ - (™)),

Thus, by induction, L]y is a line bundle. This implies that L is a line bundle
along Y. So L is a line bundle, except possibly at finitely many points Z C X.

Finally we need to exclude this finite set Z when the fiber dimension is at
least 3. This follows from (2.91). ]

5.27 (Start of the proof of 5.5) Note that (5.5.1) follows from (5.25.1). For
(5.5.2), the general setting is postponed to (5.54). Here we consider the case
when S = C is one-dimensional and regular.

As a first step, we replace (X,A) by its normalization. This leaves the
assumptions and the numerical conclusion unchanged. By (2.54), a demi-
normal pair (X,A) — C with slc generic fibers is slc iff its normalization is
Ic. Thus the conclusion is also unchanged.

It would seem that we should use (5.8). However, a key assumption of (5.8)
is that every fiber is S,; this is true, but not obvious in our case. Thus we
consider two separate cases.

If n = 2, then the weak numerical criterion (5.43) implies (5.5). For n > 3,
the weak numerical criterion involves the terms (njH"‘i (Kg + D.+ Ac)i) for
i > 3; these are unknown to us.
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Instead, using the already established n = 2 case and (4.26) as in (5.26),
we may assume that f: (X,A) — C is locally stable outside a subset of
codimension > 3. We can now apply (2.7) to complete the argument. O

Proposition 5.28 Let T be an irreducible, regular, one-dimensional scheme,
and f: X — T a flat, proper morphism of relative dimension 2 with S, fibers.
Let L be a mostly flat family of line bundles on X. Then

(5.28.1) d(t) := (L - L) is upper semicontinuous, and

(5.28.2) Lis locally free on X iff d(t) is constant on T.

Proof If Lis locally free then (L - L) = (L- L-[X,]) is independent of ¢ € T.
To see the converse we may assume that 7T is local with closed point O € T and
generic point g € 7. Note that L is locally free, except possibly at a finite set
Zoy C Xo, and LZ{,_I =~ Lg.

For each € T, the Euler characteristic is a quadratic polynomial

x(Xo, (LEY2™) = aym? + bym + c;,

and we know from Riemann—Roch that @, = (L - LF) and ¢, = x(X,, Oy,).
Furthermore, (9.36.4) implies that

apm* + bom + ¢y > agm* + bym + ¢,  for every m € Z. (5.28.3)

For m > 1, the quadratic terms dominate, which gives that
(LY - L) = 2a9 = 2a, = (Ly - Ly). (5.28.4)
Assume now that (L{ - L{!) = (Lg - Ly). Then ag = a, thus (5.28.3) implies that
bom +cy > bgm + ¢, forevery m € Z. (5.28.5)

For m > 1, this implies that by > b,, and for m < -1 that —by > —b,. Thus
by = b, and ¢y = ¢, also holds since f is flat. Therefore we have equality in
(5.28.3). Thus L is a flat family of locally free sheaves by (3.32). |

The following turns out to be quite elementary; see Stacks (2022, tag 0F29)
for a subtle local version.

Proposition 5.29 Let T be the spectrum of a DVR with closed point 0 € T and
generic point g € T. Let f: X — T be a projective morphism with S, fibers,
and L a mostly flat family of line bundles such that L' is locally free for some
m > 0. Then L is locally free.
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Proof We claim an equality of the Hilbert polynomials

X (Xo, (LH™") = x(Xe, LY. (5.29.1)

Since both sides are polynomials in r, it is sufficient to prove that they are equal
for all multiples of m.

Note that Ly and (L{)®™ are both locally free sheaves that agree outside
a codimension 2 subset, hence they are isomorphic. Thus

x(Xo. (LH*™) = x(Xo, (L"™1x,)™")
= x(Xg, (L"™1x)™) = x(Xg, LT™),
where the last equality holds since L, is a line bundle (5.24). In particular
we conclude that y(Xo, L¥) = x(X,, Ly). Let Oxs(1) be an f-ample invertible
sheaf. We can apply the same argument to any L(z) to obtain that y(Xp, Lgl 1) =
X(X,, Ly(1)) for every t. By (3.32) this implies that L is locally free. O

(5.29.2)

5.5 Flatness Criteria in Codimension 1

Let f: X — S be a projective morphism with f-ample Ox(1), and F a coher-
ent sheaf on X. Assume that S is reduced. By (3.20), the polynomial valued
function s — y(Xy, Fy(%)) is

e upper semicontinuous on S, and

e it is locally constant iff F is flat over S.

In Sections 5.1-5.2, we discussed numerous situations where we first associ-
ate some other object to each (X, F';), and then compute a numerical invariant.
Usually these objects cannot be realized as fibers of some morphism. How-
ever, we still would like to show that the numerical invariant is an upper or
lower semicontinuous function on S. Furthermore, if the numerical invariant
is locally constant on S, then we would like to prove that the objects fit together
into a flat family over S.

As a typical example — generalizing (5.8) — consider the Hilbert polynomial
of the reflexive hulls y(X,, (F,)"*(x)). Assume that X, S are normal, and so
are the fibers of f. Note that (3.20) does not apply, since usually there is no
coherent sheaf on X whose fibers are (F)!**!. There is a natural map

rg: (F[**])s - (Fs)[**],

but frequently it is neither injective nor surjective. So we do not get any com-
parison between the Hilbert polynomials of (FI**!); and (F,)"*]. It is also not
clear what should happen if s — y(Xj, (Fs)**1(x)) is locally constant.
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Next we outline a method to study such problems in three steps.

e Show that the numerical function is upper or lower semicontinuous.

e If the function is locally constant, construct a candidate f": (X', F’') — S’
for the flat model.

e Prove that, under suitable assumptions, S’ ~ § and (X’, F’) as expected.
The details are simple, but at the end they lead to interesting consequences.

5.30 (How to prove semicontinuity?) Let ¢( ) be a function that associates
to certain pairs (X, F) (consisting of a proper scheme over a field k, and a
coherent sheaf on it, plus possibly some other data) an element in a partially
ordered set. Typical examples for us are ¢1(X) := (K}), ¢2(X, F) := (X, F),
or ¢3(X, F) := (X, pure F(x)) (if we also have an ample line bundle Cx(1)).
We always assume that ¢( ) is invariant under base field extensions.

Let f: X — S be a morphism, and F a coherent sheaf on X. We would like
to prove that s — ¢(Xj, F;) is upper or lower semicontinuous. In many cases,
this can be done in two stages.

(5.30.1) Prove that s — ¢(Xj, Fy) is constant on a nonempty open subset S° C
S'. If this works inductively for closed subsets of S, then Noetherian induction
shows that s — @¢(Xj, F) is constructible.

A constructible function is upper (resp. lower) semicontinuous iff it is upper
(resp. lower) semicontinuous after base change to any DVR T — S. Thus it
remains to do:

(5.30.2) Let T be the spectrum of a DVR with closed point Oz, generic point
gr.andm: T — S a morphism. Prove that

¢(X07a FOT) = (resp' S) ¢(Xgr’ Fgr)

(Frequently k(07) # k(m(07)), this is why ¢( ) should be invariant under base
field extensions.)

If we want to prove that s — ¢(X;, F',) is locally constant, then we need only
the following.
(5.30.3) Let T be the spectrum of a DVR with closed point Oz, generic point
gr.andr: T — S amorphism that maps gr to a generic point of S. Prove that

¢(XOT’ FOT) = ¢(Xgr7 Fgr)

The generic point property of r is helpful if we have extra information about
the generic fibers of X — S.

5.31 (How to construct a candidate?) This is usually the hard part. If our
objects ¢( ) are subvarieties, then ¢(Xj, F) is a point in the Hilbert scheme
or the Chow variety. Thus we have a set-theoretic map
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set . . (points of Hilb(X/S)), or
o+ (points of §) = { (points of Chow(X/S)).
If the objects ¢( ) are non-embedded varieties, we get a point in some moduli
space. For the case of reflexive hulls we have considered, we need the moduli
space of husks, which we discuss in Section 9.5.

Usually there are several choices for the moduli theory, and the proofs need
the “correct” one to work. At the end we have a set-theoretic map

o' (points of §) — (points of some moduli space M).

Then the only sensible thing is to let S’ be the closure of the image if o¢'; it
comes with a natural map 7: S — S.

If M is a coarse moduli space, then we have to make sure that there is a uni-
versal family over S’, which usually means that we have to eliminate possible
automorphisms (1.71); see (5.55-5.56) for such examples.

If this works out, then we have our candidate family f": (X', F') — S’, and
a natural morphismz: S* — S.

Then we need to show that S” =~ S, and X’, F’ are as expected. The key is
usually the isomorphism S’ =~ §. We typically know that r is proper, and an
isomorphism over the generic points of S.

5.32 (How to check isomorphism?) Let 7: S — S be a proper morphism,

W c S anowhere dense, closed subset, and W’ := 7~ (W) c S’. Assume that

m: (S \ W) — (S \ W) is an isomorphism, and S’ (resp. S') has no associated

points in W’ (resp. W). Then r is an isomorphism in the following cases:

(5.32.1) 7' (w) = w for w € W (by Nakayama’s lemma),

(5.32.2) k(redn~'(w))/k(w) is purely inseparable for w € W, and (W,S) is
weakly normal (by definition (10.74)),

(5.32.3) k(redn~'(w)) = k(w) for w € W, and (W,S) is seminormal (by
definition (10.74)),

(5.32.4) depthy, S > 2 (by (10.6)),

(5.32.5) S is normal.

We illustrate the method in the simplest case, when we look at the reduced
structure of the fibers of a morphism. Being reduced is invariant under sepa-
rable ground field extensions. Thus working with X; — red(Xj) is sensible in
characteristic 0, but in general it is better to work with the reduced structure of
the geometric fibers.
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Theorem 5.33 Let f: X — S be a projective morphism of pure relative

dimension n with f-ample Ox(1). Assume that X is reduced and S is weakly

normal. For s € S, let X5 denote the corresponding geometric fiber. Then

(5.33.1) x(s) := x(red(X;), O(x)) is lower semicontinuous, and

(5.33.2) f is flat with geometrically reduced fibers iff the generic fibers are
geometrically reduced, and x(s) is locally constant on S.

We prove this in (5.37), but first some consequences and variants. If we
understand only the leading coefficient of y(red(Xj), O'(x)), we still get very
useful information about f as in Kolldr (1996, 1.6.5).

Corollary 5.34 (Smoothness criterion in codimension 0) Let f: X — S be a

projective morphism of pure relative dimension n, and H an f-ample divisor

class. Assume that X is reduced and S is weakly normal. For s € S let X;

denote the geometric fiber. Then

(5.34.1) s > degy(red(X;5)) is lower semicontinuous, and

(5.34.2) f is smooth on a dense subset of each fiber iff s — degy(red(X5)) is
locally constant and f is generically smooth. (The latter is automatic in
characteristic 0.)

Proof Repeated application of (10.56) reduces the proof to n = 0, which is a
special case of (5.33). |

It turns out that codimension 0 is the hardest part of (5.33), and we have
stronger results in higher codimensions. The following is proved in (5.37).

Theorem 5.35 Let f: X — S be a projective morphism of pure relative
dimension n with f-ample Ox(1). Assume that X,S are reduced, and f is
smooth at the generic points of each fiber. Then f is flat with geometrically
reduced fibers iff s — y(red(Xy), O'(x)) is locally constant.

As a consequence, we get one part of (3.11) about the Hilbert-to-Chow map.

Corollary 5.36 (Flatness criterion in codimension 1) Let f: X — S be a

projective morphism of pure relative dimension n, and H an f-ample divisor

class. Assume that X, S are reduced, and f is smooth at the generic points of

each fiber. Then

(5.36.1) the sectional genus (3.10) of the fibers is a lower semi-continuous
function on S, and

(5.36.2) f is flat with reduced fibers at codimension 1 points of each fiber iff
the sectional genus is locally constant.
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Proof Repeated application of (10.56) reduces the proof to the case n = 1,
which is a special case of (5.35). m]

We can thus expect that, for families that are locally stable in codimension
1, there are results connecting the intersection numbers ((ngH Yyt (K %t Do)’
with the higher codimension behavior of f. There are two surprising twists.
e The lower semicontinuity in (5.34) and (5.36) switches to upper semiconti-
nuity fori = 2.
e In most cases we need only one more intersection number to take care of all
codimensions.

5.37 (Proof of 5.33 and 5.35) For (5.33.1), we follow (5.30). After a purely
inseparable base change S’ — §, the generic fiber of red(X xg §') — S
is geometrically reduced, hence s — y(red Xs, O'(x)) is locally constant on a
dense open set by generic flatness. This gives constructibility as in (5.30.1).

Continuing with (5.30.2), let T be the spectrum of a DVR with closed point
t, generic point g, and n: 7 — S a morphism mapping 7 to s € S. Set ¥ :=
red(X xg T), and assume that Y, is geometrically reduced. Since f has pure
relative dimension, Y — T is flat, hence

x(red(Yp), 0(x)) < x(red(Y), 0(x)) < x(Y;, O(x)) = x(Yg, O(+)).  (5.37.1)

By (5.30), this proves (5.33.1) since y(red(Y;), O(x)) = x(red(X;), O(x)). We
also see that the two sides of (5.37.1) are equal iff Y; is also geometrically
reduced.

If f is flat with geometrically reduced fibers then (5.33.2) is clear. For the
converse we may assume that S is connected, so p(x) := y(red X;, O(x)) is
independent of s.

For both (5.33) and (5.35), the relative Hilbert scheme now gives a clear
choice for the candidate as in (5.31). Indeed, 7: Hilb,(X/S) — S parametrizes
subschemes of the fibers with Hilbert polynomial p(x).

We claim that 7: Hilb,(X/S) — S is an isomorphism. In both theorems
we assume that the generic fibers are generically smooth, hence geometrically
generically reduced. They are also S, hence geometrically S;. A generically
reduced S| scheme is reduced, so the generic fibers are geometrically reduced.
The latter is an open property by (10.12). Thus 7 is an isomorphism over the
dense open subset S° C S where f is flat with geometrically reduced fibers.
The question is, what happens over other points.

The easy case is (5.35). By (5.38.4) n7'(s) = Hilb,(X,) =~ s, thus 7 is an
isomorphism by (5.32.1).
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For (5.33) the argument is more circuituous. Let Hilb;,(X /S) C Hilb,(X/S)
denote the closure of 7~!(S°) with projection 7’ : Hilb;,(X /S) — S. First, we
claim that 7’ is geometrically injective.

To see this pick any s € S, and let 7: 7 — S be a DVR that maps the closed
point ¢ € T to s and the generic point g € 7 to S°. We have a lifting 7/: T —
Hilb),(X/S ), and we check in (5.38.5) that 7'(¢) = [red(X,)] € Hilb),(X/$).

Since S is assumed weakly normal, (5.31.2) implies that 7" : Hilb;,(X /S) —
S is an isomorphism.

We have Univ),(X/S) — Hilb},(X/S), and u": Univ,(X/S) — X, which is
a closed embedding on each fiber. Thus #’ is a closed embedding by (10.54),
hence an isomorphism since X is reduced.

Therefore X =~ Univ)(X/S) is flat over S. In particular, Hilb,(X/S) =
Hilb),(X/S) = S. ]

5.38 (Uniqueness of red X) A scheme X uniquely determines red X, but what
about in families? What if we know only the Hilbert polynomial of red X?
We start with two negative examples, followed by two positive results.

Example 5.38.1 Let X be the scheme Spec k[x,y]/(x?, xy,y*(y — 1)). Then
red X = Speck[x,y]/(x,y(y — 1)) has length 2, but so are the subschemes
Spec k[ x, y]/(xz, Xy, yz, x —cy). Thus Hilb, X = P,l LI Spec k.

Example 5.38.2 Speck is the only subscheme of length 1 of Spec k[x]/(x%).
However, consider the trivial family 7: Speck[x, ¢]/(x?,1*) — Spec k[t]/().
Then for every ¢ € k, the subscheme Spec k[x, 7] /(X2 , x + ct) is flat over
Spec k[£]/(¢%). Thus Hilb, Spec k[x]/(x%) =~ Spec K[/ (#%).

Claim 5.38.3 Let (0 € A) be the spectrum of a local Artinian k-algebra, and
f:Y — A a projective morphism with f-ample Ox(1). Let F be a coherent
sheaf on Y, and set p(x) := x(Yo, pure(Fo)(*)). Then F has at most one quotient
q: F - Q that is flat over A with Hilbert polynomial p(x). If Q exists then
Q =pureF.

Proof Setn = dimFy. If ¢': Fy — Q’ is any map that is surjective at n-
dimensional points, then y(Yy, Fo(*)) and x(Yo, Q'(x)) have the same leading
coefficient iff dim(ker ¢") < n. Also, if y(Yy, Q'(*)) = x(Yo, pure(Fy)(x)), then
Q' = pure(Fy).

Thus, if Q is flat over A with Hilbert polynomial p(x), then ker g C F is the
largest subsheaf whose support has dimension < 7. This shows that Q = pure F
is the only possibility. O
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Corollary 5.38.4 Let X be a proper scheme of pure dimension n over a field
k. Assume that X is geometrically reduced at its generic points. Set p(x) :=
x(red X, Oyeqx(*)). Then Hilb,(X) =~ Spec k.

Proof In this case red(Xg) = Specy, (pure Oy, ) for any field extension K D k.
The rest follows from (5.38.3). |

Claim 5.38.5 Let T be the spectrum of a DVR, and f: Y — T a projective
morphism of pure relative dimension n with f-ample Ox(1). Assume that Y, is
reduced and set p(x) := y(¥,, O(x)).

If y(red(Yy), O (%)) = p(x), then red Y C Y is the unique subscheme that is
flat over 7" with Hilbert polynomial p(x).

Proof Let Z C Y be such a subscheme. Then Z, = Y,. Since f has pure
relative dimension, the closure of Y, contains Yy, thus red Yy C Zj. These have
the same Hilbert polynomial p(x), hence they are equal. O

Examples 5.39 The following series of examples show that the assumptions
in (5.33-5.35) are necessary.

(5.39.1) Let C be a cuspidal curve with normalization p: C — C. Then p is
not flat, but red p~!(c) = ¢ for every ¢ € C. Here C is not seminormal. Over
imperfect fields, (10.75.3) gives similar examples where C is seminormal, but
not weakly normal.

(5.392) Set S == (uv = 0)and let X C § X A&V be the union of two curves
w=v-w-102=0U@=u-w+1?%*=0), with projection 7: X — S.
Then deg(k[red X,]/k(s)) = 2 for every s € S, but  is not flat, and it does not
have pure relative dimension 0.

(5.39.3) A more complicated example of relative dimension 1 is the following.
Set S (= (uv =0)and let X Cc S X Pi be a reduced subscheme with three
irreducible components as follows.

Over the u-axis we take a planar smooth cubic E, degenerating to a cuspidal
cubic Ey, for example X| := (x| = uxg + xg - xoxg = 0). We also add the line
X3 = (u;0:1:0:0).

Over the v-axis we take a smooth twisted cubic C, degenerating to Ey. For
example, X, can be the image of (v; s:f) > (s3:vs*t:st%:3). (The flat limit C
has an embedded point at the cusp.)

If v # 0 then X, is a smooth rational cubic, so x(Xo,, O(m)) = 3m + 1.
If u # 0 then X, is a smooth elliptic cubic plus a disjoint point, so again
XX,.v, O(m)) = 3m + 1. Finally, X, is nonreduced, but red X, is a singular
planar cubic plus a disjoint point, so y(red X,,,, O(m)) = 3m + 1.

https://doi.org/10.1017/9781009346115.007 Published online by Cambridge University Press


https://doi.org/10.1017/9781009346115.007

5.6 Deformations of SLC Pairs 203

However, the projection n: X — S is not flat. Here m is not pure
dimensional, and Xjo has two subschemes with Hilbert polynomial 3m + 1.
One is red Xy o the other is the one-dimensional irreducible component of X .

It is straightforward to generalize (5.35) from Oy to an arbitrary coherent
sheaf F. The only change is that, instead of the Hilbert scheme Hilb(X/S), we
use the quot-scheme Quot(F) (9.33). Thus we get the following.

Theorem 5.40 Let f: X — S be a projective morphism with f-ample Ox(1)
with S is reduced. Let F be a coherent sheaf on X that is generically flat
(3.26) over S. Assume that Supp F — S has pure relative dimension n, and
F does not have embedded points. Then F is flat over S with pure fibers iff
s — x(X;, pure(F)(%)) is locally constant. O

5.6 Deformations of SLC Pairs

So far we have focused on locally stable deformations of slc pairs. The next
result, due to Kollar and Shepherd-Barron (1988), connects arbitrary flat defor-
mations (X;, A;) of an slc pair (Xp,Ag) to locally stable deformations of a
suitable birational modification fy: (Y, A(’)’ ) = (Xo, Ag). We then compare var-
ious numerical invariants of (Xy, Ag) and of (X;, A,) by going through (Y, Ag ).
This implies a weaker version of (5.5).

Theorem 5.41 Kolldr and Shepherd-Barron (1988) Let (X, D + A) be a nor-

mal pair, where D is a reduced, Q-Cartier divisor that is demi-normal in

codimension 1, and whose normalization (D, Diff5 A) is lc. Assume also' that

(5.41.1) either (D, Diff5 A) is kit,

(5.41.2) or Kx + Ais R-Cartier on X \ D.

Then, in a neighborhood of D, the following hold.

(5.41.3) The log canonical modification f: (Y,Dy + Ay + E) —» (X,D + A)
exists, and it is small, that is, E = 0.

(5.41.4) (Y,Dy + Ay) is lc.

(5.41.5) Dy is normal at the generic point of every fy-exceptional divisor F C
Dy, and a(F, D, Diff 5 A) < 0.

(5.41.6) f(Ex(f)) is precisely the locus where Kx + A is not R-Cartier.

1 Conjecturally, these are not needed; see (11.29).
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Proof Let h: X’ — X be a log resolution with exceptional divisor E’. Set
discrep(D, Diff 5 A) = =1 + &. Let f: (Y, Dy + Ay + (1 — £)E) — (X, D + A) be
the relative canonical model of (X", ;' (D + A) + (1 — £)E’). This is the same
as the relative canonical model of (X', h;'(D + A) + (1 — &)E’ — nh*D) since
h*D is numerically h-trivial.

If (D, Diff;, A) is kit then & > 0, hence (X', h;' (D + A) + (1 — &)E’ — nh*D)
is klt, and the relative canonical model exists by (11.28.2).

If &€ = 0 then we note that (X’,h;'(D + A) + (1 — &)E’ — nh*D) has no Ic
centers over D for n > 0, hence the relative canonical model exists by (11.30)
and (11.28.2).

Let 7x: D — D and ny: Dy — Dy be the normalizations. Then f; lifts to
fo: Dy — D. Write Kp, + Ap, ~r fy(Kp + Diff 5 A). By adjunction,

7y(Ky + Dy + Ay + (1 = ©)E) ~g Kp, + Diffp (Ay + (1 — £)E)
~g fi(Kp + Diff 5 A) + (Diff 5, (Ay + (1 — £)E) = Ap,).

Since D has only nodes at codimension 1 points, X is canonical at codimen-
sion 1 points of D (11.35), and f is an isomorphism near these points. Thus
Diff5, (Ay + (1 — &)E) — Ap, is fo-exceptional, and fy-ample. By (11.60) this
implies that every fy-exceptional divisor appears in Diff 5 (Ay + (1 — €)E)
— Ap, with strictly negative coefficient.

Every divisor in Dy N E appears in Diff5 (Ay + (1 — &)E) with coefficient
> 1—¢&by (11.16). On the other hand, every exceptional divisor appears in Ap,
with coefficient < 1 — & by our choice of €. Thus the divisors in Dy N E appear
in Diff5 (Ay + (1 — €)E) — Ap, with coefficient > (1 — &) — (1 — &) = 0. We
noted above that these coefficients are strictly negative, so Dy N E = 0.

Hence, after shrinking X, there are no exceptional divisors in f: ¥ — X, so
fissmall, Dy = f*D, and (Y, Ay + Dy) is Ic.

Let F c Dy be any fy-exceptional divisor. Since it appears in Diff5 (Ay)
— Ap, with negative coefficient, it must appear in Ap, with positive coeflicient,
and in Diff 5 (Ay) with coefficient < 1. By (11.16), the latter implies that Dy is
smooth at the generic point of 7ry(F), proving (5).

Finally let x € X \ D be a point where Kx + A is R-Cartier. Since f is small,
Ky + Ay ~r f*(Kx + A) over a neighborhood of x. Since Ky + Ay is f-ample,
f is an isomorphism over a neighborhood of x. O

Complement 5.41.7 If (D, Diff 5 A) is kit then D is normal. This was used in

Kollar and Shepherd-Barron (1988) to get a description of the deformation
space of log terminal surface singularities. The cone over an elliptic scroll gives
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examples where D is not normal, but its normalization has a simple elliptic
singularity, see Mumford (1978).
See also Sato and Takagi (2022) for closely related results.

5.42 (Proof of 5.4) We prove (5.4) when the base S is the spectrum of a DVR.
By (4.7), this implies the case when S is higher dimensional, provided f is
assumed to be flat with S, fibers.

As a preliminary step, we replace (X, A) by its normalization. This leaves
the assumptions and the numerical conclusion (5.4.1) unchanged. Then (2.54),
shows that the conclusion in (5.4.2) is also unchanged.

Thus assume that X is normal. The conclusions are local on C, so pick a
point 0 € C, and let f: (Y,AY + Yy) — (X, Xy + A) be the log canonical mod-
ification as in (5.41). Let my: ¥y — Y be the normalization and fy: ¥y — Xo
the induced birational morphism. We apply (10.32.3-4) to

Dy := Ky, +Diffy, A" and Dy := Ky, + Diffg, A = Kg, + Do + Ao.

The assumptions are satisfied since (fy).(Ky, + Diffy, A¥) = Kx, + Diffg, A,
and Ky, + Diffy, AY is fy-ample. Using the volume (10.31), this implies that

(K, + Diffg, A)" = vol(Kg, + Diffg, A) > vol(Ky, + Diffy, A”),
and equality holds iff f; is an isomorphism. Since Ky + AY is Q-Cartier,
vol(Ky, + Diffy, A") > vol(Ky, + A"ly) = ((Ky, + A)")

for general ¢ # 0, and (Y., A.) = (X., A.) by (5.41.4). Combining the inequal-
ities shows that ((Kg, + Do + Ag)") > ((Kx, + A.)") for general ¢ # 0, and
equality holds iff fy, and hence £, are isomorphisms over 0 € C. O

The same method can be used to prove a weaker version of the numerical
criterion of local stability over smooth curves. This establishes (5.5) for fami-
lies of surfaces over a smooth curve. It is not clear how to use these methods
to complete the proof of (5.5) for higher dimensional families. We will derive
(5.5) from (5.8) instead; see (5.27) for the key step.

Proposition 5.43 (Weak numerical criterion of local stability) Let C be a
smooth curve of charQ, and f: (X,A) — C a morphism satisfying the
assumptions (5.5.1-3). Then

(5.43.1) I(c) := I(n:H,Kx_+ D, + A.) is upper semi-continuous for <, and
(5.43.2) f: (X,A) = C is locally stable iff I(c) is locally constant on C.
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Note that the first two numbers in the sequence /(7 H, Kz + D, +A.) equal
(H"-X.)and (H"'-(Kx + A)- X..), hence they are always locally constant. The
first interesting number is (7% H" 2 - (Kz + Dc + A.)?) which is thus an upper
semicontinuous function on C by (1).

Proof As in (5.42) we may assume that X is normal. Let f: (Y,AY + Y) —
(X, Xo + A) be the log canonical modification, and fy: Xy — ¥, the induced
birational morphism between the normalizations. Here we apply (10.32.1-2)
to Ky, + Diffy, A” and Ky, + Diffg, A to obtain that

I(myH, Kx, + Diffg, A) > I(f;m;H, Ky, + Diffy, A"),

and equality holds iff fy is an isomorphism. Since Ky + AY is a Q-Cartier
divisor,

I(fonyH, Ky, + Diffy, AV) = I(mH, Ky + A"|3) = I(x:H,Kx_+ A,)

for general ¢ # 0. Thus I(7jH, Ky, + Do + Ao) = I(m;H, Kx_+ A.) for general
¢ # 0, and equality holds iff fo, and hence f, are isomorphisms. O

5.7 Simultaneous Canonical Models

In this section, we consider the existence of simultaneous canonical models.

5.44 (Proof of (5.10) over curves) Let B be a smooth curve of char(0, and
f: X — B amorphism of pure relative dimension 7.

First, we prove that b — vol(KXZ) is a lower semicontinuous function on B.

If we replace X by a resolution X" — X then vol(Kx:) is unchanged for
general fibers, and it can only increase for special fibers. There are two sources
for an increase. First, the resolution may introduce new divisors of general
type. Second, if X is not normal, an irreducible component of a fiber may be
replaced by a finite cover of it. The latter increases the volume by (10.38).

Thus it is enough to check lower semicontinuity when X is smooth, and all
fibers are snc. If the volume of the general fiber is 0, then the volume of every
fiber is 0 by (5.45), so assume that general fibers are of general type.

Fix a fiber F = X,,. By shrinking B we may assume that all other fibers are
smooth. Let f¢: X° — B be the relative canonical model of (X,red F) — B
as in (2.57.2). An irreducible component £ C F may get contracted. However,
when this happens, then Kg + (red F — E)|g = (Kx + red F)|g is negative on
the fibers of the contraction, and so is K. Such divisors contribute O to the
volume. Thus we can check lower semicontinuity on f: X¢ — B.
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Write F© = Y ¢;E;, and let m;: E; — E; be the normalizations. As in (11.14),
write 7 (Kxe + red F®) = K, + D;, where D; = Diff (3, E;). Let g € Bbe a
general point. Then F* is disjoint from X¢, and we have

(Kx:)" = ((Kxe+red F_C)” - Xg) = ((Kxe +_redF°)” - F°) (5.44.1)
= Y.ei((Kg +Dy)") > Y:((Kg + Dp)").

Next we use (5.12) to obtain that ((Kg, + D)) > vol(KEgr), hence
vol(Kx,) = ((Kx:)") > X; vol(Kgr) = vol(red F"),

proving the lower semicontinuity assertion. Furthermore, by (5.12), equality
holds iff D; = 0, the E; have canonical singularities and e¢; = 1 for every i. If
D; = 0, then E; is the only irreducible component of its fiber by (11.16). Thus
F¢ is reduced and irreducible and has canonical singularities. So f°: X — B
is the simultaneous canonical model of f: X — B. |

Lemma 5.45 Let f: X — B be a projective morphism to a smooth curve B
such that vol(Kxr) is zero for the generic fiber X,. Then vol(Kgr) is zero for
every fiber F of f.

Proof The proof in (5.44) gives this if a resolution of X has a minimal model
over B. This is not fully known, so we have to find a way to go around it.

As in (5.44), we can reduce to the case when X is smooth and F is an snc
divisor. Let H be a general, smooth relatively ample divisor such that Ky + H is
f-ample. Using the continuity of the volume (Lazarsfeld, 2004, 2.2.44), there
is a largest 0 < ¢ < 1 such that vol(Ky, + cH,) = 0. Fix some ¢’ > ¢ and run
the MMP for (X, red F'+c¢’H) — B. Then Kx, +c’H, is big, so (11.28) applies,
and we get a relative canonical model (X¢,red F¢ + ¢’H®) — B. Let n: F¢ —
red F° denote the normalization, and set H¢ = 7*H°. As in (5.44.1), we get
that

vol(Kx, + ¢'Hy) = vol(Kfe + ¢’H®) = vol(Kg.).
Letting ¢ — c gives that 0 = vol(Kx: + cH,) > vol(Kpr), as required. |

5.46 (Proof of (5.11) over curves) Let B be a smooth curve over a field
of char0, and f: (X,A) — B a flat morphism whose fibers are irreduci-
ble and smooth outside a codimension > 2 subset. We may replace X by
its normalization. Thus we may assume that X is normal, and the generic
fiber is lc.
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Assume first that fis locally stable. We prove that b — vol(Ky, + Ap) is an
upper semicontinuous function on S, and f: (X,A) — B has a simultaneous
canonical model iff this function is locally constant.

To see these, let f¢: (X°,A°) — B denote the canonical model of
f:(X,A) - B (11.28). For every b € B we need to understand the difference
between
e ((X%)p, (A%)p), the fiber of f¢ over b, and
e ((Xp)°, (Ap)°), the canonical model of the fiber (X, Ap) of f.

These two are the same for general g € B, but they can be different for some
special points in B.

Let ¢: X --> X denote the natural birational map. Since the fibers of f
are irreducible, they cannot be contracted, thus ¢ induces birational maps
o Xp > (X°)p. Let Z, denote the normalization of the closure of the graph
of ¢, with projections X & Zp A (X°)p. The key computation in (5.47),
shows that g*(Kx, + Ap) ~r h*(Kxe), + (A%),) + Fp, where F, is effective.
Thus

vol(Ky, + Ap) = vol(g"(Kx, + Ap)) = vol(h* (K(xc), + (A),)) = vol(K(xe, + (A)p).

Note further that since f©: (X¢,A°) — Bis flat, and Kx. + A® is f¢-ample, its
restrictions to the various fibers have the same volume. Therefore

VOI(K(Xc)b + (Ac)b) = VOl(K(Xc)g + (Ac)g) = VO](KX‘Q + Ag)

for generic g € B. Thus vol(Ky, +A;) > vol(Kx, +A,), and, by (10.39), equality
holds iff Fj, is h-exceptional. Then ((X¢);, (A°);) is the canonical model of
(Xp, Ap). This proves both claims.

In the general case, when f: (X,A) — B is not locally stable, we first use
(5.41) to construct i: (X, A) — (X, A) such that the composite foh: (X,A) —
B is locally stable. Thus vol(Ky, + Ap) > Vol(Ky, + Ag).

Note that hy: (Xp, Ap) — (X3, Ap) is birational by (5.41), and Kg, + A is
hy-ample. Thus vol(Xj, Ap) > vol(X,, Ay) by (10.32.1). Putting these together
shows the upper semicontinuity of the volume.

It remains to show that if equality holds then there is a simultaneous canon-
ical model. We already proved that if vol(Ky, + Ay) = vol(Ky, + A,) then
foh: (X, A) — B has a simultaneous canonical model, which is also the
simultaneous canonical model of f: (X,A) — B if vol(X}, Ay) = vol(X,, Ap).
Then (X, Ay) and (X, A,) have isomorphic canonical models. The latter fol-
lows from (10.39), but it can also be obtained by applying the simpler (10.32)
to the (normalization of the closure of the) graph of (X}, Ay) --> (X¢, Aj). O
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Lemma 547 Let (X,D + A) be Ic where D is a reduced Weil divisor, and
A = Y a;D; is an R-divisor. Let f: X — S be a proper morphism, and
¢: (X,D + A) --> (X, D¢ + A°) the relative canonical model. If none of the
irreducible components of D are contracted by ¢, we get a birational map

¢p: (D,Diff 5 A) > (D¢, Diff 5 A°).

Moreover, a(E, D,Diff5 A) < a(E, D¢, Diff e A°) for every divisor E over D

and (¢), Diff , A > Diff . A.

Proof Let Y be the normalization of the main component of the fiber product

X Xg X¢ with projections X Sy LA X¢. By definition,
&(Kx+D+A) ~p h"(Kxe + D°+ A°) + F

where F is effective. Let Dy denote the birational transform of D on Y.
Restricting to Dy we get that

(glp,)"(Kp + Diffp A) ~g (hlp,)"(Kp + Diffpc A°) + Flp,
and F|p, is also effective. This proves (1) and (2) is a special case. O

The existence of simultaneous canonical models is part of the following.

Question 5.48 Let (X,D + A) be an lc pair, and (X¢, D¢ + A°) its canonical
model. What is the relationship between the canonical model of (D, Diffp A)
and (D¢, Diff pe A°)?

The following smooth example shows that these two are usually different.

Start with a smooth variety X’, a smooth divisor D’ c X’, and another
smooth divisor C’ ¢ D’. Assume that Kx» + D" is ample. Set X := B¢ X’
with exceptional divisor E, and let D C X denote the birational transform of
D’. Then (X, D+ E) is an Ic pair whose canonical model is (X’, D"), and (D', 0)
is its own canonical model. However, (D, Diffp E) ~ (D', C") # (D', 0).

The following is proved in Ambro and Kollar (2019, Thm.7).

Theorem 5.49 Let (X,D + A) be an Ic pair that is projective over a base
scheme S with relatively ample divisor H, where all divisors in D appear with
coefficient 1. Set (X%, D% + A% := (X, D + A), and, fori=1,...,m, let

¢ (XD 4 AP s (X D+ A

be the steps of the (X, D+ A)-MMP with scaling of H. Assume that the intersec-
tion of D with the exceptional locus of ¢" o ---o0¢': X -5 X" does not contain
any log center (11.11) of (X, D + A). Let 0: D — D be the normalization.
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Then the induced maps
¢%5: (D!, Diff 5 A7) > (D', Diff 5 A')

form the steps of the MMP starting with (D°, Diff5 A°) := (D, Diff5 A) and
with scaling of 0" H. O

5.8 Simultaneous Canonical Modifications

If S is smooth, then the simultaneous canonical modification of f: (X,A) —» §
is also the canonical modification of (X,A) by (4.56). Thus, over a smooth
curve, we consider the canonical modification of (X, A), and aim to prove that
it is a simultaneous canonical modification.

5.50 (Proof of (5.16) over curves) Let C be a smooth curve, and f: (X,A) —
C a flat, projective morphism of pure relative dimension »n that satisfies the
assumptions of (5.16).

Each ¢ - (n:H"™ - (Kxen + AS™)") is a constructible function on C. Thus, in
order to prove (5.16.1) we may assume that C is the spectrum of a DVR with
closed point 0 € C and generic point g € C. We may also assume that X is
reduced, thus f is flat.

By (5.34), (njHy) < (n3Hy), and equality holds iff Xo is generically reduced.
It is thus enough to deal with the latter case. Then X is generically normal
along Xo, and we can replace X by its normalization without changing any of
the assumptions or conclusions. We may now also assume that X is irreducible.

Letz: (Y,AY = n;'A) — (X, A) denote the canonical modification.

Write Yy = ), ¢;E; where ¢ = 1, and Ej is the birational transform of
Xo. (For now Ej is allowed to be reducible.) Set £ := redYy = ) E;. Let
7: Eyg > Eo denote the normalization, and write 7*(Ky + E + A¥) = Kz, + Dy
where Dy = Diffz (E — Eg + A") as in (11.14). Choose m > 0 such that
Ky + E + AY + mz*H is ample over C. We claim that

((Kxen + AS™ + mryH)")
= ((Ky, + A} + mmyH)") = (Ky + A" + ma*H)" - [Y,])
=((Ky + E+ A" + mn*H)" - [Y,]) = (Ky + E + AY + mn*H)" - [Y])
= Yei((Ky + E+ A + mn*H)|g,)") > (Kg, + Do + mr, H)")

> vol(Kxem + A" + mmoH) = ((Kxem + AG" + mrgH)").
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The first equality holds since (Y, AZ,’) is the canonical modification of (X, A,),
hence AY" = Ag . The second equality is clear. We are allowed to add E in the
fourth row since it is disjoint from Y,. We can then replace Y, by Y, since they
are algebraically equivalent, and compute the latter one component at a time.
Ky+E+AY +mn*H is ample, thus if we keep only the summands corresponding
to Ey, we get the first inequality, which is an equality iff Yy = E).

The second inequality follows from (10.36), once we check that o;'Ay <
Do where o := my o v: Ey — X is the natural map. Since Dy is effective,
this is clear for o-exceptional divisors. Otherwise, either 7 is an isomorphism
over the generic point of a divisor Dg (hence Dé) has the same coefficients
in o7'Ag and Dy) or o-;lDf) is contained in another irreducible component
of red Y. In this case o7, Di) appears in Dy with coefficient 1, and in o' Ag
with coefficient < 1 by assumption. This proves the second inequality and,
by (10.36), if equality holds then Dy = ;' Ag. The last equality is a general
property of ample divisors.

As we noted in (5.14), the inequality proved in (5.50.1) is equivalent to
I(n;Hg, Kyem + A;m) > I(myHo, Kyem + AG™), which proves (5.16.1).

If equality holds everywhere in (5.50.1) then Yy = Ey, Dy = o 'Ag, and
(Eo, Dy) is canonical. On the other hand, Dy is the sum of o;'Ag and of the
conductor of £y — Ey = Y;. So the conductor is 0, Y; is normal in codimension
1, Dy = (mp);' Ao, and (Yo, (7mp);' Ag) is canonical in codimension 1. Thus Yy is
normal and (Yy, (), ' Ag) is canonical by (2.3). Since Ky, + Dy is ample over
Xo, these show that (¥y, (m9);'Ag) is the canonical modification of (Xo, Ag).
Thus the canonical modification of (X, A) is also the simultaneous canonical
modification, proving (5.16.2) over curves. O

In analogy with (5.15), we can define simultaneous slc modifications.

Definition 5.51 Let (X,A) be a pair over a field k that is slc in codimen-
sion 1. Its semi-log-canonical modification is a proper, birational morphism
m: (Xslem Aslem) 5 (X, A) such that 7 is an isomorphism over codimension 1
points of X, A™™ = #-!'A + E where E contains every m-exceptional divisor
with coefficient 1, Kywem + AS™ is 7-ample, and (X'°™, AS™) s slc.

If X is normal, then the SLC modification is automatically normal, and it
agrees with the log canonical modification.

In general, Ic modifications are conjectured to exist, but there are slc pairs
without slc modification: see Kollar (2013b, 1.40). In both cases, existence is
known when Ky + A is R-Cartier; see Odaka and Xu (2012).
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Let f: (X,A) — S be a morphism as in (5.2) that satisfies the condition
(5.3.1). A simultaneous slc modification is a proper morphism 7: (¥,AY) —
(X, A) such that forr: (Y,AY) — S islocally stable, and 7y : (Y, AY) — (X, Ay)
is the slc modification for every s € S.

We get the following variant of (5.16).

Theorem 5.52 Let C be a smooth curve, f: (X,A) — C a projective morphism

as in (5.2) that satisfies the condition (5.3.1). Assume that Kx + A is R-Cartier,

and the slc modification m.: (X3, ASlm) — (X, A.) exists for every ¢ € C.

Then

(5.52.1) ¢ I(m:H" 2, Kysien + AS™) is lower semi-continuous for <, and

(5.52.2) f: (X,A) — C has a simultaneous slc modification iff this function is
locally constant.

Proof Using (2.54), we may assume that X is normal. Next we closely follow
the proof of (5.50).

Letn: (Y,AY) — (X, A) denote the log canonical modification; this exists by
(11.29). Note that here AY = 77! A + F where F is the sum of all 7-exceptional
divisors that dominate C.

Write Yy = ), e;E; where ep = 1 and E| is the birational transform of Xj. Let
7: Eg — Ej denote the normalization, and write 7*(Ky + Yo + AY) = Kz, + D.
Choose m > 0 such that Ky + Yy + AY + ma* H is ample over C. As in the proof
of (5.50), we get that

(Kyem + Algcm +mmg H)") ((Kg, + Do + mnyH)") and
VO](KXg)cm + A})Cm + m]TE;H) = (KX%)C”‘ + A})Cm + m]TEk)H)n.

\%

It remains to prove that (Kz, + Do + mryH)" > VOI(KX(I)cm + AF™ + mryH).

We have o: Ey — Xj, and we can apply (10.37) if every o-exceptional
divisor Fy ¢ Ey appears in Dy with coefficient 1.

By the definition of Ic modifications, every divisor F; that is exceptional for
Y — X appears in A” with coefficient 1. If Kx + A is R-Cartier then the excep-
tional set of ¥ — X has pure codimension 1. In this case, 7(F) is contained in
a divisor that is exceptional for ¥ — X. Thus, by adjunction, F appears in D,
with coefficient 1.

If (Xp,Ap) is slc at a point xy then (X,A) is also slc at xy by inver-
sion of adjunction (11.17), hence m is a local isomorphism over xy. Thus
o (Yo, Ag ) = (Xo, Ap) is an isomorphism over codimension 1 points of Xj.

The rest of the proof works as before. O
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If Kx + A is not R-Cartier then it can happen that an exceptional divisor
Fyy c E, is not contained in any exceptional divisor of X™ — X. In such cases
we lose control of the coefficient of F in Dy. This occurs in (5.22) over the 4
singular points that lie on Dj.

5.9 Families over Higher Dimensional Bases

Here we complete the proofs of Theorems 5.4-5.16. In all cases, the first part
asserts that a certain constructible function on the base scheme S is upper or
lower semicontinuous. As in (5.30), for constructible functions, semicontinuity
can be checked along spectra of DVRs, and this was already done in all cases.

The remaining part is to show that if our functions are locally constant on
S, then certain constructions produce a flat family of varieties or sheaves. In
all cases, we have already checked that this holds when the base is a smooth
curve.

Going to arbitrary reduced bases is quickest in the following example.

5.53 (Proof of 5.1) We already proved the case when § is the spectrum of a
DVR in (5.42). As we noted in (5.30), this implies (5.1.1) in general. Thus it
remains to prove that if s - (K} ) is constant then f: X — S is stable.

In view of (5.42), we know that fr: Xy — T is stable for every T — S
where T is the spectrum of a DVR. Thus f: X — S is stable by (4.7). O

We aim to argue similarly for Theorems 5.4, 5.5 and 5.6. Note that in these
cases we cannot apply (5.8) since f is not assumed to be flat, and its fibers are
not assumed to be S,. We follow (5.31). For (5.4-5.6) this needs the theory of
hulls and husks, to be explained in Chapter 9.

5.54 (Proof of 5.4-5.6) Letn: Hull(Ox/S) — S denote the hull (9.39) of OY.
We aim to show that 7 is an isomorphism.

By (9.40),  is a locally closed decomposition (10.83).

Let T be the spectrum of a DVR, and g: 7 — S a morphism that maps
the generic point of 7 to a generic point of S. We apply (5.42) or (5.27) to
the divisorial pull-back fr: (Xr,Ar) — T to conclude that it is stable (resp.
locally stable). For (5.6) we use (2.88.5).

Thus g: T — S factors uniquely through 7: Hull(Ox/S) — S, hence 7 is
proper. 7: H — S is an isomorphism by (10.83.2). In particular, f: X — S is
flat with S, fibers. Thus the fibers are slc by assumption and (11.37).

Now we can apply (4.35) to conclude that Kyx;s + A is R-Cartier, hence
f:(X,A) — S is stable (resp. locally stable). m|
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For the remaining cases, (5.31) needs the moduli space of pairs with an
artificial, but efficient, rigidification.

5.55 (Proof of 5.10-5.11) Both claims were already established over the
spectrum of a DVR, see (5.44) and (5.46). This implies the semicontinuity
assertions in both cases.

It remains to show that if the volume is constant then f: X — S (resp.
f:(X,A) — §) has a simultaneous canonical model.

Consider the moduli space of marked stable pairs 7: SP™ — S; since S is
reduced, the version in (4.1) is sufficient for our purposes. Set

S" = {(X5,A%) : s €S} c SP,

In order to prove that S’ is a closed subset, first we claim that it is constructible.
This is clear since the canonical model over a generic point of S extends to a
canonical model over an open subset of S, and we can finish by Noetherian
induction. Thus closedness needs to be checked over spectra of DVRs, and the
latter follows from (5.44) and (5.46).

Thus S’ is a scheme, and the projection 7 induces a geometric bijection
S’ — § which is finite by (5.44) and (5.46). Thus S — S is an isomorphism
since we assumed that S is seminormal.

If each (XS, AS) is rigid, then S C SP'gid and there is a universal family
Univ'&4 — SPrigid by (8.71). Therefore the pull-back of the universal family
Univ'™@ to S” gives the simultaneous canonical model over § ~ §’.

We have no reason to assume that the (X$, AS) are rigid, but we can make the
proof work by rigidifying f : (X,A) — S.

The simultaneous canonical model is unique, hence it is enough to con-
struct it étale locally. After replacing S by an étale neighborhood of a
point 0€S, we may assume that there are r sections o; : § — X such
that (Xo, Ao, 01(0),...,0,(0)) is rigid, and the o;(0) are smooth points of
Xo \ Supp Ag such that (Xo,Ag) --> (X{,Af) is a local isomorphism at these
points.

By (8.65), after further shrinking S we may assume that the same holds at
every point s € S. Using the moduli of marked, pointed stable pairs MpSP
(8.44) and (8.71.1), we can run the previous argument for

S = (X5, A8, 01(5),...,0.(s)): s €S} c MpSPeid

to prove that the simultaneous canonical model exists over S . O
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5.56 (Proof of 5.16) The proof follows very closely the arguments in (5.55).
Both claims were already established over the spectrum of a DVR, see (5.50).
This implies the semicontinuity assertion in general.

It remains to show that if /(s) = I(n{H,, Kx) is constant, then f: (X,A) —
S has a simultaneous canonical modification. Since the simultaneous canoni-
cal modification is unique, it is sufficient to construct it étale locally over S.
So pick a point sy € S, in the sequel we are free to replace S by smaller
neighborhoods of sy.

Choose m > 0 such that Kxen+ms;H, is ample for every s € S. Next choose a
general D € |mH| such that (X{", AS" + 75 Dy,) is log canonical. We claim that,
possibly after shrinking S, (X$™, AS™ + niD;) is log canonical for every s € S.
By (4.44) this condition defines a constructible subset of S and, by (5.50), it
contains every generalization of so. Thus it contains an open neighborhood of
so. Thus (X$™, AS™ + 1 Dy) is a stable pair for every s € S.

Consider the moduli space of marked stable pairs 7: SP — S, and set

S’ = {(XS™, A 4+ 1'D,): s € S} C SP.

In order to prove that S’ is a closed subset, first we claim that it is constructible.
This is clear since the canonical modification over a generic point of S extends
to a canonical modification over an open subset of S, and we can finish by
Noetherian induction. Thus closedness needs to be checked over spectra of
DVRs, and the latter follows from (5.50).

Thus S’ is a scheme, and the projection 7 induces a geometric bijection
S’ — § which is finite by (5.50). Thus S’ — S is an isomorphism since S is
assumed seminormal.

For general D, the pairs (X", AS™ + n3Dy) should be rigid, and then the
pull-back of the universal family to S’ gives the simultaneous canonical mod-
ification over S =~ §’. Technically it may be easier to rigidify using étale-local
sections as in (5.55). |
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