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ALGEBRAIC TORI AS DEGENERATIONS OF
ABELIAN VARIETIES

KAI-WEN LAN AND JUNECUE SUH

Abstract. We first show that every algebraic torus over any field, not necessarily
split, can be realized as the special fiber of a semi-abelian scheme whose generic fiber
is an absolutely simple abelian variety. Then we investigate which algebraic tori can
be thus obtained, when we require the generic fiber of the semi-abelian scheme to
carry non-trivial endomorphism structures.
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§1. Introduction. We start with a well-known example, the Dwork family of
elliptic curves

X3
+ Y 3

+ Z3
− 3t XY Z = 0

over the projective line P1
Q over Q, where t is the affine coordinate, with the

identity section given by the point at infinity [X : Y : Z ] = [1 : −1 : 0]. It also
doubles as the modular curve of level 3.

It has bad, semistable reduction at t = ∞ and the third roots of unity. The
corresponding Néron model has the split torus as the identity component of the
fiber at t = ∞ (because the equation becomes XY Z = 0), but at t = 1 we get a
non-split torus T that sits in the short exact sequence

1 // T // ResQ(
√
−3)/QGm

Norm // Gm // 1,

where Norm denotes the norm homomorphism of the quadratic extension
Q(
√
−3) over Q. This leads to the following natural question.
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304 K.-W. LAN AND J. SUH

Question 1.1. To which algebraic tori can abelian varieties degenerate?

However, this question turns out to be a bit naive, in the sense that it allows
an answer that is somewhat shallow. Indeed, as we shall explain in the main text
with more details, the question can be rather easily reduced to the case of the split
one-dimensional torus Gm by finite étale descent, where an affirmative answer
is provided by the classical theory of Tate curves. The generic abelian variety
obtained this way will be geometrically the n-fold product of an elliptic curve
without CM (complex multiplication), where n is the dimension of the torus.

A better and deeper question is the following.

Question 1.2. To which algebraic tori can absolutely simple abelian varieties
degenerate?

Here, as usual, an abelian variety is called absolutely simple if its base change
to an algebraic closure of the base field is not isogenous to a non-trivial product
of abelian varieties of smaller dimensions.

For the distinction between Questions 1.1 and 1.2, an apt analogy can be
made with complex moduli of abelian varieties. To a simple algebra B with
involution of types I–IV and a fixed complex representation of B, one attaches
the moduli of polarized abelian varieties with endomorphisms of the given
type. One expects, and can prove in most cases, that a very general member
in the moduli has an endomorphism algebra no bigger than B; the rough
idea is that those abelian varieties with more endomorphisms than prescribed
should form a “thin” or nowhere dense subset. However, a careful proof is
necessary, as there are exceptional cases where a very general member is not
even simple (see [20, §4, Theorem 5 and Propositions 14, 15, 17, 18, and 19] or
[2, Theorem 9.9.1]).

Our main theorem answers Question 1.2, in the affirmative, for all algebraic
tori over all base fields.

THEOREM 1.3. Let T be any algebraic torus over any base field k. Then there
exists a semi-abelian scheme G over a noetherian normal base scheme S with a
k-valued closed point s ∈ S(k) generalizing to a generic point η such that the
following hold.
(1) The special fiber Gs is isomorphic to T over k.
(2) The generic fiber Gη is an absolutely simple abelian variety.
More precisely, we may take S to be of one of the following three kinds of
Dedekind schemes:
(a) the spectrum of any complete discrete valuation ring, which can be freely

prescribed (independent of T ), with residue field k;
(b) a certain connected smooth curve over k (depending on T ) with a k-valued

point s; and
(c) (when k is a finite field) a certain “arithmetic curve” (depending on T ),

i.e. an open subset of the spectrum of some number ring, with a closed
point s corresponding to an unramified prime ideal with residue field k.
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In case T has dimension one, we can exhibit the desired semi-abelian schemes
G over Dedekind S for each non-split torus T explicitly. Such tori are classified
by the separable quadratic extensions of k, and we can write down suitable
Weierstraß equations with special fibre T . (The generic absolute simpleness is
automatic in dimension one.)

However, in dimensions n > 2 (already for n = 2), we quickly lose explicit
control on both sides. The isomorphism classes of n-dimensional tori over k
are in one-to-one correspondence with the isomorphism classes of continuous
representations

ρ : Gal(ks/k)→ GLn(Z),

where ks denotes any separable closure of k, on the discrete module Zn

(corresponding to the Galois actions on the character groups of the tori), and
it seems hopeless to classify them completely. On the other side, we do not have
a good way of writing down families of general abelian varieties using explicit
equations. In order to solve the problem, we use the theory of degeneration of
polarized semi-abelian schemes (as in [18], [7, Chs II and III], and [14, Ch. 4]).

After the main theorem, it is natural to ask a similar question with the
additional condition that the (absolutely simple) generic abelian variety should
be equipped with non-trivial endomorphisms. (Such endomorphism structures
then necessarily and uniquely extend to the whole semi-abelian scheme;
see [19, IX, 1.4], [7, Ch. I, Proposition 2.7], or [14, Proposition 3.3.1.5].) We
will also answer this question, with an affirmative answer similar to Theorem 1.3
(except in two special cases).

We note, however, that Question 1.2 and its analogue as in the last paragraph
are not about the fibers of the tautological semi-abelian schemes carried by the
toroidal compactifications of the Siegel moduli stacks or more general PEL
moduli problems constructed in [7, Ch. IV] and [14, Ch. 6], because only
split tori are used (and needed in the valuative criterion for properness) in
the constructions there. Nevertheless, our use of the theory of degeneration is
inspired by such constructions.

Here is an outline of the article. In §2, we construct explicit families for
one-dimensional tori. In §3, we review some basic facts about the descent
data for tori, and give the above-mentioned explanation why Question 1.1 is
a bit too naive. To attack Question 1.2 in general, we recall relevant facts
from the theory of degeneration in §4. Using this theory, we give the proof of
Theorem 1.3 in §§5 and 6. Finally, in §7, we turn to the conditions for tori to
be realizable as the degeneration of absolutely simple abelian varieties with non-
trivial endomorphisms.

§2. One-dimensional case. Let T be an algebraic torus of dimension one over
a field k. Let us fix the choice of a separable closure ks of k. Then the action of the
Galois group Gal(ks/k) on the character group X∗(T ) ∼= Z of T is either trivial
(in which case T is split), or surjects onto {±1}, corresponding to a separable
quadratic extension k̃ of k in ks .
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Let R be any Dedekind domain and P = (π) a principal maximal ideal of R
with residue field k. (For example, R = k[t] and P = (t).)

PROPOSITION 2.1. Suppose that char(k) 6= 2, and write k̃ = k(
√

b), where
b ∈ k is a non-square element. Then for any lift b ∈ R of b, the Weierstraß
equation

Y 2 Z = X3
+ bX2 Z + π Z3

over Spec(R) defines an elliptic curve over the fraction field of R, has semistable
reduction at P, and the fiber of the Néron model at P is the k-torus on whose
character group Gal(ks/k) acts via the quadratic character of k̃/k.

Proof. The discriminant of the Weierstraß equation (see [21, p. 180]) is
given by

1 = (−16π)(4b3
+ 27π).

This is non-zero, and is in fact a uniformizer, in RP, since 2 is a unit in RP;
hence the first assertion.

Let C denote the singular curve at P:

Y 2 Z = X3
+ bX2 Z .

The complement of the unique singular point P = [0 : 0 : 1] in C is the fiber of
the Néron model. We know that it is a one-dimensional torus, and that it splits
over k̃. Therefore, it is enough to show that it is not split over k.

Let π : C̃ → C be the blowup of C at P , which induces an isomorphism
C \ {P} ∼= C̃ \ π−1(P). Because the slopes of the tangent cone

y2
= bx2

to C at P are ±
√

b, which are not contained in k, the inverse image π−1(P)
consists of one point of degree 2 on C̃ . If C \ {P} were split over k, this would
not happen. �

PROPOSITION 2.2. Suppose that char(k)= 2, and k̃ be a separable quadratic
extension of k. Write k̃ as the Artin–Schreier extension k̃ = k(α), where

α2
+ α + b = 0,

and b ∈ k. Then for any lift b ∈ R of b, the Weierstraß equation

Y 2 Z + XY Z = X3
+ bX2 Z + π Z3

over Spec(R) defines an elliptic curve over the fraction field of R, has semistable
reduction at P, and the fiber of the Néron model at P is the k-torus on whose
character group Gal(ks/k) acts via the quadratic character of k̃/k.

Proof. The proof is parallel. We only note that the discriminant

1 = −(1+ 4b)3π − 16 · 27π2

is again a uniformizer in RP, this time because 2 is in P. �
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§3. Descent data for tori. In this section, we review some basic facts about
the descent data for tori. At the end of this section, we explain that the rather
naive Question 1.1 can be easily reduced to the case of Gm, which can then be
answered in the affirmative by the classical theory of Tate curves. In fact, the
argument will also show that the construction of degenerating abelian varieties
can be made functorial (and compatible with base field extensions) in the tori.

We start with the following basic fact.

LEMMA 3.1. Let R be a complete noetherian local ring with residue field k.
Then pulling back from R to k induces an equivalence from the category
of isotrivial tori over R to the category of tori over k. (Recall that a torus is
isotrivial if it splits over a finite étale cover of its base scheme; see [6, IX, 1.1].)

Proof. This follows from [6, X, 3.3]. (Indeed, by [6, X, 2.1], all tori over
s = Spec(k) are isotrivial, and so the lemma is a consequence of [6, X, 3.2].) �

Now, suppose R is any complete discrete valuation ring with residue field k
and fraction field K . Let S := Spec(R), η := Spec(K ), and s := Spec(k). We
shall denote the pullbacks to η or s by subscripts η or s, respectively.

Suppose T is an isotrivial torus over S. Then there exists a finite étale
extension R̃ of R, which we may and we shall assume to be a complete discrete
valuation ring as well, such that TS̃ := T⊗R R̃ is a split torus over S̃ := Spec(R̃).
Let K̃ and k̃ denote the fraction and residue fields of R̃, respectively, and let
η̃ := Spec(K̃ ) and s̃ := Spec(̃k). By [8, V, 7, and 4(g)], up to replacing R̃ with
a further finite étale extension, we may and we shall assume that K̃ is a Galois
extension of K . Again, we shall denote the pullbacks to η̃ or s̃ by subscripts η̃ or
s̃, respectively.

Let X denote the character group of T , which is an étale sheaf of free abelian
groups of finite ranks over S. Then X is the unique étale sheaf lifting X s , the
character group of Ts . Let n denote the relative dimension of T over S. Then
there exists some isomorphism ξ : Zn ∼

→ X η̃, where we abusively denote by
Zn the associated constant étale sheaf over η̃, which induces a representation
ρ : Gal(K̃/K )→ GLn(Z) giving the descent data for the étale sheaf X η̃. Since
R̃ is finite étale over R, we have Gal(K̃/K )∼= Gal(̃k/k), and so ρ determines and
is determined by a representation Gal(̃k/k)→ GLn(Z). Since the automorphism
group of any torus is canonically isomorphic to the automorphism group of the
associated character group, the representation ρ also defines the data for TS
(respectively Ts) to descend from TS̃

∼= Gn
m,S̃

(respectively T̃s ∼= Gn
m,̃s). (See,

for example, [3, Ch. 6, §6.2, Example B] for an explanation that descent data
for schemes with respect to the finite étale base extension R → R̃ as above are
equivalent to actions of the Galois group Gal(K̃/K ) on the schemes.)

Conversely, any torus Ts with character group X s over s canonically lifts to
an isotrivial torus T with character group X over S, by Lemma 3.1. If Ts is
of dimension n, then we have trivializations ξ : Zn ∼

→ X η̃ and representations
ρ : Gal(K̃/K ) ∼= Gal(̃k/k)→ GLn(Z) as above, for suitable choices of S̃, etc.
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PROPOSITION 3.2. Suppose G0 is a semi-abelian scheme over S with special
fiber G0,s ∼= Gm,s and with generic fiber G0,η an elliptic curve. Suppose Ts is
a torus over s, and suppose S̃ = Spec(R̃), etc, are as above. Then there exists
a semi-abelian scheme G over S such that Gs ∼= Ts , such that Gη is an abelian
variety, and such that G η̃

∼= Gn
0,̃η. In particular, Question 1.1 has an affirmative

answer. Moreover, for a fixed choice of G0, the assignment of G to Ts is functorial
(and compatible with base field extensions) in the torus Ts .

Proof. By [19, XI, 1.13] (see also [14, Remark 3.3.3.9]), any semi-abelian
scheme over the noetherian normal base scheme S is equipped with some
relative ample invertible sheaf over S. By the theory of fpqc descent (as in
[8, VIII, 7.8]), all descent data for such quasi-projective semi-abelian schemes
are effective. Since the representation ρ : Gal(K̃/K ) ∼= Gal(̃k/k) → GLn(Z)
defining the data for TS to descend from TS̃

∼= Gn
m,S̃

also defines some descent
data for Gn

0,S̃
, which are effective as we have just explained, Gn

0,S̃
descends

to a uniquely determined semi-abelian scheme G over S, whose generic fiber
Gη is an abelian scheme because G η̃

∼= Gn
0,̃η is; and whose special fiber Gs

is canonically isomorphic to Ts because their descent data are both given by
ρ. Such an assignment of G to Ts is functorial (and compatible with base field
extensions) in the torus Ts because the construction of G by descent depends
only on the descent data for Ts and on the choice of G0. �

Thus, we have reduced the more naive Question 1.1 to the case of the
one-dimensional split torus Gm (over any base field), which can then be
answered by the classical theory of Tate curves (see, for example, the rather
universal construction over Z[[q]] in [5, Ch. VII]). However, any G given by
Proposition 3.2 (or any assignment that is functorial and compatible with base
field extensions in Ts) must satisfy G η̃

∼= Gn
0,̃η over some extension η̃ of η, which

cannot be absolutely simple when n > 1, and hence cannot be used to answer
Question 1.2. We need a theory more general than that of Tate curves, which we
shall review in the following section.

§4. Theory of degeneration. Let R be a complete discrete valuation ring with
residue field k and fraction field K . Let S := Spec(R), η := Spec(K ), and s :=
Spec(k). We shall denote the pullbacks to η or s by subscripts η or s, respectively.

Definition 4.1 (Cf. [14, Definition 4.4.2]). With the setting as above, the
category DEGtor

pol(R) has objects consisting of pairs (G, λ) over S = Spec(R),
where the following hold.
(1) The first entry G is a semi-abelian scheme over S.
(2) The pullback Gη is an abelian scheme over η, in which case there is a

unique semi-abelian scheme G∨ (up to unique isomorphism) over S, called
the dual semi-abelian scheme of G, such that G∨η is the dual abelian scheme
of Gη (see [14, §3.4.3]).
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(3) The pullback Gs is a torus over s (in which case G∨s also is).
(4) The second entry λ : G → G∨ is a group homomorphism that induces by

restriction a polarization λη of Gη.

Remark 4.2. The definition of pairs (G, λ) as in Definition 4.1 extends
verbatim to the case where S is a noetherian normal local scheme, but we stated
the definition this way only because the theory of degeneration below requires R
to be complete, and we only need the special case over Dedekind domains.

Remark 4.3. By [19, XI, 1.13, and IX, 1.4] (see also [14, Remarks 3.3.3.9 and
4.4.3, and Proposition 3.3.1.5]), any semi-abelian scheme G over a noetherian
normal domain R that is generically an abelian variety is automatically equipped
with a homomorphism λ : G → G∨ that is generically a polarization (of an
abelian variety). In particular, any semi-abelian scheme G over S satisfying
the first two conditions in Definition 4.1 is automatically equipped with some
homomorphism λ : G → G∨ satisfying the last condition in Definition 4.1.

By the theory of degeneration data (see [18]; see also [7, Chs II and III] and
[14, Ch. 4; see, in particular, Corollary 4.5.4.31], with all abelian parts in the
degenerations suppressed; or see, for example, [16, §2.7], for the corresponding
rigid analytic theory, which is in some sense simpler), there is an equivalence of
categories

Mtor
pol(R) : DDtor

pol(R)→ DEGtor
pol(R) : (X , Y , φ, τ ) 7→ (G, λ)

realizing (G, λ) (up to isomorphism) as the image of an object in DDtor
pol(R) given

by the following data.
(1) Two étale sheaves X and Y of free abelian groups of finite ranks over S,

together with an embedding φ : Y → X with finite cokernel (here φ : Y →
X corresponds to the isogeny of tori T → T∨ uniquely lifting Gs → G∨s ,
by Lemma 3.1. It should be noted that the notation for objects related to
the degeneration of G∨η , such as T∨, is only symbolic in nature).

(2) A bimultiplicative homomorphism τ : Y η × Xη → Gm,η of étale sheaves
over η with symmetric pullback under IdY ×φ : Y × Y → Y × X ,
satisfying the following positivity condition for some (and hence every)
finite extension K̃ of K as in §3 over which both X η̃ and Y η̃, where
η̃ := Spec(K̃ ), are constant: υ̃(τ (y, φ(y))) > 0 for every non-zero section
y of Y η̃, where υ̃ : K̃×→ Z is any non-trivial discrete valuation of K̃ .

We say that (X , Y , φ, τ ) is the degeneration data of (G, λ).

Remark 4.4. The bimultiplicative homomorphism τ : Y η × Xη → Gm,η
induces (by the definition of X as the character group of T ) a homomorphism

ι : Y η → Tη, (4.5)

which is a generalization of the familiar Tate periods in the case of relative
dimension one (i.e. of Tate curves). Nevertheless, we will not need ι in what
follows.
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§5. Conditions for degenerations. Let R, k, K , S, s, and η be as in the
beginning of §4.

Suppose that we have tori Ts and T∨s over s = Spec(k) with character groups
X s and Y s that are étale sheaves of free abelian groups of finite ranks, together
with an embedding φs : Y s ↪→ X s with finite cokernel inducing an isogeny
λTs : Ts � T∨s . (Certainly, we allow φs and hence λTs to be isomorphisms.) In
this section, we shall find necessary and sufficient conditions for the existence of
an object (G, λ) in DEGtor

pol(R) such that λs : Gs → G∨s can be identified with
λTs : Ts → T∨s (via some isomorphisms Gs ∼= Ts and G∨s ∼= T∨s over s), and
such that Gη and hence G∨η are absolutely simple abelian varieties.

By Lemma 3.1, the embedding φs : Y s ↪→ X s lifts to an embedding φ : Y ↪→

X with finite cokernel over S of étale sheaves of free abelian groups of finite
ranks, inducing an isogeny λT : T � T∨ (between isotrivial tori) lifting λTs .
Let S̃, etc, be as in §3 such that both X η̃ and Y η̃ are constant of some common

finite rank n, so that there are isomorphisms ξ : Zn ∼
→ X η̃ and ξ∨ : Zn ∼

→ Y η̃
and representations ρ : Gal(K̃/K )→ GLn(Z) and ρ∨ : Gal(K̃/K )→ GLn(Z)
defining the descent data for the étale sheaves X η̃ and Y η̃. Consider

φξ,ξ∨ := ξ
−1 φη̃ ξ

∨
: Zn
→ Zn, (5.1)

which defines an element of End(Zn) ∩ Aut(Qn) ∼= Mn(Z) ∩ GLn(Q).

LEMMA 5.2. We have

φξ,ξ∨(ρ
∨(γ )z) = ρ(γ )(φξ,ξ∨(z))

for all γ ∈ Gal(K̃/K ) and z ∈ Zn .

Proof. This is because φ : Y → X is a morphism defined over S. �

PROPOSITION 5.3. With the setting as above, with the fixed choices of
some ξ , ξ∨, ρ, and ρ∨, the datum of an object (G, λ) of DEGtor

pol(R) (as in
Definition 4.1) such that λs : Gs → G∨s can be identified with λTs : Ts → T∨s
(via some isomorphisms Gs ∼= Ts and G∨s ∼= T∨s over s) is equivalent to the
datum of a bimultiplicative pairing

〈·, ·〉τ,ξ,ξ∨ : Zn
× Zn

→ K̃× (5.4)

satisfying the following conditions.
(1) (Galois equivariance) 〈ρ∨(γ )z, ρ(γ )w〉τ,ξ,ξ∨ = γ 〈z, w〉τ,ξ,ξ∨ for all z,

w ∈ Zn and γ ∈ Gal(K̃/K ) (note that the action of Gal(K̃/K ) on K̃×

here is the naive one, because K̃× is just the group of points of Gm over
η̃ = Spec(K̃ ), and Gm is already defined over η = Spec(K ) or rather
Spec(Z)).

(2) (Symmetry) 〈z, φξ,ξ∨(w)〉τ,ξ,ξ∨ = 〈w, φξ,ξ∨(z)〉τ,ξ,ξ∨ for all z, w ∈ Zn .
(3) (Positivity) υ̃(〈z, φξ,ξ∨(z)〉τ,ξ,ξ∨) > 0 for every non-zero z ∈ Zn , where

υ̃ : K̃×→ Z is any non-trivial discrete valuation of K̃ .
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Proof. This follows from the theory reviewed in §4, by base change
to η̃, by pulling back under ξ∨ × ξ , and by descent (as in the proof of
Proposition 3.2). �

PROPOSITION 5.5. In the setting of Proposition 5.3, if the pairing 〈·, ·〉τ,ξ,ξ∨
corresponding to (G, λ) satisfies the additional condition that

〈z, w〉τ,ξ,ξ∨ 6= 1 (5.6)

for all non-zero z, w ∈ Zn , then Gη and hence G∨η must be absolutely simple.

Proof. Suppose Gη is not absolutely simple. Then there exists a finite
extension K ′ of K̃ over which the base change of Gη is isogenous to a non-
trivial product of two abelian varieties of smaller dimension. By the theory of
Néron models (see, in particular, [3, Ch. 7, §7.4, Theorem 1]), up to replacing
K ′ with a finite extension, we may assume that these two abelian varieties extend
to two semi-abelian schemes G1 and G2, respectively, over the integral closure
R′ of R in K ′. Since the theory of degeneration in §4 is an equivalence of
categories, there exist some non-zero z, w ∈ Zn , which are the images of some
elements of the character groups of the torus parts of G∨1 and G2, such that
〈z, w〉τ,ξ,ξ∨ = 1 (in K ′, and hence also in K̃ ). This contradicts the condition
(5.6) in this proposition, as desired. �

In the remainder of this section, let us show that the conditions in Propositions
5.3 and 5.5 can indeed be achieved by some bimultiplicative pairing 〈·, ·〉τ,ξ,ξ∨ .

LEMMA 5.7. There exists θ ∈ R̃× such that {γ θ}γ∈Gal(K̃/K ) form a free R-

basis of R̃, and such that the reductions {γ θ}γ∈Gal(K̃/K ) in k̃ form a k-basis of k̃.

Proof. Since Gal(K̃/K ) is a finite group, the group algebra R[Gal(K̃/K )]
over R is an R-order (see [14, Definition 1.1.1.3]) in the finite-dimensional
group algebra K [Gal(K̃/K )] over K . Since R̃ is finite étale over R, we have
Gal(K̃/K ) ∼= Gal(̃k/k) as groups, and R[Gal(K̃/K )] ⊗R k ∼= k[Gal(̃k/k)]
as group algebras over k. By applying the normal basis theorem (see, for
example, [15, Ch. VI, §13]) to the finite Galois field extension k̃/k, we have
k̃ ∼= k[Gal(̃k/k)] as left k[Gal(̃k/k)]-modules. Therefore, since R is local
with residue field k, by [14, Lemma 1.1.3.1] (which is a consequence of the
usual Nakayama’s lemma for finitely generated R-modules), we have R̃ ∼=
R[Gal(K̃/K )] as left R[Gal(K̃/K )]-modules, and the lemma follows. �

LEMMA 5.8. There exists u0 ∈ R̃× such that the Galois conjugates
{γ u0}γ∈Gal(K̃/K ) are multiplicatively independent in the sense that, if∏

γ∈Gal(K̃/K )

(γ u0)
cγ = 1

in R̃× for some integers {cγ }γ∈Gal(K̃/K ), then these integers are all zero.
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Proof. Let I and Ĩ denote the maximal ideals of R and R̃, respectively, which
satisfy Ĩ = I · R̃ because R̃ is finite étale over R. If char(k) = 0, we set δ = 0.
Otherwise, we have char(k) = p for some rational prime number p > 0, and
we fix the choice of any integer δ > 0 such that the multiplicative subgroup
1 + Ĩ 1+δ of R̃× does not contain any non-trivial pth roots of unity. (Such an
integer δ always exists, because there are only finitely many pth root of unity in
K̃ or any field, and because R̃ is Ĩ -adically separated.)

Let θ ∈ R̃× be as in Lemma 5.7, let $ be any uniformizer of R (which is
then also a uniformizer of R̃), let δ be as in the previous paragraph, and let

u0 := 1+ θ$ 1+δ
∈ 1+ Ĩ 1+δ

⊂ R̃×.

We would like to show that u0 satisfies the requirement of this lemma; namely,
if ∏

γ∈Gal(K̃/K )

(γ u0)
cγ =

∏
γ∈Gal(K̃/K )

(1+ (γ θ)$ 1+δ)cγ = 1 (5.9)

in 1 + Ĩ 1+δ
⊂ R̃× for some integers {cγ }γ∈Gal(K̃/K ), then these integers are all

zero.
Suppose, to the contrary, that the relation (5.9) holds for some integers

{cγ }γ∈Gal(K̃/K ) that are not all zero. First, suppose char(k) = 0. Then Q ⊂ k,
and the relation (5.9) implies that∑

γ∈Gal(K̃/K )

cγ (γ θ) = 0

in k, by considering the images of the terms in (5.9) in (1+ Ĩ 1+δ)/(1+ Ĩ 2+δ) ∼=

k (where δ = 0). This contradicts the linear independence of {γ θ}γ∈Gal(K̃/K )
over k. Otherwise, suppose char(k) = p > 0. Then there exists some power
q of p such that q|cγ for all γ ∈ Gal(K̃/K ), but (pq) - cγ0 for at least one
γ0 ∈ Gal(K̃/K ), so that the reductions {cγ := (cγ /q) mod p} are not all zero in
Fp ⊂ k. By the choice of δ, the multiplicative subgroup 1+ Ĩ 1+δ of R̃× cannot
contain any non-trivial pth roots of unity, and consequently the relation (5.9)
still holds with the cγ replaced with cγ /q . After such a replacement, again by
considering the images of the terms in (5.9) in (1 + Ĩ 1+δ)/(1 + Ĩ 2+δ) ∼= k, we
get that ∑

γ∈Gal(K̃/K )

cγ (γ θ) = 0

in k. This again contradicts the linear independence of {γ θ}γ∈Gal(K̃/K ) over k.
Thus, the integers {cγ }γ∈Gal(K̃/K ) must be all zero, and the lemma follows. �

LEMMA 5.10. For any integer N > 1, there exist elements u1, u2, . . . , uN in
R̃× that are multiplicatively Galois independent in the sense that, if∏

16i6N ;γ∈Gal(K̃/K )

(γ ui )
ci,γ = 1

in R̃× for some integers {ci,γ }16i6N ;γ∈Gal(K̃/K ), then these integers are all zero.
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Proof. Let u0 ∈ R̃× be as in Lemma 5.8, and let $ be a uniformizer of
R (which does not have to be the same as the uniformizer in the proof of
Lemma 5.8). Let us choose elements t1, t2, . . . , tN in K× that are algebraically
independent over the subfield K̃0 of K̃ generated by $ and the finite
subset {γ u0}γ∈Gal(K̃/K ) over its prime subfield. This is possible because the
transcendence degree of K̃ over its prime subfield is (uncountably) infinite. For
each 1 6 i 6 N , up to replacing ti with a suitable multiple by a power of $ , we
may assume that ti ∈ R×. Let

ui := 1+ u0ti$ ∈ R̃×,

so that
γ ui = 1+ (γ u0)ti$ ∈ R̃×,

for each 1 6 i 6 N . We would like to show that these elements {ui }16i6N satisfy
the requirement of the lemma; namely, if∏

16i6N ;γ∈Gal(K̃/K )

(γ ui )
ci,γ =

∏
16i6N ;γ∈Gal(K̃/K )

(1+ (γ u0)ti$)ci,γ = 1 (5.11)

for some integers {ci,γ }16i6N ;γ∈Gal(K̃/K ), then these integers are all zero.
For all i and γ , set c+i,γ = ci,γ and c−i,γ = 0 when ci,γ > 0, and set c+i,γ = 0

and c−i,γ = −ci,γ when ci,γ 6 0. Then the relation (5.11) implies that∏
16i6N ;γ∈Gal(K̃/K )

(1+ (γ u0)ti$)
c+i,γ

=

∏
16i6N ;γ∈Gal(K̃/K )

(1+ (γ u0)ti$)
c−i,γ . (5.12)

Since t1, t2, . . . , tN are algebraically independent over the subfield K̃0 of K̃ , the
relation (5.12) is possible only when the corresponding “polynomials” in t1, t2,
. . . , tN (with coefficients in K̃0) on the two sides match. In particular, for each
1 6 i 6 N , by comparing the non-zero top degree “monomials” purely in ti
(with coefficients in K̃0) on the two sides, we have (by comparing exponents)∑

γ∈Gal(K̃/K )

c+i,γ =
∑

γ∈Gal(K̃/K )

c−i,γ

in Z>0, and have (by comparing coefficients, after canceling powers of $ )∏
γ∈Gal(K̃/K )

(γ u0)
c+i,γ =

∏
γ∈Gal(K̃/K )

(γ u0)
c−i,γ (5.13)

in R̃×. By the assumption on u0 (satisfying the requirement in Lemma 5.8), and
by the definition of c+i,γ and c−i,γ , this last relation (5.13) forces all c+i,γ , c−i,γ , and
ci,γ to be zero, for all γ ∈ Gal(K̃/K ), as desired. �

PROPOSITION 5.14. There exists a bimultiplicative pairing

〈·, ·〉τ,ξ,ξ∨ : Zn
× Zn

→ K̃×

as in (5.4) satisfying all the conditions in Propositions 5.3 and 5.5.
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Proof. Let
〈·, ·〉0 : Zn

× Zn
→ Z

be any positive definite (symmetric) bilinear pairing. Let e1, . . . , en denote the
standard basis vectors of Zn , let $ be any element of K× of positive valuation,
and let {ui j }16i6 j6n be elements in R̃× that are multiplicatively Galois
independent as in Lemma 5.10. Then we define a symmetric bimultiplicative
pairing

〈·, ·〉1 : Zn
× Zn

→ K̃×

by setting
〈ei , e j 〉1 := ui j ·$

〈ei ,e j 〉0

for all 1 6 i 6 j 6 n, and by extending the values of the pairing to the whole
domain Zn

×Zn by symmetry and bimultiplicativity. Next, we define a symmetric
bimultiplicative pairing

〈·, ·〉2 : Zn
× Zn

→ K̃×

satisfying the Galois equivariance

〈ρ(γ )z, ρ(γ )w〉2 = γ 〈z, w〉2 (5.15)

for all γ ∈ Gal(K̃/K ) and z, w ∈ Zn , by setting

〈z, w〉2 :=
∏

γ∈Gal(K̃/K )

γ−1
〈ρ(γ )z, ρ(γ )w〉1 (5.16)

for all z, w ∈ Zn . Finally, we define the desired bimultiplicative pairing

〈·, ·〉τ,ξ,ξ∨ : Zn
× Zn

→ K̃×

by setting
〈z, w〉τ,ξ,ξ∨ := 〈φξ,ξ∨(z), w〉2 (5.17)

for all z, w ∈ Zn , where φξ,ξ∨ is as in (5.1). Then 〈·, ·〉τ,ξ,ξ∨ satisfies the three
conditions (1), (2), and (3) in Proposition 5.3 by the symmetry and positive
definiteness of 〈·, ·〉0; by the definitions of the pairings 〈·, ·〉1 and 〈·, ·〉2; by the
choices of $ (of positive valuation in K̃×) and {ui j }16i6 j6n (of zero valuation
in K̃×); and by Lemma 5.2 and the relations (5.15) and (5.17).

It remains to show that 〈z, w〉τ,ξ,ξ∨ 6= 1 (as in (5.6)) for all non-zero z,
w ∈ Zn . Since φξ,ξ∨ is an embedding, by the defining relation (5.17), it
suffices to show that 〈z, w〉2 6= 1 for all non-zero z, w ∈ Zn . By the choice
of {ui j }16i6 j6n , the terms in the product (5.16) indexed by different elements γ
have multiplicatively independent values (up to powers of $ ), and so it suffices
to show that 〈z, w〉1 6= 1 for all non-zero z, w ∈ Zn . Suppose, to the contrary,
that there are some z =

∑
16i6n ai ei and w =

∑
16i6n bi ei , where (ai )16i6n

and (bi )16i6n are non-zero n-tuples of integers, such that 〈z, w〉1 = 1. Then we
have ( ∏

16i6n

〈ei , ei 〉
ai bi
1

)
·

( ∏
16i< j6n

〈ei , e j 〉
ai b j+bi a j
1

)
= 1
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in K̃×, which implies that( ∏
16i6n

uai bi
i i

)
·

( ∏
16i< j6n

u
ai b j+bi a j
i j

)
= 1 (5.18)

in R̃× (by pulling out all powers of $ ). By the choices of {ui j }16i6 j6n again,
the identity (5.18) is possible only when

ai b j + bi a j = 0 (5.19)

in Z for all 1 6 i 6 j 6 n. Let i0 (respectively j0) be the smallest index
i (respectively j) such that ai 6= 0 (respectively b j 6= 0), which exists by
assumption. But then ai0b j0 + a j0bi0 6= 0. This contradicts the condition (5.19),
as desired. �

Remark 5.20. If we start with any element $ in K× of positive valuation
and any positive definite (symmetric) bilinear pairing 〈·, ·〉0 : Zn

×Zn
→ Z, and

consider the Galois invariant pairing 〈·, ·〉1 : Zn
× Zn

→ Z defined by the sum

〈z, w〉1 :=
∑

γ∈Gal(K̃/K )

〈ρ(γ )z, ρ(γ )w〉0,

then the bimultiplicative pairing 〈·, ·〉τ,ξ,ξ∨ : Zn
× Zn

→ K̃× defined by

〈z, w〉τ,ξ,ξ∨ := $ 〈φξ,ξ∨ (z),w〉1 ∈ K×

satisfies all the conditions in Proposition 5.3. However, by completion of squares,
there exists f ∈ GLn(Q) such that ( f × f )∗ ◦ (〈·, ·〉1 ⊗Z Q) : Qn

× Qn
→

Q decomposes as an orthogonal direct sum of pairings over one-dimensional
subspaces. Thus, when n > 1, no pairing 〈·, ·〉τ,ξ,ξ∨ defined as above can possibly
satisfy the condition in Proposition 5.5. Furthermore, by Proposition 5.3, and by
the functoriality in the theory of degeneration in §4, some non-zero multiple
of f defines an isogeny between G η̃ and a product of one-dimensional abelian
varieties (i.e. elliptic curves) over η̃. In particular, when n > 1, no Gη thus
obtained can be absolutely simple.

Remark 5.21. If we consider only K×-valued pairings

〈·, ·〉τ,ξ,ξ∨ : Zn
× Zn

→ K×

satisfying all the conditions in Proposition 5.3, then the Galois equivariance
condition (1) there becomes the simpler Galois invariance condition

〈ρ∨(γ )z, ρ(γ )w〉τ,ξ,ξ∨ = 〈z, w〉τ,ξ,ξ∨ (5.22)

for all z, w ∈ Zn and γ ∈ Gal(K̃/K ). Since char(Q) = 0, and since Gal(K̃/K )
is finite, the (finite-dimensional) Q-subalgebra B of End(Qn) generated by the
images {ρ(γ )}γ∈Gal(K̃/K ) issemisimple (see, for example, [4, Theorem 15.6 and
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(25.8)]), and the Z-subalgebra O of End(Zn) generated by the same images
is an order in B. The anti-automorphism γ 7→ γ−1 of Gal(K̃/K ) induces
an involution ? : B → B stabilizing O, which is positive in the sense that
TrB/Q(bb?) > 0 for all non-zero b ∈ B. (Such orders and algebras with positive
involutions are exactly the ones considered in the context of endomorphisms
of abelian varieties; see §7 below.) Then the above condition (5.22) can be
rewritten as

〈bz, w〉τ,ξ,ξ∨ = 〈z, b?w〉τ,ξ,ξ∨

for all z, w ∈ Zn and b ∈ O. By Proposition 5.3, and by the functoriality in
the theory of degeneration in §4, we obtain an injective homomorphism i S̃ :

O → EndS̃(G S̃), whose restriction iη̃ : O → Endη̃(G η̃) satisfies the Rosati
condition defined by the polarization λη̃ and by the involution ?. (See the theory
with endomorphisms in §7 below. But beware that we cannot descend i S̃ to a
homomorphism i : O → EndS(G) in general.) When B = O ⊗Z Q is not a
division algebra (which is quite often the case), the injective homomorphism
iη̃ :O→ Endη̃(G η̃) forces G η̃ to be isogenous to a non-trivial product of abelian
varieties of smaller dimensions, in which case Gη cannot be absolutely simple.

Example 5.23. In the context of Remark 5.21, suppose k̃ is a quadratic
extension of k, and suppose ρ : Gal(K̃/K ) ∼= Gal(̃k/k) → GL2(Z) maps
the non-trivial element of Gal(̃k/k) to the automorphism ς of Z2 swapping
the two factors. Then O = Z[ς ], and B = O ⊗Z Q = Q[ς ] ∼= Q × Q is
a product of two fields. Consequently, every K×-valued pairing 〈·, ·〉τ,ξ,ξ∨ :
Z2
× Z2

→ K× satisfying all the conditions in Proposition 5.3 defines an
object (G, λ) in DEGtor

pol(R) such that G η̃ is isogenous to the product of two
one-dimensional abelian varieties (i.e. elliptic curves) over η̃, in which case Gη

cannot be absolutely simple.

Remark 5.24. The proof of Proposition 5.14 avoided the issues in
Remarks 5.20 and 5.21 by making crucial use of elements in K̃× that are
multiplicatively Galois independent as in Lemma 5.10.

§6. Proof of main theorem. Now we are ready to prove our main theorem.
Let us first state and prove a finer statement for the case of degenerations over
complete discrete valuation rings.

THEOREM 6.1. Let R, k, K , S, s, and η be as in the beginning of §4. Given
any tori Ts and T∨s with character groups X s and Y s , respectively, and an
embedding φs : Y s ↪→ X s inducing an isogeny λTs = φ∗s : Ts → T∨s (as in
the beginning of §5), there exists an object (G, λ) in DEGtor

pol(R) (see Definition
4.1) such that λs : Gs → G∨s can be identified with λTs : Ts → T∨s (via some
isomorphisms Gs ∼= Ts and G∨s ∼= T∨s over s), and such that Gη is absolute
simple.

Proof. This follows from the combination of Propositions 5.3, 5.5,
and 5.14. �
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Thus, the case (a) of Theorem 1.3 over complete discrete valuation rings with
residue field k follows from the following.

COROLLARY 6.2. Given any field k and any complete discrete valuation ring
R with residue field k, any torus over k can be realized as the special fiber of
some semi-abelian scheme over R whose generic fiber is an absolutely simple
abelian variety (which can be principally polarized) over K .

Proof. By Remark 4.3, it suffices to prove the assertion for polarized abelian
varieties, and so it suffices to apply Theorem 6.1 to the given torus over k, with
the isogeny given by the identity morphism from this torus to itself. �

It still remains to prove the cases (b) and (c) of Theorem 1.3. We shall
deduce them from the case (a) of Theorem 1.3 over complete discrete valuation
rings, by slightly modifying the argument in [7, Ch. IV, §4] based on Artin’s
approximation. Let us retain the setting of Theorem 6.1, but with the more
specific choice that R = k[[t]] (respectively the Witt vectors R = W (k)) in
case (b) (respectively in case (c)). Let I denote the maximal ideal of R.

Let R0 := k[t] (respectively a number ring with an absolutely unramified
prime ideal P with residue field k, so that R0 is embedded in R via P-adic
completion), and let I0 denote the ideal (t) (respectively P) of R0. Let R1 be
the Henselization of R0 at I0, which is canonically a subring of R. (See, for
example, [9, IV-4, 18.6].) Let I1 denote the ideal of R1 generated by I0, so that
the maximal ideal I of R is generated by I1. For 0 6 j 6 1, we shall denote
the fraction field of R j by K j ; define S j := Spec(R j ) and η j := Spec(K j ); and,
by abuse of notation, still denote by s the closed points Spec(k) → Spec(R j )

defined by I j .

PROPOSITION 6.3. Suppose R2 is a subalgebra of R that is of finite type over
R1. Then, given any integer m > 1, the natural inclusion R1 ↪→ R2 has some
(homomorphic) section R2 → R1 (depending on m) such that the composition
R2 → R1 ↪→ R coincides with the natural inclusion R2 ↪→ R after reduction
modulo I m in R.

Proof. This follows from Artin’s approximation, as in [1, Theorem 1.10],
because R1 is the Henselization of the excellent Dedekind domain R0 at the
maximal ideal I0. �

THEOREM 6.4. Given any (G, λ) in DEGtor
pol(R) as in Theorem 6.1, there

exists some (G1, λ1) in DEGtor
pol(R1) (see Remark 4.2) such that (G1, λ1)

⊗R1k ∼= (G, λ)⊗R1 k, and such that the generic fiber G1,η1 is absolutely simple.
Consequently, the special fiber λ1,s : G1,s → G∨1,s of λ0 can also be identified
with λTs : Ts → T∨s (via some isomorphisms G1,s ∼= Ts and G∨1,s

∼= T∨s over s).
These assertions remain true with S1 = Spec(R1) replaced with some

connected affine étale neighborhood s → U → S0 = Spec(R0) of s.
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Proof. Since G→ S = Spec(R) and G∨→ S are both of finite presentation,
and since R is the filtering direct limit (union) of its normal subalgebras R2 of
finite type over R1, by [9, IV-3, 8.8.2], we may assume that there exist some
such R2, some semi-abelian schemes G2 → S2 := Spec(R2) and G∨ → S2,
and some homomorphism λ2 : G2 → G∨2 such that (G2,G∨2 , λ2)⊗R2 R ∼= (G,
G∨, λ). Since the pullback of G2 and G∨2 to η are the absolutely simple abelian
varieties Gη and G∨η , respectively, by [7, Ch. I, Theorem 2.10] or [14, Ch. 3,
Theorem 3.3.1.9]; and by [19, IX, 1.4], [7, Ch. I, Proposition 2.7], or [14,
Proposition 3.3.1.5], there exists a non-empty open subset W of S2 such that
G2|W and G∨2 |W are abelian schemes whose fibers are all absolutely simple,
and such that λ2|W is a polarization of abelian schemes. Suppose W is the
complement of a closed subset of S2 defined by some non-zero ideal J2 of
R2. Since R2 ⊂ R, and since R is noetherian and I -adically separated, there
exists an integer m > 1 such that J2 is not contained in I m . By Proposition
6.3, there exists a section R2 → R1 of R1 ↪→ R2 such that the composition
R2 → R1 ↪→ R coincides with the natural inclusion R2 ↪→ R after reduction
modulo I m in R. Let (G1,G∨1 , λ1) := (G2,G∨2 , λ2)⊗R2 R1. Then (G1,G∨1 , λ1)

⊗R1 k ∼= (G,G∨, λ) ⊗R k because m > 1. Moreover, J2 has non-zero image
in R1 under the section R2 → R1 above, and therefore the induced morphism
S1 = Spec(R1)→ S2 = Spec(R2) maps the generic point η1 of S1 to the above
open subset W of S2. Hence, (G1, λ1) defines an object in DEGtor

pol(R1), and the
generic fiber G1,η1 is absolutely simple. This proves the first paragraph of the
theorem.

Since G1 → S1 and G∨1 → S1 are both of finite presentation, and since R1
is the filtering direct limit of the coordinate rings of all connected affine étale
neighborhoods s→ U → S0 of s, by [9, IV-3, 8.8.2] again, the second paragraph
of the theorem follows from the first, as desired. �

Now, since an étale neighborhood s → U → S0 of s is necessarily a smooth
curve over k (with a k-rational point lifting s, which can still be denoted s) in
case (b) (respectively an open subset of the spectrum of a number ring in case
(c)), the cases (b) and (c) of Theorem 1.3 follow from the following.

COROLLARY 6.5. Given any field k and any complete discrete valuation ring
R with residue field k, any torus over k can be realized as the special fiber of
some semi-abelian scheme over some connected affine étale neighborhood s →
U → S0 of s that is generically an absolutely simple abelian variety (which can
be principally polarized).

Proof. As explained in the proof of Corollary 6.2, this follows from
Theorem 6.4 just as Corollary 6.2 does from Theorem 6.1. (Alternatively, we
could have approximated the semi-abelian scheme in Corollary 6.2 directly,
using [9, IV-3, 8.8.2] and Proposition 6.3, as in the proof of Theorem 6.4.) �

Remark 6.6. By the theory of Néron models (see, in particular, [3, Ch. 7,
§7.4, Proposition 3]), the semi-abelian schemes in Corollaries 6.2 and 6.5 (where
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the base schemes are Dedekind domains) are exactly the identity components of
the Néron models of their respective generic fibers.

§7. Non-trivial endomorphisms. In this section, we investigate the analogue
of Question 1.2 which requires additionally that the semi-abelian schemes are
equipped with endomorphism structures.

Let O be an order in a finite-dimensional semisimple algebra B over Q, and
let ? : B → B be a positive involution (i.e. TrB/Q(xx?) > 0 for all non-zero x
in B), which we assume to stabilize O. All endomorphism algebras of abelian
varieties over algebraically closed fields are necessarily of this form, with the
involution ? given by the Rosati involution induced by some polarization. (See,
for example, [17, §§20–21], which contains a treatment of Albert’s classification
of finite-dimensional division algebras over Q with positive involutions. See also
[14, Propositions 1.2.1.13 and 1.2.1.14] for a summary of possibilities when B
is simple.)

Let us first expand the review of the theory of degeneration in §4. Let R, k,
K , S, s, and η be as in the beginning of §4.

Definition 7.1. With the setting as above, the category DEGtor
PE,O(R) has

objects consisting of triples (G, λ, i) over S = Spec(R), where (G, λ) is an
object in DEGtor

pol(R), and where i : O → EndS(G) is a homomorphism
satisfying the Rosati condition that λ ◦ i(b?) = (i(b))∨ ◦ λ as homomorphisms
from G to G∨, where (i(b))∨ : G∨ → G∨ is the unique homomorphism (see
[19, IX, 1.4], [7, Ch. I, Proposition 2.7], or [14, Proposition 3.3.1.5]) extending
the dual homomorphism (i(b))∨η : G∨η → G∨η of (i(b))η : Gη → Gη, for all
b ∈ O.

Remark 7.2. As in the case of Definition 4.1 and Remark 4.2, the definition
of pairs (G, λ, i) as in Definition 4.1 extends verbatim to the case where S is a
noetherian normal local scheme.

By the theory of degeneration data (for polarized abelian schemes with
endomorphism structures; see [14, §5.1.1; see, in particular, Theorem 5.1.1.4],
with all abelian parts in the degenerations suppressed), there is an equivalence of
categories

Mtor
PE,O(R) : DDtor

PE,O(R)→ DEGtor
PE,O(R) : (X , Y , φ, τ ) 7→ (G, λ, i)

realizing (G, λ, i) (up to isomorphism) as the image of an object in DDtor
PE,O(R)

given by the following data.
(1) The tuple (X , Y , φ, τ ) is an object in DDtor

pol(R), as in §4.
(2) The étale shaves X and Y are equipped with the structures of étale sheaves

of left O-lattices (i.e. Z-lattices with left O-module structures), and the
embedding φ : X → Y is then O-equivariant.

(3) The bimultiplicative homomorphism τ : Y η × Xη → Gm,η is compatible
with the actions of O in the sense that (b × 1)∗τ = (1 × b?)∗τ , for all
b ∈ O.
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We say that (X , Y , φ, τ ) is the degeneration data of (G, λ, i).
Suppose that we have tori Ts and T∨s over s = Spec(k) with character groups

X s and Y s that are étale sheaves of leftO-lattices, together with anO-equivariant
embedding φs : Y s ↪→ X s with finite cokernel, inducing an O-equivariant
isogeny λTs : Ts � T∨s . By Lemma 3.1, the O-equivariant embedding φs :

Y s ↪→ X s uniquely lifts to an O-equivariant embedding φ : Y ↪→ X over S of
étale sheaves of left O-lattices with finite cokernel, inducing an O-equivariant
isogeny λT : T � T∨ (between isotrivial tori) lifting λTs . Let S̃, etc, be
as in §§3 and 5 such that there are left O-lattices X and Y , isomorphisms
ξ : X

∼
→ X η̃ and ξ∨ : Y

∼
→ Y η̃, and representations ρ : Gal(K̃/K )→ GLO(X)

and ρ∨ : Gal(K̃/K )→ GLO(Y ) defining the descent data for the étale sheaves
Xη and Y η (of left O-lattices). Then we have an O-equivariant embedding

φξ,ξ∨ := ξ
−1 φη̃ ξ

∨
: Y ↪→ X (7.3)

with finite cokernel (cf. (5.1)), and the following obvious analogue of
Lemma 5.2.

LEMMA 7.4. We have

φξ,ξ∨(ρ
∨(γ )z) = ρ(γ )(φξ,ξ∨(z))

for all γ ∈ Gal(K̃/K ) and z ∈ Y .

Definition 7.5. Given left O-lattices M and M ′, and an abelian group M ′′

(such as Z or K̃×), we say that a (Z-)bilinear (or bimultiplicative) pairing 〈·, ·〉 :
M × M ′ → M ′′ is O-compatible if 〈bz, w〉 = 〈z, b?w〉 for all z ∈ M , w ∈ M ′,
and b ∈ O.

Remark 7.6. By [14, Lemma 1.1.4.5], the O-compatible symmetric bilinear
pairings 〈·, ·〉 : M × M → Z (as in Definition 7.5, with M = M ′ and M ′′ = Z)
are exactly the traces of the Hermitian pairings (|·, ·|) : M×M→ Diff−1

O/Z valued

in the inverse different Diff−1
O/Z (see [14, Definition 1.1.1.8]).

Then we have the following strengthening of Proposition 5.3.

PROPOSITION 7.7. With the setting as above, with the fixed choices of some
ξ , ξ∨, ρ, and ρ∨, the datum of an object (G, λ, i) of DEGtor

PE,O(R) (as in
Definition 7.1) such that λs : Gs → G∨s can be identified with λTs : Ts → T∨s
(via O-equivariant isomorphisms Gs ∼= Ts and G∨s ∼= T∨s over s) is equivalent
to the datum of a bimultiplicative pairing

〈·, ·〉τ,ξ,ξ∨ : Y × X → K̃× (7.8)

satisfying the following conditions.
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(1) (Galois equivariance) 〈ρ∨(γ )z, ρ(γ )w〉τ,ξ,ξ∨ = γ 〈z, w〉τ,ξ,ξ∨ for all z ∈
Y , w ∈ X, and γ ∈ Gal(K̃/K ).

(2) (Symmetry) 〈z, φξ,ξ∨(w)〉τ,ξ,ξ∨ = 〈w, φξ,ξ∨(z)〉τ,ξ,ξ∨ for all z, w ∈ Y .
(3) (Positivity) υ̃(〈z, φξ,ξ∨(z)〉τ,ξ,ξ∨) > 0, for every non-zero z ∈ Y , where

υ̃ : K̃×→ Z is any non-trivial discrete valuation of K̃ .
(4) (O-compatibility) 〈bz, w〉τ,ξ,ξ∨ = 〈z, b?w〉τ,ξ,ξ∨ for all z ∈ Y , w ∈ X, and

b ∈ O.

Let O+ (respectively O−) denote the Z-submodule of O consisting of b ∈ O
such that b? = b (respectively b? =−b). Note thatO+∩O− = 0 and 2O ⊂O++
O− ⊂ O, because 2b = (b+ b?)+ (b− b?) for all b ∈ O. Let B+ (respectively
B−) denote the Q-subspace of B = O⊗Z Q spanned by O+ (respectively O−).
Then O+ +O− ⊂ O induces B+ ⊕ B− ∼= B.

We have the following rather elaborate analogue of Proposition 5.5.

PROPOSITION 7.9. In the setting of Proposition 7.7, suppose that B = O⊗Z
Q is a division algebra. Suppose that the pairing 〈·, ·〉τ,ξ,ξ∨ corresponding to
(G, λ) satisfies the additional condition that

〈z, w〉τ,ξ,ξ∨ 6= 1 (7.10)

for all non-zero z ∈ Y and w ∈ X, except when φξ,ξ∨(z) = cw for some non-
zero c ∈ B−. Then Gη and hence G∨η must be absolutely simple, except when B
belongs to one of the following two special cases (see Remark 7.12 below).
(A) The center F of the algebra B is a totally real field, and B ⊗F,σ R is

isomorphic to the Hamilton quaternion algebra H over R for every field
homomorphism σ : F → R, with the positive involution ? of B induced
by the canonical positive involution x 7→ TrH/R(x) − x on H. (This is
exactly the third case in [14, Proposition 1.2.1.13].) Also, Y ⊗ZQ ∼= B as
B-modules.

(B) The center F of the algebra B is a CM field (i.e. is a totally imaginary
extension of a totally real field F+), and B = F. (This is a very special
case of the fourth case in [14, Proposition 1.2.1.13].) Also, Y ⊗Z Q ∼= B
as B-modules.

Remark 7.11. The assumption that B = O ⊗Z Q is a division algebra is
natural for our purpose, because the existence of any non-trivial idempotent in
B will force Gη to be isogenous to a non-trivial product of abelian varieties of
smaller dimensions.

Remark 7.12. The two exceptional cases (A) and (B) in Proposition 7.9 (and
therefore also in Theorems 7.20, 7.22, and 7.24 below) are unavoidable for the
following reasons. Suppose 〈·, ·〉τ,ξ,ξ∨ is any pairing, with associated G over S,
as in Proposition 7.7. For simplicity, let us identify Y with its image φξ,ξ∨(Y ) in
X , and suppress φξ,ξ∨ from the notation. In the case (A), there exist e, f ∈ O−
such that B = B ′⊕ f B ′ as modules of the (commutative) CM field B ′ := F+Fe,
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by letting B ′ act on B by right multiplication. Since f ? = − f , for any z ∈ Y ⊂
X , we have

〈az, 4 f bz〉τ,ξ,ξ∨ = 〈az, 2 f bz〉τ,ξ,ξ∨ · 〈−2 f az, bz〉τ,ξ,ξ∨

= 〈z, 2(a? f b − b? f a)z〉τ,ξ,ξ∨

= 〈z, (a? f b − b? f a)z〉τ,ξ,ξ∨ · 〈(b? f a − a? f b)z, z〉τ,ξ,ξ∨

= 1,

for all a, b ∈ O′ := O ∩ B ′. Similarly, in the case (B), there exists e ∈ O−
such that B = F = B ′ ⊕ B ′e as modules of the (commutative) totally real field
B ′ := F+. Since e? = −e, and since B = F is commutative, for any z ∈ Y ⊂ X ,
we have

〈az, 2bez〉τ,ξ,ξ∨ = 〈abz, ez〉τ,ξ,ξ∨ · 〈−ez, abz〉τ,ξ,ξ∨ = 1,

for all a, b ∈ O′ := O+ = O ∩ B ′. Hence, in both cases, up to replacing Y
and X with some sublattices of finite indices, the pairing 〈·, ·〉τ,ξ,ξ∨ decomposes
into an orthogonal direct sum of two pairings that are symmetric, positive, and
compatible with the order O′ in B ′ (but not necessarily Galois equivariant) as
in Proposition 7.7. Therefore, the base change G η̄ of Gη to any geometric point
η̄→ S above η→ S is isogenous to a product of two abelian varieties over η̄with
endomorphisms by O′, both of which are simple by applying Proposition 7.9
with O replaced with O′. (Moreover, these two simple abelian varieties are
isogenous to each other by the same argument as in the second paragraph of
the proof of Proposition 7.9 below.) In particular, Gη can never be absolutely
simple in these two exceptional cases.

Proof of Proposition 7.9. Without loss of generality, we may and we shall
assume that Y 6= 0, so that Gη is a non-trivial abelian variety over η.

The condition (7.10) implies the weaker condition that, for any given non-
zero z ∈ Y and w ∈ X , there exists some b ∈ O such that 〈v, bw〉τ,ξ,ξ∨ 6= 1.
By the same argument as in the proof of Proposition 5.5, this implies that Gη

and hence G∨η are absolutely simple in the category of abelian varieties with
endomorphisms by O, in the sense that their base changes G η̄ and G∨η̄ to any
geometric point η̄→ S above η→ S are not isogenous to non-trivial products of
abelian varieties of smaller dimensions with endomorphisms by O. Moreover, if
G η̄ is isogenous to a product A1×η̄ A2×η̄ · · ·×η̄ Ar of simple abelian subvarieties
over η̄, then the actions of elements of O on G η̄ induce quasi-isogenies between
all possible pairs Ai and A j , with 1 6 i, j 6 r , because otherwise G η̄ cannot be
absolutely simple in the category of abelian varieties with endomorphisms by O.
Hence, we may assume that G η̄ is isogenous to Ar for some (non-trivial) simple
abelian variety A over η̄, for some integer r > 1. Note that dim(A) 6 1

2 dim(G η̄)

when r > 2.
For simplicity, let us identify Y with its image φξ,ξ∨(Y ) in X , and suppress

φξ,ξ∨ from the notation. Suppose e1, e2, . . . , en are elements of Y such that the
assignment Bn

→ Y ⊗ZQ : (ai )16i6n 7→
∑

16i6n ai ei induces an isomorphism
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of left B-modules (which is possible because B is a division algebra, whose
simple modules are all isomorphic to B itself; see [14, Lemma 1.1.2.4]).

Suppose n > 2. Then we have 〈e1, be j 〉τ,ξ,ξ∨ 6= 1 for all j > 1 and all b ∈ O.
Note that the dimension of the Q-span of e1 and all the be j for all j > 1 and all
b ∈ O is greater than (n − 1) dimQ(B) = ((n − 1)/n) dim(G η̄) >

1
2 dim(G η̄).

This shows that dim(A) > 1
2 dim(G η̄), so that r = 1. That is, G η̄ is simple

whenever n > 2.
Suppose n = 1, so that dim(G η̄) = dimQ(B). Let F denote the center of B.

We have four cases of the division algebra B with the positive involution ?, as in
[17, §21] or [14, Proposition 1.2.1.13].

(I) The center F is a totally real field, and B = F , with the trivial involution
?. In this case, we have B− = 0, and G η̄ is simple by Proposition
5.5, because the condition (7.10) here is identical to the corresponding
condition (5.6) there.

(II) The center F is a totally real field, and B ⊗F,σ R is isomorphic to M2(R)
over R for every field homomorphism σ : F → R, with the positive
involution ? of B induced by some conjugation of the canonical positive
involution x 7→ t x of M2(R). In this case, since 〈e1, be1〉τ,ξ,ξ∨ 6= 1 for all
b ∈ O+, and since dimQ(B+) = 3

4 dimQ(B) > 1
2 dimQ(B) = 1

2 dim(G η̄),
we can conclude as before that r = 1, so that G η̄ is simple.

(III) The center F is a totally real field, and B ⊗F,σ R is isomorphic to the
Hamilton quaternion algebra H over R for every field homomorphism σ :

F → R. This is exactly the exceptional case (A) in the proposition.
(IV) The center F is a totally imaginary extension of a totally real field

F+, with the restriction of the involution ? to F given by the complex
conjugation over F+. (We shall ignore the additional conditions satisfied
by B.) In this case, since 〈e1, be1〉τ,ξ,ξ∨ 6= 1 for all b ∈ O+, and since
dimQ(B+) = 1

2 dimQ(B), we have r 6 2. If r = 1, then G η̄ is simple, as
desired.

Otherwise, we necessarily have r = 2. Let D := Endη̄(A) ⊗Z Q,
which is a division algebra with a positive involution, because A is a
simple abelian variety. (See, for example, [17, §§20–21].) Then we have
an injective homomorphism B ↪→ M2(D) of algebras over Q, which
cannot be an isomorphism because B is a division algebra but M2(D)
is not. Since the action of the order Endη̄(A) in D induces an action of
the same order on the character group of the torus degeneration of A,
we have an action of D on B stabilizing the Q-subspaces B+ and B−
of the same dimension, so that B ∼= B+ ⊕ B− and B+ ∼= Dr ′ ∼= B−
as D-modules, for some integer r ′ > 1. Then we have 2r ′ dimQ(D) 6
dimQ(B) < 4 dimQ(D), forcing r ′ = 1.

Let E denote the center of D, which is a field and is also the center of
M2(D). Then E0 := B ∩ E is a subfield of the center F of B, because
E commutes with all elements of B. If E0 = E , then E is a subfield of
F . Otherwise, the E-span B ′ of the image of B in M2(D) form an E-
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subalgebra of M2(D) such that dimQ(B ′) > 2 dimQ(B) = 4 dimQ(D),
which must be the whole of M2(D). Therefore, B ⊗E0 E ∼= M2(D) is
simple, which implies that F = E0. In particular, we have either E ⊂ F
or F ⊂ E .

Since E is the center of an endomorphism algebra of a simple abelian
variety, it is either a totally real field or a CM field. If E is a CM field, then
there exists some non-zero c ∈ E0 = E ∩ F such that c? = −c, so that
cB+ = B−, contradicting the assumption that D stabilizes B+. Hence, E
is necessarily a totally real subfield, in which case [D : E] is either 4 or 1,
and E ⊂ F (because F ⊂ E cannot happen, since F is a CM field).

Let C denote the centralizer of B in M2(D). By [10, Ch. 5, §11,
Theorem 19], we have [B : E][C : E] = [M2(D) : E] = 4[D : E].

If [D : E] = 4, then [F : E]2|[B : E][C : E] = 16, and so [F :
E] is either 4 or 2, and [B : F] is either 1 or 4. If [B : F] = 1, then
the torus degeneration of A is of dimension 1

2 dimQ(B) = 1
2 dimQ(F) 6

2 dimQ(E), which cannot admit an action of the quaternion algebra D
over E . If [B : F] = 4, then [F : E] = 2 and C = F , forcing F+ = E .
Consider any f ∈ F such that f ? = − f , so that F = E[ f ] = E + E f .
Then B− = B+ · f and B+ = B− · f , and the left actions of D and F
on B commute with each other because the left action of f on B can be
equivalently given by the right multiplication by f , and because f 2

∈

F+ = E commutes with D. Then D ⊗E F can be canonically identified
with an E-subalgebra of M2(D), and the centralizers of E ⊂ F ⊂M2(E)
are M2(D) ⊃ D ⊗E F ⊃ D, respectively. Consequently, B = D ⊗E F
as E-subalgebras of M2(D), because the centralizer of C = F is B, by
[10, Ch. 5, §11, Theorem 19] again. Since the positive involution ? of B
restricts to a positive involution on D, and since this restriction cannot be
trivial because D is a quaternion algebra over E (and because of Albert’s
classification), there exists some non-zero d ∈ D ∩ B−. But then d−1

exists in D, and the left multiplication by d−1
∈ D maps d ∈ B− to the

non-zero 1 ∈ B+, contradicting the assumption that D stabilizes B−.
Finally, if [D : E] = 1, then [F : E]2|[B : E][C : E] = 4, and so
[F : E] = 2 and B = F = C . This is exactly the exceptional case (B) in
the proposition.

Thus, we have shown that Gη and, hence, G∨η are absolutely simple except in
the two cases (A) and (B) in the proposition, as desired. �

Hence, the key point is to establish the following analogue of Proposition 5.14.

PROPOSITION 7.13. Suppose that B = O ⊗Z Q is a division algebra. Then
there exists a bimultiplicative pairing

〈·, ·〉τ,ξ,ξ∨ : Y × X → K̃×

as in (7.8) satisfying all the conditions in Propositions 7.7 and 7.9.
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Proof. The idea is similar to that in the proof of Proposition 5.14, but the
implementation here is, perhaps unavoidably, more tedious. Let

〈·, ·〉0 : X × X → Z

be any positive definite O-compatible (symmetric) bilinear pairing (which exists
by the same argument as in the proof of, for example, [13, Lemma 2.5]).

Suppose e1, e2, . . . , en are elements of X ⊗Z Q such that the assignment
Bn
→ X ⊗Z Q : (ai )16i6n 7→

∑
16i6n ai ei induces an isomorphism of left

B-modules (which, again, is possible because B is a division algebra, whose
simple modules are all isomorphic to B itself; see [14, Lemma 1.1.2.4]), and
such that X is contained in the left O-lattice Z :=

∑
16i6n(Oei ), which is the

image of On under the last isomorphism. Then there exists a sufficiently divisible
integer r ∈ Z>1 such that r〈ei , be j 〉0 ∈ Z for all b ∈ O and 1 6 i, j 6 n;
namely, r〈·, ·〉0 induces a positive definite O-compatible (symmetric) bilinear
pairing Z × Z → Z.

Let ε1, ε2, . . . , εh be a Z-basis of O+, and let εh+1, εh+2, . . . , εm be a
Z-basis of O−. Let $ be any element of K× of positive valuation. Let
{ui jl}16i6 j6m;16l6m′i j

, where m′i j = h when i = j and m′i j = n when i < j , be

elements in R̃× that are multiplicatively independent as in Lemma 5.10. Then
we define a symmetric bimultiplicative pairing

〈·, ·〉1 : Z × Z → K̃×

satisfying the compatibility

〈bz, w〉1 = 〈z, b?w〉1 (7.14)

for all b ∈ O+ ⊕O− and z, w ∈ Z by setting:
(1) 〈ei , εlei 〉1 := ui jl ·$

r〈ei ,εl ei 〉0 for all 1 6 i 6 n and 1 6 l 6 h (in which
case ε?l = εl is compatible with 〈ei , ε

?
l ei 〉0 = 〈ε

?
l ei , ei 〉0 = 〈ei , εlei 〉0);

(2) 〈ei , εlei 〉1 := 1 for all 1 6 i 6 n and h < l 6 m (in which case ε?l = −εl
forces 〈ei , ε

?
l ei 〉0 = 〈ε

?
l ei , ei 〉0 = 〈ei , εlei 〉0 = 0); and

(3) 〈ei , εle j 〉1 := ui jl ·$
r〈ei ,εl e j 〉0 for all 1 6 i < j 6 n and 1 6 l 6 m,

and by extending the values of the pairing to the whole domain Z × Z by
symmetry, bimultiplicativity, and the rule that 〈aei , be j 〉1 := 〈ei , a?be j 〉1 for
all a, b ∈ O+ ⊕O− and 1 6 i 6 j 6 n. Note that this is well defined because
Bei ∼= B as left B-modules, for all 1 6 i 6 n. Also, note that υ̃ ◦ 〈·, ·〉1 is
a positive multiple of 〈·, ·〉0 for every non-trivial discrete valuation υ̃ : K̃×→ Z.

Next, we define an O-compatible symmetric bilinear pairing

〈·, ·〉2 : X × X → K̃×

satisfying the Galois equivariance

〈ρ(γ )z, ρ(γ )w〉2 = γ 〈z, w〉2 (7.15)
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for all γ ∈ Gal(K̃/K ) and z, w ∈ X (cf. (5.15)) by setting

〈z, w〉2 :=
∏

γ∈Gal(K̃/K )

γ−1
〈ρ(γ )z, ρ(γ )w〉1 (7.16)

for all z, w ∈ X . Note that 〈ρ(γ )z, ρ(γ )w〉1 are defined for all z, w ∈ X because
X is contained in Z , and that υ̃◦〈·, ·〉2 is still positive definite for every non-trivial
discrete valuation υ̃ : K̃×→ Z.

Finally, we define the desired bimultiplicative pairing

〈·, ·〉τ,ξ,ξ∨ : Y × X → K̃×

by setting
〈z, w〉τ,ξ,ξ∨ := 〈φξ,ξ∨(z), 2w〉2 (7.17)

for all z ∈ Y and w ∈ X , where φξ,ξ∨ is as in (7.3) (cf. (5.17); but note the
coefficient 2 of w). Then 〈·, ·〉τ,ξ,ξ∨ satisfies the first three conditions (1), (2),
and (3) in Proposition 7.7 by the symmetry and positive definiteness of 〈·, ·〉0;
by the definitions of the pairings 〈·, ·〉1 and 〈·, ·〉2; by the choices of $ (of
positive valuation in K̃×) and {ui jl}16i6 j6n;16l6m′i j

(of zero valuation in K̃×);
and by Lemma 7.4 and the relations (7.15) and (7.17). As for the remaining
condition (4) in Proposition 7.7, it suffices to note that, since 2O ⊂O+⊕O−, the
compatibility (7.14) implies that 〈bz, (2w)〉2 = 〈(2b)z, w〉2 = 〈z, (2b?)w〉2 =
〈z, b?(2w)〉2 for all b ∈ O and z, w ∈ Z .

It remains to show that 〈z, w〉τ,ξ,ξ∨ 6= 1 (as in (7.10)) for all non-zero z ∈
Y and w ∈ X , except when φξ,ξ∨(z) = cw for some non-zero c ∈ B−. Since
φξ,ξ∨ is an embedding, by the defining relation (7.17), it suffices to show that
〈z, 2w〉2 6= 1 for all non-zero z, w ∈ Z , except when z = cw for some non-zero
c ∈ B−. By the choice of {ui jl}16i6 j6n;16l6m′i j

, the terms in the product (7.16)
indexed by different elements γ have multiplicatively independent values (up
to powers of $ ), and so it suffices to show that 〈z, 2w〉1 6= 1 for all non-zero
z, w ∈ Z , except when z = cw for some non-zero c ∈ B−. Suppose that there
are some z =

∑
16i6n(ai ei ) and w =

∑
16i6n(bi ei ) in Z , where (ai )16i6n and

(bi )16i6n are non-zero n-tuples of elements in O, such that 〈z, 2w〉1 = 1. Then
we have( ∏

16i6n

〈ei , 2a?i bi ei 〉1

)
·

( ∏
16i< j6n

〈ei , 2(a?i b j + b?i a j )e j 〉1

)
= 1 (7.18)

in K̃× (using again the relation 2O ⊂O+⊕O− and the compatibility (7.14)). By
pulling out all powers of $ , and by the choice of {ui jl}16i6 j6n;16l6m′i j

again,
the identity (7.18) is possible only when

a?i b j + b?i a j = 0 (7.19)

in B, for all 1 6 i 6 j 6 n. Let i0 (respectively j0) be the smallest index
i (respectively j) such that ai 6= 0 (respectively b j 6= 0), which exists by
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assumption. If i0 6= j0, then a?i0
b j0 + b?i0

a j0 6= 0, which contradicts the condition
(7.19). If i0 = j0, then the condition (7.19) implies that

c := ai0b−1
i0

is a non-zero element of B−, because

c? = (b?i0
)−1a?i0

= (b?i0
)−1(a?i0

bi0)b
−1
i0
= (b?i0

)−1(−b?i0
ai0)b

−1
i0
= −ai0b−1

i0
= −c.

Moreover, for every j > i0, the condition (7.19) implies that

a j = (b?i0
)−1(b?i0

a j ) = (b?i0
)−1(−a?i0

b j ) = −c?b j = cb j .

Thus, z = cw for some non-zero c ∈ B−, as desired. �

Based on the combination of Propositions 7.7, 7.9, and 7.13, the same
arguments as before give the following analogues of Theorem 6.1, Corollary 6.2,
Theorem 6.4, and Corollary 6.5.

THEOREM 7.20. Let R, k, K , S, s, and η be as in the beginning of §4. Let
O be as in the beginning of this §7, but assume moreover that B = O ⊗Z Q
is a division algebra. Given any tori Ts and T∨s over s with character groups
X s and Y s , respectively, that are étale sheaves of left O-lattices, and an O-
equivariant embedding φs : Y s ↪→ X s with finite cokernel, inducing an O-
equivariant isogeny λTs = φ∗s : Ts → T∨s , there exists an object (G, λ, i) in
DEGtor

PE,O(R) (see Definition 7.1) such that λs : Gs → G∨s can be identified with
λTs : Ts → T∨s (via some O-equivariant isomorphisms Gs ∼= Ts and G∨s ∼= T∨s
over s), and such that Gη is absolutely simple except in the two cases (A) and
(B) in Proposition 7.9.

COROLLARY 7.21. Let O be as in Theorem 7.20. Given any field k and
any complete discrete valuation ring R with residue field k, any torus with
endomorphisms by O over k can be realized as the special fiber of some
semi-abelian scheme over R whose generic fiber is an abelian variety with
endomorphisms by O over K (which can be principally polarized) that is
absolutely simple except in the two cases (A) and (B) in Proposition 7.9.

THEOREM 7.22. Let O be as in Theorem 7.20. Given any (G, λ, i)
in DEGtor

PE,O(R) as in Theorem 7.20, there exists some (G1, λ1, i1) in
DEGtor

PE,O(R1) (see Remark 7.2) such that (G1, λ1, i1)⊗R1 k ∼= (G, λ, i)⊗R1 k,
and such that the generic fiber G1,η1 is absolutely simple except in the two cases
(A) and (B) in Proposition 7.9. Consequently, the special fiber λ1,s : G1,s→ G∨1,s
of λ1 can also be identified with λTs : Ts → T∨s (via some O-equivariant
isomorphisms G1,s ∼= Ts and G∨1,s

∼= T∨s over s).
These assertions remain true with S1 = Spec(R1) replaced with some

connected affine étale neighborhood s → U → S0 = Spec(R0) of s.
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COROLLARY 7.23. Let O be as in Theorem 7.20. Given any field k and
any complete discrete valuation ring R with residue field k, any torus with
endomorphisms by O over k can be realized as the special fiber of some semi-
abelian scheme over some connected affine étale neighborhood s→ U → S0 of
s that is generically an abelian variety with endomorphisms by O (which can be
principally polarized) that is absolutely simple except in the two cases (A) and
(B) in Proposition 7.9.

By combining Corollaries 7.21 and 7.23, we obtain the following strength-
ening of our main theorem.

THEOREM 7.24. In Theorem 1.3, suppose T has endomorphisms by O,
where O is as in the beginning of this §7, but with the additional assumption that
B = O ⊗Z Q is a division algebra. Then we may assume that the semi-abelian
scheme G also has endomorphisms by O and, instead of (2) in Theorem 1.3, that
Gη is absolutely simple except in the two cases (A) and (B) in Proposition 7.9.

Remark 7.25. Conversely, as mentioned in the introduction, by [19, IX, 1.4],
[7, Ch. I, Proposition 2.7], or [14, Proposition 3.3.1.5], any endomorphism
structure on the generic fiber Gη necessarily and uniquely extends to the whole
semi-abelian scheme G, and also (by reduction) to the torus T we stared
with. Hence, there has been no loss of generality in considering only tori with
endomorphisms by the same orders.

Remark 7.26. Certainly, there are many examples of orders O (with positive
involutions) defining endomorphism structures of abelian varieties of certain
dimension n, but cannot possibly have actions on any n-dimensional tori. For
example, already when n = 1, no CM elliptic curve can degenerate to any one-
dimensional torus. In fact, one can generalize this to show that certain abelian
varieties must have potential good reductions everywhere: see [11, §4.2] (and
the review of the literature there) for a systematic discussion.

Remark 7.27. The two exceptional cases (A) and (B) in Proposition 7.9,
and therefore also in Theorems 7.20, 7.22, and 7.24, correspond to the two
exceptional cases (b) and (d) in [20, §4, Theorem 5], which are treated in more
detail in [20, §4, Propositions 17 and 18]. These results in [20, §4] are relevant
for our investigation of degenerations of abelian varieties into tori, because the
corresponding complex moduli can be non-compact, and because their toroidal
compactifications can be compared with the corresponding ones in [14, Theorem
6.4.1.1] in a way that respects the degenerations of abelian varieties into semi-
abelian varieties along the boundary, by [12, Theorem 4.1.1 and Proposition
4.2.2]. (More precisely, some subcases of the two exceptional cases (b) and (d)
in [20, §4, Theorem 5] are still irrelevant, because the corresponding complex
moduli are compact, and therefore cannot parameterize non-trivial degenerations
of abelian varieties, by [11, §4.2]. Similarly, the remaining exceptional cases (a),
(c), and (e) in [20, §4, Theorem 5], which are treated in more detail in [20,
§4, Propositions 14, 15, and 19], are also irrelevant, because the corresponding
complex moduli are compact.)
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