USING ROLLE'S THEOREM IN EXPONENTIAL FUNCTION-DERIVATIVE APPROXIMATION

BY
L. KEENER ${ }^{(1)}$

1. Introduction. For a continuously differentiable function g defined on an interval $[\alpha, \beta]$, define $\|g\|$ to be the uniform norm of g, i.e. $\|g\|=\sup _{X \in[\alpha, \beta]}|g(x)|$. Define $\|g\|_{1}$, by $\|g\|_{1}=\max \left\{\|g\|,\left\|g^{\prime}\right\|\right\}$. We call the norm $\|\cdot\|_{1}$ the function-derivative norm. Using the notation of Werner [3], we define for $n \geq 1$:

$$
\begin{aligned}
E_{n}^{+}= & \left\{y(x) \mid y(x)=\sum_{j=1}^{n} c_{j} \exp \left(\lambda_{j} x\right), \quad \lambda_{j} \text { real, } \quad c_{j} \geq 0\right\} \\
E_{n}^{0}= & \left\{y(x) \mid y(x)=\sum_{j=1}^{n} c_{j} \exp \left(\lambda_{j} x\right), \quad \lambda_{j} \text { real, } \quad c_{j} \text { real }\right\} \\
E_{n}= & \left\{y(x) \mid y(x)=\sum_{j=1}^{\ell} p_{j}(x) \exp \left(\lambda_{j} x\right), \quad \lambda_{j}\right. \text { real, } \\
& p_{j}=\text { a polynomial of degree } \partial p_{j} \text { with real coefficients and } k= \\
& \left.\quad \sum_{j=1}^{\ell}\left(\partial p_{j}+1\right) \leq n\right\}
\end{aligned}
$$

k is called the degree of the function y. Since $E_{n}^{+} \subset E_{n}$, and $E_{n}^{0} \subset E_{n}$, this definition also applies to elements of these sets.

In the succeeding sections, we will find, by a simple application of Rolle's theorem, a sufficient condition for $y \in E_{n}^{+}$or E_{n}^{0} or E_{n} to be a best approximation to a given continuously differentiable f, using the function-derivative norm. The following lemma is useful [2].

Lemma. Every $y \in E_{n}, E_{n}^{o}$ or $E_{n!}^{+}$has at most $n-1$ zeros or else vanishes identically.
2. Let f and F be continuously differentiable functions on $[\alpha, \beta]$ and let $\varepsilon(x)=$ $f(x)-F(x)$. Let X be a finite set of points $\left\{x_{i}\right\}_{i=0}^{m}$ such that $\alpha \leq x_{0}<x_{1}<\ldots<x_{m} \leq \beta$, $\left|\varepsilon\left(x_{i}\right)\right|=\|F-f\|_{1}$ for $i=0,1, \ldots, m$ and such that $\varepsilon\left(x_{i}\right)=-\varepsilon\left(x_{i+1}\right)$ for $i=0,1, \ldots$, $m-1$. Similarly, let Y be a set of points $\left\{y_{i}\right\}_{i=0}^{s}$ such that $\alpha \leq y_{0}<y_{1}<\ldots<y_{s} \leq \beta$, $\left|\varepsilon^{\prime}\left(y_{i}\right)\right|=\|F-f\|_{1} f$ for $i=0,1, \ldots, s$ and such that $\varepsilon^{\prime}\left(y_{i}\right)=-\varepsilon^{\prime}\left(y_{i+1}\right)$ for $i=0,1, \ldots$, $s-1$. Let \tilde{X} be a subset of $X \cup\{\alpha, \beta\}$ that contains at least two elements, where $\tilde{X}=\left\{\tilde{x}_{i}\right\}_{i=0}^{p}$ and $\tilde{x}_{0}<\tilde{x}_{1}<\ldots<\tilde{x}_{p}$. Define $R_{i}(F, X, \tilde{X}, Y)$ by

$$
\begin{aligned}
R_{i}(F, X, \tilde{X}, Y)= & \max \left\{\operatorname{card}\left\{y \in Y: y \in\left[\tilde{x}_{i}, \tilde{x}_{i+1}\right]\right\}-1\right. \\
& \left.-\max \left\{\operatorname{card}\left\{x \in X: x \in\left[\tilde{x}_{i}, \tilde{x}_{i+1}\right]\right\}-v_{i}-u_{i}, 0\right\}, 0\right\}
\end{aligned}
$$

${ }^{(1)}$ The author is thankful to the referee for his helpful suggestions.
where

$$
\begin{aligned}
& v_{i}=\left\{\begin{array}{l}
0 \text { if } \exists x \in X \text { such that } x>\tilde{x}_{i+1} \\
1 \text { otherwise }
\end{array}\right. \\
& u_{i}=\left\{\begin{array}{l}
0 \text { if } \exists x \in X \text { such that } x<\tilde{x}_{i} \\
1 \text { otherwise } .
\end{array}\right.
\end{aligned}
$$

Define $T(F, X, \tilde{X}, Y) \equiv \sum_{i=0}^{p-1} R_{i}(F, X, \tilde{X}, Y)+\max \{m-1,0\}$. With these definitions we may state:

Theorem. Let $F \in E_{n}^{o}, E_{n}$ or E_{n}^{+}with degree k. If there are X, \tilde{X}, Y such that $T(F, X, \tilde{X}, Y) \geq k+n$, then F is a best approximation to f in norm $\|\cdot\|_{1}$.

Proof. Fix X, \tilde{X} and Y so that $T(F, X, \tilde{X}, Y) \geq k+n$, assuming card $X \geq 2$. Suppose F is not a best approximation. Since X contains $m+1$ points, then standard arguments show that the graph of a better approximation F^{*} would have to intersect the graph of F at at least m points. That is $F-F^{*}=0$ at least m times on $[\alpha, \beta]$. By Rolle's Theorem, there are $m-1$ points in $[\alpha, \beta]$ where $F^{\prime}-\left(F^{*}\right)^{\prime}=0$. Call this set of points Z. Now $R_{i}(F, X, \tilde{X}, Y)$ represents a lower bound for the number of zeros of $F^{\prime}-\left(F^{*}\right)^{\prime}$ on $\left[\tilde{x}_{i}, \tilde{x}_{i+1}\right]$ that are not in Z (via the intermediate value theorem.) Thus $T(F, X, \tilde{X}, Y)$ represents a lower bound on the number of zeros of $F^{\prime}-\left(F^{*}\right)^{\prime}$ on $[\alpha, \beta]$. But $F^{\prime}-\left(F^{*}\right)^{\prime}$ clearly has degree less than or equal to $n+k$, so $F^{\prime}-\left(F^{*}\right)^{\prime}=0$ at at most $k+n-1$ points by the Lemma. But $T(F, X, \tilde{X}, Y)$ $>k+n-1$, a contradiction, so F is a best function-derivative approximation to f. If card $X<2$, the proof is similar.

This theorem is useful in constructing an example of a function and a best function-derivative approximation to it.
3. Example. Consider the following function defined on [0, $\pi+12$].

$$
h(x)=\left\{\begin{array}{l}
(1 / 2) \sin 2 x \text { for } 0 \leq x \leq \pi \\
g(x) \text { for } \pi \leq x \leq \pi+12
\end{array}\right.
$$

where $g(x)$ is any function defined on $[\pi, \pi+12]$ with the following properties.

1. g is differentiable on $[\pi, \pi+12]$.
2. $\left|g^{\prime}(x)\right|<1$ for $x \in(\pi, \pi+12], g^{\prime}(\pi)=1$.
3. $g(\pi+2)=1, g(\pi+6)=-1, g(\pi+10)=1, g(\pi)=0$.
4. $|g(x)|<1$ if $x \neq \pi+2, \pi+6$ or $\pi+10$.

Let $m(x)=h(x)+\exp (x)$. Then $F(x)=\exp (x)$ is the best approximation to $m(x)$ from E_{2}^{o}, in norm $\|\cdot\|_{1}$. This can be shown as follows: First note that $\varepsilon(x)=m(x)-$ $F(x)=h(x)$. Take $X=\{\pi+2, \pi+6, \pi+10\}$. Then $m=2$. Note that $\|\varepsilon(x)\|_{1}=1$.

Take $\tilde{X}=\{0, \pi+2\}$ and take $Y=\{0, \pi / 2, \pi\}$. Then

$$
\begin{aligned}
T(F, X, \tilde{X}, Y)= & 2-1+\max \{\operatorname{card}\{y \in Y: y \in[0, \pi+2]\} \\
& -1-\max \{\operatorname{card}\{x \in X: x \in[0, \pi+2]\}-1,0\}, 0\} \\
= & 1+\max \{2-\max \{0,0\}, 0\}=3 .
\end{aligned}
$$

Since $n=2$ and $k=1, T(F, X, \tilde{X}, Y) \geq n+k$, so by the theorem $\exp (x)$ is a best approximation to $m(x)$ from E_{2}^{o}.
4. The example given above is not a degenerate example. That is, $\exp (x)$ is not a best uniform approximation to $m(x)$ from E_{n}^{o} and $\mathrm{d}(\exp (x)) / d x=\exp (x)$ is not a best uniform approximation to $m^{\prime}(x)$ from $\left.\left(E_{n}^{0}\right)^{\prime}=\left\{y^{\prime}: y \in E_{n}^{o}\right)\right\}$. This is shown in [1].
The theorem, while stated for approximation by exponential sums can obviously be generalized. Exponential sums offer a convenient example of the application of the idea of the theorem to non-linear approximation. It is also possible (but notationally discouraging) to extend the theorem to the norm $\|\cdot\|_{r}$, defined by

$$
\|g\|_{r}=\max \left\{\|g\|,\left\|g^{\prime}\right\|, \ldots,\left\|g^{(r)}\right\|\right\} .
$$

References

1. Keener, L. Doctoral Dissertation, Rensselaer Polytechnic Institute, 1972.
2. Polya, G. and Szego, G. Aufgaben und Lehrsätze der Analysis, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960.
3. Werner, H. "Tschebyscheff-Approximation with sums of exponentials", Approximation Theory, A. Talbot ed., Academic Press, London-New York, 1970, pp. 109-136.
