A HYPONORMAL TOEPLITZ COMPLETION PROBLEM

IN SUNG HWANG
Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Korea e-mail: ihwang@skku.edu
and AN HYUN KIM
Department of Mathematics, Changwon National University, Changwon 641-773, Korea
e-mail: ahkim@changwon.ac.kr

(Received 1 August 2012; accepted 1 November 2012; first published online 25 February 2013)

Abstract

In this paper we consider the following 'Toeplitz completion' problem: Complete the unspecified analytic Toeplitz entries of the partial block Toeplitz matrix $$
A:=\left[\begin{array}{cc} T_{\bar{\psi}_{1}} & ? \\ ? & T_{\bar{\psi}_{2}} \end{array}\right]
$$ to make A hyponormal, where $\psi_{i} \in H^{\infty}$ is a non-constant rational function for $i=1,2$.

2000 Mathematics Subject Classification. 47A20, 47B20, 47B35.

1. Introduction. Let \mathcal{H} be a complex Hilbert space and let $\mathcal{B}(\mathcal{H})$ be the set of bounded linear operators acting on \mathcal{H}. An operator $T \in \mathcal{B}(\mathcal{H})$ is said to be normal if $T^{*} T=T T^{*}$, hyponormal if its self-commutator $\left[T^{*}, T\right] \equiv T^{*} T-T T^{*}$ is positive semidefinite and subnormal if there exists a Hilbert space \mathcal{K} containing \mathcal{H} and a normal operator N on \mathcal{K} such that $N \mathcal{H} \subseteq \mathcal{H}$ and $T=\left.N\right|_{\mathcal{H}}$. Let $L^{2} \equiv L^{2}(\mathbb{T})$ be the set of squareintegrable measurable functions on \mathbb{T} and $H^{2} \equiv H^{2}(\mathbb{T})$ be the corresponding Hardy space. If P and P^{\perp} denote the orthogonal projections from L^{2} onto H^{2} and $\left(H^{2}\right)^{\perp}$, respectively, and J denotes the unitary operator on L^{2} defined by $J(f)(z)=\bar{z} f(\bar{z})$, then for every bounded measurable function $\phi \in L^{\infty}$, the operators T_{ϕ} and H_{ϕ} on H^{2} are defined by

$$
T_{\phi} g:=P(\phi g) \quad \text { and } \quad H_{\phi} g:=J P^{\perp}(\phi g) \quad\left(g \in H^{2}\right)
$$

which are called the Toeplitz operator and the Hankel operator, respectively, with symbol ϕ. The following is a basic connection between Hankel and Toeplitz operators:

$$
T_{\phi}^{*}=T_{\bar{\phi}}, \quad H_{\phi}^{*}=H_{\widetilde{\phi}}, \quad H_{\phi \psi}=T_{\widetilde{\phi}}^{*} H_{\psi}+H_{\phi} T_{\psi}\left(\phi, \psi \in L^{\infty}\right), \text { where } \tilde{h}(z):=\overline{h(\bar{z})} .
$$

Given a partially specified operator matrix with some known entries, the problem of finding suitable operators to complete the given partial operator matrix so that the resulting matrix satisfies certain given properties is called a completion problem. Dilation problems are special cases of completion problems: in other words, the dilation of A is a completion of the partial operator matrix [$A_{?}^{A} ?$
hyponormal completion problem for

$$
\left[\begin{array}{cc}
T_{\bar{\psi}_{1}} & ? \\
? & T_{\bar{\psi}_{2}}
\end{array}\right],
$$

where $\psi_{i} \in H^{\infty}$ is a non-constant rational function for $i=1,2$.
A partial block Toeplitz matrix is simply an $n \times n$ matrix, some of whose entries are specified Toeplitz operators and whose remaining entries are unspecified. A hyponormal completion of a partial operator matrix is a particular specification of the unspecified entries resulting in a hyponormal operator. For example,

$$
\left[\begin{array}{cc}
T_{z} & 1-T_{z} T_{\bar{z}} \\
0 & T_{\bar{z}}
\end{array}\right]
$$

is a hyponormal (even unitary) completion of the 2×2 partial operator matrix $\left[\begin{array}{ll}T_{z} & ? \\ ? & T_{z}\end{array}\right]$. A hyponormal Toeplitz completion of the partial block Toeplitz matrix is a hyponormal completion whose unspecified entries are Toeplitz operators. Then we may ask whether or not there is a hyponormal Toeplitz completion of $\left[\begin{array}{cc}T_{z} \\ ? \\ ? & ? \\ T_{\bar{z}}\end{array}\right]$? In [3], it was shown that no hyponormal Toeplitz completion of $\left[\begin{array}{c}T_{z} \\ ? \\ ?\end{array} T_{z}\right]$ can exist. Moreover, in [3], the following problem was considered and then answered: Complete the unspecified Toeplitz entries of the partial block Toeplitz matrix

$$
A:=\left[\begin{array}{cc}
T_{\bar{z}} & ? \tag{1.1}\\
? & T_{\bar{z}}
\end{array}\right]
$$

to make A subnormal. However, in (1.1), if the entry $T_{\bar{z}}$ is replaced by a general coanalytic Toeplitz operator $T_{\bar{\psi}}\left(\psi \in H^{\infty}\right)$, then the above problem seems to be quite difficult to answer. First of all, for such a case, we need to solve the hyponormal completion problem.

The aim of this paper is to answer the following:
Problem 1. Let $\psi_{i} \in H^{\infty}$ be a non-constant rational function for $i=1,2$. Complete the unspecified analytic Toeplitz entries of the partial block Toeplitz matrix

$$
A:=\left[\begin{array}{cc}
T_{\bar{\psi}_{1}} & ? \tag{1.2}\\
? & T_{\bar{\psi}_{2}}
\end{array}\right]
$$

to make A hyponormal.
When we study hyponormality of the Toeplitz operator T_{ϕ} with symbol ϕ we may without loss of generality assume that $\phi(0)=0$ because the hyponormality of an operator is invariant under translation by scalars.

In 1988, Cowen [2] has characterized the hyponormality of Toeplitz operators via a certain functional equation involving the operator's symbol ϕ.
Theorem A (Cowen's theorem) ($[2,8]$). For each $\phi \in L^{\infty}, T_{\phi}$ is hyponormal if and only if there exists a function $k \in H^{\infty}$ such that $\|k\|_{\infty} \leq 1$ and $\phi-k \bar{\phi} \in H^{\infty}$.

Recall that a function $\phi \in L^{\infty}$ is said to be of bounded type (or in the Nevanlinna class) if there are functions ψ_{1}, ψ_{2} in $H^{\infty}(\mathbb{D})$ such that $\phi(z)=\psi_{1}(z) / \psi_{2}(z)$ for almost all $z \in \mathbb{T}$. Evidently, rational functions are of bounded type. It was known [1, Lemma 3]
that if $\phi \in L^{\infty}$ then

$$
\begin{equation*}
\phi \text { is of bounded type } \Longleftrightarrow \operatorname{ker} H_{\phi} \neq\{0\} \Longleftrightarrow \phi=\bar{\theta} b \tag{1.3}
\end{equation*}
$$

where θ is inner and $b \in H^{\infty}$. If $\phi \in L^{\infty}$, we write

$$
\phi_{+} \equiv P(\phi) \in H^{2} \quad \text { and } \quad \phi_{-} \equiv \overline{P^{\perp}(\phi)} \in z H^{2}
$$

For an inner function θ, we write

$$
\mathcal{H}(\theta):=H^{2} \ominus \theta H^{2}
$$

If $\phi \in L^{\infty}$ is of bounded type then by (1.3) we can write

$$
\begin{equation*}
\phi_{-}=\theta \bar{a} \quad\left(\theta \text { is inner and } a \in H^{2}\right), \tag{1.4}
\end{equation*}
$$

where θ and a are coprime. We will refer the coprime factorization of ϕ_{-}for the representation (1.4). Note that if $f=\theta \bar{a} \in L^{2}$, then $f \in H^{2}$ if and only if $a \in \mathcal{H}(z \theta)$; in particular, if $f(0)=0$ then $a \in \mathcal{H}(\theta)$. If ϕ_{-}is a rational function then in (1.4) θ can be chosen as a finite Blaschke product.

Let $B M O$ denote the set of functions of bounded mean oscillation in L^{1}. It is well known that $L^{\infty} \subseteq B M O \subseteq L^{2}$. It is also known that if $f \in L^{2}$, then H_{f} is bounded on H^{2} whenever $P^{\perp} f \in B M O$ (cf. [9]). If $\phi \in L^{\infty}$, then $\overline{\phi_{-}}, \overline{\phi_{+}} \in B M O$ so that $H_{\overline{\phi_{-}}}$ and $H_{\overline{\phi_{+}}}$are well understood.

If both ϕ and $\bar{\phi}$ are of bounded type (e.g. ϕ is rational), then by the Beurling's theorem we can see that if T_{ϕ} is hyponormal then (also see $[\mathbf{6}, 7]$)

$$
\begin{equation*}
\theta_{+} H^{2}=\operatorname{ker} H_{\overline{\phi_{+}}} \subset \operatorname{ker} H_{\overline{\phi_{-}}}=\theta_{0} H^{2}, \tag{1.5}
\end{equation*}
$$

which implies that θ_{0} divides θ_{+}, i.e. $\theta_{+}=\theta_{0} \theta_{1}$ for some inner function θ_{1}. Thus, if $\phi=\overline{\phi_{-}}+\phi_{+} \in L^{\infty}$ such that ϕ and $\bar{\phi}$ are of bounded type such that T_{ϕ} is hyponormal then we can write

$$
\phi_{+}=\theta_{0} \theta_{1} \bar{a} \quad \text { and } \quad \phi_{-}=\theta_{0} \bar{b} \quad \text { (coprime factorizations), }
$$

where $a \in \mathcal{H}\left(z \theta_{0} \theta_{1}\right)$ and $b \in \mathcal{H}\left(\theta_{0}\right)$. If $g \in H^{2}$, the reduced Cowen set for g is defined by

$$
G_{\bar{g}}:=\left\{f \in H^{2}: \bar{g}+f \in L^{\infty} \text { and } T_{\bar{g}+f} \text { is hyponormal }\right\} .
$$

We next introduce the notion of block Toeplitz operators. For a Hilbert space \mathcal{X}, let $L_{\mathcal{X}}^{2} \equiv L_{\mathcal{X}}^{2}(\mathbb{T})$ be the Hilbert space of \mathcal{X}-valued norm square-integrable measurable functions on \mathbb{T} and $H_{\mathcal{X}}^{2} \equiv H_{\mathcal{X}}^{2}(\mathbb{T})$ the corresponding Hardy space. We observe that $L_{\mathbb{C}^{n}}^{2}=L^{2} \otimes \mathbb{C}^{n}$ and $H_{\mathbb{C}^{n}}^{2}=H^{2} \otimes \mathbb{C}^{n}$. Let $M_{m \times n}$ denote the set of $m \times n$ complex matrices and write $M_{n}:=M_{n \times n}$. If Φ is a matrix-valued function in $L_{M_{n}}^{\infty} \equiv L_{M_{n}}^{\infty}(\mathbb{T})$ $\left(=L^{\infty}(\mathbb{T}) \otimes M_{n}\right)$ then the block Toeplitz operator T_{Φ} and the block Hankel operator H_{Φ} on $H_{\mathbb{C}^{n}}^{2}$ are defined as

$$
T_{\Phi} f=P_{n}(\Phi f) \quad \text { and } \quad H_{\Phi} f=J P_{n}^{\perp}(\Phi f) \quad\left(f \in H_{\mathbb{C}^{n}}^{2}\right),
$$

where P_{n} and P_{n}^{\perp} denote the orthogonal projections that map from $L_{\mathbb{C}^{n}}^{2}$ onto $H_{\mathbb{C}^{n}}^{2}$ and $\left(H_{\mathbb{C}^{n}}^{2}\right)^{\perp}$, respectively, and J denotes the unitary operator from $L_{\mathbb{C}^{n}}^{2}$ to $L_{\mathbb{C}^{n}}^{2}$ given by $J(g)(z)=\bar{z} I_{n} g(\bar{z})$ for $g \in L_{\mathbb{C}^{n}}^{2}\left(I_{n}:=\right.$ the $n \times n$ identity matrix). In 2006, Gu et al.
[5] considered the hyponormality of block Toeplitz operators and characterized the hyponormality of block Toeplitz operators in terms of their symbols.

Theorem B (Hyponormality of block Toeplitz operators) ([5]). For each $\Phi \in L_{M_{n}}^{\infty}, T_{\Phi}$ is hyponormal if and only if Φ is normal and there exists $K \in H_{M_{n}}^{\infty}$ such that $\|K\|_{\infty} \leq 1$ and $\Phi-K \Phi^{*} \in H_{M_{n}}^{\infty}$.
2. The main result. For $\Phi \in L_{M_{n}}^{\infty}$, the pseudo-self commutator of T_{Φ} is defined by

$$
\left[T_{\Phi}^{*}, T_{\Phi}\right]_{p}:=H_{\Phi^{*}}^{*} H_{\Phi^{*}}-H_{\Phi}^{*} H_{\Phi}
$$

Then T_{Φ} is said to be pseudo-hyponormal if $\left[T_{\Phi}^{*}, T_{\Phi}\right]_{p} \geq 0$. Evidently, if $\Phi \in L_{M_{n}}^{\infty}$, then

$$
\left[T_{\Phi^{*}}, T_{\Phi}\right]=\left[T_{\Phi^{*}}, T_{\Phi}\right]_{p}+T_{\Phi^{*} \Phi-\Phi \Phi^{*}} .
$$

We thus have

$$
\begin{equation*}
T_{\Phi} \text { is hyponormal } \Longleftrightarrow T_{\Phi} \text { is pseudo-hyponormal and } \Phi \text { is normal } \tag{2.1}
\end{equation*}
$$

and that if we write

$$
\mathcal{E}(\Phi):=\left\{K \in H_{M_{n}}^{\infty}:\|K\|_{\infty} \leq 1 \text { and } \Phi-K \Phi^{*} \in H_{M_{n}}^{\infty}\right\}
$$

then (via $\left[\mathbf{5}\right.$, Theorem 3.3]) T_{Φ} is pseudo-hyponormal if and only if $\mathcal{E}(\Phi) \neq \emptyset$.
Our main theorem answers Problem 1.

Theorem 2.1. For $i=1,2$, let $\psi_{i} \in H^{\infty}$ be a non-constant rational function and consider

$$
\Phi \equiv\left[\begin{array}{ll}
\bar{\psi}_{1} & \phi_{1} \\
\phi_{2} & \bar{\psi}_{2}
\end{array}\right] \quad\left(\phi_{1}, \phi_{2} \in H^{\infty}\right) .
$$

Then

$$
\begin{align*}
& \left\{\left(\phi_{1}, \phi_{2}\right) \in H^{\infty} \times H^{\infty}: T_{\Phi} \text { is hyponormal }\right\} \\
& \quad=\left\{\left\{\begin{array}{cl}
\left\{\left(\phi_{1}, \phi_{2}\right) \in G_{\bar{\psi}_{1}} \times G_{\bar{\psi}_{2}}:\left|\phi_{1}\right|=\left|\phi_{2}\right|\right\} & \text { if } \psi_{1}=\psi_{2} \\
\emptyset & \text { if } \psi_{1} \neq \psi_{2}
\end{array}\right.\right. \tag{2.2}
\end{align*}
$$

Proof. We first observe

$$
\left[T_{\Phi}^{*}, T_{\Phi}\right]_{p}=\left[\begin{array}{cc}
{\left[T_{\phi_{1}+\bar{\psi}_{1}}^{*}, T_{\phi_{1}+\bar{\psi}_{1}}\right]} & 0 \tag{2.3}\\
0 & {\left[T_{\phi_{2}+\bar{\psi}_{2}}^{*}, T_{\phi_{2}+\bar{\psi}_{2}}\right]}
\end{array}\right],
$$

which implies
T_{Φ} is pseudo-hyponormal \Longleftrightarrow each $\bar{\phi}_{i}$ is of bounded type and $\left(\phi_{1}, \phi_{2}\right) \in G_{\bar{\psi}_{1}} \times G_{\bar{\psi}_{2}}$,
where the second condition follows from [1, Lemma 6]. Suppose $\psi_{i} \in H^{\infty}$ is a nonconstant rational function for $i=1,2$. We note that if

$$
\Phi=\left[\begin{array}{ll}
\bar{\psi}_{1} & \phi_{1} \\
\phi_{2} & \bar{\psi}_{2}
\end{array}\right]
$$

then T_{Φ} is hyponormal if and only if T_{Φ} is pseudo-hyponormal and Φ is normal. A straightforward calculation shows that Φ is normal if and only if

$$
\left\{\begin{array}{l}
\left|\phi_{1}\right|=\left|\phi_{2}\right| \tag{2.5}\\
\phi_{1}\left(\psi_{1}-\psi_{2}\right)=\overline{\phi_{2}\left(\psi_{1}-\psi_{2}\right)}
\end{array}\right.
$$

We now claim that $\psi_{1}=\psi_{2}$. Assume to the contrary that $\psi_{1} \neq \psi_{2}$. Since by (2.5), $\phi_{1}\left(\psi_{1}-\psi_{2}\right)=c(c \in \mathbb{C})$, it follows from the F . and M. Riesz theorem that $c \neq 0$: indeed if $c=0$ then $\phi_{1}=0$, and hence $T_{\bar{\psi}_{1}+\phi_{1}}=T_{\bar{\psi}_{1}}$ is not hyponormal, which contradicts to the fact (2.4). Thus, ϕ_{1} is invertible in H^{∞}, and hence ϕ_{1} is an outer function (cf. [4]). Similarly, ϕ_{2} is also an outer function. But since $\left|\phi_{1}\right|=\left|\phi_{2}\right|$, it follows that

$$
\begin{equation*}
\phi_{2}=e^{i \xi} \phi_{1} \quad \text { for some } \xi \in[0,2 \pi) \tag{2.6}
\end{equation*}
$$

On the other hand, we note that if $f \in G_{\bar{g}}$ then $e^{i \mu} f \in G_{\bar{g}}$ for each $\mu \in[0,2 \pi)$. But since evidently $\phi_{i} \in G_{\bar{\psi}_{i}}(i=1,2)$, it follows that $\phi_{1} \in G_{\bar{\psi}_{i}}(i=1,2)$. Thus, there exists a function $h_{i} \in \mathcal{E}\left(\bar{\psi}_{i}+\phi_{1}\right)$ for $i=1,2$, and hence $\frac{h_{1}-h_{2}}{2} \in \mathcal{E}\left(\frac{\overline{\psi_{1}-\psi_{2}}}{2}+\phi_{1}\right)$. Write

$$
\psi:=\frac{\psi_{1}-\psi_{2}}{2} .
$$

Then $T_{\bar{\psi}+\phi_{1}}$ is hyponormal. Since $\phi_{1} \in G_{\bar{\psi}_{1}}$ and ψ_{1} is non-constant, it follows that ϕ_{1} is non-constant. But since by (2.5), $\phi_{1} \psi=\frac{c}{2} \neq 0, \psi$ is a non-constant rational function so that we may write

$$
\psi=\zeta \frac{\prod_{j=1}^{m}\left(z-\beta_{j}\right)}{\prod_{i=1}^{n}\left(z-\alpha_{i}\right)} \quad\left(\alpha_{i} \neq \beta_{j} \text { for any } i, j, \zeta \in \mathbb{C}, \zeta \neq 0\right)
$$

Since $\phi_{1} \psi=\frac{c}{2} \neq 0$ so that ψ is invertible in H^{∞}, we have $\left|\alpha_{i}\right|>1$ and $\left|\beta_{j}\right|>1$ for all i, j. Observe that

$$
\begin{aligned}
f \in \operatorname{ker} H_{\bar{\psi}} & \Longleftrightarrow \bar{\psi} f \in H^{2} \\
& \Longleftrightarrow \frac{\prod_{j=1}^{m}\left(\bar{z}-\bar{\beta}_{j}\right)}{\prod_{i=1}^{n}\left(\bar{z}-\bar{\alpha}_{i}\right)} f \in H^{2} \\
& \Longleftrightarrow z^{n-m} \frac{\prod_{j=1}^{m}\left(1-\bar{\beta}_{j} z\right)}{\prod_{i=1}^{n}\left(1-\bar{\alpha}_{i} z\right)} f \in H^{2} .
\end{aligned}
$$

If $n>m$, then

$$
f \in \operatorname{ker} H_{\bar{\psi}} \Longleftrightarrow f\left(\frac{1}{\bar{\alpha}_{i}}\right)=0 .
$$

In view of (1.4), if we write

$$
\psi=\omega \bar{b} \quad \text { (coprime factorization })
$$

then a straightforward calculation shows that ω is a finite Blaschke product of the form

$$
\omega:=\prod_{i=1}^{n} \frac{z-\frac{1}{\bar{\alpha}_{i}}}{1-\frac{1}{\alpha_{i}} z}
$$

and

$$
b:=\bar{\zeta}\left(\prod_{i=1}^{n} \frac{\alpha_{i}}{\overline{\alpha_{i}}}\right) z^{n-m} \frac{\prod_{j=1}^{m}\left(1-\overline{\beta_{j}} z\right)}{\prod_{i=1}^{n}\left(z-\alpha_{i}\right)},
$$

where ω and b are coprime because $b\left(\frac{1}{\overline{\alpha_{i}}}\right) \neq 0$ for each $i=1, \ldots, n$ by our assumption $\alpha_{i} \neq \beta_{j}$ for each i, j. We thus have $\mathcal{Z}(\omega)=\left\{\frac{1}{\overline{\alpha_{i}}}: i=1, \ldots, n\right\}$, where $\mathcal{Z}(\omega)$ denotes the set of zeros of ω. Note that

$$
\phi_{1}=\frac{c}{2 \zeta} \frac{\prod_{i=1}^{n}\left(z-\alpha_{i}\right)}{\prod_{j=1}^{m}\left(z-\beta_{j}\right)}
$$

and that

$$
\begin{aligned}
f \in \operatorname{ker} H_{\bar{\phi}_{1}} & \Longleftrightarrow \bar{\phi}_{1} f \in H^{2} \\
& \Longleftrightarrow \frac{\prod_{i=1}^{n}\left(\bar{z}-\bar{\alpha}_{i}\right)}{\prod_{j=1}^{m}\left(\bar{z}-\bar{\beta}_{j}\right)} f \in H^{2} \\
& \Longleftrightarrow \bar{z}^{n-m} \frac{\prod_{i=1}^{n}\left(1-\bar{\alpha}_{i} z\right)}{\prod_{j=1}^{m}\left(1-\bar{\beta}_{j} z\right)} f \in H^{2} .
\end{aligned}
$$

But since $n \geq m$, it follows that $f \in \operatorname{ker} H_{\bar{\phi}_{1}}$ if and only if

$$
f=z^{n-m} f_{1} \text { and } f_{1}\left(\frac{1}{\bar{\beta}_{j}}\right)=0
$$

Thus, if we write $\phi_{1}=\theta_{1} \bar{a}_{1}$ (coprime factorization), then the same argument shows that $\mathcal{Z}\left(\theta_{1}\right)=\left\{0, \frac{1}{\bar{\beta}_{j}}: j=1, \ldots, m\right\}$. But since $T_{\bar{\psi}+\phi_{1}}$ is hyponormal, it follows from (1.5) that $\mathcal{Z}(\omega) \subseteq \mathcal{Z}\left(\theta_{1}\right)$, and hence $\alpha_{i}=\beta_{j}$ for some i, j, a contradiction.

If $n=m$, then the same argument shows that

$$
\mathcal{Z}(\omega)=\left\{\frac{1}{\overline{\alpha_{i}}}: i=1, \ldots, n\right\} \subseteq \mathcal{Z}\left(\theta_{1}\right)=\left\{\frac{1}{\overline{\beta_{j}}}: j=1, \cdots, m\right\}
$$

a contradiction.
If $n<m$, then the same argument shows that

$$
\mathcal{Z}(\omega)=\left\{0, \frac{1}{\overline{\alpha_{i}}}: i=1, \cdots, n\right\} \subseteq \mathcal{Z}\left(\theta_{1}\right)=\left\{\frac{1}{\overline{\beta_{j}}}: j=1, \cdots, m\right\}
$$

a contradiction.
Consequently, if T_{Φ} is hyponormal then $\psi_{1}=\psi_{2}$. Thus, (2.2) follows at once from (2.4) and (2.5). This completes the proof.

Remark 2.2. (a) We need not expect that if

$$
\Phi=\left[\begin{array}{ll}
\bar{\psi} & \phi_{1} \\
\phi_{2} & \bar{\psi}
\end{array}\right] \quad\left(\psi \in H^{\infty} \text { is such that } \bar{\psi} \text { is of bounded type }\right)
$$

is such that T_{Φ} is hyponormal then ϕ_{1} and ϕ_{2} are analytic. Indeed, if

$$
\Phi \equiv\left[\begin{array}{cc}
\bar{z} & \bar{z}+2 z \\
\bar{z}+2 z & \bar{z}
\end{array}\right]
$$

then Φ is normal and if we put $K:=\frac{1}{2}\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$, then $\Phi-K \Phi^{*} \in H_{M_{2}}^{2}$ and $\|K\|_{\infty}=1$ so that by Theorem B, T_{Φ} is hyponormal. However, we have not been able to characterize all hyponormal Toeplitz completion of

$$
\left[\begin{array}{cc}
T_{\bar{z}} & ? \\
? & T_{\bar{z}}
\end{array}\right]
$$

(b) We also need not expect that if

$$
\left[\begin{array}{cc}
T_{\bar{z}} & T_{\phi_{1}} \\
T_{\phi_{2}} & T_{\bar{z}}
\end{array}\right]
$$

is hyponormal then ϕ_{1} and ϕ_{2} are trigonometric polynomials. Indeed, if

$$
\Phi \equiv\left[\begin{array}{cc}
\bar{z} & \bar{z}+2 z b \\
\bar{z}+2 z b & \bar{z}
\end{array}\right] \quad \text { with } b(z):=\frac{z-\frac{1}{2}}{1-\frac{1}{2} z}
$$

then a straightforward calculation shows that Φ is normal and if we put $K:=\frac{1}{2} b\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$, then $\Phi-K \Phi^{*} \in H_{M_{2}}^{2}$ and $\|K\|_{\infty}=1$ so that by Theorem B, T_{Φ} is hyponormal.

Acknowledgements. The first author was supported by Basic Science Research Program through NRF funded by the Ministry of Education, Science and Technology (2011-0022577). The second author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (2011-0026675).

REFERENCES

1. M. B. Abrahamse, Subnormal Toeplitz operators and functions of bounded type, Duke Math. J. 43 (1976), 597-604.
2. C. Cowen, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103 (1988), 809-812.
3. R. E. Curto, I. S. Hwang and W. Y. Lee, Hyponormality and subnormality of block Toeplitz operators, Adv. Math. 230 (2012), 2094-2151.
4. R. G. Douglas, Banach algebra techniques in the theory of Toeplitz operators, CBMS 15 (Amer. Math. Soc., Providence, RI, 1973).
5. C. Gu, J. Hendricks and D. Rutherford, Hyponormality of block Toeplitz operators, Pacific J. Math. 223 (2006), 95-111.
6. C. Gu and J. E. Shapiro, Kernels of Hankel operators and hyponormality of Toeplitz operators, Math. Ann. 319 (2001), 553-572.
7. I. S. Hwang and W. Y. Lee, Hyponormal Toeplitz operators with rational symbols, J. Operator Theory 56 (2006), 47-58.
8. T. Nakazi and K. Takahashi, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, Trans. Am. Math. Soc. 338 (1993), 753-769.
9. V. V. Peller, Hankel operators and their applications (Springer, New York, 2003).
