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The freezing of a water rivulet begins with a water thread flowing over a very cold surface,
is naturally followed by the growth of an ice layer and ends up with a water rivulet
flowing on a static thin ice wall. The structure of this final ice layer presents a surprising
linear shape that thickens with the distance. This paper presents a theoretical model and
experimental characterisation of the ice growth dynamics, the final ice shape and the
temperature fields. In a first part, we establish a two-dimensional model, based on the
advection–diffusion heat equations, that allows us to predict the shape of the ice structure
and the temperature fields in both the water and the ice. Then, we study experimentally
the formation of the ice layer and we show that both the transient dynamics and the final
shape are well captured by the model. In a last part, we characterise experimentally the
temperature fields in the ice and in the water, using an infrared camera. The model shows
an excellent agreement with the experimental fields. In particular, it predicts well the linear
decrease of the water surface temperature observed along the plane, confirming that the
final ice shape is a consequence of the interaction between the thermal boundary layer and
the free surface.

Key words: capillary flows, icing, solidification/melting

1. Problem introduction

Freezing and solidification processes were present at the formation of the Earth’s crust
(Lamé & Clapeyron 1831) and continue to be at the heart of the natural and industrial
worlds (Davis 2006). They are crucial, for example, in the dynamics of magmas that cool
and gradually solidify until they come to rest (Griffiths 2000). In this context, as often,
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cooling can occur from the surrounding atmosphere (or water) or from the underlying
solid (Huppert 1989). In ancient times, some of the lavas were even hot enough to melt the
underlying rocks and shape their own thermal erosion beds (Huppert 1986). The physical
concept of freezing obviously finds an infinite number of applications in the formation
of ice in the natural environment. Among others, we can cite the formation of sea ice,
described as a porous matrix consisting of pure ice crystals in equilibrium with brine
(Wettlaufer, Worster & Huppert 1997), the modelling of the dynamics of sea ice on the
surface of the polar oceans (Worster 2000), or, more commonly observed, the formation of
iced rivers or lakes (Beltaos 2013). The latter often involves the complex growth of stable
ice covers and can be responsible for many socio-economic and ecological problems.
Freezing in rivers can also give birth to waterfall ice (Montagnat et al. 2010) and to
surprising circular structures called ice circles (Dorbolo et al. 2016).

The first complete analytical treatment of the freezing of liquid is probably Stefan’s
now classical work on the formation of polar ice (Stefan 1891; Brillouin 1930), inspired by
the seminal work of Lamé & Clapeyron (1831). In these first problems the liquid was
immobile; however, more recent and complex developments lead to the consideration
of convective heat transfer in the ice formation context, occurring between the flowing
water and the bounding ice surface (Incropera et al. 2007). In the simplest freezing
configuration of an infinite fluid layer flowing over a cold surface, significant progresses
were made in the 1960s (Lapadula & Mueller 1966; Beaubouef & Chapman 1967; Savino
& Siegel 1969; Elmas 1970). The formation of a static frozen layer on the cold wall was
predicted theoretically and the analytical solution for its thickness has been established.
The geometry and growth of these freezing structures are governed by the balance between
the heat convected by the flow, the heat that diffuses in the ice and the latent heat
released by the phase change. In these unbounded configurations, however, the effect of
the liquid–air free surface is not taken into account.

Indeed, the presence of a free surface can be a determinant in a freezing process and
the solidification of capillary flows can give rise to surprising effects and striking ice
structures. When a droplet is deposited on a cold substrate for example, the frozen drop
shape and thickness depend on the contact line solidification dynamics (Schiaffino &
Sonin 1997; De Ruiter et al. 2017) and a pointy tip is observed (Schultz, Worster &
Anderson 2001; Marín et al. 2014; Boulogne & Salonen 2020). If a drop impacts a cold
substrate, the obtained frozen shape is the result of the complex interplay between freezing
dynamics and capillary hydrodynamics (Ghabache, Josserand & Séon 2016; Thiévenaz,
Séon & Josserand 2019; Thiévenaz, Josserand & Séon 2020; Thiévenaz, Séon & Josserand
2020). The situation where ice accretes due to multiple drop impacts can be encountered in
many practical contexts such as ice formation on planes (Cebeci & Kafyeke 2003; Baumert
et al. 2018), on bridge cables (Liu et al. 2019) or on wind turbines (Wang 2017). Finally,
the solidification of a film of water flowing on a cold surface or in a cold environment
(Moore, Mughal & Papageorgiou 2017) can also give rise to special ice structures, such as
icicles (Neufeld, Goldstein & Worster 2010; Chen & Morris 2011) or unstable ice ripples
that form on the water–ice interface and can be observed on icicles (Ogawa & Furukawa
2002) or glaciers (Gilpin, Hirata & Cheng 1980; Camporeale & Ridolfi 2012).

Our study takes place in this context and focuses on the solidification of a thread of
water, the so-called rivulet. In a recent experimental study (Monier et al. 2020), we have
shown that when a water rivulet flows on a cold substrate, an ice wall grows and eventually
a steady regime is reached where a thin thread of water flows on an ice structure whose
thickness is almost linearly growing downstream (see figure 1). In this previous paper, we
reported mainly two features. Firstly, a one-dimensional diffusive regime for the initial
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Figure 1. Frozen rivulet. (a) Experimental picture of the freezing rivulet in the steady state. The water is dyed
with fluorescein and appears green under ultraviolet light. The flow goes from left to right. (b) Picture of the
remaining frozen structure after the flow was stopped and the remaining water cleaned. Scale bars: 1 cm.

solidification dynamics was identified. Secondly, the linear ice profile observed in the
steady regime was recovered using scaling arguments and considering the confinement of
the thermal boundary layer in the water by the free surface.

In the present paper we realise a detailed study of this problem, with the derivation
and solution of a complete theoretical model considering a half-Poiseuille velocity profile
in the water. The quasi-analytical predictions of both the geometrical and the thermal
quantities compare well with the experimental results for a whole range of experimental
parameters.

Firstly, the experimental set-up and methods are described. Then, the theoretical analysis
with the main physical assumptions, the temperature field equations and the main steps for
the resolution are presented. Finally, the last section provides a complete physical analysis
of the freezing rivulet.

2. Experimental set-up

The experiment consists of flowing distilled water dyed with fluorescein at 0.5 g L−1

along a cold aluminium block of 10 cm long, with an inclination of α = 30◦ or α = 60◦
to the horizontal (see figure 1a). The temperature of the injected water Tin ranges from
5 to 49 ◦C. The water is injected through a needle (inner diameter 1.6 mm) at a flow rate
Q = 20 mL min−1, such that there is no meander at room temperature (Le Grand-Piteira,
Daerr & Limat 2006). A straight water rivulet is then formed (Towell & Rothfeld 1966)
with a typical width of 2 mm, a thickness of hw = 800 µm and a characteristic velocity of
the buoyant flow U0 ≈ 10 cm s−1.

The temperature of the aluminium substrate Ts is set by plunging the block into liquid
nitrogen for a given amount of time so that it ranges from −9 to −44 ◦C. During the
experiment Ts is measured and remains constant (±1 ◦C). Experiments performed with
substrate temperatures below −44 ◦C consistently lead to the fracture (Ghabache et al.
2016) or the self-peeling of the ice (de Ruiter, Soto & Varanasi 2018) and are not considered
here. Upon contact with the cold substrate, the water freezes and an ice layer grows while
the water continues to flow on top (see supplementary movie 1 available at https://doi.
org/10.1017/jfm.2021.41). During the solidification process, the water retracts on its own
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ice while flowing to reach a constant width, surprisingly independent of the angle α.
A direct implication of this observation is that the water thread thickness hw is also
independent of the slope α.

During the solidification process, the fluorescein concentrates between the ice dendrites,
causing self-quenching and fluorescence dimming in the ice (Marcellini et al. 2016). This
allows us to clearly distinguish between the ice and the water layers under ultraviolet light.
The set-up is placed in a humidity-controlled box to avoid frost formation (Hr ≈ 5–10 %).

The ice layer thickness hi(x, t) is then measured using a Nikon D800 camera recording
from the side at 30 frames per second. Temperature fields of the water and the ice are
measured using an Flir A655sc infrared camera and by setting the average emissivity of
ice and water to ε̄ = 0.965. As the linear attenuation coefficient of water is Jb = 106 m−1,
the skin depth for the temperature measurement is around 1 µm. Videos of the surface
temperatures (see supplementary movie 2) of the flowing water were recorded using a
25◦ field of view, 25 mm lens (1 pixel = 150 µm) while a close-up lens is added when
measuring the transverse temperatures (1 pixel = 50 µm, see supplementary movie 3).
Image processing for both the Nikon D800 camera and the infrared camera is based on
thresholding methods. For the ice thickness, the threshold is realised from the grey shade
values. For the temperature maps, the ice–water interface is detected as follows: when
temperature is below 0 ◦C, we measure temperatures in the ice, when it is above 0 ◦C, we
measure temperatures in the water. Discontinuities in the temperature gradients set the
positions of the metal–ice and the water–air interfaces.

3. Theoretical analysis

3.1. General assumptions
As the time for solidification (order of minutes) is much larger than the characteristic time
of the flow (few seconds for the water to flow down the rivulet), we consider the water flow
over a substrate whose quasi-static evolution can be analysed independently. Consequently,
both the temperature and the flow depend on time only through the variation of the ice layer
thickness. Moreover, the slope of the ice structure remaining small (few degrees), the liquid
flow in the quasi-static regime is described using the lubrication approximation. The small
value of the Reynolds number (Re = U0hw/ν ∼ 80) also ensures (with the small ice slope)
that the flow is laminar and parallel. We may expect these approximations to fail both at
very short times (where the ice layer grows rapidly) and close to the input where the ice
slope can be significant. The solution of the problem proposed below should thus be taken
with care in these regions (small times and distances from the needle). More precisely,
we can estimate the time scale for the velocity profile to establish as h2

w/ν ∼ 0.5 s, which
is much smaller than the typical solidification dynamics, and the corresponding length
scaling U0h2

w/ν ∼ 5 cm, which is a fraction of the total rivulet length (approximately half
of it).

Firstly, the water flow is considered parallel to the local ice slope (see figure 2) and the
velocity field is u. The quasi-static approximation consists in neglecting the explicit time
variation of the velocity. Consequently, as the volumetric flux is set and the solidification
rate is slow, the mass conservation implies that the liquid layer thickness hw is constant
along the flow direction (Towell & Rothfeld 1966). Within this framework, where the ice
thickness does not change with time, the flow is laminar and follows a semi-Poiseuille
velocity profile that can be written in the form

u(x, z) = U0
z − hi(x)

hw

(
2 − z − hi(x)

hw

)
, (3.1)
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Figure 2. Notations used in the problem. (a) Lateral view of the water thread (dark blue) flowing on the ice
structure (light blue). (b) Close-up schematics with the definition of the three domains on the z-axis, of the
temperature fields and of the velocity fields. (c) Schematics of the different temperature fields in the solid, in
the ice and in the water.

where U0 is the free surface velocity. For this two-dimensional (2-D) geometry,

U0 is obtained by a balance between the downslope gravity and the viscous
forces, yielding U0 = (gh2

w/2ν)[sin(α) − h′
i(x) cos(α)] ∼ (gh2

w/2ν) sin(α), although in
our three-dimensional (3-D) geometry, it is a function of the lateral position in the rivulet
(Le Grand-Piteira et al. 2006). Finally, let us note that even if the velocity field is along the
local slope of the ice layer, we can to good approximation consider that this velocity field
holds also along the x-direction of the substrate (assuming |h′

i(x, t)| � 1 the error made is
only a few per cent).

3.2. Model equations
For the temperature field, we use the static heat equation, incorporating an advection
term for the liquid domain. We further assume that the temperature of the ice–substrate
interface is a time-invariant natural temperature T0 (de Ruiter et al. 2018), different from
the substrate temperature Ts. This interface temperature corresponds to the solution of
the diffusion problem solved when suddenly putting in contact two bodies (substrate and
water) at different temperatures. It is deduced from the complete model considering the
heat propagation in both the ice and the substrate (Thiévenaz et al. 2019), and is a function
of both the melting temperature Tm (Tm = 0 ◦C) and the substrate temperature far from the
interface Ts. Following the approach developed in (Thiévenaz et al. 2019) and considering
the actual range of experimental parameters, the ice–substrate interface temperature T0 is
linked to the substrate temperature Ts through (3.2),

T0 − Ts

Tm − Ts
= 1

1 +
√

ksρscp,s

kiρicp,i
Erf

(√
B

2

) . (3.2)

Here, B is a non-dimensional parameter that is found as a solution for the implicit equation

St =
√

πB
2

eB/4

(√
kiρicp,i

ksρscp,s
+ Erf

(√
B

2

))
, (3.3)

where the Stefan number St is defined in (3.18), and k(i,s), ρ(i,s) and cp,(i,s) are
the thermal conductivities, densities and specific heat capacities of the ice and the
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Figure 3. Summary of the model hypotheses: a layer of ice lies between the water (hi + hw > z > hi) and the
semi-infinite substrate (z < 0). The temperature of the substrate–ice interface is set constant at T = T0 and that
of the ice–water interface is set constant at the melting point (T = Tm). The temperature in the ice and the
water is given by a set of two heat equations, coupled at z = hi by the temperature continuity and by the Stefan
condition (imposing the difference of thermal fluxes to be equal to the latent heat liberated by the freezing). The
velocity field in the water u(z) is taken as a semi-Poiseuille with U0 the velocity at the free surface z = hi + hw.

substrate, respectively. We checked experimentally the time evolution of the ice
temperature at the substrate contact point and we measured T0 constant and equal to its
theoretical value. The model is written for a 2-D geometry (x and z in figure 2) although
the thickness of the rivulet is approximately half of its width. However, we expect the
results of the model to give pertinent predictions for the rivulet, in particular close to its
centreline.

We thus use the following set of equations for the temperature fields (see a schematic
presentation of the model on figure 3).

In the ice, 0 ≤ z ≤ hi(x, t), the temperature field Ti(x, z) follows

∂2Ti

∂z2 + ∂2Ti

∂x2 = 0 (3.4)

and in the water, hi(x, t) ≤ z ≤ hi(x, t) + hw, the temperature field Tw(x, z) follows the
quasi-static advection–diffusion equation

u
∂Tw

∂x
= Dw

(
∂2Tw

∂z2 + ∂2Tw

∂x2

)
. (3.5)

In the latter equation, the advection term can be taken in the x-direction only. Indeed,
the fluid flux (20 g min−1) is large compared with the volumetric rate of growth of the
ice (few mg min−1), and consequently the flow can be considered parallel. Moreover, in
this framework, both the advection time (∼1 s) and the diffusion time (∼10 s) are much
smaller than the typical growth time of the frozen rivulet (few minutes), justifying the use
of the quasi-steady equations. Taking Z = hw as the typical vertical length scale for the
temperature variation, the horizontal length scale X scales as

U0

X
∼ Dw

h2
w

, leading to X ∼ Pe hw, (3.6)
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where the Péclet number is defined by Pe = U0hw/Dw. From the experiments, we
have the following values: Dw = 1.4 × 10−7 m2 s−1; hw ∼ 800 µm; U0 ∼ 0.1 m s−1.
This suggests that Pe ∼ 600, demonstrating that the horizontal length scale is much larger
than the vertical one so that the horizontal derivatives can be neglected in the right-hand
side of (3.5) compared with the vertical derivatives (namely |∂xx| � |∂zz| in the Laplacian
term).

The following boundary conditions have to be imposed to the temperature fields. Firstly
the substrate temperature T0 at the interface with the ice z = 0. Then, we impose the
melting temperature at the ice–water interface z = hi(x, t). This condition corresponds to
the continuity of the temperature at the ice–water interface, Tm that we take constant,
neglecting its dependence on the interface curvature or velocity (Gibbs–Thomson and
kinematic corrections, respectively, Langer (1980), Worster (2000), De Ruiter et al. (2017)
and Herbaut et al. (2019)).

The heat flux balance at the air–water interface, z = hi(x, t) + hw, requires a detailed
analysis. Indeed, the heat transfer stems from three different contributions: conduction,
evaporation and radiation. Considering the very low thermal conductivity of the air,
conduction in the air can be safely neglected. Furthermore, we can estimate the
temperature change occurring in water considering radiative effects on the one hand and
evaporative cooling on the other hand. Considering the laboratory as a black body at
temperature T∞ = 300 K and our frozen rivulet as a black body at temperature Tm, the
temperature increase of the water resulting from the radiative heating is 0.13 ◦C, therefore
negligible in these experiments. The evaporative flux can be estimated through the use
of the Prandlt–Blasius–Pohlhausen boundary layer in which we considered a typical air
velocity arising from two sources. The first one is the air flow generated by the rivulet
itself, with a typical velocity of 10 cm s−1. The second one is the flow coming from
the presence of a heat source (the water) in a cold environment. In our experiments,
the maximum air velocity is 3.6 cm s−1 for extreme temperature differences of 90 ◦C.
The temperature decrease estimated from these evaporative fluxes remain below 1 ◦C.
Consequently, in our model we disregard all these heat transfer contributions and consider
a zero thermal flux condition at the free surface.

In addition, the entry temperature Tin is prescribed at x = 0 in the water domain,
imposing hi(0, t) = 0. Therefore, the final system of equations to be solved for determining
the temperature fields both in the ice and the water domains is exposed below ((3.7) to
(3.11)).

In the ice, 0 ≤ z ≤ hi(x, t), the temperature is solution of

∂2Ti

∂z2 = 0. (3.7)

In the water, hi(x, t) ≤ z ≤ hi(x, t) + hw, it is solution of

u
∂Tw

∂x
= Dw

∂2Tw

∂z2 . (3.8)

The boundary conditions at the interfaces follow

Ti(x, 0) = T0, Ti(x, hi) = Tw(x, hi) = Tm and
∂Tw

∂z
(x, hi + hw) = 0. (3.9)

The water temperature at injection, hi(0, t) ≤ z ≤ hi(0, t) + hw writes as

Tw(0, z) = Tin. (3.10)
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Finally, the evolution of the ice layer thickness is described by the Stefan condition,
coupling the thermal fluxes at the ice–water interface through

ρiL∂hi

∂t
= ki

∂Ti

∂z
(x, hi) − kw

∂Tw

∂z
(x, hi), (3.11)

where L is the latent heat of solidification and ki,w are the thermal conductivities of
the ice and water, respectively, related to their diffusion coefficients through the general
relation k(i,w) = ρ(i,w)cp,(i,w)D(i,w). The Stefan condition in (3.11) is written considering
the ice slope β to be small so that the gradients can be approximated by their z-direction
component. This equation is the only one containing a time derivative in our approach,
a consequence of the larger time scale of ice formation (few minutes) compared with all
the other time scales in the problem: establishments of the velocity profile (1 s) and of
the thermal boundary layer (5 s). Therefore, all the temperature fields will depend on
time through the (slow) time variation of hi only. In fact, the temperature field in the
solid is not a priori connected with the temperature field in the liquid film. The coupling
between these two domains (liquid film and ice layer) is reduced to the Stefan condition
that controls the evolution of hi(x, t). It directly follows from the fact that the boundary
condition at the ice–water interface T = Tm does not depend on time neither on hi nor
other parameters in our system. Consequently, the two thermal problems (water and ice
domains) are totally independent and can be solved separately, the time evolution being
subjected to the variation of hi through the Stefan equation.

In the fluid domain, the set of equation and boundary conditions is similar to the
so-called Graetz problem for laminar flows, written here in its 2-D version (Graetz 1885;
Fehrenbach et al. 2012). Indeed, the free surface no-flux boundary condition for the
temperature (3.21) plays the role of a symmetry condition for a liquid flowing between
two plates located at z = 0 and z = 2hw while the semi-Poiseuille velocity profile also
exhibits this symmetry.

3.3. Dimensionless problem
The system of equations can be made dimensionless using the two typical length scales
introduced above, hwPe and hw for the horizontal and vertical directions, respectively.
Dimensionless temperature fields are introduced for each domain. In the water we define

θw = Tw − Tm

Tin − Tm
, z̄ = z − hi(x)

hw
and x̄ = x

hwPe
. (3.12)

In the ice we use

θi = Ti − T0

Tm − T0
, z̄i = z

hw
, x̄ = x

hwPe
and h̄i = hi

hw
. (3.13)

The time is rescaled using the ice thermal diffusion coefficient yielding

t̄ = Dit/h2
w. (3.14)

The system of equations to be solved then read as

∂2θi

∂
zi
2 = 0, (3.15)

z̄(2 − z̄)
∂θw

∂ x̄
= ∂2θw

∂ z̄2 (3.16)
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and
∂ h̄i

∂ t̄
(x̄, t̄) = St

(
∂θi

∂
zi
(x̄, h̄i) − kw

ki

1
T̄

∂θw

∂ z̄
(x̄, 0)

)
, (3.17)

where the Stefan number,

St = Cp,i(Tm − T0)

L , (3.18)

compares the heat necessary to bring the ice temperature from the substrate temperature
to the melting temperature with the latent heat of solidification.

The boundary conditions read as

θw(0, z̄) = 1; Tin at the entrance, (3.19)

θw(x̄, 0) = 0; Tm at the water–ice interface, (3.20)

∂θw

∂ z̄
(x̄, 1) = 0; insulating water–air interface – no flux, (3.21)

θi(x̄, 0) = 0; T0 at the metal–ice interface, (3.22)

θi(x̄, h̄i) = 1; Tm at the water–ice interface. (3.23)

Finally, the reduced temperature

T̄ = Tm − T0

Tin − Tm
(3.24)

plays the role of the control parameter of the problem.

3.4. Model solution
As explained above, the two thermal equations (3.16) and (3.15) can be treated
independently, since the variations of h̄i(x̄, t) do not intervene explicitly.

Firstly, the resolution of (3.15) is straightforward in the ice layer,

θi = z̄i

h̄i
= z

hi(x, t)
. (3.25)

On the other hand, the temperature field in the water can be deduced from a 2-D Graetz
problem and we recall here the main properties of this solution (Incropera et al. 2007).
Using the linearity of (3.16) and separation of variables, we can exhibit a quasi-analytical
solution of the problem.

More precisely, we seek solutions of the equation for 0 ≤ z̄ ≤ 1 in the form

θw(x̄, z̄) =
∞∑

n=1

θn(x̄, z̄) =
∞∑

n=1

AnΦn(z̄) e−λ2
nx̄, (3.26)

where Φn and λn are the eigenfunctions and the eigenvalues, respectively, of the following
Sturm–Liouville problem, composed of the equation

Φ ′′
n = −λ2

nz̄(2 − z̄)Φn (3.27)

and the boundary conditions

Φn(0) = 0 and Φ ′
n(1) = 0. (3.28)

The eigenfunctions Φn involve cylindrical functions and the boundary conditions lead to
a discrete infinite set of positive eigenvalues λn. To evaluate the coefficients An in (3.26),
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Figure 4. (a) Colour map of the temperature field in the liquid layer, solution of (3.16) with the associated
boundary conditions. The solution is shown in dimensionless units, and the colour scale is indicated on the
right-hand side. The solid line shows the growth of the thermal boundary layer defined in (3.30). Inset: log–log
plot of the thermal boundary layer exhibiting a 1/3 power law. (b) Temperature at the free surface, θsurf (x̄) =
θw(x̄, 1).

we apply the last boundary condition (3.19), which specifies the temperature at the inlet.
Using the orthogonal property of the Sturm–Liouville system, we obtain

An =
∫ 1

0
Φn(z̄)z̄(2 − z̄) dz̄. (3.29)

The coefficients An and λn as well as the functions Φn are provided in the Appendix.
Figure 4(a) shows the temperature map of the solution: as x̄ increases, we can observe

the growth of the thermal boundary layer starting from z̄ = 0 at x̄ = 0 due to the cooling
of the liquid from the plate, as the liquid flows. The size of this boundary layer,

δ(x̄) = 1
∂θw

∂ z̄
(x̄, 0)

, (3.30)

defined as the inverse of the temperature slope at z̄ = 0, is indicated on the map as a black
solid line. At small horizontal scales, x � 1, it can be shown that δ(x̄) ∝ x̄1/3 (see inset of
figure 4a) and we observe that the boundary layer in fact reaches the liquid film thickness
for x̄ ∼ 0.2. Further on, we notice that the surface temperature θw(x̄, 1) decreases rapidly,
as illustrated on figure 4(b).
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Figure 5. Ice structure growth. (a) Ice thickness over time for two different plane positions (α = 30◦, Tin =
11 ◦C, T0 = −11.4 ◦C). The ice growth is first diffusive and then converges exponentially towards a maximum
value hmax(x). Inset: (hmax(x) − hi(x, t))/hmax(x) as function of the time in a lin–log scale. Here τ is defined
as the characteristic time scale. (b) Profile of the frozen rivulet at the end of the experiment, for the same
parameters. After an entry zone of length x0, the ice thickness profile is linear, characterised by its angle β.
In both figures, error bars are smaller than the marker size.

Finally, one can show from (3.26) that the solution of the equation is well approximated
by its first mode already for x̄ > 0.05, leading to

θw(x̄, z̄) ∼ A1Φ1(z̄) e−λ2
1x̄ (3.31)

and predicting an exponential decrease of the water surface temperature for x̄ ≥ 0.05, as
observed in figure 4(b). For the experiments, it means that this single mode temperature
field is valid for x ≥ 0.05 hw Pe ∼ 2 cm, which is a fraction of the substrate length.

4. Physical analysis

Using our experimental tools and the theoretical model proposed before, we can now
proceed to a complete physical analysis of the freezing rivulet. We start by studying the
ice layer growth.

4.1. Formation of the ice layer

4.1.1. General description of the rivulet growth
Figure 5(a) presents the ice layer thickness as a function of time for two different positions
along the substrate (x = 2 and 8 cm), for Tin = 11 ◦C and T0 = −11.4 ◦C (T̄ = −T0/Tin =
1.04).

As shown in a previous study (Monier et al. 2020), at early times the ice layer grows
homogeneously along the plane following a diffusive dynamics hi(t) = √

BDit, where B
is defined in (3.3). In this regime, the thickness profiles are parallel to the substrate.

After this diffusive regime, we observe a second regime where the ice layer continues to
grow until it reaches a maximum height hmax(x) that increases along the plane. The inset
of figure 5(a) presents the same data set but using a logarithmic scale for the normalised
difference to the final ice height (hmax(x) − hi(x, t))/hmax(x). It shows that, in this second
regime, the ice thickness converges exponentially towards its asymptotic value following
(hmax(x) − hi(x, t))/hmax(x) ∼ A(x) e−t/τ .
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Finally, the ice layer stops growing and the system reaches a permanent regime
consisting of a static ice structure, of thickness hmax(x), on top of which a water thread
is flowing. Such a permanent regime can be understood qualitatively by considering
the thermal fluxes at the ice–water interface where the temperature is always at the
melting temperature (0 ◦C). The water is dispensed at a constant temperature, inducing
the development of a thermal boundary layer that imposes a temperature gradient
perpendicular to the ice–water interface, constant in time. On the other side of the
interface, the temperature gradient in the ice can be estimated with (Tm − T0)/hmax(x).
At early times, the ice layer is very thin and the gradient is high. Consequently, the ice
grows in order to decrease its temperature gradient and stops when the heat fluxes on both
sides of the ice–water interface balance. Figure 5(b) presents the maximum height reached
by the ice layer, hmax(x), as a function of x. After a first entry zone, characterised by a
steep ice thickness increase, hmax(x) is well described by a line of slope β as illustrated
by the dashed line: hmax(x) = hi,0 + β(x − x0). In the following, we will show that this
linear height profile is due to the heat balance between the ice layer and the liquid rivulet,
and is deeply related to the fact that the thermal boundary layer has reached the rivulet
thickness hw.

4.1.2. Theoretical permanent ice thickness profile
Knowing the temperature field in both domains (water and ice), we can write the
evolution equation for the ice layer thickness. This equation is valid within the quasi-static
approximation made here, where the time variations of the fields are simply subjected to
the evolution of h̄i(x̄, t̄). In this context, the Stefan equation (3.17) leads to the equation for
h̄i(x̄, t),

∂ h̄i

∂ t̄
(x̄, t̄) = St

(
1
h̄i

− kw

ki

1
T̄

∂θw

∂ z̄
(x̄, 0)

)
, (4.1)

where we have used the constant gradient solution from (3.25) for the temperature in the
ice layer. Then θw is taken as the general solution for the water temperature field, that we
might approximate by its first mode for x̄ > 0.05, given by (3.31). We can thus deduce the
final shape of the ice layer, valid in our experiment for x > 2.5 cm,

hmax(x) = hwT̄
ki

kw

1
A1

1
Φ ′

1(0)
exp

(
λ2

1
x − x0

hwPe

)
. (4.2)

In the next two sections, we study how the rivulet reaches this permanent regime and
how this theoretical prediction compares with the experimental measurements.

4.1.3. Convergence to the static shape
Following the initial diffusive growth, we wonder how the ice dynamics reaches its
static shape. We develop an asymptotic analysis around the stationary state, hi(x, t) =
hmax(x)(1 + εf (t)), with ε � 1. Substituting in (4.1) gives a differential equation for f ,

f ′(t) = −St Di

h2
max

f (t). (4.3)

It confirms the exponential behaviour of the ice growth towards its static shape that we
observed experimentally (see figure 5a). Subsequently, we can determine the characteristic
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Figure 6. Experimental convergence time h2
max/(Di St) against theoretical convergence time as predicted by

(4.4), for a plane inclination of α = 30◦. Markers stand for the positions along the plane and the colour code is
for T̄2/St.

time τ using the theoretical prediction of the final ice shape given by (4.2),

τ = h2
max

Di St
= h2

w

Di

T̄2

St

(
ki

kw

1
A1

1
Φ ′

1(0)

)2

exp
(

2λ2
1

x − x0

hwPe

)
. (4.4)

Figure 6 presents the convergence time obtained from the measure of hmax as a
function of its theoretical prediction (right-hand side of (4.4)). A direct measurement of
τ from the fit of the data in the inset of figure 5(a) was too noisy to be used. For the
different physical parameters, we use ki = 2.1 and kw = 0.58 W m−1 K−1, hw = 800 µm,
Di = 1.2 × 10−6 m2 s−1, cp,i = 2090 J kg−1 K−1, L = 3.3 × 105 J kg−1 and Pe = 570.
Here λ1, A1 and Φ ′

1(0) are numerically evaluated as 1.68, 0.78 and 2.2, respectively.
This comparison is particularly convincing, since the coefficient between the two times
is always around 0.7, very close to 1. It provides a first validation of the theoretical
prediction of the static ice shape hmax and consequently of the entire model that led
to this prediction. Moreover, it allows us to forecast the characteristic time it takes for
the rivulet to reach its maximum height. Finally, it predicts that this time scales as
T̄2/St ∝ (Tm − T0)/(Tin − Tm)2 indicating that the variation of water temperature is the
main parameter to control the convergence time.

Although the agreement between the model and the experiments is very good with
regards to the approximations made, we observe some discrepancies (the fit of the data
gives a slope 0.7 instead of 1 in figure 6, the results are spread) that can be attributed to
different factors. Firstly, we have taken a constant hw over the experiments while it varies
slightly with the temperatures, witnessing probably a variation of the wetting properties
of the water on ice. Moreover, since the experiments were performed with non-degassed
water, we always observe bubbles in the part of the ice close to the substrate (see for
example the difference of colour in the ice on figure 1(a)). The effect of bubbles in the
ice during experiments of freezing of capillary objects is currently being investigated
(Chu et al. 2019) and composite models can be used to predict the conductivity when
knowing the concentration, organisation and size of the bubbles in the ice (Wegst et al.
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Figure 7. Permanent ice structure profile. (a) Measured hi,0 against T̄ , the dashed line is the best fit of the
data: 1.8 × 10−3 T̄ . Colours stand for the substrate–ice interface temperature T0 and markers for the plane
inclination. Error bars are smaller that marker size. (b) Measured slope β of the ice profile against T̄ . Colours
stand for the substrate–ice interface temperature and markers for the plane inclination.

2010). Typically, a reduction of a factor two in the conductivity would correspond to
20 %–30 % of air in the ice, consistent with the typical front velocity at the beginning
of our experiment ∼5 mm min−1 (Carte 1961). We thus believe that an effective thermal
conductivity ki (or even varying with space) should be considered in the ice to account
more finely for the experimental observations.

4.1.4. Experimental permanent ice thickness profile
After the two regimes of growth fully characterised before – a diffusive one followed by
an exponential relaxation – the ice reaches a static shape. Figure 1 shows two examples of
such a shape, and figure 5(b) is a plot of a typical permanent ice thickness profile. As we
saw, the experimental profile is linear and can be written as hmax(x) = hi,0 + β(x − x0).
Theoretically, this thickness profile is given by (4.2), where the experimental values of x
(x̄ > 0.05, that is x > 2.5 cm) allow us to consider only the first mode and to expand the
exponential term. We thus recover the linear relationship between hmax and x,

hmax(x) ∼ hwT̄
ki

kw

1
A1

1
Φ ′

1(0)

(
1 + λ2

1
x − x0

hwPe

)
(4.5)

= 1.7 × 10−3T̄ + 1.1 × 10−2T̄(x − x0). (4.6)

Figure 7(a) shows the thickness of the ice at the beginning of the linear profile hi,0
obtained on the experimental profiles, as a function of the reduced temperature T̄ . The
data clearly exhibit a linear trend and a fit, represented as a dashed line on figure 7(a),
gives a coefficient 1.8 × 10−3 m. This value, very close to the prediction of 1.7 × 10−3 m,
highlights the very good performance of the model. In figure 7(b), the experimental values
of the slope β are plotted as a function of T̄ . Again, the linear behaviour is recovered and
the dotted line around which all the data gather is β = 1.7 × 10−2 T̄ , of the same order
as the theoretical one. Overall, these two plots show that the model is well suited to predict
the maximum ice thickness profile, even though we had to expand the exponential term.

It is interesting to note that, for a much longer plate, as soon as the rivulet departs from
the linear regime, most of the assumptions made will break down: the slope of the ice layer
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Solidification of a rivulet

will become large and the gravity might rapidly lose its role, changing drastically the flow.
Consequently, the exponential profile will most probably never be reached but as the flow
will rapidly become completely different, the ice structure might exhibit a succession of
humps and hollow or some other unexpected shapes.

4.2. Temperature fields

4.2.1. Transverse temperature profiles
We were able for a few experiments to measure the temperature maps of the rivulet while
flowing, in a small region of the plane. This region is situated between x = 2 and x = 5 cm,
that is roughly at the end of the thermal boundary layer regime and at the beginning of the
free surface regime (where the thermal boundary layer thickness is of the order of the
rivulet height hw). The infrared camera resolution of 50 µm allows us to record around
20 measurement points along z in the water and between 20 and 60 in the ice. Keeping
in mind that the camera records the temperature at the lateral surface of the rivulet, we
compare in the following the experimental results with the theoretical expressions of the
temperatures in the ice and in the water obtained in § 3.4.

The temperature field shown in figure 8(a) is obtained with the infrared camera placed
on the side of the rivulet in the permanent regime. The temperature is colour-coded
according to the colour bar in the left-hand corner of figure 8(a). The line T = Tm = 0 ◦C
is represented in white and corresponds to the ice–water interface. The water, appearing in
red, is flowing from left to right, on the ice, appearing in blue. The ice structure has reached
its static shape, it is not growing anymore. We thus recognise the angle β formed by the
ice structure. A measurement on this picture gives β = 1.7◦, consistent with the prediction
from figure 7(b), considering that T̄ = 1.85 in this experiment. We observe on this map the
transverse temperature gradient across the whole structure: the temperature increases from
T0 = −37 ◦C at the ice–substrate interface to T = Tm = 0 ◦C at the ice–water interface,
and up to the water–air surface temperature, that is close to 24 ◦C, the injection temperature
of the water Tin. The water–air surface temperature will be discussed later.

To go further in the quantitative analysis, temperature profiles can be extracted from
this temperature field. The three graphs on figure 8(b) show the temperature profiles,
corresponding to the temperature map above, at three different positions on the plane:
x = 2, 3.5 and 5 cm. The experimental points are colour-coded in the same way as in
the map. The origin of the z-axis is taken on the metallic plane. As a consequence, the
ice–water interface, localised by the discontinuous temperature gradient, is at a different
height in each graph.

The experimental temperature profile in the ice is mainly linear except in a thin zone
close to the substrate (z � 0.5 mm). This deviation from the linear profile is a signature of
the temperature field in the substrate (Thiévenaz et al. 2019). Consequently, the linear
model given by (3.25) and plotted with a dashed line is very satisfying close to the
ice–water interface and becomes more approximate near the substrate. Note that the
substrate temperature measured with a thermocouple directly on the metal is Ts = −44 ◦C
and the temperature of the ice in contact with the substrate is T0 = −37 ◦C. This difference
is perfectly consistent with the relation between T0 and Ts given by (3.2) that we deduced
from a complete model considering the heat propagation in both the ice and the substrate.

In the water, the experimental temperature profiles, appearing in red, highlight the
thermal boundary layer behaviour: the temperature is almost constant in a zone close to
the free surface. We also notice on the profiles that this zone reduces in size as we go
downstream. The theoretical temperature profiles given by (3.26) are plotted with dashed
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Figure 8. Cross-section temperature profiles and model. (a) Experimental picture of the temperature fields in
the water (red) and in the ice (blue). Here z = 0 corresponds to the substrate–ice interface. (b) Experimental
and theoretical profiles ((3.25) and (3.26)). To plot the theoretical temperature profiles, the velocity U0 was
adjusted to 19 cm s−1 (consistently with experimental estimates), the inlet temperature was set to Tin = 20 ◦C,
the water thickness hw = 0.9 mm to its measured value and the origin of the x-axis was shifted by 3.8 cm.

lines on the same graphs. They superimpose perfectly onto the experimental profiles in the
three cases. Therefore, the model precisely reproduces the flux at the ice–water interface,
the surface temperature and the variation in the water bulk.

Finally, we clearly observe a discontinuity in the temperature slopes at the
ice–water interface, testifying the difference in conductivities of the two media (3.11).
A measurement of the experimental temperature slopes, with a linear fit on the nine first
points in each phase, gives ki/kw = 2.34. This ratio should be equal to 3.6 by taking
the conductivity values for pure ice and water. As we discussed before, we attribute the
difference between our experimental measurement of ki/kw and the one given by the pure
body values to the variation of thermal conductivity in ice due to the inclusion of bubbles.
Consequently, by taking the conductivity of pure water, this experimental measurement
can give us an estimation of the thermal conductivity of our ice in the presence of bubbles,
we find ki = 1.36 W m−1 K−1. Interestingly, this effect could explain the discrepancy
observed in figure 6 for the experiments that last long (blue points). For these long
experiments, we consistently observed a very thick ice layer with a big zone full of bubbles
and one free of bubbles. We can thus expect the thermal conductivity in these experiments
to be smaller and the theoretical convergence time to be reduced consistently.

4.2.2. Comparison of the convective to conductive heat transfer
This section aims at comparing the heat transfer by convection from the ice–water interface
to the moving liquid and by pure conduction (diffusion) to a hypothetically motionless
liquid. This demands the computation of the Nusselt number of our experiment. It is here
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Solidification of a rivulet

defined as the ratio of the conductive to the convective thermal resistance of the fluid
(Incropera et al. 2007),

Nu = 4

∂Tw

∂z
(z = hi)

〈T〉 − Tm

hw

. (4.7)

We define the mean temperature 〈T〉 by expressing the rate at which thermal energy is
advected with the fluid (ρ 〈u〉 hwcp 〈T〉) with integration over the cross-section

〈T〉 =

∫ hw

0
uT dz

hw 〈u〉 , (4.8)

where 〈u〉 = 2U0/3 is the flow mean velocity. This amounts to considering the average
temperature weighted by the fluid velocity. To do so, the numerical integration of
the advected experimental temperature profile is performed assuming the theoretical
half-Poiseuille velocity field used in the previous analysis. Moreover, as discussed in the
previous section, the conductive thermal flux at the ice–water interface (∂Tw/∂z(z = hi)),
can be deduced from the experimental temperature profiles, for different positions along
the plane.

Figure 9 presents with a dashed line (thick) the theoretical prediction of the Nusselt
number Nu derived from the model presented above. As expected from the symmetry of
our model, the Nu dashed curved line converges toward a value of 7.54, which compares
well to the value obtained for a fully developed laminar flow in a Hele-Shaw cell (Incropera
et al. 2007). In this estimation the velocity profile appearing in 〈T〉 is not measured, and
we used the half-Poiseuille field of the theoretical analysis. The experimental values of the
Nusselt number do not correspond perfectly to this 2-D prediction, although the tendency
and the order of magnitude are correct. In fact, we can adapt our 2-D model to obtain
predictions for a 3-D rectangular duct, where the rivulet width would be denoted a and
its thickness (hw for us) denoted b, as shown in the schematic diagram on the top right
corner of figure 9. Our 2-D model corresponds thus to the null aspect ratio (b/a = 0).
The horizontal dashed lines (thin) represent the known asymptotic values found for such
ducts with an aspect ratio of b/a = 20 and 10, from top to bottom, respectively (Shah &
London 2014). Even though we do not clearly reach any asymptotic regime for Nu in our
experiment, we can forecast a plateau value for Nu between 6 and 7. This value is close to
the case of a duct with an aspect ratio between 10 and 20. It shows that in our experiment,
we have a small effect of the 3-D geometry of the rivulet, reducing slightly the efficiency
of the heat transfer as compared with the ideal 2-D model.

4.2.3. Surface temperature
Figure 10(a) shows a typical experimental temperature field measured from above. The
water is injected on the left and flows downward, to the right. The image is taken in
the permanent regime. As indicated on the colour bar on the left of this temperature field,
the positive temperatures (water) are colour-coded in red whereas the negatives ones (ice)
are colour-coded in blue. It is first interesting to notice that we observe a layer of ice wider
than the water layer. A possible explanation for this effect is the difference of wetting
properties of water on metal and on ice (Thiévenaz et al. 2020). Before freezing, the water
rivulet has a given width on the metal (Towell & Rothfeld 1966), then it freezes and an
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b
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z

Figure 9. Nusselt number as a function of the normalised positions on the plane. Experimental data points,
◦ (red); theoretical curve derived from the theoretical water temperature field, ; asymptotic value of Nu
found for a rectangular duct of aspect ratio 1/20, ; asymptotic value of Nu found for a rectangular duct of
aspect ratio 1/10, .

ice structure grows on the metal. The initial ice layer appears in blue on the temperature
field and its width corresponds to the width of the initial rivulet. During the solidification
process, the water retracts while flowing to reach a constant width, as shown in red on the
picture. The width of a rivulet being a balance between the flow rate, the surface tension
and the contact angle, it suggests that there is an evolution of the contact angle during the
experiment (Thiévenaz et al. 2020). We also notice in the picture a small entrance zone
where the width varies along the flow. This is a direct signature of the injection process
with the needle. In the following, the measurements are taken out of this area, in the zone
between 2 and 9 cm, materialised by the rectangle in the picture. Remarkably, the length of
this transient region is similar to the characteristic growth scale of the viscous and thermal
boundary layers, so that we expect our theoretical analysis to be pertinent only outside of
this domain.

Thus, equation (3.31) can be used at the surface (z̄ = 1, that is z = hw) to obtain an
approximation for the surface temperature far from the needle,

Tsurf (x) = Tm + (Tin − Tm)A1Φ1(1) exp
(

−λ2
1

x
hw Pe

)
. (4.9)

After linearisation, we obtain a linear variation of the surface temperature along the plane
(x-axis) and we deduce a theoretical expression for its slope,

dTsurf

dx
= −(Tin − Tm)A1Φ1(1)

λ2
1

hw Pe
. (4.10)

Interestingly, the model predicts that the slope is linear with the injection temperature of
water Tin and does not depend on the ice–substrate interface temperature T0.

In order to compare this prediction to our measurements, we extract experimentally
the surface temperature. We define it as the maximum value for each x-position on the
plane, and it gives the black line drawn in the picture. The corresponding profile is plotted
in figure 10(b) and shows the linear decrease of the surface temperature along the plane
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Figure 10. Surface temperature of the flowing water. (a) Thermal picture of an experiment with Tin = 35 ◦C,
and Ts = −19 ◦C. The colour bar corresponds to the temperatures in the ice and in the water. (b) Surface
temperature measured inside the black square following the black line at the centre. (c) Temperature gradients
of all the conducted experiments against Tin. Markers stand for the angle inclination and the ice–substrate
interface temperature T0 is colour-coded. The dashed line represents the best fit of the data. (d) Rescaled
surface temperature fields θsurf for two different injection temperatures and inclinations as a function of the
rescaled plane position. Here Tin is taken as the maximum value measured by the camera close to the needle.
The dashed line is the theoretical prediction θsurf (x̄) = θw(x̄, 1).

predicted by the model. This linear decrease is retrieved for all experiments. Figure 10(c)
presents the slope of these surface temperature profiles as a function of the inlet water
temperature Tin − Tm for various ice–substrate interface temperatures T0 and two different
angles α. We observe that the slope is naturally stronger for a higher injection temperature
of water and we recover the linear trend with Tin predicted by (4.10). The dashed line is
a linear fit of the data with a prefactor −3.2 m−1 that is compatible with the prediction
(−7.4 m−1). We attribute this discrepancy mainly to the arbitrary choice of the velocity U0
that is present in the definition of the Péclet number and which has been determined within
our 2-D model. Furthermore, we also show with this plot that the decrease of the surface
temperature of water is independent of the temperature of the substrate–ice interface T0,
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as was predicted by (4.10). This emphasises the view exposed in the theoretical part: the
temperature fields in both the ice and the water are disconnected, leaving the ice thickness
as the only parameter ensuring the heat flux continuity.

Finally, figure 10(d) shows four normalised experimental temperature surface profiles
θsurf obtained for two different angles α and two different injection temperatures Tin,
plotted as a function of x normalised by hwPe. We recover the linear variation observed
in 10(b). On the same plot, the black dashed line is the full prediction of the model for
the rescaled surface temperature θw(x̄, 1) as already plotted as a solid line in figure 4.
Once again, there is a very good agreement between the theoretical prediction and the
experimental results, confirming the suitability of the model to characterise the heat
exchange in the frozen rivulet.

5. Conclusion

In this paper we have analysed experimentally and theoretically the formation, growth,
final steady shape and temperature fields of a freezing rivulet resulting from a water thread
flowing down a cold solid plate. We performed experiments varying the inclination of the
plate, its temperature and the water injection temperature.

The model developed is based on the resolution of the heat equations in the ice
(diffusion) and in the water (advection–diffusion). In the ice, we found a temperature field
varying linearly from the substrate–ice interface temperature to the ice–water interface
temperature. In the water, however, the solution is the superposition of different cylindrical
functions which is well approximated by its first term to describe the temperature field far
from the injection needle.

Interestingly, due to the injection condition (constant temperature), a thermal boundary
layer develops, responsible for a temperature gradient in the water and thus a thermal
flux at the ice–water interface. This thermal boundary layer thickens with the distance
from the needle and reaches the free surface of the rivulet, a few centimetres downstream.
Once the boundary layer has established, the heat flux in the water is in fact constant over
time. The Stefan boundary condition then governs the ice layer growth rate as long as the
thermal fluxes from both sides of the ice–water interface are not equal. This is what we
observed experimentally with the existence of three different regimes over time.

In the first one, the ice layer growth is homogeneous along the plane and evolves with the
square root of time. This regime is described in a previous paper (Monier et al. 2020) and
well explained by considering the Stefan boundary condition, neglecting the thermal flux
in the water. However, increasing the ice layer thickness reduces the thermal flux in the ice
and leads inevitably to a second regime where both heat fluxes have to be considered.

We found experimentally that, in this regime, the ice layer thickness converges towards
a maximum with an exponential relaxation rate over time. The water temperature is found
to be the dominant parameter controlling this convergence time, in good agreement with
the model prediction. Finally, when the heat flux in the ice becomes equal to the one in the
water, a permanent regime is reached.

There, the ice layer adopts a striking structure, showing a linear thickening with the
plane position, located after a small transient region close to the needle where the ice layer
is more abrupt. This ice shape is well captured by our model. In order to fully characterise
this permanent regime, we used an infrared camera to record the vertical temperature fields
in the ice and in the water. The good agreement between these measurements and the
developed model highlights the link between the temperature field in the water and the ice
layer shape. In a first zone, close to the injection needle, where the thermal boundary
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layer thickens, the ice layer profile shows a steep increase. After few centimetres, the
thermal boundary layer reaches the water–air interface and the water surface temperature
starts to decrease along the plane. Measurements of the surface temperature confirm a
linear temperature decrease and the model highlights the clear link between this linear
decrease and the linear shape of the ice layer. This link is further confirmed by the
very good agreement between the model predictions for the geometrical features and the
experimental data.

It is important to emphasise that in our approach no adjustable parameter nor
macroscopic heat exchange coefficient were needed to account theoretically for the
experimental results. Overall, by quantitatively comparing the experiments and the model,
our work demonstrates that the dynamics and the final state of a freezing rivulet can be
totally determined by the precise balance between the quasi-static thermal fluxes in both
domains, water and ice.

Supplementary movies. Supplementary movies are available at http://dx.doi.org/10.1017/jfm.2021.41.
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Appendix

The general solution Φn can be written as a sum of two functions ϕ1n and ϕ2n as follows:

Φn(z, λn) = cn

(
ϕ1n(z, λn) − ϕ1n(0, λn)

ϕ2n(0, λn)
ϕ2n(z, λn)

)
, (A1)

where cn is a real constant and the functions ϕin are defined as

ϕ1n(z, λn) = �(D(−λn−1)/2(i
√

2λn(z − 1))) and

ϕ2n(z, λn) = �(D(λn−1)/2(
√

2λn(z − 1))),
(A2)

n λn cn An

1 1.6816 1.28245 0.779039
2 5.66986 3.0843 −0.188224
3 9.66824 13.3959 0.100925
4 13.6677 84.8862 −0.0673737
5 17.6674 707.515 0.0499319
6 21.6672 7311.54 −0.0393499
7 25.6671 90178.6 0.0322913
8 29.667 1.29258 × 106 −0.0272704
9 33.667 2.11122 × 107 0.0235286

Table 1. Values of λn, cn, and An for the non-trivial solutions.
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where the functions Dk(z) are parabolic cylinder functions (Whittaker & Watson 1996).
Table 1 presents the nine first non-zero roots λn with the associated coefficients cn and An.
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