
LOWER RADICALS IN ASSOCIATIVE RINGS 

J. F. WATTERS 

Introduction. Given a homomorphically closed class of (not necessarily 
associative) rings <^#, the lower radical property determined by <Jé is the least 
radical property for which all rings in <Jt are radical. Recently (7) a process 
of constructing the lower radical property from a class ^ of associative rings 
has been given which terminates after a countable number of steps. In this 
process, an ascending chain of classes 

^ = ^#o £ -y^\ Q . . . Q -^m 

is obtained and the property of being a ring in the class ^ w o is the lower 
radical property determined by^#. In Theorem 1 we give another characteri­
zation of the rings in the class ^#x, X G {1, 2, . . . , co0}, and a procedure for 
constructing the lower radical determined by ^£ in an arbitrary associative 
ring is given. This procedure generalizes Baer's construction of the lower 
radical determined by the class of all nilpotent rings. 

In (7) it was shown that for a hereditary class of rings - # , containing all 
zero rings, the class ^ w o = ^ i . In § 4 we generalize this result and show also 
that for any hereditary class *Jt the class e^wo = ^#2- In addition, the class ^#2 
is hereditary. 

The notation in the present paper differs from that in (7) in that the homo­
morphically closed class of rings from which we start out is denoted here by 

^#0 and not *dt\, and in general, the class ^n+i of (7) is ^ n here. 

I am grateful for advice received from Professor P. M. Cohn during the 
preparation of this paper. 

1. The construction. In this paper we are mainly concerned with 
associative rings. However, in this section, we proceed as far as possible 
without assuming associativity. 

Given any ring R we say that a subring S is an n-accessible subring of R if 
there is a chain of subrings of R 

S = So C Si C . . . C Sn = R 

with each St an ideal in Si+1 for i = 0, 1, . . . , n — 1. The 1-accessible sub-
rings of R are the ideals of R. A subring 5 of R is said to be a a-accessible (or 
just accessible) subring if it is ^-accessible for some integer n. 

The mark a has been introduced here as a notational convenience to allow 
us to combine results on both ^-accessible and accessible subrings. The set 
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whose elements are the natural numbers and the mark <r will be written 
{ 1 , 2 , . . . ; a}. 

If <J( is a class of rings, then a ring R is called an ^Jt-ring if R belongs to the 
class ^#. An *Jt-ideal (^-subring) of an arbitrary ring R is an ideal (subring) 
of R and an J^-ring. 

Given a homomorphically closed class of rings ^ , we define, for each 
X £ {1, 2, . . . ; a} and for any ring R, a sequence of ideals as follows: 

(a) Mx.o = 0; 
(b) If a is not a limit ordinal, a = /3 + 1 say, then Mxftt is the ideal of R 

such that M\,a/M\,p is the ideal of R/M\tp generated by all the X-accessible 
.^-subrings of R/M\,$, 

(c) If a: is a limit ordinal, then 

Mx,a = U Mx,p. 

We denote by M\, the ideal Mx,7, where 7 is the minimal ordinal for which 
M\,y = ikfx.7+1. Thus, R/M\ contains no non-zero X-accessible ^-subrings. 
Where it is necessary to avoid confusion, we shall denote the ideal M\>a in a 
ring R by M\,a(R)> We shall now establish some elementary properties of 
the ideals M\>a> 

LEMMA 1. If X is a positive integer and if //• is either a positive integer such that 
\ ^ I* or if n = a, then M\,a Ç M^^for every ordinal a. 

Proof. The result is immediate for a = 0 and a = 1, and we complete the 
proof by induction on a. 

Suppose that a = 0 + 1 and M\tp C M ^ ; then, consider the quotient 
ring R = R/M\,$. Let S/M\,p be a X-accessible ^"-subring of .R. Since 

M^ - S r\ M,3 -\SC\ M^/Mxj ' 

we have that [S + M^^/M^^ is an ^-subr ing of R/Mptp. Since S/M\,$ is 
X-accessible in fi, the ring [S + Mp^/M^^ is X-accessible in R/M^^. How­
ever, X-accessible subrings are /x-accessible subrings; therefore 5 + MMfj8 C M^,a. 
But S/M\,p is any X-accessible ^-subr ing of R and M^^ is an ideal of R, thus 
MM,a ^ ¥Xtfl. 

If a is a limit ordinal and the result is proved for all /3 < a, then from defini­
tion (c), Mx,a Q M^a. 

COROLLARY 1. In any ring R we have the chain of ideals 

Mi Ç M2 Q . . . ç Ma. 

The following two lemmas are also proved by induction arguments using 
the isomorphism theorems together with the fact that <Jé is a homomorphically 
closed class of rings. We omit the proofs. 
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LEMMA 2. Let X £ { 1 , 2 , . . . ;o-}. / / / w a w ideal in a ring R, then, for every 
ordinal a, 

MKa(R/I) 3 [MxAR) + I]/I. 

LEMMA 3. Let X 6 {1, 2, . . .}. If I is an ideal in a ring R, then, for every 
ordinal a, 

Mx,a(I) Ç Af x + i , a (2?)n / . 

Also, M,,a(I) QMa>a(R) H 7 . 

For each X £ {1, 2, . . . ; o-} we define a class of rings *Jt\ by saying that 
R 6 Jty! if and only if R = MX(R). From Corollary 1, 

Jt C ^ V C ^ 2 ' C . . . Ç JtJ. 

From Lemma 2, each class ^Jt\ is homomorphically closed. If I is an ideal in 
a ring R and Ma(I) = / , then, by Lemma 3, I C Ma(R). Finally, as we have 
already noted, the quotient ring R/M(T{R) contains no non-zero accessible 
^-subr ings . Hence, the ring R/Mff(R) contains no non-zero ^«/-ideals. 
Therefore, the property of being an ^ Z - r i n g would be a radical property if, 
for every ring R, Mff(R) G *JtJ. This we are unable to prove in general. For 
associative rings we have an indirect proof which is the subject of the next 
section. 

2. The lower radical determined by <Jé. In the remainder of this paper, 
all rings are assumed associative. 

Given a homomorphically closed class of rings ^é, we define *dt\ to be the 
class of rings R such that every non-zero homomorphic image of R contains 
a non-zero ~^-ideal. I t is clear that the class^Jé\ is homomorphically closed. 
An ascending chain of classes 

^#o S ^ \ £ . . • 

is obtained by setting ^ # = ^ 0 and defining ^n+\ = (^n)u where 
n = 0, 1, I t is known (7) that if J/ = U » - o ^ » , t h e n ^ i = J/2 = 
The class ^¥\ determines the least radical property for which all ^#-rings are 
radical. In (7), the class ^¥\ is denoted by ~-#wo, but here, for convenience, it 
is denoted by <Jéa. 

Also, the class <Jén of the present paper is denoted by ^ w + i in (7). The reason 
for these changes is that in Theorem 1 we show that a ring R is in the class 
^#x, X G {1, 2, . . . ; or} if and only if MX(R) = R. 

The following Lemma 4 is a restatement of (7, Lemma 2) and the proof 
is omitted. Our Lemma 5 has been obtained independently by Heinicke (5), 
and therefore we omit a proof here. 

LEMMA 4. If S is an n-accessible ^-subring of a ring R, then S', the ideal of R 
generated by S, is an J^_ i - rwg. 
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LEMMA 5. A ring R is an^\-ring, where X Ç {1, 2, . . . ; a}, if and only if 
every non-zero homomorphic image of R contains a non-zero X-accessible ^-subring. 

THEOREM 1. Let X Ç {1, 2, . . . ; a). A ring R is an ^\-ring if and only if 
MX(R) = R. 

Proof. If R belongs to ^ \ and M\ ^ R, then by Lemma 5 the ring R/M\ 
contains a non-zero X-accessible ^#-subring. This contradicts the definition 
of M\. Hence, Mx = R. 

Now suppose that R = M\ and I is an ideal of R, properly contained in R. 
Then there is an ordinal a such that M\>a C I but M\>a+i $£ I. Hence, there is 
a X-accessible subring 5 of R such that S/M\,a is a non-zero ^#-ring and 
S Ç~ I. Now [S + / ] / / is a homomorphic image of S/M\>a and ̂ # is homo-
morphically closed; therefore, [S + / ] / / is a non-zero X-accessible ^ - subr ing 
of R/I. Thus, every non-zero homomorphic image of R contains a non-zero 
X-accessible ^-subr ing , and hence, by Lemma 5, R G ^#\ . 

I t follows from this theorem that for each X G {1, 2, . . . ; a] the class 
^ \ discussed in the first section of this paper coincides with the class ^ \ 
discussed here. From now on we shall denote this class by ^é\. Now the 
property of being an^^- r ing is the lower radical properly determined by^# . 
We use this fact to prove the following theorem. 

THEOREM 2. The ideal Ma in a ring R is the ^„-radical of R. 

Proof. As we noted at the end of § 1, this theorem is proved once we have 
shown that Ma G *Jtv. 

Let K denote the ^ f f-radical of Ma and suppose that K ^ Mff. Since 
K 7± Ma, there is an ordinal a such that Mff,a(R) Q K but Ma,a+1(R) g K. 
LetS/Ma,a(R) be an accessible ^-subr ing of R/M,,a(R). Then T = [S + K]/K 
is an accessible ^#-subring of Ma/K. By Lemma 4 the ideal Tr of Ma/K 
generated by T is an^^- r ing . However, Ma/K is ̂ #ff-semisimple, thus T' is 
the zero ideal. This implies that 5 Ç K. Therefore, every subring S of R such 
that S/Ma,a{R) is an accessible ^ -subr ing of R/Mff)a(R) is contained in K. 
Now the ring K is in fact an ideal in R (1, Theorem 1). Hence, Mff>a+i(R) CI K. 
This is a contradiction ; therefore, K = Ma and Ma G ^a-

Frequently, the sequence of classes 

terminates after a finite number of steps. 
If ^Jé is the class of all nilpotent rings, then ^#i = <^a and the ideal M\(R) 

is the Baer lower radical of the ring R. In (5), Heinicke gives an example of 
a class ^Jé for which this chain is strictly increasing. 

In the next lemma we relate the termination of the sequence of classes to 
the termination of the sequence of ideals 

M i c M 2 ç . . . ç Ma 

in a ring R. 
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LEMMA 6. If d is a positive integer such that*Jtd = *Jt0, then, in any ring R, 
Md+1 = Ma. 

Proof. We know that Mff £ « / , , and therefore i f^# a = ^d, we have that 

The inclusion Md+i Ç Ma is given by Corollary 1. Suppose that the inclusion 
is proper. Then Ma/Md+i is a non-zero *Jifd-rmg. Hence, Ma/Md+i contains 
non-zero ^-accessible cy#-subrings, which implies that R/Md+i contains 
non-zero (d + 1)-accessible ^-subr ings . This is a contradiction, therefore 
Md+l = Ma. 

Remark 1. If Md+i = Ma in every ring R, then using Theorem 1 we see that 
^ a = *Jtd+\. However, as we shall now show, the classes <Jéa and <Jtd can 
be distinct. 

Let <J£ consist of all homomorphic images of the zero ring on the infinite 
cyclic group. If R is a ring with M2 9e Ma, then R = R/M2 is a ring which 
contains no non-zero 2-accessible ^-subr ings but does contain non-zero 
accessible ^-subr ings . If 5 is one such subring, then S', the ideal of R generated 
by S, is nilpotent. This follows from a lemma of Andrunakievic (2, Lemma 4). 
Hence, some power of S' is a zero ring and also an ideal in R; that is, R con­
tains an ideal N with N2 = 0. However, N will contain as an ideal a non-zero 
c^-ring which will then be a non-zero 2-accessible ^^-subring of R. This is a 
contradiction; therefore M2 = Ma in every ring R. However, the classes^Jé\ 
and --Jta (= ^ 2 ) are distinct; see (7, p. 421). 

Remark 2. The result in Lemma 6 is best possible in the sense that there are 
classes ^Jé such that ^#1 = *Jt„ but for some ring R, Mx ^ Ma. 

Let *Jt be the class consisting of the ring {0} and the zero ring on the group 
Z(pœ), where p is a prime. Then ^1 =^a = the class of all rings whose 
additive groups are divisible ^-groups. For if R £ ^#1 and D is the maximal 
divisible ^-subgroup of R+, the additive group of R, then D is an ideal in R and 
R/D G - ^ 1 . If R/D is non-zero, then it contains a non-zero ^#-ideal, and hence 
(R/D)+ has a non-zero divisible ^-subgroup. This contradicts the maximality 
of D, therefore R/D = {0} and R+ is a divisible ^-group. All such rings are 
zero rings by a theorem of Szele (4, Theorem 71.1). 

Let S = A 0 B, where A is the ring given by 

{a0, ai, . . .: pa0 = 0, pai+i = au at
2 = 0, i = 0, 1, . . .} 

and B is the ring given by 

{fro, 61, . . .: pbo = 0, pbi+1 = bi, bt
2 = 0, i = 0, 1, . . .}, 

where p is a prime, Thus, A and B are isomorphic to the zero ring on the group 
Z(pœ). Let 6 be the endomorphism of 5 + defined by 

a fi = btl bfi = di-i for i = 1, 2, . . . , 
and 

a06 = fro, fro0 = 0. 
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Denote by K the ring of endomorphisms of S+ generated by 6 and / , the 
ident i ty endomorphism. Every endomorphism in K is uniquely expressible in 
the form ai + fid, where a and (3 are a rb i t rary integers. 

Consider the set 

R= {(s,<l>): s £ S,<l> £ K}. 

T h e set R can be given a ring s tructure by defining on R a componentwise 
addit ion and multiplication by 

Ol, 0l)(>2, 02) = ($102 + *201, 0102), Si, S2 G 5, 01, 02 G K. 

T h e ring R is commutat ive and if the subring {(s, 0) : 5 £ 5} is identified 
with 5 , then S is an ideal of R such t h a t i ^ /5 = K. 

W e assert t h a t the ring R contains no non-zero ^ - i d e a l s so t ha t M\ = 0. 
Suppose t h a t C is an ^ - i d e a l of i? and C is given by 

{c0, ci, . . .: £co = 0, pci+i = cu Ci2 = 0, i = 0, 1, . . . } . 

I t is easy to see from the s t ructure of the addit ive group of R t h a t C Q S. 
Since pco = 0 and c0 £ S, we have t ha t 

Co = ya0 + 8b0, 

where y and ô are integers, not both zero, such t ha t 0 ^ y, 8 < p. Since C is 
an ideal in R, 

Cod = yb0 G C. 

Thus , if y ^ 0, b0 G C. On the other hand, if 7 = 0 we have tha t 8^0 and 
£0 = 5&o. Again b0 Ç C, therefore we can choose c0 = b0 in either case. 

Now, p2Ci = 0 and C\ £ S, thus 

Ci = Yi^i + ôi&i, 

where 71 and 5i are integers, not both zero, such t ha t 0 ^ 71, <5i < p2. 
However, 

b0 = c0 = pci = yia0 + 8ib0] 

therefore 71 = 0, and 5i = 1. And then 

C\B = bid = a0 £ C. 

Thus , C contains both ao and 60. This implies t ha t C contains p2 — 1 non-zero 
elements of addit ive order p, which is a contradiction. Therefore, R contains 
no ^"- ideals and M\ = 0. 

I t is clear t h a t M2 2 S since 5 is an ideal in R and both A and B are ideals 
in 5 . B u t then the addit ive group of R/S contains no divisible subgroups; 
thus M2 = S. 

Hence, *Àt is a class of rings with <Jé\ — ^(a bu t R is a ring with M± 9e Ma. 
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3. The degree of a class ^ # . All classes discussed in this section are 
homomorphically closed. If <Jt is a given class of rings (not a radical class) 
such that, for some integer d ^ l ,~#d = -^z+i, but^#d_i T^^CL, then we shall 
call d the degree of ~#. If ^ is a radical class, then we shall say t h a t ^ has 
degree zero. 

LEMMA 7. ^4// non-radical classes of idempotent rings are of degree one. 

Proof. L e t ^ be a non-radical class of idempotent rings and suppose that 
R G tJt\<Jt\. Then the non-zero ring R = R/Mi contains no non-zero 
^-ideals but does contain non-zero accessible ^#-subrings. Let 5 be one such 
subring and S' the ideal of R generated by S. Again from a lemma of 
Andrunakievic (2, Lemma 4), some power of S', S'k say, is contained in S. 
Hence, 

5 J Ç 5 " Ç 5 = Sk. 

Therefore, 5 is an ideal in R which is a contradiction. Thus, ^ # is of degree 
one. 

THEOREM 3. Let I be an index set. Let f£ u i G I, be classes of degree dt and 
suppose that sup di = d — 1, where d is an integer. If the classa contains 
each &i and if each <J{-ring is an extension of an <^rring by an f£rring for 
some i, j G I, then the degree of^ is at most d. 

Proof. Let R be an element of *J£a and suppose that Md ^ R. Then 
R = R/Md contains a non-zero accessible ^ - subr ing S/Md but no non-zero 
^-accessible ^#-subrings. The ring S/Md contains an ideal J/Md such that 
J/Md G &i and S/J G - ^ for some ij G L 

If J/Md is non-zero, then R contains non-zero accessible «^-subrings, 
and therefore the ( «^),-radical of R is non-zero. Then, by Lemma 6, the 
ring R contains non-zero (dt + 1)-accessible -^-subrings. Since dt + 1 S d 
and ^i Ç ^ , we have that R contains non-zero ^-accessible ^-subr ings . 
This is a contradiction; hence / = Md. 

We now have that S/Md G ^ which means that the ( ~S^^-radical of R 
is non-zero. As in the preceding paragraph, this leads to a contradiction. 
Therefore, R = Md and, by Theorem 1, R G - ^ . Hence ^ a —^a-

COROLLARY 2. If the classes °S^ are as in Theorem 3 and ^é = U °^, then 
the degree of ̂  is at most d. 

Remark 3. The result in Theorem 3 is again best possible. 
Let «S^ be the class consisting of the ring {0} and the zero ring on the 

group Z(pco)J p a prime, and let =Ŝ 2 be the class of homomorphic images of 
the ring K of Remark 2. The class ^ix is of degree one. The ring K has an 
identity element, thus every ring in ~S 2̂ is idempotent. By Lemma 7 the 
class o5 2̂ has degree at most one. Let ~ # = &ix VJ ~£̂ 2 and let R be the ring 
constructed in Remark 2. We have already seen that R contains no «5^-ideals 
(=^0). If R contains a non-zero <=^2-ideal J, then J contains a non-zero idem-
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potent element. However, the only non-zero idempotent element of P is the 
identity element, therefore J = P . Since R g ~^2, this is a contradiction, 
and thus Mx = 0. Now M2 => (Ltl)2 = S and R/S G i?,2 l hence Jkf2 = P . 
Therefore R G ^ 2 \ ^ i and ^ is of degree two. 

4. Hereditary lower radicals. Throughout this section, ^ will denote a 
homomorphically closed class of rings. The c l a s s a is said to be hereditary if 
every ideal of an^#-ring is a n ^ - r i n g . A c l a s s a is called a P\{P2)-class if 
given any ring R and any 1 (2) -accessible ~#-subring 5 of P , then every 
principal ideal (x)B of P contained in 5 is an <Jt-ring. I t is clear that every 
P2-class is a Pi-class, but I do not know of a Pi-class which is not a P2-class. 
The P2-classes correspond to the locally-hereditary preradicals of Michler (6) 
and if ^ is a Pi-class, then the property of being an ^#-ideal is a property 
which is hereditary for principal ideals in the sense of (6, p. 20). Every heredi­
tary class is a P2-class but not conversely. The class of all weakly regular rings 
(that is, rings in which every right ideal is idempotent) form a P2-class which 
is not hereditary (6, Remark 2.12). 

Our main aim in this section is to show that a Pi-class of rings is of degree 
at most two and that such a class determines a hereditary lower radical. 

THEOREM 4. If ^M is a Pi-class of rings, then^i is a hereditary class. 

Proof. Let R G cv#i, let / be an ideal of P , and Ii an ideal of i", properly 
contained in I. Since R G ^#i , there is a non-zero ^ - idea l J in R. 

If J C\I &IU then [J r\ I + Ii]/Ii is a non-zero ideal of I/Ij. Let 
x G J r\ I\Ii. Then (x)B C J, and therefore, since <Jé is a Pi-class of rings, 
(x)B G <Jé. Hence, the image of (x)B, under the natural homomorphism from 
J C\ I onto [J r\ I + Ii]/Ii, is a non-zero^#-ideal of i*/i"i. 

If J r\ I C ix, then ^ / , the set of ideals of P whose intersection with / is 
contained in Ii , is non-empty. By Zorn's lemma, the set f has maximal 
elements. If N is a maximal element of J?, then, since 7i C 7, the ideal iV is 
properly contained in P . Hence, R = P/TV is a non-zero homomorphic image 
of P , and thus contains a non-zero ~^-ideal, J£/iV say. Since I f~\ N Ç^ IiC\ K, 
there is a natural homomorphism from [I Hi K + N]/N onto [ 7 P l Z + A] /A. 
By the maximality of N, the quotient [7 Pi K + Ji] /Ji is non-zero. Let 
y G / H i £ \ / i and put J = y + iV. Then (y) s Q K/N; therefore, since 
Jt is a Pi-class of rings, (y)s G - ^ . Hence, the image of (y)B in 

[/ r\ K + AI/JX 

is a non-zero ^ - i dea l of J / / i . 
Therefore, every non-zero homomorphic image of I contains a non-zero 

^-ideal, hence I is an^#i-ring. Thus, ^ i is a hereditary class. 

Remark 4. Any Pi-class ^ , which is also a radical class, is a hereditary 
class. For if ^ is a radical class we have that ^ # = ^#i, and therefore, by 
Theorem 4 , ^ is hereditary. 
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The following three results generalize (6, Lemmas 2.13 and 2.14 and 
Theorem 2.20(a)). The results are stated here in the context of homomor-
phically closed classes of rings rather than that of preradicals. 

Let c3T be any class of rings. A class of rings *Jt is said to be inductive over S£ 
if for any ring R and any &-ideal X of R, the sum of all the ^ - idea l s of R 
contained in X is a n ^ - i d e a l of R. \i^é 2 &, then^# is inductive over <3T. 

LEMMA 8. Let^K be inductive over 2?, the class of all zero rings. If A is a 
3?-ideal in a ring R, then the sum of all the<Jt'-ideals of A is an<J£-ideal of R. 

Proof. Let I be an <Jt-ideal of A and r 6 R. The map p: x —-» xr, x 6 I, is a 
homomorphism from I onto Ir since Ir C A and A2 = 0. For these same 
reasons, Ir is an ideal in A and therefore, since*Jt is homomorphically closed, 
i> is a n ^ - i d e a l of ^4. Similarly, si, s £ P , is a n ^ - i d e a l of A Thus, if 5 is 
the sum of all the~#-ideals of -4, 5 is an ideal of R. 

In the ring A, S is a 2f-ideal and, s ince^#is inductive over<2T, the sum of 
all the^#-ideals of 4̂ contained in S is an^ - idea l of A However, 5 is the sum 
of all the^#-ideals of A, thus S is an ^-ideal of 4̂ and, in particular, an 
^ - r i n g . We have proved above that S is an ideal of R, hence this shows that 
5 is an tJé-ideal of R. 

COROLLARY 3. Let^Âf be any class inductive over the class 2?. If A is a 2? -ideal 
in a ring R and A contains no non-zero<yk'-ideal of R, then A contains no non-zero 
^-ideals. 

THEOREM 5. If<Jt is a P2-class of rings, inductive over 3?, then<Jé is of degree 
at most one and^i is hereditary. 

Proof. T h a t ^ ^ i is hereditary follows from Theorem 4 and the fact that a 
P2-class is a Pi-class. 

I f ^ # is of degree greater than one, then there is a ring R £ ^ # 2 \ ^ i . By 
Theorem 1, the ideal Mx is properly contained in R. Hence, R = R/Mi is a 
non-zero ~#2-ring containing no non-zero ^-ideals. 

Since R is a non-zero ^#2-ring, it has a non-zero 2-accessible^-subring / . 
Thus, I is an ideal of an ideal Ii of R. Denote the ideal of R that / generates 
by I'. Then I' C Ix and by Andrunakievic's lemma (2, Lemma 4), P 3 Ç / . 

If P 3 9^ 0, then we have a non-zero element x in In and 

W Ë Ç / Ç / I Ç R. 

Since~# is a P2-class, (X)R is a n ^ - r i n g and R contains a non-zero^-ideal. 
This is a contradiction; therefore I'3 = 0. 

Now T contains the non-zero <J?-ideal I and ^ is inductive over 3?'; 
therefore, if P 2 = 0, we have, from Lemma 8, that R contains a non-zero 
^é-ideal. This is a contradiction; thus P 2 ^ 0. Therefore P 2 is a non-zero 
2?-ideal of P and, by Lemma 8, it contains no non-zero ^-ideals. 
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Denote IV by / . The ideal I'2 = / + RJ, thus J ^ 0. The ring / is an ideal 
in I i and contained in I. Let x be a non-zero element of / and consider the 
principal ideal of Ii, (x)7l. We have that (x)I1 Q I Q Ii and, since ^ is a 
Pi-class, (x)ii G ̂ # . However, (x)7l Ç / Ç J'2 and (x)7l is an ideal in / ' ; 
thus T2 contains a non-zero ^#-ideal. This is a contradiction; therefore 
*>#2 = ^$i ana^f is of degree at most one. 

Remark 5. This result generalizes (7, Theorem 2) for a hereditary class 
containing all zero rings is a P2-class inductive over 2\ 

LEMMA 9. Let & be a class of rings such that every accessible subring of an 
S^-ring X is an ideal of X. Then, given a class ~#, the class *Jt\ is inductive 
over 2f. 

Proof. Let I be an3£-ideal of ring R. Put K = X)X<EA^X, where {K\\ X G A} 
is the set of all ^#i-ideals of R contained in I. 

Suppose that U is an ideal of K and U ?* K. Then there is a K^, ^ A, 
such that K» <£ U. Hence, [ U + K»]/ U = KJ U Pi i£M is a non-zero^#i-ring. 
Therefore, [U + K^/U contains a non-zero^#-ideal, F/Z7 say. 

Now F Ç [/ + ZM Ç I Ç 7 with each ring an ideal in its successor. 
However, 7 Ç <3T, therefore by the given property of $£ we have that V is an 
ideal in K. Hence, V/U is a non-zero ̂ #-ideal of K/U. 

Therefore, every non-zero homomorphic image of i£ contains a non-zero 
^#-ideal. This proves that X G ^é\ and that~#i is inductive over<3T. 

As examples of classes of rings satisfying the above condition on 9? we 
have any class of zero rings and any class of hereditarily idempotent rings, 
that is, rings in which every ideal is idempotent. 

THEOREM 6. If^éis a Pi-class of rings, then the lower radical class determined 
by^ is-Jti and this is hereditary. 

Proof. By Theorem 4, b o t h ^ i a n d ^ 2 are hereditary. By Lemma 9 we have 
that ^#i (which is hereditary, and therefore, in particular, a P2-class) is 
inductive over <2T. Finally, by applying Theorem 5 to the c l a s s a i we have 
that c^#2 = - ^ 3 . Hence, *Jti is the lower radical class determined by the class ~-#. 

As a corollary we have the following result obtained independently by 
Armendâriz and Leavitt (3). 

COROLLARY 4. The lower radical class determined by a hereditary class ^Jé is 
dé<i and this also is hereditary. 
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