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A SUFFICIENT CONDITION THAT AN OPERATOR 
ALGEBRA BE SELF-ADJOINT 

HEYDAR RADJAVI AND P E T E R ROSENTHAL 

1. I n t roduc t i on . It is well-known, and easily verified, that each of the 
following assertions implies the preceding ones. 

(i) Every operator has a non-trivial invariant subspace. 
(ii) Every commutative operator algebra has a non-trivial invariant sub-

space, 
(iii) Every operator other than a multiple of the identity has a non-trivial 

hyperinvariant subspace. 
(iv) The only transitive operator algebra on^f is 33 Çtf?). 

Note. Operator means bounded linear operator on a complex Hilbert space J^7, 
operator algebra means weakly closed algebra of operators containing the 
identity, subspace means closed linear manifold, a non-trivial subspace is a 
subspace other than {0} and J^ , a. hyperinvariant subspace for A is a subspace 
invariant under every operator which commutes with A, a transitive operator 
algebra is one without any non-trivial invariant subspaces and 33 $f) denotes 
the algebra of all operators on ffl. 

All of these statements are true if ffl is finite-dimensional; (iv) is Burnside's 
Theorem [12, p. 276] in this case. Statement (i) is trivially true in the case 
where c ^ i s non-separable. It is not hard to show that the truth of (iv) in the 
non-separable case would imply its truth in the separable case. (Use the fact 
that whenever 21 is a transitive operator algebra, so is SI 0 33 p O for any 
Hilbert s p a c e d ; cf. the remarks in the second paragraph of [16].) Each state
ment is known to be true under various additional hypotheses; e.g., for (i) see 
[1; 3; 10; 14; 25], for (ii) and (iii) see [7; 11; 19; 21; 25]. Arveson [2] showed 
that (iv) is true with the additional hypothesis that the algebra contains a 
maximal abelian von Neumann algebra (another proof is in [18]) or the 
unilateral shift, and (iv) has subsequently been verified in certain other cases 
(cf. [16; 17]).i 

In general it seems likely that (i) is false and hence that the rest are too. In 
particular, then, a counter-example to (iv) is to be expected. However no 
counter-example has yet been found in spite of a great deal of interest in this 
problem during the past five years or so. 

Received July 8, 1970. 
*R. G. Douglas and Carl Pearcy have recently shown [8] that (iv) is true with the additional 

hypothesis that the algebra contains a Hermitian operator which is not of uniform multiplicity 
Ko. 
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OPERATOR ALGEBRA 589 

In this paper we introduce another assertion in this chain. 

Definition. An operator algebra 31 is Hermitian if it (is weakly closed, con
tains the identity and) has the property that every invariant subspace is 
reducing (i.e., w h e n e v e r ^ is invariant under 31, then ^f1 is invariant under 31). 

Clearly every self-adjoint algebra (i.e., von Neumann algebra) is Hermitian. 
We consider the converse. 

(v) Every Hermitian operator algebra is self-adjoint. 
It is easily seen that (v) implies (iv). For if St is a transitive operator algebra 

then 31 is Hermitian; if we assume (v), then 31 is a von Neumann algebra with 
trivial commutant and hence 3Ï = S3(^) . Thus, in view of the above remarks, 
(v) is probably false in general. We feel that a counter-example to (v) would be 
a good beginning to a counter-example to each of the preceding assertions and 
thus would be very useful. We have been unable to find such an example, 
however. In fact, we generalize Arveson's Theorem to show that (v) is true with 
the additional hypothesis that the algebra contains a maximal abelian von 
Neumann algebra. We also show that (v) is true in certain other cases, 
including the finite-dimensional case. Special cases of (v) such as these may 
prove useful even if (v) turns out to be false in general. 

One special case of (v) is already known: Sarason [24] has shown that an 
Hermitian operator algebra consisting of normal operators is self-adjoint; see 
also [18, Remark (iii)]. 

2. Some basic results. If A is an operator and^#is an invariant subspace 
of A, then A \ *Jé denotes the restriction of A to *Jé. 

LEMMA 1. If 31 is an Hermitian operator algebra and if P is a projection which 
commutes with 31, then every invariant subspace of W[P3f is reducing (in P&). 

Proof. L e t ^ ^ b e an invariant subspace of 3I|jy^. Then ^ is also invariant 
under 31 and thus ^M1- is invariant under 3Ï. Therefore P^L is invariant under 
3 l | P ^ and Ptf QJt = PJKK 

Note that Lemma 1 does not imply that the restriction of an Hermitian 
operator algebra to a reducing subspace is Hermitian. For this it needs also to be 
established that 3I|PJ^ is weakly closed. For von Neumann algebras this is the 
case [6, p. 16], but we have been unable to prove it for Hermitian operator 
algebras. 

THEOREM 1. If 31 is an Hermitian operator algebra on ^f and if there exists a 
collection {^Jé^n

i=1 of pairwise-orthogonal reducing sub spaces for 31 such that 
$F = YJ\=\ ®^i and %\*dti = ^&(^i) for all i, then 31 is self-adjoint. 

Proof. The proof is by induction on n. The theorem is true for n = 1 since 
33 («^) is self-adjoint. 

Assume that the theorem is known for n — 1. We distinguish two cases. 
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590 H. RADJAVI AND P. ROSENTHAL 

Case (a). There exist positive integers j and k and an algebra isomorphism <j> 
of S&^Jfj) onto SB(e^) such that if A 6 21 then , 4 | ^ = 0 ( ^ [ | ^ ) . 

Since <j> is an algebra isomorphism, there exists a one-to-one bounded linear 
operator 5 mapping*Jt^ onto^é k such that 4>(B) = SBS*1 (cf. [20, Theorem 
2.5.19]). 

Now let < #̂ be the subspace of Ji? consisting of all vectors of the form 
]C^=i© xi such that Xi G ^ i and xfc = SXJ. A trivial computation shows that 
^ # is invariant under 31 and therefore, since 21 is Hermitian,*^1 is also invariant 
under 21. Another computation shows t h a t ^ - 1 consists of all vectors of the 
form ]C?=i © Xf such that x* = 0 for i 9e j , k and — S*xk = Xj. The invariance 
of JéL under 21 then gives -S^SBS'1 = - £ S * for all 5 G 93 {JK$). Thus 
5*513 = ^5*5 for all B Ç 93 (~#?). Hence 5*5 = X/ for some positive number 
X. Let U = 5/VX.Then J7is unitary and 0 (5 ) = UBU~l iov all B £ 9 3 ( ^ ) . 

Now consider 2I| t/^
1 '- This algebra is weakly closed, for if 

A1§a © . . . e A^lta © ^+i ,« © . . . © An,a 

is a net in 2I| t/^
J- converging weakly to 

A i © . . . © i4*_i © 4*+! © . . . © An% 

then the net 

Alta © . . . © ^,_1,« © UAj.aU-1 © i4 t + i .a © . . . © An,a 

is in 21 and converges weakly to 

Ai © . . . © AM © UAjU-1 © ^ , + i © . . . © An. 

Hence 

A1 © . . . © AM © Ak+1 © . . . © An 

is in 2 l | ^ ± . 

Also, Lemma 1 implies that every invariant subspace of 211^^-1 is reducing. 
Hence 2l|^fc-

L is Hermitian and by the inductive hypothesis 2Ï|̂ #/C-L is self-
adjoint. Therefore, since 2Ï is the set of all operators of the form 

A1 © . . . © AM © UAjU-i © Ak+1 © . . . © An 

such that 

At © . . . © AM © AM ® . . . © 4» 

is in 211*/^-1, 21 is also self-adjoint. 

Case (b). There exists no such isomorphism. Then for every pair (i,j) of 
positive integers less than or equal to n there exists an A £ 21 such that exactly 
one of the two operators A \ *Jtt and A | <^#; is zero (since it follows from the fact 
that 21 is an algebra that every map (j> from 93 (^#0 to 93 (^j) defined by 
<t>(A\tÀfi) = A\*Jtj for A G 21 is an algebra homomorphism). 

We first show that there exists an A £ 21 such that A\^t is non-zero for 
exactly one integer i. To do this choose a non-zero A £ 21 for which the number 
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OPERATOR ALGEBRA 591 

of integers i such that A\*dfi = 0 is maximal. We must show that this maximal 
number is n — 1. By permuting the indices if necessary we can assume that A 
has the form 

i i 0 . . . 0 4 © O © . . . © O , 

with A i 5* 0 for i = 1, . . . , m. 
Urn > 1, then, by interchanging indices if necessary, we can assume that 21 

contains an operator B such that B\ *Jé\ ^ 0 and B\*Jlm = 0. Then the set J of 
all C 6 33(c/^i) such that C = C\*Àt\ for some C G 21 with C\*J£m = Ois a two-
sided ideal in 93(^#i) different from {0}. Hence, as is well-known (cf. [15, 
p. 292]), J contains all finite-rank operators. Now let^X denote the set of all 
operators C £ 93 ( ^ i ) such that C = C\*Jt\ for some C £ 21 with C\*JKt = 0 
if i > m. T h e n ^ is also a non-zero two-sided ideal in 93 (~^i) and, therefore, 
<f also contains all finite-rank operators. Now let P be any non-zero finite-rank 
projection in 93(^#i). Then P Ç J C\ </ and, therefore, there exist operators 
in 21 of the form 

pe^2®.. .@4®o©.. ,eo 
and 

p 0 5 2 © . . . © o © Bm+1 © . . . e Bn. 

Thus the product of these two operators 

p © A2B2 e . . . e A^B^ © o ©... © o 
is in 21, contradicting the maximality of m. 

Therefore, m — 1 and^/ is the ideal consisting of all operators C Ç 93 (^#i) 
such that C|«/^i = C for some C (E 21 with C\*J£i = 0 for i > 1. Now it is clear 
t h a t ^ is weakly closed and h e n c e ^ = 93(~#i). Therefore, if A± © A2 0 . . . 
© 4̂W is in 21 for some choice of A t £ 93 (^0» then 0 © yl2 © . . . © An\s also 
in 21. It follows that 2I| <J£iL is weakly closed and thus, by Lemma 1, is Hermitian. 

By the inductive hypothesis, then, 2 I | ^ i ± is self-adjoint, and the relation 
between 21 and 2ï|e^iJ- implies that 21 is self-adjoint. 

In particular, Theorem 1 applies in the case where every <Jéi is finite-
dimensional (the proof can be somewhat simplified in this case) ; this leads to a 
proof that (v) is true in the finite-dimensional case. 

THEOREM 2. Every Hermitian algebra of operators on a finite-dimensional space 
is self-adjoint. 

Proof2. Let 21 be an Hermitian operator algebra on a finite-dimensional space 
$?. If 21 has no invariant subspaces, then the result follows by Burnside's 
Theorem. If 2t has an invariant subspace, then it has a minimal one, say ^ i , 
s i n c e ^ is finite-dimensional. By Lemma 1, 2I|«^#iJ-is Hermitian.Then 2l|~#i-1 

2As Dr C. L. Olsen has kindly informed us, Theorem 2 follows immediately from known 
results (cf. [4, p. 127]). 
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has a minimal invariant subspace, say *^#2. Proceeding in this manner we 
obtain a decomposition YA=I ®^i of Jtif such that 311«/^ is transitive for each 
i. By Burnside's Theorem %\*Jti — 3 5 ( ^ 0 for each i\ hence Theorem 1 gives 
the result. 

The next theorem shows that statement (v) comes close to reducing to 
statement (iv) for algebras containing compact operators; the proof is very 
similar to the proof of [22, Theorem 2]. 

THEOREM 3. If 21 is an Hermitian operator algebra and if 21 contains a compact 
operator whose nullspace is finite-dimensional, then there exists a countable 
collection {*J£i} of pairwise-orthogonal reducing subspaces for 21 such that 
ffl = S © ^ i and 311«^* is transitive for each i. 

Proof. Note that here ffl must be separable; on a non-separable space every 
compact operator has infinite-dimensional nullspace. Let A denote the compact 
operator in §1. 

We first prove a preliminary result: given any such 21 on an infinite-
dimensional space there exists a reducing subspace ~ # F^ {0} such that %\*JK 
is transitive. For this we follow the proof of [22, Theorem 2]. Let Ĵ ~ denote the 
family of subspaces ^Y that reduce 21 and have the property that the norm of 
A\jV is equal to the norm of A. Choose a maximal chain {jYa) in&~ and let 
*Jé = Ç\JVa. We will be finished if we show that 21 \*JK is transitive. By 
[22, Lemma, p. 827] there exists a countable subfamily {jVai\ of {^Va} such that 
^ai+i Q JYai for each i and ^ = Oz=i X » . Since a compact operator 
attains its norm, for each i there is a vector xt £ JYai such that \\xt\\ = 1 and 
||-4#*|| = H-411. Choose a subsequence of {%i} that converges weakly to some x. 
Then \\Ax\\ = | | 4 | | and also x Ç ^ since {x*} is eventually in each jVai. 
Therefore, ^ 6 ^ . If %\*Jt were not transitive, then, by Lemma 1, %\*Jt 
would have a non-trivial reducing subspace, say ££. But then at least one of the 
two subspaces ££ and *Jt C\ S£L would be in &~, which is impossible since ^ # 
is a minimal subspace in J r . This establishes the preliminary result. 

Zorn's Lemma implies that there exists a maximal family {*Jt\\ of pairwise-
orthogonal reducing subspaces for 21 such that no ^t\ is {0} and such that 
%\^JKi is transitive for each i. Since $? is separable, the family {*JKi\ is coun
table. Let J ^ denote the orthogonal complement of the span of {^i}. We 
must show that J ^ = {0}. If J T 9^ {0} then J ^ reduces 21 and, by Lemma 1, 
every invariant subspace of 21 |«yf is reducing. If j f were finite-dimensional, 
then it would follow as in the proof of Theorem 2 that J f contains a reducing 
subspace ££ such that 211^ is transitive; this contradicts the maximality of 
{•Jti}. If J ^ were infinite-dimensional, then by the preliminary result estab
lished above, Ctf would contain a reducing subspace <$£ such that 2ï|«if was 
transitive (note that the preliminary result does not require the algebra to be 
closed). This would also contradict the maximality of { ~#*}. Hence J f = {0} 
and the theorem is proven. 
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3. The main result. We shall now prove that an Hermitian operator 
algebra which contains a maximal abelian self-adjoint algebra is self-adjoint. 
For this we need some of the notation from [18]. If 5f is a collection of opera
tors, let Lat 5/* denote the set of all subspaces invariant under every operator 
in */. The usual direct sum of n copies of the Hilbert space 3? is denoted by 
J^(w); vectors i n ^ ( w ) are written (xi, . . . , xn). Il A is an operator on J^,the 
operator £?=i 0 A t on Jt? <n> with A t = A for all i will be denoted by A(w) and 
if 2Ï is an algebra of operators, 2I(W) will denote the algebra {Aw: A G 21}. 

The (closed) span of a family {*J£a} of subspaces will be denoted by \f a^a. 
We shall use the abbreviation "m.a.s.a" for "maximal abelian self-adjoint 
algebra". 

The following lemma is a special case of a well-known lemma (cf. [18, 
Lemma 1]). 

LEMMA 2. An operator algebra 21 is s elf-adjoint if and only if 2l(w) is Hermitian 
for every positive integer n. 

Proof. Suppose that 2ï(n) is Hermitian for all n. Let A G 21. If 

U = {B: \\Bxi - A*xt\\ < e, i = 1, . . . , n\ 

is any basic strong neighbourhood of A*, then the invariant subspace of 2I(W) 

generated by (xi, . . . , xn) is invariant under A*™ by hypothesis. Hence there 
exists some B G 21 such that \\B™ (pcu . . . , xn) - A*™ (xu . . . , xn)\\ < e. 
Thus B G U. Since 21 is weakly closed it follows that A* G 21. 

The converse, of course, is trivial. 

LEMMA 3. If^V is a subspace and B an operator and if there exists a net {Pa} of 
projections converging to the identity such that PajV C J^ and PaJf G Lat PaBPa 

for all a, then JV G Lat B. 

Proof. Fix x G ^ a n d y G JVL. We must show that (Bx, y) = 0. Note that 
Pay JL PajV and thus 

0 = (PaBPax,Pay) = (BPax,Pay). 

Now 

\(Bx,y) - (BPax,Pay)\ = \(Bx,y) - (Bx, P*y) + (Bx, Pay) - (BPax,Pay)\ 

g | (Bx, y - Pay)\ + | (x - Pax, B*Pay)\ 

<;\\Bx\\\\y-Pay\\ + \\x-Pax\\\\B*\\\\y\\. 

Therefore, (Bx, y) = 0. 

LEMMA 4. Let 9Î be a m.a.s.a. on ^ and let \Jé G Lat 9?(w) such that 
(xi, . . . , xn) G *J£ andxi — 0 imply that x2 = . . . = xn = 0. Let 2)be the linear 
manifold consisting of all the first co-ordinates of vectors in *Jéî Then there exist 
(possibly unbounded) linear transformations Tu i = f tl, . . . , n — 1,|[all defined on 
2) and each commuting with 9î, such that 

^é = {(x, Tix, . . . , rn_ix): x G 2}. 
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594 H. RADJAVI AND P. ROSENTHAL 

(Note: ucommuting" here means that 9 is an invariant linear manifold of 9? and 
TtRx = RTiXfor all R £ 9? and x G &.) 

Proof. The hypotheses imply that each xt is uniquely and linearly determined 
by Xi so ^ has the form exhibited above for some linear transformations Tt 

defined on Qf. It follows from the invariance of *Jé under 9î(w) that each Tt 

commutes with 9Î. 

LEMMA 5. If <Jé = {(x, T&, . . . , Pw_ix): x £ 3l\ is in Lat 9?(w) as in 
Lemma 4 and if % is any strong neighbourhood of the identity operator on $?, then 
there exists a projection P Ç °lé P\ 9Î such that Pffl C 2$, Pffl is invariant under 
Ti and T^P^f is a bounded normal operator for each i. 

Proof. Let °tt = {A: \\(A — I)yj\\ < e,j = 1, . . . , &} be any basic strong 
neighbourhood of I'm S3 (34?) and let (5 be the projection of 34? onto the subspace 
V*=i [9fyJ. Then <2 € 9î and the m.a.s.a. Q?RQ is countably decomposable. 
This allows us to identify Q34?'with «if 2(X, /*) and QdlQ with multiplications by 
££ œ(X, jit) functions, where /x is a totally finite measure [6]. Thus each 7\ is 
multiplication by an everywhere defined measurable function <j>i [2, Lemma 3.2]. 
For each positive integer k let 

^ = ( ^ X: 10,(8)1 :g M = 1, . . . , n - 1} 

and let Pfc be the projection on Q34? defined by multiplication by the charac
teristic function of S^k- Since LA=i S^k — X, we have {n(X — S^u)) —> 0. 
Hence Pk G °tt for sufficiently large k. Let P = Pk for such a &. 

We must show that P34? = PQ34? Ç ^ . The invariance of ^ under P<»> 
implies that the linear manifold 

{(y,T1yt...,T^1y):y 6 P9] 

is contained in *Jt and thus so is its closure. But its closure is exactly 

{(y, Try, . . . J ^ y G i ^ } , 

because P ^ = P3^ and the 7 \ are bounded when restricted to P2iï. Thus 2$ 
contains Pffl. 

Now, obviously, Tt\P34f is a bounded normal operator for each i. 

THEOREM 4. An Hermitian operator algebra containing a m.a.s.a. is self-adjoint. 

Proof. Let 31 be an Hermitian operator algebra containing a m.a.s.a. 9Î. To 
show that 21 is self-adjoint, it suffices, by Lemma 2, to show that 

Lat a<»> CLati4*<"> 

for all A Ç % and all n. 
Suppose that the desired inclusion holds for all k < n and consider a member 

,^#of Lat 2l(w). Let *Jtx be the set of all those elements (xu . . . , xn) of - # for 
which Xi = 0. Then ^ i £ Lat 2P}. The special form of ^é\ makes it evident 
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that *x#i reduces 2I(TC) by the induction hypothesis. Let A 6 21 ; we need only show 
that J(Q Jtx£ Lat4*<n>. L e t ^ = JéQ ^ i . T h e n ^ €Lat 21 <n> and^Tsatisfies 
the hypothesis of Lemma 4. Given any strong neighbourhood ^ of I in S3 p O 
choose a P G ^ Pi 9t as in Lemma 5. Then P ^ / w 6 Lat P^2t (w)P (w), for 
P("} commutes with the projection onto ~A/. Therefore, PTtP commutes with 
P^4P for each i. Fuglede's Theorem [9, p. 68] implies that 

PT<PPA*P = PA*PPTtP. 

Hence P^jV 6 LatP<n^4*<n)P<n> for each such P . 
Now we can easily show thdX^V Ç Lat A*w. For it follows from the fact that 

each P as above is in 21 that P^JV C JV. Thus, by the above, there exists a net 
P«(w) converging to the identity on ^ ( w ) and satisfying the hypotheses of 
Lemma 3. Hence JV Ç Lat ^4*. 

COROLLARY 1. (Arveson's Theorem) A transitive operator algebra which 
contains a m.a.s.a. is $8Çtf?). 

Proof. By Theorem 4 such an algebra is self-adjoint and the only transitive 
von Neumann algebra is S3 (<#?). 

The next result is about triangular operator algebras (see [13] for definitions 
and basic theory). 

COROLLARY 2. If 2Ï is a triangular operator algebra and if 21 is also Hermitian, 
then 21 is a m.a.s.a. 

Proof. Since 2Ï is triangular, 2Ï P 21* is a m.a.s.a. But 21 is self-adjoint, by 
Theorem 4, and thus 21 = 21 P 21*. 

4. Some conjectures. Other generalizations of Arveson's Theorem in 
addition to Theorem 4 are known (cf. [5; 18]). All of these results are special 
cases of the following conjecture. 

Conjecture 1. If 21 is an operator algebra containing a m.a.s.a., then 21 is 
reflexive. (See [18] for definitions and basic results about reflexive algebras.) 

We have been unable to prove Conjecture 1, although it seems very unlikely 
that it could be false given the fact that the special cases mentioned above have 
been proven. 

Conjecture 2. A weakly closed triangular operator algebra is hyperreducible. 

Conjecture 2 is trivially true if the algebra is Hermitian, by Corollary 2. It is 
shown in [23] that Conjecture 2 is true if the algebra is a maximal triangular 
algebra. It is also observed that Conjecture 1 implies Conjecture 2; on the 
other hand it is very conceivable that Conjecture 2 could be proven without 
Conjecture 1 being decided. 

Conjecture 3. If 21 and 35 are m.a.s.a.'s such that no projection in 2t other than 
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0 is a subprojection of a projection in 2) other than / , then the weak closure of 
the linear space of all finite sums of the form Y< AtBu At £ 21, Bt 6 ©, is the 
set of all operators. 

Conjecture 3 is also implied by Conjecture 1; one needs only to consider the 
weak closure of the set of all operators of the form 

(A ZAiBt 
\0 B 

with the A's in §1 and the B's in £). 

Conjecture 4. If §1 is Hermitian and if P is the projection onto a reducing 
subspace of 2Ï, then tyi\PJi? is Hermitian. 

The problem in Conjecture 4 is proving that %\PJi? is weakly closed; see the 
comments after Lemma 1 above. 

Conjecture 5. If §1 is an Hermitian operator algebra containing a finite-
multiplicity unilateral shift, then 21 is self-adjoint. 

Conjecture 5 would follow from Conjecture 4, Theorem 1, and Nordgren's 
result [16] in the transitive case. It seems likely, however, that Conjecture 5 
can be established without Conjecture 4, by strengthening Nordgren's tech
niques. 
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