AN ESSENTIAL RING WHICH IS NOT A v-MULTIPLICATION RING

WILLIAM HEINZER AND JACK OHM

An integral domain D is called an *essential ring* if $D = \bigcap_{\alpha} V_{\alpha}$ where the V_{α} are valuation rings which are quotient rings of D. D is called a *v*-multiplication ring if the finite divisorial ideals of D form a group. Griffin [2, pp. 717-718] has observed that every *v*-multiplication ring is essential and that an essential ring having a defining family of valuation rings $\{V_{\alpha}\}$ which is of finite character (i.e. every nonzero element of D is a non-unit in at most finitely many V_{α}) is necessarily a *v*-multiplication ring; but he conjectures that, in general, there exists an essential ring which is not a *v*-multiplication ring. We give in §2 such an example. §1 is devoted to putting the definitions in a usable setting.

1. Preliminaries. Many of the definitions and results of this section can be found in one form or another in Jaffard [5] (see also [6] and [2]). However, we we shall work out the details and put together the pieces as needed in §2.

1.1 Ordered sets and maps. Let A denote a set with a (partial) ordering \leq . We shall tacitly assume throughout this paper that all of our ordered sets are filtered below, i.e. given $a_1, a_2 \in A$, there exists $a \in A$ such that $a \leq a_1$ and $a \leq a_2$. If $a_0, a_1, \ldots, a_n \in A$, we define the expression $a_0 \geq \inf_A \{a_1, \ldots, a_n\}$ as follows:

 $a_0 \geq \inf_A \{a_1, \ldots, a_n\}$ if and only if $a_0 \geq a$ for all $a \in A$

such that $a \leq a_1, \ldots, a_n$.

If there exists $a_0 \in A$ such that $a_0 \ge \inf_A \{a_1, \ldots, a_n\}$ and $a_0 \le a_1, \ldots, a_n$, then we call a_0 the infimum of a_1, \ldots, a_n in A and we write $a_0 = \inf_A \{a_1, \ldots, a_n\}$. If every finite set of elements of A has an infimum in A, we say that A has infs. (A is semi-réticulé inférieurement in Jaffard's terminology [5, p. 2].) The finite *v*-ideal in A generated by a_1, \ldots, a_n , denoted $(a_1, \ldots, a_n)_v$, is defined as follows:

$$(a_1,\ldots,a_n)_v = \{a \in A \mid a \geq \inf_A \{a_1,\ldots,a_n\}\}.$$

If B is another ordered set, a map $\phi: A \to B$ will be called an order (respectively, equi-order) map if for all $a_1, a_2 \in A, \phi(a_1) \ge \phi(a_2)$ if (respectively, if and only if) $a_1 \ge a_2$. ϕ will be called a v-map if for all $a_0, a_1, \ldots, a_n \in A$,

Received April 11, 1972. The results of this paper were announced in Notices Amer. Math. Soc. 15 (1968), 912, Abstract 68T-A36. The authors received partial support for this research from NSF Grants GP-29326 and GP-29104.

 $a_0 \geq \inf_A \{a_1, \ldots, a_n\}$ implies $\phi(a_0) \geq \inf_B \{\phi(a_1), \ldots, \phi(a_n)\}$. Note that a *v*-map is an order map and that an equi-order map is injective. If *B* has infs, we use $(A, \phi, B)^{\uparrow}$ to denote $\{b \in B | b = \inf_B \{\phi(a_1), \ldots, \phi(a_n)\}$ for some $a_1, \ldots, a_n \in A\}$; and we call this set the inf hull of $\phi(A)$ in *B*, or merely the inf hull of *A* in *B* when ϕ is equi-order. When the ϕ and *B* involved are clear, we shall merely write A^{\uparrow} . We shall always regard A^{\uparrow} as an ordered set with respect to the order conferred on it by the order of *B*. A^{\uparrow} is then an ordered set with infs.

By an ordered semi-group we shall mean an ordered set together with a commutative associative operation + which is compatible with the ordering and for which there exists an identity element 0; ordered groups are defined similarly. One now carries over the above concepts to define the corresponding notions of *v*-homomorphism, order homomorphism, etc. Note that a group with infs is a lattice group.

1.2 The semi-group of finite v-ideals. Let G denote an ordered (commutative) group with operation +. Then the set of all finite v-ideals of G can be given the structure of an ordered semi-group by defining for any finite subsets X, Y of G

$$X_v + Y_v = (X + Y)_v$$

and $X_v \leq Y_v$ if and only if $Y_v \subset X_v$ [5, p. 20]. We shall denote this ordered semi-group by S(G). For any two elements X_v , $Y_v \in S(G)$, $\inf_{S(G)} \{X_v, Y_v\}$ exists and is just $(X \cup Y)_v$. Thus S(G) is an ordered semi-group with infs. The canonical map $\phi_G: G \to S(G)$ defined by $\phi_G(x) = (x)_v$ is an (injective) equiorder v-homomorphism such that $G^* = S(G)$.

The semi-group S(G) has the following universal mapping property, which characterizes S(G) up to a unique equi-order isomorphism.

1.3 PROPOSITION. Given an ordered semi-group S' with infs and a v-homomorphism $\phi': G \to S'$, then there exists a unique v-homomorphism $\psi: S(G) \to S'$ such that $\psi \circ \phi_G = \phi'$

Moreover, the image of S(G) under ψ is $(G, \phi', S')^{\hat{}}$; and if ϕ' is equi-order, then ψ is equi-order (and a fortiori injective).

Proof. ψ is (necessarily) defined by writing any $s \in S(G)$ in the form $s = \inf_{S(G)} \{ \phi_G(x_1), \ldots, \phi_G(x_n) \}, x_i \in G$, and then defining $\psi(s)$ to be $\inf_{S'} \{ \phi'(x_1), \ldots, \phi'(x_n) \}$. Then ψ is well-defined: for suppose

$$s = \inf_{S(G)} \{ \phi_G(x_1), \ldots, \phi_G(x_n) \} = \inf_{S(G)} \{ \phi_G(y_1), \ldots, \phi_G(y_m) \}.$$

Then $y_i \ge \inf_G \{x_1, \ldots, x_n\}$; and hence since ϕ' is a v-homomorphism, $\phi'(y_i) \ge \inf_{S'} \{\phi'(x_1), \ldots, \phi'(x_n)\}$. Therefore

$$\inf_{S'} \{\phi'(y_1),\ldots,\phi'(y_m)\} \geq \inf_{S'} \{\phi'(x_1),\ldots,\phi'(x_n)\},\$$

and the reverse inequality follows by symmetry.

One checks easily, using $\inf\{A + B\} = \inf A + \inf B$ and $\inf\{\inf A, \inf B\} = \inf\{A \cup B\}$, that ψ preserves sums and infs. It is clear from the definition of ψ that the image of S(G) under ψ is $(G, \phi', S')^{\wedge}$. Finally, suppose ϕ' is equi-order, and $\psi((x_1, \ldots, x_n)_v) \ge \psi((y_1, \ldots, y_m)_v)$. By definition of ψ , then

$$\inf_{S'} \{ \phi'(x_1), \ldots, \phi'(x_n) \} \geq \inf_{S'} \{ \phi'(y_1), \ldots, \phi'(y_m) \};$$

and hence from the fact that ϕ' is equi-order, it follows that

 $x_i \geq \inf_G \{y_1, \ldots, y_m\}.$

Thus

Then

 $(x_1,\ldots,x_n)_v \geq (y_1,\ldots,y_m)_v.$

A consequence of 1.3 is that S() is a functor from the category of ordered groups and *v*-homomorphisms into the category of ordered semi-groups with infs and *v*-homomorphisms.

1.4 LEMMA. Let G and G' be ordered groups and let $\phi: G \to G'$ be an equi-order homomorphism. If $G' = G^{\uparrow}$, then ϕ is a v-homomorphism.

Proof. Let x, x_1, \ldots, x_n be elements of G such that $x \ge \inf_G \{x_1, \ldots, x_n\}$, and let y' be an element of G' such that $y' \le \phi(x_1), \ldots, \phi(x_n)$. Since G', G are groups and $G' = G^{\uparrow}$, every element of G' is the supremum of finitely many elements of $\phi(G)$; so there exist $y_1, \ldots, y_m \in G$ such that

$$y' = \sup_{G'} \{ \phi(y_1), \ldots, \phi(y_m) \}.$$

$$\begin{aligned} \phi(x_1), \dots, \phi(x_n) &\geq y' \geq \phi(y_1), \dots, \phi(y_m) \\ \Rightarrow x_1, \dots, x_n \geq y_1, \dots, y_m \Rightarrow x \geq y_1, \dots, y_m \\ \Rightarrow \phi(x) \geq \phi(y_1), \dots, \phi(y_m) \Rightarrow \phi(x) \geq y'. \end{aligned}$$

1.5 PROPOSITION. Let G be an ordered group. The following are equivalent: (i) S(G) is a group.

(ii) There exists a lattice group G' and an equi-order homomorphism $\phi': G \to G'$ such that $G^{2} = G'$.

(iii) There exists a lattice group G' and an equi-order v-homomorphism $\phi': G \to G'$ such that G° is a group.

Moreover, when these equivalent conditions hold, then for any lattice group G' and any equi-order v-homomorphism $\phi': G \to G'$, the semi-group $G^{\hat{}}$ is actually a group.

Proof. (i) \Rightarrow (ii): Since S(G) has infs, if it is a group, then it is a lattice group. We have already observed that the canonical map ϕ_G has the properties required in (ii).

φ' (

(ii) \Rightarrow (iii): ϕ' is a *v*-homomorphism by Lemma 1.4.

(iii) \Rightarrow (i): Let $\psi: S(G) \rightarrow G'$ be the homomorphism given by 1.3. Then by 1.3, ψ is injective and has image $(G, \phi', G')^{2} = G^{2}$. Thus S(G) is a group if G^{2} is. The last assertion follows similarly by 1.3.

1.6 Groups of divisibility. We shall now connect the above group theoretic considerations with integral domains. We use ()* to denote nonzero elements and U() to denote units. Let K be a field. To any domain D with quotient field K, we associate the group $\mathscr{G}(D) = K^*/U(D)$ with the order given by taking $D^*/U(D)$ to be the positive elements. (Thus, $\mathscr{G}(D)$ is the multiplicative group of nonzero principal fractional ideals of D with the integral ideals as positive elements.) That K is the quotient field of D reflects in $\mathscr{G}(D)$ being filtered. If $D_1 \subset D_2$ are two domains with quotient field K and $\phi_i: K^* \to \mathscr{G}(D_i)$ is the canonical map, then there exists a unique order homomorphism $\phi: \mathscr{G}(D_1) \to \mathscr{G}(D_2)$ such that $\phi \cdot \phi_1 = \phi_2$. \mathscr{G} may thus be thought of as a functor from the category of domains with quotient field K and inclusion homomorphisms to the category of ordered groups and order homomorphisms. We want to observe next that if D' is a quotient ring of D with respect to a multiplicative system of D, then the homomorphism $\phi: \mathscr{G}(D) \to \mathscr{G}(D')$ is a v-homomorphism. This will follow from the next lemma and the observation that for D' a quotient ring of D if $a_1, \ldots, a_n \in K$ and $a' \in K$ are such that $a_1, \ldots, a_n \in a'D'$, then there exists $u \in U(D')$ such that a = ua' and $a_1,\ldots,a_n\in aD.$

1.7 LEMMA. Let A and A' be ordered sets and $\phi: A \to A'$ an order map such that for any $a_1, \ldots, a_n \in A$ and $a' \in A'$, $\phi(a_1), \ldots, \phi(a_n) \ge a'$ implies there exists $a \in A$ such that $\phi(a) = a'$ and $a_1, \ldots, a_n \ge a$. Then ϕ is a v-map.

Proof. Let $a_0, a_1, \ldots, a_n \in A$ be such that $a_0 \ge \inf_A \{a_1, \ldots, a_n\}$ and suppose $a' \in A'$ is such that $a' \le \phi(a_1), \ldots, \phi(a_n)$. By hypothesis there exists $a \in A$ such that $\phi(a) = a'$ and $a_1, \ldots, a_n \ge a$. Then $a_0 \ge a$, and hence $\phi(a_0) \ge \phi(a) = a'$. Thus $\phi(a_0) \ge \inf_{A'} \{\phi(a_1), \ldots, \phi(a_n)\}$.

If $S(\mathscr{G}(D))$ is a group, the domain D is called a *v*-multiplication ring (or a pseudo-Prufer domain by Bourbaki [1,(b), p. 96, Exercise 19]). Moreover, if $D = \bigcap_{\alpha} V_{\alpha}$ where the V_{α} are valuation rings which are quotient rings of D, then D is called an *essential ring*. Griffin has conjectured in [2, p. 717] that there exists an essential ring $D = \bigcap_{\alpha} V_{\alpha}$ which is not a *v*-multiplication ring (the question also appears in Griffin's paper [3, p. 25], where the answer is needed to complete a diagram of domains). The *v*-homomorphisms $\mathscr{G}(D) \to \mathscr{G}(V_{\alpha})$ induce an equi-order *v*-homomorphism $\mathscr{G}(D) \to \Pi \mathscr{G}(V_{\alpha})$, when $\Pi \mathscr{G}(V_{\alpha})$ is given the coordinatewise order. To show then that $S(\mathscr{G}(D))$ is not a group, it suffices by 1.5 to prove that the inf hull $\mathscr{G}(D)^{\circ}$ of $\mathscr{G}(D)$ in $\Pi \mathscr{G}(V_{\alpha})$ is not a group. This is the approach that will be used in §2.

The following application of the above is perhaps worth noting.

1.8 PROPOSITION. Let D' be a quotient ring with respect to a multiplicative system of the domain D. Then D is a v-multiplication ring implies D' is a v-multiplication ring.

Proof. By 1.7, the homomorphism $\mathscr{G}(D) \to \mathscr{G}(D')$ is a *v*-homomorphism, and hence the composite homomorphism $\mathscr{G}(D) \to \mathscr{G}(D') \to S(\mathscr{G}(D'))$ is also a *v*-homomorphism. Now apply 1.3 to conclude that $S(\mathscr{G}(D'))$ is a homomorphic image of the group $S(\mathscr{G}(D))$ and hence is itself a group.

2. The example. Let k be a field, and let y, z, x_1, x_2, \ldots be indeterminates. Let R denote the 2-dimensional regular local ring $k(x_1, x_2, \ldots)[y, z]_{(y,z)}$, and for each positive integer i let V_i denote the valuation ring containing the field $k(\{x_i\}_{i\neq i})$ obtained by giving x_i, y , and z the value 1 and then taking infimums, i.e. the value of any polynomial in $k[x_1, x_2, \ldots, y, z]$ is the infimum of the values of the monomials occurring in that polynomial [1-(a), p. 160]. Let D = $R \cap \{V_i | i = 1, 2, \ldots\}$.

CLAIM. D is an essential ring which is not a v-multiplication ring.

Proof. Note that $k[x_1, x_2, \ldots, y, z] \subset D$, so D has quotient field $k(x_1, x_2, \ldots, y, z)$. Since R is a Krull domain, R is an essential ring. Thus, to show D is an essential ring, it will suffice to show that R and each of the V_i 's are quotient rings of D. Since $k[x_1, x_2, \ldots, y, z] \subset D$ and R is a quotient ring of $k[x_1, x_2, \ldots, y, z] \subset D$ and R is a quotient ring of $k[x_1, x_2, \ldots, y, z]$, it is clear that R is a quotient ring of D. To see that V_i is a quotient ring of D, we observe that if $R' = R \cap \{V_i | j \neq i\}$, then $1/x_i \in R'$ but $1/x_i \notin V_i$. Thus, $D = R' \cap V_i$ with D < R'. Since V_i is a discrete rank one valuation ring, V_i must be a quotient ring of D by [4, Lemma 1.3].

It remains to show that D is not a *v*-multiplication ring. Let G denote the group of divisibility of D, H the group of divisibility of R, and Z_i (= additive group of integers) the group of divisibility of V_i . Since R is a unique factorization domain, H is a lattice group [1-(b), p. 32, Theorem 1]. The representation $D = R \cap \{V_i | i = 1, 2, ...\}$ yields a canonical equi-order embedding of G in the lattice group $H \oplus (\Pi Z_i)$, where $H \oplus (\Pi Z_i)$ is ordered coordinatewise. Moreover, the fact that R and each of the V_i 's are quotient rings of D implies that this embedding $\phi: G \to H \oplus (\Pi Z_i)$ is a *v*-embedding by 1.6. Let G^{\uparrow} denote the subsemi-group of $H \oplus (\Pi Z_i)$ consisting of all elements of $H \oplus (\Pi Z_i)$ which are the infimums of a finite number of elements of $\phi(G)$. By 1.5, D is a *v*-multiplication ring if and only if G^{\uparrow} is a group.

If g is a positive element of G and $\phi(g) = (h, t_1, t_2, ...)$ with h > 0, then we observe that there exists a positive integer n such that $t_i > 0$ for i > n. For if g is the image of $d \in D$, then $d \in k(x_1, ..., x_n, y, z)$ for some n. Since h > 0, d is then in the maximal ideal of

$$R \cap k(x_1,\ldots,x_n,y,z) = k(x_1,\ldots,x_n)[y,z]_{(y,z)}.$$

Thus, d has strictly positive value in each V_i for i > n, which means that

860

ESSENTIAL RING

 $t_i > 0$ for i > n. It follows that the infimum in $H \oplus (\prod Z_i)$ of finitely many positive elements of $\phi(G)$ of the form $(h, t_1, t_2, ...)$ with h > 0 also has the property that its *i*th coordinate is > 0 for all *i* greater than some *n*.

Let now \bar{y}, \bar{z} denote the images of y, z in G, and let $e = \inf\{\phi(\bar{y}), \phi(\bar{z})\}$ in $H \oplus (\prod Z_i)$. Then e = (0, 1, 1, ...). Consider $\phi(\bar{y}) - e$ in $H \oplus (\prod Z_i)$, and observe that $\phi(\bar{y}) - e = (h, 0, 0, ...)$ with h > 0. The preceding paragraph shows that $\phi(\bar{y}) - e \notin G^{\circ}$ even though $\phi(\bar{y})$ and e are in G° . Thus, G° is not a group.

References

- 1. N. Bourbaki, Algebre commutative, Chapters 5, 6, 7 (Hermann, Paris, 1964/65).
- 2. M. Griffin, Some results on v-multiplication rings, Can. J. Math. 19 (1967), 710-722.
- 3. —— Rings of Krull type, J. Reine Angew. Math. 229 (1968), 1-27.
- 4. W. Heinzer and J. Ohm, Noetherian intersections of integral domains, Trans. Amer. Math. Soc. 167 (1972), 291-308.
- 5. P. Jaffard, Les systèmes d'idéaux (Dunod, Paris, 1960).

6. J. Ohm, Semivaluations and groups of divisibility, Can. J. Math. 21 (1969), 576-591.

Purdue University, Lafayette, Indiana; Louisiana State University, Baton Rouge, Louisiana