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AN ESSENTIAL RING WHICH IS NOT 
A ^-MULTIPLICATION RING 

WILLIAM H E I N Z E R AND JACK OHM 

An integral domain D is called an essential ring if D = C]aVa where the Va 

are valuation rings which are quotient rings of D. D is called a v-multiplication 
ring if the finite divisorial ideals of D form a group. Griffin [2, pp. 717-718] has 
observed that every ^-multiplication ring is essential and that an essential ring 
having a defining family of valuation rings {Va} which is of finite character 
(i.e. every nonzero element of D is a non-unit in at most finitely many Va) is 
necessarily a ^-multiplication ring; but he conjectures that, in general, there 
exists an essential ring which is not a ^-multiplication ring. We give in §2 
such an example. §1 is devoted to putting the definitions in a usable setting. 

1. Preliminaries. Many of the definitions and results of this section can be 
found in one form or another in Jaffard [5] (see also [6] and [2]). However, we 
we shall work out the details and put together the pieces as needed in §2. 

1.1 Ordered sets and maps. Let A denote a set with a (partial) ordering < . 
We shall tacitly assume throughout this paper that all of our ordered sets are 

filtered below, i.e. given a±, a2 G A, there exists a G A such that a < a± and 
a < a2. If a0l aly . . . , an G A, we define the expression a0 > infA{ai, . . . , an\ 
as follows: 

a0 > inîA{ai, . . . , an} if and only if a0 > a for all a G A 

such that a < ai, . . . , an. 

If there exists a0 G A such that a0 > infA{ai, . . . , an\ and a0 < a\, . . . , an, 
then we call a0 the infimum of &i, . . . , an in A and we write a0 = 
infA{ai, . . . , an}. If every finite set of elements of A has an infimum in A, we 
say that A has infs. {A is semi-réticulé inférieurement in Jaffard's terminology 
[5, p. 2].) The finite z/-ideal in A generated by ai, . . . , an, denoted (au . . . , an)v, 
is defined as follows: 

(a1} . . . , an)v = {a £ A\a > infA{ai, . . . , an)). 

If B is another ordered set, a map 4>:A —> B will be called an order (respec
tively, equi-order) map if for all #i, a2 G A, <t>(a,i) > <p(a2) if (respectively, if 
and only if) a± > a2. $ will be called a z;-map if for all a0, &i, . . . , an G A, 
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a0 > inf^jai, . . . , an) implies #(a0) > infB{0(ai), . . . , 4>(an)}. Note that a 
z/-map is an order map and that an equi-order map is injective. If B has infs, 
we use (A, <£, BY to denote [b G B\b = inf5{0(ai), . . . , <l>(an)} for some 
ai, . . . , an £ A}; and we call this set the inf hull of <i>(A) in B, or merely the 
inf hull of A in B when $ is equi-order. When the <j> and B involved are clear, 
we shall merely write A". We shall always regard A* as an ordered set with 
respect to the order conferred on it by the order of B. A" is then an ordered set 
with infs. 

By an ordered semi-group we shall mean an ordered set together with a 
commutative associative operation + which is compatible with the ordering 
and for which there exists an identity element 0; ordered groups are defined 
similarly. One now carries over the above concepts to define the corresponding 
notions of z;-homomorphism, order homomorphism, etc. Note that a group 
with infs is a lattice group. 

1.2 The semi-group of finite v-ideals. Let G denote an ordered (commutative) 
group with operation + . Then the set of all finite y-ideals of G can be given 
the structure of an ordered semi-group by defining for any finite subsets X, 
F of G 

Xv + Y, = (X + Y), 

and Xv < Yv if and only if Yv C Xv [5, p. 20]. We shall denote this ordered 
semi-group by S(G). For any two elements Xv, Yv G S(G), inîS(G){XVJ YV} 
exists and is just (X U Y)v. Thus S(G) is an ordered semi-group with infs. The 
canonical map 4>G\G —> S(G) defined by cj>G(x) = (x)v is an (injective) equi-
order y-homomorphism such that G* = S(G). 

The semi-group S(G) has the following universal mapping property, which 
characterizes S(G) up to a unique equi-order isomorphism. 

1.3 PROPOSITION. Given an ordered semi-group Sf with infs and a v-homomor-
phism <t>'\G —»S', then there exists a unique v-homomorphism \j/:S(G) —* S' such 
that \p o 4>G = 0' 

G *° > S(G) 

* xi 
S' 

Moreover, the image of S(G) under \f/ is (G, <£', S'Y; and if 4> is equi-order, then 
\f/ is equi-order {and a fortiori injective). 

Proof. \p is (necessarily) defined by writing any 5 £ S (G) in the form 5 = 
inf,s(G){0G(xi), . . . , <fre(xn)}, %i € G> and then defining ^(s) to be 
infs'{0'(xi), . . . , <t>' (xn)}. Then \p is well-defined: for suppose 

5 = infs(G){0G(tfi)f . . . , <t>G(Xn)} = inf8{G)[<l>G(yi), • • • > taiym)}. 
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Then yt > inlG{xi, . . . , xn] ; and hence since <// is a y-homomorphism, 
<t>f iyu > \nis'{<t>'(xi), . . . , <t>'(xn)}. Therefore 

infS'{0'Cyi), • • , ^(^m)} > infS/{0'(xi)f . . . , <t>'(xn)}, 

and the reverse inequality follows by symmetry. 
One checks easily, using inf{A + B) = inf A + inf ^ and inf{inf yl, inf B) = 

inf {̂4 KJ B}, that \js preserves sums and infs. It is clear from the definition of \p 
that the image of S(G) under \p is (G, Q^S')". Finally, suppose <£' is equi-order, 
and ^((xi, . . . , xn)v) > \p((yi, . . . , ym)v)- By definition of ^, then 

inf^{0'(xi), . . . , 4>'(xn)} > infs^^Cyi), . . . , 0'(yro)}; 

and hence from the fact that <j>f is equi-order, it follows that 

xt > inîG{yi, . . . ,ym}. 
Thus 

[Xiy . . . , xn)v ^_ yyii • • • > ym)v 

A consequence of 1.3 is that S( ) is a functor from the category of ordered 
groups and y-homomorphisms into the category of ordered semi-groups with 
infs and y-homomorphisms. 

1.4 LEMMA. Let G and G' be ordered groups and let <£:G —-> Gr be an equi-order 
homomorphism. If G' = G~, then (j> is a v-homomorphism. 

Proof. Let x, Xi, . . . , xn be elements of G such that x > infG{xi, . . . , xn}, 
and let y' be an element of G' such that y' < #(xi), . . . , <&{xn). Since G', G are 
groups and G' = G", every element of G' is the supremum of finitely many 
elements of <t>(G); so there exist yi, . . . , ym £ G such that 

y = supGr/{0(yi), . . . , *Cyro)}. 
Then 

</>(Xi), . . . , 0(X„) > / > *(yi), • • • , <t>{jm) 

=^ xi, . . . , xn > yu . . . , ym =*x > ylt . . . ,ym 

=> </>(x) > <t>(yi), . . . , *(ym) => 0(*O > j ' • 

1.5 PROPOSITION. L ^ G 6e aw ordered group. The following are equivalent: 
(i) S(G) is a group. 

(ii) There exists a lattice group G' and an equi-order homomorphism 
<$>\G-^G' such that G" = G'. 

(iii) There exists a lattice group G' and an equi-order v-homomorphism 
<//:G —> G' such that G* is a group. 

Moreover, when these equivalent conditions hold, then for any lattice group Gf 

and any equi-order v-homomorphism <//:G—>G', the semi-group G~ is actually 
a group. 

Proof, (i) => (ii): Since S(G) has infs, if it is a group, then it is a lattice 
group. We have already observed that the canonical map <j>G has the properties 
required in (ii). 
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(ii) => (iii): <j>' is a y-homomorphism by Lemma 1.4. 
(iii) =» (i): Let \p\S{G) —> G' be the homomorphism given by 1.3. Then by 

1.3, \p is injective and has image (G,0 ' , G'Y = G". T h u s 5(G) is a group if G" is. 
The last assertion follows similarly by 1.3. 

1.6 Groups of divisibility. We shall now connect the above group theoretic 
considerations with integral domains. We use ( )* to denote nonzero elements 
and U( ) to denote units. Let K be a field. T o any domain D with quot ient 
field K, we associate the group & (D) = K*/U(D) with the order given by 
taking D*/U(D) to be the positive elements. (Thus, & (D) is the multiplicative 
group of nonzero principal fractional ideals of D with the integral ideals as 
positive elements.) T h a t K is the quotient field of D reflects in & (D) being 
filtered. If D\ C D2 are two domains with quotient field K and 0*:i£* —-> & (Dt) 
is the canonical map, then there exists a unique order homomorphism 
0 : ^ ( D i ) -> &(D2) such t h a t 0-0i = 02. & may thus be thought of as a 
functor from the category of domains with quotient field K and inclusion 
homomorphisms to the category of ordered groups and order homomorphisms. 
We want to observe next t h a t if D' is a quot ient ring of D with respect to a 
multiplicative system of D, then the homomorphism 0 : ^ (D) —> & (Dr) is a 
z;-homomorphism. This will follow from the next lemma and the observation 
t h a t for Df a quot ient ring of D if a\, . . . , an G K and ar ^ K are such t h a t 
ai , . . . , an G a'D', then there exists u G U(D') such t h a t a = ua! and 
ai, . . . , an G aD. 

1.7 LEMMA. Le£ 4̂ awa7 ^4' ôe ordered sets and cj>:A —> A' an order map such that 
for any a\, . . . , an G A and a' G ^4', 0 ( a i ) , • • • » 4>(an) > #' implies there exists 
a £ A such that 0 (a ) = a' and a,\, . . . , an > a. Then <j> is a v-map. 

Proof. Let a0, &i, . . . , an G A be such t ha t a0 > infA{ai, . . . , an] and sup
pose a' ^ A' is such t ha t a' < 0 ( a i ) , • • • , <t>(an). By hypothesis there exists 
a G A such t h a t 0 (a ) = a' and ai, . . . , an > a. Then a0 > a, and hence 
0(a o ) > 0 (a ) = a / . T h u s 0 ( a o ) > infA ,{0(ai), . . . , 0 ( a w ) } . 

If S{& {D)) is a group, the domain D is called a v-multiplication ring (or a 
pseudo-Prufer domain by Bourbaki [1,(b), p. 96, Exercise 19]). Moreover, 
if D = OaK* where the F a are valuation rings which are quotient rings of D, 
then D is called an essential ring. Griffin has conjectured in [2, p. 717] t ha t there 
exists an essential ring D = C\aVa which is not a ^-multiplication ring (the 
question also appears in Griffin's paper [3, p . 25], where the answer is needed 
to complete a diagram of domains) . T h e ^-homomorphisms & (D) —> & (Va) 
induce an equi-order v-homomorphism & (JD) —> H& (Va), when H& (Va) is 
given the coordinatewise order. T o show then t h a t S(& (D)) is not a group, 
it suffices by 1.5 to prove t h a t the inf hull & (DY of & (D) in IL& (Va) is not 
a group. This is the approach t h a t will be used in §2. 

T h e following application of the above is perhaps worth noting. 
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1.8 PROPOSITION. Let D' be a quotient ring with respect to a multiplicative 
system, of the domain D. Then D is a v-multiplication ring implies D' is a v-
multiplication ring. 

Proof. By 1.7, the homomorphism & (D) —> & (D') is a y-homomorphism, 
and hence the composite homomorphism & (D) —• & (£>') —±S(& (D')) is also 
a ^-homomorphism. Now apply 1.3 to conclude that S(@' (D')) is a homomor-
phic image of the group S(& (D)) and hence is itself a group. 

2. The example. Let k be a field, and let y, z, xi, x2, . . . be indeterminates. 
Let R denote the 2-dimensional regular local ring k(x±, x2j . . . )[y, s](2/i2), and 
for each positive integer i let Vi denote the valuation ring containing the field 
k ({Xj} j9*i) obtained by giving xu y, and z the value 1 and then taking infimums, 
i.e. the value of any polynomial in k\xi, x2l..., y, z] is the infimum of the values 
of the monomials occurring in that polynomial [l-(a), p. 160]. Let D = 
i ? H {Vi\i = 1, 2, . . . }. 

CLAIM. D is an essential ring which is not a v-multiplication ring. 

Proof. Note that k[xi, x2} . . . , y, z] C D, so D has quotient field k(xi 
x2f . . . , y, z). Since R is a Krull domain, R is an essential ring. Thus, to show D 
is an essential ring, it will suffice to show that R and each of the F / s are 
quotient rings of D. Since k[xi, x2, . . . , y, z] C D and R is a quotient ring of 
k[x\, x2l . . . , y, z], it is clear that R is a quotient ring of D. To see that Vt is a 
quotient ring of D, we observe that if Rr = R C\ {V5\j ^ i\, then 1/xi G Rf 

but 1/xi € Vt. Thus, D = R' r\Vt with D < R'. Since Vt is a discrete rank 
one valuation ring, Vt must be a quotient ring of D by [4, Lemma 1.3]. 

It remains to show that D is not a ^-multiplication ring. Let G denote the 
group of divisibility of D, H the group of divisibility of R, and Zt ( = additive 
group of integers) the group of divisibility of Vt. Since R is a unique factoriza
tion domain, H is a lattice group [l-(fr), p. 32, Theorem 1]. The representation 
D = R C\ {Vi\i = 1 , 2 , . . . } yields a canonical equi-order embedding of G in 
the lattice group H 0 ( i lZj) , where iiZ" 0 (IIZ^) is ordered coordinatewise. 
Moreover, the fact that R and each of the VfS are quotient rings of D implies 
that this embedding $:G —-> H © (IIZ*) is a ^-embedding by 1.6. Let £T 
denote the subsemi-group of H 0 (IIZ^) consisting of all elements of 
H 0 (TlZi) which are the infimums of a finite number of elements of cj)(G). 
By 1.5, D is a ^-multiplication ring if and only if G" is a group. 

If g is a positive element of G and <j>(g) = (&, /i, t2, . . . ) with h > 0, then 
we observe that there exists a positive integer ^ such that tt > 0 for £ > w. 
For if g is the image of d Ç Z}, then d Ç &(xi, . . . , xw, 3/, z) for some n. Since 
& > 0, d is then in the maximal ideal of 

R H &(xi, . . . , xn, y, z) = k(xi, . . . , xn)[y, s](„.z). 

Thus, d has strictly positive value in each Vt for 2' > n, which means that 
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ti > 0 for i > n. It follows that the infimum in H © (IIZ*) of finitely many 
positive elements of <t>(G) of the form (h, h, t2, . . . ) with h > 0 also has the 
property that its ith. coordinate is > 0 for all i greater than some n. 

Let now y, z denote the images of y, z in G, and let e = inf{#(;y), <t>{z)} in 
H © (HZ,) . Then e = (0,1, 1, . . . ). Consider 0(y) - ^ in if © (IIZ*), and 
observe that <f>(y) — e = (A, 0, 0, . . . ) with h > 0. The preceding paragraph 
shows that #( j) — e $ GA even though <£(;y) and e are in G\ Thus, G* is not 
a group. 
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