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Abstract. Generalizations of the Schwarzschild and Kerr black holes are discussed in an as-
trophysically viable generalized theory of gravity, which includes higher curvature corrections
in the form of the Gauss-Bonnet term, coupled to a dilaton. The angular momentum of these
black holes can slightly exceed the Kerr bound. The location and the orbital frequency of par-
ticles in their innermost stable circular orbits can deviate significantly from the respective Kerr
values. Study of the quasinormal modes of the static black holes gives strong evidence that
they are mode stable against polar and axial perturbations. Future gravitational wave obser-
vations should improve the current bound on the Gauss-Bonnet coupling constant, based on
observations of the low-mass x-ray binary A 0620-00.
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1. Introduction
So far General Relativity (GR) has passed all tests in the Solar System and beyond.

Still we expect that GR will be superseded by a generalized theory of gravity, which
encompasses GR as a limit. Reasons for this expectation reside on the one hand on the
theoretical side, where the incompatibility of GR with quantum mechanics has sparked
the search for a theory of quantum gravity. On the other hand, when GR is applied to
the evolution of the Universe as a whole, the necessity for the presence of dark matter
and dark energy arises, the nature of which is currently unknown.

By now a large number of alternative theories of gravity have been proposed and some
of their implications for astrophysical objects have been studied. The review Testing
General Relativity with Present and Future Astrophysical Observations by Berti et al.
(2015) gives a broad account of recent activities in this area.

Here we consider Einstein–Gauss-Bonnet-dilaton (EGBd) gravity, which represents a
very interesting and well motivated extension of GR. The EGBd action is obtained by
adding a real scalar field, a dilaton, to the GR action which is non-minimally coupled to
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the Gauss-Bonnet (GB) term. The resulting theory of gravity has quadratic curvature
terms, but it has only second order equations of motion. Moreover, the EGBd action
arises naturally in the framework of the low-energy effective string theories (see e.g.
Moura & Schiappa (2007)).

To represent a viable alternative theory of gravity, EGBd theory must satisfy theoret-
ical and observational constraints. These yield bounds on the GB coupling constant α.
Solar system measurements, as e.g., measurements of the Shapiro time delay, yield the
rather weak bound,

√
α � 1013cm (Bertotti, Iess & Tortora (2003)). In contrast, black

holes in low-mass x-ray binaries can give a much stronger bound, since black holes in
EGBd theory carry a scalar charge. Observations of the black hole low-mass x-ray binary
A0620-00 (Cantrell et al. (2010)) then lead to a constraint based on the orbital decay
rate (Yagi (2012))

√
α � 106cm. (1.1)

From the theoretical side the mere existence of black hole solutions implies an upper
bound (Kanti et al. (1996), Pani & Cardoso (2009))

α

M 2 � 0.691. (1.2)

Future observations of quasi-periodic oscillations (QPOs) from accreting black holes could
be used to further constrain the theory (Maselli et al. (2015)).

Here we explore the physical properties of static and rotating EGDd black
holes (Mignemi & Stewart (1993), Kanti et al. (1996), Torii, Yajima & Maeda (1996),
Pani & Cardoso (2009), Kleihaus, Kunz & Radu (2011), Pani et al. (2011), Ayzenberg
& Yunes (2014), Kleihaus, Kunz & Mojica (2014), Maselli et al. (2015), Kleihaus et al.
(2016), Blazquez-Salcedo et al. (2016)). In particular, we study their domain of existence
and point out their differences to the Schwarzschild and Kerr black holes of GR. By
computing the quasinormal modes of the static EGBd black holes, we infer their mode
stability. Finally we address how future gravitational wave observations may improve the
current bound on the GB coupling constant.

2. Einstein-Gauss-Bonnet-dilaton gravity
The action of EGBd gravity is given by

S =
1

16π

∫
d4x

√
−g

[
R − 1

2
(∂μφ)2 +

α

4
eφR2

GB

]
, (2.1)

where R is the curvature scalar, φ is a real scalar field, and α is the GB coupling constant.
The dilaton coupling constant has been given its string theory value throughout, and R2

GB
is the Gauss-Bonnet term, which is quadratic in curvature

R2
GB = RμνρσRμνρσ − 4Rμν Rμν + R2 . (2.2)

The resulting set of equations of motion are of second order. The “modified” Einstein
equations read

Gμν =
1
2

Tμν (2.3)

with the effective stress-energy tensor

Tμν = T (φ)
μν +

α

2
eφT (GBd)

μν , (2.4)
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Figure 1. Scaled horizon radius rh versus scaled mass M of static EGBd black holes with com-
parison to Schwarzschild black holes (left). Profile of the components of the effective stress-energy
tensor, T t

t , T r
r and T θ

θ , for a typical static EGBd black hole (right).

where

T (φ)
μν = ∇μφ∇ν φ − 1

2
gμν∇λφ∇λφ (2.5)

T (GBd)
μν = Hμν + 4 (∇ρφ∇σφ + ∇ρ∇σφ)Pμρνσ , (2.6)

where Hμν is quadratic and Pμρνσ is linear in the curvature.
The dilaton equation is given by

∇2φ =
α

4
eφR2

GB . (2.7)

Because of the contributions from the GB term on the right hand side of the Einstein
equations, the theory allows for negative “effective” energy densities giving rise to black
holes with scalar “hair”, although secondary. Moreover, this theory allows for wormholes
without the need for exotic matter (Kanti, Kleihaus & Kunz (2012)).

3. Black hole properties
The vacuum black holes in GR consist of the family of static Schwarzschild and rotating

Kerr black holes, which in general form the basis of current analyses of astrophysical
observations. The GR black holes possess very special properties, in particular, all Kerr
black holes are uniquely described by only two parameters, their mass M and their
angular momentum J . For Kerr black holes the ratio j = J/M 2 is bounded, |j| � 1, with
the extremal black holes saturating the limit.

Static EGBd black holes.
The full set of static EGBd black holes was first constructed by Kanti et al. (1996). In

this analysis it was realized, that unlike GR black holes the EGBd black holes possess a
lower bound for the size and for the mass, when the GB coupling is kept fixed, i.e., for a
given theory. This bound arises when the metric and dilaton functions are expanded at
the horizon rh , since the expansion for the dilaton involves a coefficient with a square root√

1 − 6
α2

r4
h

e2φh , (3.1)

whose radicand should not be negative in order to retain a real value for the scalar field.
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Figure 2. The scaled area versus the scaled angular momentum (left). The scaled area versus
the scaled GB coupling constant (right). Also indicated are the static, the extremal, the critical
and the GR black holes. Kleihaus, Kunz & Radu (2011) and Kleihaus et al. (2016).

We demonstrate the dependence of the horizon radius rh on the mass M for the static
EGBd black holes in Fig. 1 in the vicinity of the minimal mass and the minimal radius.
It is the presence of the minimal mass, which leads to the bound (1.2). We also note
from the figure, that whereas for a given α the deviations from Schwarzschild are quite
pronounced for small masses, i.e., the EGBd black holes have a much smaller area for
the same mass, the EGBd solutions tend toward the Schwarzschild solutions for larger
masses.

Fig. 1 also exhibits the relevant components of the stress-energy tensor of a typical
static black hole. It reveals that the energy density ρ = −T t

t is negative in the vicinity of
the horizon. This allows these static black holes to circumvent the no-hair theorem and
carry scalar hair.

Rotating EGBd black holes.
The inclusion of rotation is essential for astrophysical applications, but also from a

theoretical point of view. The domain of existence of rotating EGBd black holes has
been explored in Kleihaus, Kunz & Radu (2011), Kleihaus et al. (2016) and is exhibited
in Fig. 2. This domain of existence is limited by the static EGBd black holes, the Kerr
black holes, the extremal rotating EGBd black holes and the set of critical EGBd black
holes. The latter arise analogous to the static case, when the radicand of a square root
in the horizon expansion vanishes.

On the left of Fig. 2 the scaled area is exhibited versus the scaled angular momen-
tum. It comes as a surprise, that EGBd theory allows for black holes violating the Kerr
bound, i.e., possessing |j| > 1, although this violation is small. On the right of Fig. 2 for
comparison the scaled area is shown versus the scaled GB parameter ζ = α/M 2 .

As seen on the left of Fig. 3, the scaled angular momentum reaches its maximum
roughly at half the maximal value of the scaled GB coupling, where the critical and the
extremal rotating EGBd black holes merge. We note that the extremal rotating EGBd
black holes possess a regular metric on the horizon, whereas the dilaton field diverges on
the horizon at the poles.

The quadrupole moment of the Kerr black holes is completely fixed by the global
charges, Q = −J2/M . Fig. 3 (right), however, shows, that the quadrupole moment of
EGBd black holes can considerably differ from the Kerr case. The Kerr values for the
scaled moment of inertia are given by J/(ΩHM 3) = 2(1 +

√
1 − j2), thus they are fixed

by the value of j. For the EGBd black holes this is no longer the case, where they decrease
monotonically from the Kerr value for a fixed j.
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Figure 3. The scaled angular momentum versus the scaled GB coupling constant (left). The
scaled quadrupole moment versus the scaled angular momentum (right). Also indicated are the
static, the extremal, the critical and the GR black holes. Kleihaus et al. (2016) and Kleihaus,
Kunz & Mojica (2014).
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Figure 4. The scaled ISCO radius versus the scaled angular momentum (left). The inverse of
the scaled ISCO frequency versus the scaled angular momentum for matter coupling constant
β = 0 and β = 1/2 (right). The curves correspond to different horizon velocities of the black
hole. Kleihaus, Kunz & Radu (2011) and Kleihaus et al. (2016).

Geodesics.
Also the study of the geodesics of these black holes is both of intrinsic interest and of

astrophysical relevance. The analysis of the geodesics is based on the Lagrangian

L =
1
2
e−2βφgμν ẋμ ẋν , (3.2)

where β is a coupling constant (β = 1/2 for string theory). Since the general geodesic
equations are not separable (see the discussion in Kleihaus et al. (2016), showing the
EGBd black holes are of Petrov type I), it is simpler to consider equatorial motion. In
particular, we now restrict the analysis to the innermost stable circular orbits (ISCOs)
of these black holes.

A perturbative analysis for slow rotation was performed in Pani & Cardoso (2009),
while the analysis of the general rotating case was performed in Kleihaus, Kunz & Radu
(2011), Kleihaus et al. (2016). We exhibit the scaled ISCO radius versus the scaled an-
gular momentum in Fig. 4 (left) for coupling constant β = 1/2. (The ISCO radius here
represents the circumferential radius, not the Boyer-Lindquist coordinate radius.) We
note from the figure that the ISCO radius of EGBd black holes exceeds the one of Kerr
black holes. Also shown in the figure is the inverse of the scaled ISCO frequency versus
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al-led polar l = 2 fundamental modes. The Schwarzschild values are recovered at ζ = 0.
Blazquez-Salcedo et al. (2016).
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Figure 6. Real (left) and imaginary (right) parts of the scalar-led polar l = 2 fundamental
modes. The Schwarzschild values are recovered at ζ = 0. Blazquez-Salcedo et al. (2016).

the scaled angular momentum (right). As compared to the Kerr case, the frequencies are
smaller when β = 1/2. For β = 0, however, they are larger.

Quasinormal modes and gravitational waves.
When a black hole is perturbed it reacts with the emission of gravitational waves, to

settle down again in a stationary state. In an astrophysical setting such perturbations
can for instance arise through the infall of a smaller mass, or through the coalescence
of black holes. Observation of the latter process was announced earlier this year by the
LIGO collaboration Abbott et al. (2016). The process consists of three major phases,
the inspiral, the merger and the ringdown. We will now briefly address the quasinormal
modes of EGBd black holes, relevant for the ringdown phase.

In the following we restrict to the quasinormal modes of static EGBd black holes. The
perturbations of the metric and the scalar field are given by

gab = g
(0)
ab + ε hab , φ = φ0(r) + ε δφ , (3.3)

where the subscript zero denotes the unperturbed fields. They can be expanded in terms
of spherical harmonics and Fourier transformed, where ω is the Fourier frequency.

To determine the quasinormal modes, we first note, that the modes decouple according
to their behavior under parity transformations. The axial modes involve only the metric,
while the polar modes involve the dilaton field as well. Imposing physical boundary
conditions on the modes, such that the solutions are purely ingoing at the horizon and
purely outgoing at infinity, the coupled equations can be solved for the axial and the
polar modes (Blazquez-Salcedo et al. (2016)).
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Figure 7. Domain of existence of wormholes in terms of the scaled throat area versus the scaled
scalar charge. Wormholes in the lower part of the diagram are expected to be stable (left). Bound
orbit of a test particle traveling between the universes (right). Kanti, Kleihaus & Kunz (2012).

We exhibit the frequencies of the lowest fundamental axial modes in Fig. 5, where the
real part is shown on the left and the imaginary part on the right, versus the scaled GB
coupling constant ζ. The Schwarzschild values are recovered at ζ = 0. The deviations
from the Schwarzschild values are small for ζ � 0.3, but increase significantly in the
vicinity of the critical solution.

For the polar modes we have to distinguish between gravitational-led modes and scalar-
led modes. In the limit ζ → 0 the gravitational-led EGBd modes reduce to the gravi-
tational modes of the Schwarzschild metric, while the scalar-led EGBd modes reduce to
the modes of a test scalar field in the Schwarzschild background. Fig. 5 also shows the
frequencies of the lowest gravitational-led EGBd modes, while the scalar-led modes are
shown in Fig. 6. As seen in the figures, the deviations from the Schwarzschild modes are
somewhat larger for the polar modes.

4. Wormholes
As mentioned in Sec. 2, EGBd theory allows for traversable wormholes without the

need for exotic matter, since the quadratic gravitational terms contribute to the effective
stress-energy tensor, enabling a violation of the energy conditions (Kanti, Kleihaus &
Kunz (2012)). The domain of existence of the resulting static wormholes is exhibited in
Fig. 7 (left), where the scaled area of the throat is shown versus the scaled scalar charge.
At the left boundary wormholes with a double throat arise, at the lower boundary a
transition to black holes is encountered, while at the right boundary solutions with a
singularity arise. The lower part of this domain of existence is likely to contain (mode)
stable wormholes.

EGBd wormholes possess bound states of test particles, as illustrated in Fig. 7 (right).
These may reside in either asymptotically flat universe, but also move between universes.
To obtain a low surface gravity at the throat, which is on the order of the gravitational
acceleration on the surface of the earth, these wormholes need an astronomical size
with a throat radius on the order of 10 - 100 lightyears. Still, smaller EGBd wormholes
with higher surface gravity may be considered as potential astrophysical objects, whose
observational signatures can be studied.

5. Conclusions and outlook
We have studied the physical properties of black holes in EGBd theory, an astro-

physically viable alternate theory of gravity. The coupling constant of the theory has a
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theoretical bound, and can be constrained by current and future astrophysical observa-
tions.

The EGBd black holes differ from their GR counterparts in a number of significant
ways. For instance, they possess a minimal size and mass for a given coupling, their
angular momentum can exceed the Kerr bound, and their quadrupole moment can be
far bigger. Also, depending on the coupling to ordinary matter, the radii and frequencies
of their ISCOs can change considerably. A general analysis of their geodesics is still
missing, but their shadow is currently being analyzed. Here further surprises may arise.

We have also analyzed the quasinormal modes of the static EGBd black holes, leaving
the analysis of the rotating black holes as a challenge for the future. This analysis leads
to the conclusion, that the static EGBd black holes should be mode stable, since all
frequencies (calculated) have a negative imaginary part and thus decay exponentially in
time. This is in accordance to the results of an early study Kanti et al. (1998) where
a semi-analytic method demonstrated the stability of these black holes under linear
perturbation. On the other hand, the quasinormal modes with the smallest imaginary
part control the late-time dynamics of perturbed black holes.

The constraints on the GB coupling are expected to be improved by future observa-
tions with third generation gravitational wave detectors. A simple estimate performed in
Blazquez-Salcedo et al. (2016) leads to the following upper bound on the GB coupling
constant

√
α � 11

(
50
ρ

)1/4 (
M

10M�

)
km, (5.1)

where ρ is the signal-to-noise ratio in the ringdown waveform. The Einstein telescope
may achieve a signal-to-noise ratio ρ ≈ 100 for an event like GW150914. This would then
translate into the bound

√
α � 8

(
M

10M�

)
km (5.2)

and ζ � 0.4.
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