HIGHER DERIVATIONS AND THE JORDAN CANONICAL FORM OF THE COMPANION MATRIX

BY
LESLIE G. ROBERTS
The purpose of this note is to give a basis with respect to which the companion matrix of an equation (over a field of any characteristic) is in Jordan canonical form.

Let k be a field. Define a k-linear map $D_{i}: k[X] \rightarrow k[X]$ by $D_{i} X^{n}=C_{i}^{n} X^{n-4}$, where the integer C_{i}^{n} is the binomial coefficient $n!/ i!(n-i)!$. We adopt the usual convention that $C_{i}^{n}=0$ if $i>n$, or $i<0$. Then $D=\left(D_{0}, D_{1}, D_{2}, \ldots\right)$ is a higher derivation (see [1, p. 192]). Thus if $f, g \in k[X]$ we have

$$
D_{i}(f g)=\sum_{j+k=i} D_{j}(f) D_{k}(g) .
$$

From this one can prove by induction on n that $D_{i}(X-\alpha)^{n}=C_{i}^{n}(X-\alpha)^{n-i}$. Applying the last formula to $f=(X-\alpha)^{i} g$, where $g(\alpha) \neq 0$, we see that α is an i-fold root of f if and only if $f(\alpha)=0,\left(D_{1} f\right)(\alpha)=0, \ldots,\left(D_{i-1} f\right)(\alpha)=0$, but $\left(D_{i} f\right)(\alpha) \neq 0$.

Consider the n-dimensional vector space k^{n} over k. For convenience of notation we will write elements of k^{n} as row vectors, with the matrix of a linear transformation acting on the right. Let $f(X)=\prod_{i=1}^{r}\left(X-\alpha_{i}\right)^{n_{i}}$, where $\sum_{i=1}^{r} n_{i}=n$, and the $\alpha_{i} \in k$ are distinct. Then

$$
f(X)=X^{n}+p_{1} X^{n-1}+\cdots+p_{n}
$$

A row vector with co-ordinates in $k[X]$ gives a function from k to k^{n}, by substituting $\alpha \in k$ in place of X. The D_{i} act on such row vectors co-ordinatewise. Let $\mathbf{X}=$ $\left(1, X, X^{2}, \ldots, X^{n-1}\right)$, and let $V_{i j}=\left(D_{j} \mathbf{X}\right)\left(\alpha_{i}\right),\left(1 \leq i \leq r ; 0 \leq j \leq n_{i}-1\right)$. I claim that the $V_{i j}$ form a basis of k^{n}, and that with regard to this basis, the companion matrix A of f is in Jordan canonical form.

The matrix A has ones in the diagonal below the main diagonal, and its last column is the transpose of $\left(-p_{n},-p_{n-1}, \ldots,-p_{1}\right)$. We can write

$$
\mathbf{X}=\left(X^{k-1}\right), \quad 1 \leq k \leq n,
$$

thus

$$
V_{i j}=\left(D_{j}\left(X^{k-1}\right)\left(\alpha_{i}\right)\right)=\left(C_{j}^{k-1} \alpha_{i}^{k-j-1}\right), \quad 1 \leq k \leq n .
$$

A straightforward calculation shows that $V_{i j} A=\left(C_{j}^{k} \alpha_{i}^{k-j}\right), 1 \leq k \leq n$. The initial remark that α_{i} is a root of $D_{j} f=\sum_{k=0}^{n} p_{n-k} C_{j}^{k} X^{k-j}$ is used in calculating the nth
co-ordinate. Then we make use of the relation $C_{j}^{k}=C_{j-1}^{k-1}+C_{j}^{k-1}(k \geq 1, j \geq 0)$ to show that $V_{i j} A=\alpha_{i} V_{i j}+V_{i, j-1}$ if $j \geq 1$, and $V_{i 0} A=\alpha_{i} V_{i 0}$. The $V_{i j}$, for fixed i and variable j, are linearly independent since their first nonzero co-ordinate, the $(j+1)$ st, is equal to one. The above equations then show that the $V_{i j}$ (fixed i) lie in $V_{i}=$ kernel of $\left(A-\alpha_{i}\right)^{n_{i}}$. They form a basis of V_{i} since they are linearly independent, and there are $n_{i}=\operatorname{dim} V_{i}$ of them. Since $k^{n}=\oplus_{i=1}^{r} V_{i}$, the $V_{i j}\left(1 \leq i \leq r, 0 \leq j \leq n_{i}-1\right)$ form a basis of k^{n}. The matrix for the linear transformation A with regard to this basis is in Jordan canonical form, again because of the calculation of $V_{i j} A$.

If each n_{i} equals one, the matrix with the $V_{i 0}$ as rows is the Vandermonde matrix. As another example, suppose $n_{1}=1, n_{2}=4$ and $n=5$. Then the basis is $\left(1, \alpha_{1}, \alpha_{1}^{2}, \alpha_{1}^{3}, \alpha_{1}^{4}\right),\left(1, \alpha_{2}, \alpha_{2}^{2}, \alpha_{2}^{3}, \alpha_{2}^{4}\right),\left(0,1,2 \alpha_{2}, 3 \alpha_{2}^{2}, 4 \alpha_{2}^{3}\right),\left(0,0,1,3 \alpha_{2}, 6 \alpha_{2}^{2}\right)$, ($0,0,0,1,4 \alpha_{2}$).

Bibliography

1. N. Jacobson, Lectures in abstract algebra, Vol. 3, Theory of fields and Galois theory. Van Nostrand, Princeton, N.J., 1964.

Queen's University, Kingston, Ontario

