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Abstract. Like hardware, evolution of software has had a major impact
on the field of particle simulations. This paper illustrates how simulation
software has evolved, and where it can go. In addition, with the various
ongoing Virtual Observatory efforts, producers of data should think more
about sharing their data! Some examples are given of what we can do
with our data and how to share it with our colleagues and observers. In
the Appendix we summarize the findings of an informal data and software
usage survey that we took during this conference.

1. Introduction

The increased computing speed of both off-the-shelf and dedicated hardware
such as the GRAPE series have made it possible to write increasingly complex
simulation software for very large N-body systems. What started as simple few
hundred line FORTRAN programs (for a review, see e.g. Aarseth 1999) with
their individual analysis routines, have grown into mid-size packages of libraries
and toolsets. Looking at other fields these will likely evolve into sophisticated
large scale frameworks such as ROOT (Brun et al. 1999) and AIPS++ (Glen-
denning 1996) if the community combines their programming efforts and reuse
code.

The plan of this paper is as follows. In Section 2 we will show some of the
current techniques of simulation software, and where this could lead. In Section
3 the impact of a Virtual Observatory will be discussed, followed by conclusions
and future developments.

2. Simulation Software

In the Dark Ages simulation software was developed in small, often one-person,
teams for then available "supercomputers". Possibly due to limited electronic
communication, software also did not migrate very easily between researchers.
The codes Aarseth developed have arguably been most widely spread and used
(see also Binney & Tremaine, 1987). Another early example of shared code
development was the OLYMPUS programming system, as described in Hockney
& Eastwood (1981). These, and upcoming data reduction packages such as
AlPS, GIPSY, IRAF and MIDAS in observational astronomy have led to a
number of packages for particle simulations. Although these are still written by
fairly small teams, they have now attracted a moderate number of users. But
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most notably, they have started to attract developers, as is very common in Open
Source development these days. One can distinguish two types of packages: on
the one hand there are NEMO and Starlab, which present themselves to the user
as a collection of programs that can be called from a shell, or as a collection of
subroutines and functions with which new tools can be built. On the other hand
there are single programs such as tipsy and astroMD, which come with their
own programmable interface. Our field is, of course, not that much different
from that of for example High Energy Physics (cf. De Angelis 2002).

2.1. NEMO, ZENO

Initial work on NEMO started in 1986 by Joshua Barnes, Piet Hut and Peter
Teuben (Barnes et al. 1987), and has been subsequently extended (Teuben
1995). This paper also serves as an update to document the recent upgrade from
Release 2 to 3, of which many details can be found on the NEMO website",

Source Code The source code consist of two source code trees: a "sre" tree
and a "usr" tree, which resp. hold the basic NEMO source code, and various
public (mostly N-body) codes graciously supplied by their respective authors.
Most codes in the "usr" tree are available "as-is", some have enhancements for
support within the NEMO environment. Currently the "usr" tree is already
about 4 times larger than the "sre" tree (860 KLOC vs. 193 KLOC).

Installation in Release 3 has been largely simplified by using current tech-
niques like autoeonf, and using a source code revision control system (CVS)
to simplify shared development. This has also made it easier to create binary
releases.

The source code is largely written in C, with some C++ and FORTRAN
(and support to simplify linking the languages). Table 1 lists some of the public
code now available in NEMO.

Table 1. Some of the public N-body codes in NEMO

code (author)
nbcdy» (Aarseth 1999*)
ptreeeode (Dubinski)
pmeode (Klypkin)
gadget (Springel)
AP3M/hydra (Couchman)
galaxy (Sellwood)
treeeode (Hernquist 1987)
treeeodel (Barnes)

(*) see also this volume

code (author)
tree++ (Makino)
vte (Kawaii*)
sefm (Hernquist & Ostriker 1998)
multieode (Barnes)
floweode (Teuben)
yane (Dehnen, 2000)
superbox (Richardson, 1999)
haekeodel (Barnes & Hut, 1986)

1See also http://wwv .manybody . org which hosts a number of N-body resources
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Packages NEMO's software is packaged and grouped around a number of data
formats. In the nbody package, various programs exist to integrate N-body sys-
tems with a wide variety of types of integrators, codes to initialize N-body
systems, and visualization and analysis programs. One of the versatile plotting
programs within this group is called snapplot, with which any body variable
can be plotted vs. any other body variable, using on-the-fly code generation (dy-
namic object loading) for fast and flexible analysis. One of its derived programs
is snapgrid, which produces an image instead of a scatterplot, and includes ef-
fects such as optical depth, and can be more directly compared to observations.
In addition to snapshots and images, two other data formats have a large set of
analysis tools: orbits and tables. Associated with orbits are potential descrip-
tors, which allow for user supplied potentials to be loaded into various orbit
integrators without the need to recompile those programs.

In the following example from the nbody/image group of programs an ex-
ponential disk is created, and integrated through a few dynamical times such
that a bar will form. The disk is then viewed from some angle and a first and
second moment along the new Z axis is then used to compute a velocity field and
velocity dispersion map on a grid in projected X-Y space. The resulting dataset
can be converted to a FITS file and manipulated in external packages, such as
saoimage. The resultant view of snapplot and ccdplot is shown in Figure 1.

%mkexpdisk - 20000 rcut=2 \ # make an exponential disk
I hackcode - - tstop=4 \ # integrate to bar formation
I snaprotate - - 60,45 xz \ # rotate around a bit
I snapgrid - - zvar=-vz moment=-1 times=4 \ # grid snapshot to velfield
I tee ngc999vel.ccd \ # save a copy of the data
I ccdplot - contour=-1:1:0.2 blankval=O # contour plot

y. ccdfits ngc9999vel.ccd ngc9999vel.fits # convert image to FITS format
y. ds9 ngc9999vel.fits l # display with saoimage

Data Formats NEMO's data format is a structured binary format, where data
elements are identified by name and type, and can be nested at an arbitrary
level. I/O routines access these data in an associative manner, only retrieving
the data needed at that time. Data is also interchangeable between machines
with different data types.

With the introduction of more "foreign" integrators into NEMO, each with
their own data format, it became necessary to be able to read and write a large
variety of data formats. Because there is no such thing as a standard interchange
format like FITS 2, NEMO's snapshot format has become the central format to
interchange format X to Y.

ZENO The ZENO software package is an evolutionary product of an earlier
version of NEMO, written by Joshua Barnes, and is largely still source code
compatible with NEMO. ZENO instead concentrates on N-body and SPH sim-
ulations, and particle representations are dynamically extendible instead.

2N-body data can often be described as a table, and thus the FITS BINTABLE format could very
well serve as an an interchange format, see e.g. Teuben 1995
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Figure 1. Example of graphics output from NEMO. On the left the
mean velocity (1st intensity weighted moment), on the right the veloc-
ity dispersion (2nd velocity moment, corrected for mean streaming) in
a bar unstable galactic disk.

2.2. Starlab

Starlab (Portegies Zwart et al. 2001) was loosely modeled after NEMO, but
written completely from scratch to handle the more intricate physics of collisional
dynamics. A new tree-based data structure was introduced to handle the more
complex stellar interactions. In addition, data piped through the system would
not lose information not known to the data-handler. The code is mostly written
in C++, and as of this writing consists of about 236 KLOC in 911 files. The kira
integrator (23 KLOC) can also be linked with a variety of GRAPE libraries to
take advantage if this hardware is available. kira also contains the SeBa stellar
evolution module.

Here is a simple example how to create a King model with a given IMF, bi-
naries and stellar evolution, then integrated on a GRAPE-6 and output dumped
in a file that can be processed using a number of tools available in Starlab.

%makeking -n 500 -w 5 -i -u \ # 500 particle king model
I makemass -f 1 -x -2.0 -1 0.1 -u 20 \ # mass spectrum
I makesecondary -f 0.1 -1 0.1 \ # make secondary stars
I add_star -Q 0.5 -R 5 \ # add stellar evolution
I scale -M 1 -E -0.25 -Q 0.5 \ # scale to virial equilibrium
I makebinary -f 1 -1 1 -u 1000 -0 2 \ # set orbitals for binaries
I kira_grape6 -t 100 -d 1 -D 10 -f 0.3 -n 10 -q 0.5 -G 2 -8 -B > big. out

Visualization in Starlab is currently best done with partiview, which can
take advantage of the hierarchical space-time nature of the data and also knows
about double stars (Teuben et al. 2001).

2.3. Scripting

In the tradition of UNIX, the modular design of NEMO and Starlab (and their
common general data format) programs can be combined in a large variety of
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ways. Prototyping can now be done in minutes, to produce complex and sophis-
ticated analysis pipelines. However, we have found in practice that the resulting
shell scripts (sh, csh, make) are often not very robust. Subsequently scripting
has exhibited some fragility that more comprehensive control mechanisms could
help prevent. Future versions or new software should make use of such control
data in a more reliable way. Another approach is to use an embeddable script-
ing language, such as python or ruby, which can enforce a tighter connection
between codes and data. In addition, these hybrid software environments often
lend themselves to better GUI development. We are currently experimenting
with this.

2.4. TIPSY

Another popular package to analyze particle simulations is TIPSy3 (Quinn &
Katz). This package has followed the philosophy of a single program, with a
special command interpreter to operate on snapshots containing a combination
of SPH, dark-matter, and pure Newtonian particles.

Y. tipsy
<yes, Peter>openascii run99.ascii
<yes, Peter>readascii run99.bin
read time 14.970800
<yes, Peter>xall
<yes, Peter>quit
<1 will miss you, master>
h tipsysnap run99.ascii - I snapplot - xrange=-4:4 yrange=-4:4

The obvious advantage of this approach is speed, as the data always remains
in memory. However, any modifications to the program means it will have to be
abandoned in order to be recompiled. Plug-ins or dynamic objects can alleviate
some of these problems.

2.5. IDL, and other

As the field of astrophysical particle simulations is a very specialized one, the
majority of research is done with personal codes, and likewise their analysis. In
recent years these codes have also incorporated more interesting physics, such as
simple empirical sticky particle dynamics, SPH gas dynamics, stellar evolution,
chemodynamical evolution, etc. These codes are mostly written in languages like
FORTRAN, C or C++. In recent years commercial graphics packages like IDL
and Open Source toolkits such as VTK (Visualization ToolKit) have also become
popular to analyze and visualize such complex datasets. Generic visualization
packages such as AVS, IRIS Explorer and IBM's Data Visualizer are widely
used, yet limitations in such generic packages continue to create a niche for
programs like the recently developed AstroMD toolkit (Becciani et al. 2000).
This program uses the VTK library to allow for very sophisticated multi-variate
data analysis and visualization.

3See affiohttp://www-hpcc.astro.washington.edu/tools/tipsy/tipsy.html
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3. Virtual Observatory

The concept of a Virtual Observatory to federate various observational databases
(e.g. Brunner et al. 2001) and make combined searching and analysis on these
databases possible, has not gone unnoticed in the theoretical community. Teuben
et al. 2002 argued that adding various types of theoretical data to the VO will
benefit observers as well as theoreticians, and open up new and unexplored
avenues for research.

For example, existence of a standard number of (benchmark) datasets will
benefit authors of new codes to quickly compare and highlight differences be-
tween various codes. This is of course not something new, but still a relatively
rare event in our community. After the first published code comparison by Lecar
(1968) it still took nearly 30 years for the community to continue this effort when
in 1997, Heggie (2002, this volume) reported on a comparison between different
star cluster simulations and Sellwood (1997) published a comparison between
five different N-body codes typically used in galaxy simulations. Setting up test
problems is important (Heggie 1997, 2001), and has been a standard in many
field of computational science (e.g. Stone & Norman 1992).

In a Virtual Observatory we can expect to select models, compare them to
existing data and perform various types of fits to best describe the observations.
In addition, new models can be compared to old models, and provide feedback
to code development. In order to better understand the scope of the role of
theory in a Virtual Observatory, we have started to construct a "toymodel'i",
which contains a growing collection of different types of theory data. The only
condition for data to be added to this toymodel is that they must either be
benchmark data, or datasets associated with published papers.

4. Conclusion

We have reviewed the evolution of particle simulation codes, and seen them
adapt to the ever growing speeds of hardware. This will have to include the
rapid development of PC cluster hardware, which will require enhancing the
scalability of parallel algorithms. The simulation software itself has more slowly
matured (e.g. compare different software engineering practices) with promises
of code reuse and extendibility. The future in software development is likely
going to be in frameworks such as ROOT and AIPS++ with plenty of room for
niche applications, as long as they can easily share their data!

A Virtual Observatory framework will allow for a more seamless integration
of observations and simulations, and allow astronomers to compare observations
and obtain best fit models. It should also enable theory to develop more in pace
with simulations and encourage code reuse and data format sharing.

It is expected that the N-body simulation community will continue to con-
tribute, as in the past, a diversity of insights that will continue to make the field
exciting and productive for years to come.

4Seehttp://www.astro.umd.edu/nemo/tvo
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Appendix: Data Usage Survey

Before the final "Open Discussion" (chaired by Prof. Sugimoto) a small survey
was handed out to all participants in order get some more insight in the types
of data that are produced in our simulations, and the current habits of its
practitioners. Although no head-count was made of the number of people present
at this session, 53 (exactly 50% of the 106 officially registered participants) forms
were returned and analyzed.

A similar (but unpublished) survey was held in 1994 amongst a much smaller
but similar focus group of astronomers at the Lake Tahoe meeting to celebrate
Sverre Aarseth's 60th birthday. The current "survey" was intended to aid the
discussion on typical current "N-body" data usage and future Virtual Observa-
tories. A quick overview of the results was given during the summary session on
Friday afternoon. Here we reproduce some of that discussion.

The Survey

1. Your name or alias:

2. Do you: (in all of the items below you are allowed to
mark multiple items, perhaps you can indicate
the percentage of relevance in each)

a develop your own code(s) [name(s):
b use existing code(s) [name(s):
c other
d N/A

3. What is your typical range in N:

4. Do you
a save particle/grid data (see also 5)
b discard data (e.g. analysis within simulation code)
c other:
d N/A

5. Your data format is mostly:
a table of particle attributes (m, x, y, z, vx, .. )
b grid of cell attributes (den(i,j,k), vx(i,j,k), .. )
c hydrid of 1 and 2 (e.g. P3M)
d a tree structure
e other: (try and describe)
f N/A

6. What analysis software do you use:
a my own [name(s): /language(s):
b sm
c IDL
d NEMD
e ZEND
f Star1ab
g Tipsy
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h other:
i N/A

7. What kind of ancillary data do you also store:
a minor diagnostics (E, Lx, Ly, Lz, ... )
b neighrest neighbor list
c detailed grouping info
d a tree structure representing particles
e a tree structure representing grid
f other:

8. Do you use models
a to compare to your own other models
b to compare to other people models
c to compare/fit to observational data
d other:
e N/A

367

9. If you do any of those, do you
a compare in configuration (pos, vel) space (e.g. velocity field)
b compare in derived quantities (e.g. power spectrum, luminosity function)
c other:
d N/A

10.Any suggestions for Virtual Observatories?
a a waste of time, because
b a great idea, but ....
c other:
d N/A

11.Do you have any data yourself you have available?
a no
b yes, but I can't make it available
c yes, and I might be able to make it available
d yes, they are available on the web already

12. Any remaining comments?

Results

It quickly became clear that making a good survey is harder than it looks. Many
questions had multiple answers, thus the numbers quotes will be percentages and
will generally add up to over 100%.

1. Nobody was using an alias, everybody choose to use their known name
(one person choose his/her Japanese name).

2. a) 72% b) 68% c) 4% d) 2
Codes mentioned (quite a few respondents actually missed the request to
mention names of their code(s)): AMR using boxlib, ap3m, asph, c++tree,
chameleon, COSMIC, eurostar, gadget, gasoline, gizmo, grapesph, hydra,
kira, nemo, nbodyN, p3m, p3msph, pg, pkdgrav, pmtreecode, ptreecode,
scf, superbox. tipsy, treescf, treesph.

3. 2 - 1,000,000,000, with one respondent quoting ~ 32768!
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4. a) 90% b) 6% c) - d) -
data summaries, expansion coefficients, test vector.

5. a) 84% b) 14% c) 14% d) 14% e) 6% f) 4%
series of nested adaptive grids, distribution function,

6. a) 60% b) 36% c) 32% d) 10% e) - f) 10% g) 20% h) - i) :
xmgr(2) , gnuplot(8) , mongo(4), dx(2), amrvis(l), pgplot(l), pdl (1), mi-
das(l), sm(l)
Languages: Fortran (8), C (6), C++ (4), Perl (2), Awk (1)

7. a) 74% b) 22% c) 12% d) 12% e) - f) -
special purpose diagnostic files, likelyhoods, never store data.

8. a) 74% b) 66% c) 70% d) - e) 4%

9. a) 64% b) 64% c) - d) 4%

10. ambitious, good luck, hope it takes off, would not use it (2x)

11. a) 18% b) 6% c) 50% e) 16%

12. A nice variety of comments: The VO might be a good place to offer their
codes to the public. There needs to be a common data format (CDF, HDF).
The project is very ambitious. Worry that the credit to a persons work is
lost. VO should be looked at as an internationally funded observatory.
Theory should also play their parts in making images available for public
outreach. Programming resources are needed to support the scientists who
are supposed to this work. Reliability and possible refereeing needed for the
submitted data. Good luck! Useful to chain simulations: the end of one
simulation can be used as input to the next.

Discussion and Conclusions

Although a very large programming effort is shared amongst this community, at
least an equal amount is using simulation software from colleagues (and probably
expanding it). The survey unfortunately did not address the question how data
is interchanged between codes, if any, despite that a good fraction of people use
more than one code.

Data analysis fills an almost equally wide spectrum, from a variety of special
purpose software (TIPSY, NEMO) to utilizing generic, and sometimes even
commercial, software (IDL, sm, perl, dx). Part of this is no doubt sociological
and the familiarity of the user with that specific software.

Although a large amount of software is still written in FORTRAN, the
majority is now in C/C++. Perhaps notable in this survey was the absence of
Java. perl and awk are popular scripting languages, although nobody mentioned
the basic shells sh and csh. Also, no explicit operating systems were mentioned.
The large amounts of code, and interesting genealogy between them, shows that
most of them fill a specific niche in the market.
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