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Introduction. LetJ^7 be a Hilbert space with inner product (•, •) and 
let E(-) and E°(-) be spectral measures in Jf7 corresponding to self-adjoint 
operators H = J\E (d\) and H0 = JyE0(du). In this paper we consider the 
set function F (I X J) = E(I)E°(J) defined on the semiring of bounded 
rectangles, and obtain an integral representation for this set function for 
disjoint / , J under the hypotheses that H — H0 is a type of Carleman opera
tor. 

In case H is a gentle perturbation of H0 in the sense of Friedrichs (2) such 
a representation follows easily from the conclusion of the theorem on gentle 
perturbations proved in (2). We indicate briefly how this is done. If B(N) 
denotes the space of bounded linear operators in a Hilbert space N, then 
gentle operators V, mapping L2(— °o, oo ; N) into itself, are of the form 

Vf(x) =fK(x,y)f(y)dy, 

where the kernel K(x, y) is a B (TV)-valued function which satisfies certain 
Holder continuity conditions. Friedrichs shows that if V is gentle then there 
exists Ut, a unitary operator-valued analytic function of e, such that 

HtUe = U<L, 

where (Lf)(x) = xf(x), He = L + eV, and 

(1) Uj(x) = f(x) + e{ *iR(e; x, x)f(x) + j ^ j t ~ ^ dv\ • 

The integral is taken in the principal-value sense and R(e; x, y) is also a 
gentle kernel. 

Let xs denote the projection onto the subspace of functions with support 
in the set S. Then, if / and / are disjoint compact intervals, it follows from 
(1) that 

( 2 ) {f,E(I)E\j)g) = (£(/)/, E\j)g) = (KUJ, xjg) 

= f & f t / ( ^ , y ) / ( y ) g W > 
JIXJ y — x 

In this paper we obtain a formula analogous to (2) by a different method 
and under the assumption that F is a type of Carleman operator, an assump-
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tion less restrictive than the gentleness condition. The number e will not 
play a role in our investigation and we shall simply deal with H = L + V. 
Furthermore, H and E need not be unitarily equivalent; if they are not, how
ever, we restrict our attention to the absolutely continuous part of H which 
we define presently. 

Let H = JXE (dX) be a self-adjoint operator in the Hilbert s p a c e d . The 
absolutely continuous subspace J4?ac corresponding to H consists of those 
/ £ J4? for which the measure (E (•)/>/) is absolutely continuous with respect 
to Lebesgue measure. I t is known (5) that ^fac reduces H, that is, if P is 
the projection on ^fac, then HP 3 PH. It follows from the spectral repre
sentation theorem (1) that there exists a Hilbert space Nr and a family of 
subspaces N\ such that HP has a representation as a simple multiplication 
operator in the subspace jdXN\ of 34?' = E2( — oo , oo ; iV7), 

jdXN\ = {/:/(X) g iV'x> -co < X < « }. 

This means that there exists a partial isometry U having initial set^fac and 
final set JdXN\ such that LU = UHP. If ET and E are unitarily equivalent, 
then Jtf = J^ a c and N\ is isomorphic with N' so that we may identify 3*1?' 
and Jf7 to write LU = UH. 

Theorem 1 shows that in either case we have a representation of the form 
(2), while Lemmas 1 and 2 provide the background for Theorem 1. 

LEMMA 1. Let H be a self-adjoint operator on the Hilbert space 3tif. Let 
R\ = (XI — H)~l be the resolvent of H and EM the corresponding resolution of 
the identity. Then the limits 

lim (R^ief, g) exist \x-a.e. 
€_>0+ 

for each / , g £ Jf7. 
Denote these limits by (R^^f, g). If we assume in addition that f {or g) is 

in the absolutely continuous sub spacedac of H, then for any interval J we have that 

( £ ( / ) / , g) = ~ ^ d„[{R,.i0j, g) - (R.+4, g)]. 

Proof. We begin with the well-known equation (1, p. 1196) 

Wg)^Jéf£ût ImX^o. 
Observe that 

4(£„/,g) = \\E,(f + g)\\* - \\E,(f - g)\\* + i\\E,(f + ig)\\* 

-i\\E,(f-ig)\\' 

and that each term on the right is an increasing function of v. The integral 
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defines an analytic function #(A) in the upper half-plane having negative 
imaginary part. Hence \l/(\) = (i — 0 ( \ ) ) _ 1 defines an analytic function 
whose modulus is bounded by 1. I t is known (6) that under these conditions 
lim€_^o+^(M + it) exists /x-a.e. and equals zero only on a null set. From this 
we conclude that \\me^+ <j>{n + ie) exists /x-a.e. and that lime^0+ (Rp+uf, g) 
exists ju-a.e. because of (3). 

To prove the second assertion of the lemma we argue that if / or g Ç J4?ac, 
then (Evf, g) is an absolutely continuous function of v. Let p(v) be its Radon-
Nikodym derivative. Then 

€-40+ *J yix — v) -f- e 

= lim 2i I 7 rg—:—2 = 2wip(n) /x-a.e., 
e^O J (fJL — V) + € 

where the last equality is obtained by using a standard argument (3, Chapter 
8) based upon the fact that p is integrable and ir~1e[(n — v)2 + e2] -1 is an 
approximate identity. Furthermore, we obtain (E(J)f, g) = JJ^MP(M)> which 
completes the proof. 

LEMMA 2. Let J3M &e a resolution of the identity in the Hilbert space Jrff. Let 
v (x) be a strongly measurable function from the real numbers into Jti? such that 
Jjdx\\v(x)\\ < 00 for every finite interval J. Then for each x: 

(i) -7- (JEM/, v(x)) = W(IJ,, x) exists \i-a.e., 

GO 

and 

I; WW) ^l"^"')'"^"^^')''* tx-a.e., 

(iii) JjdxJdfM |w(/i, * ) | ^ ||/|| JV dx ||^(x)||. 

The proof is straightforward and is therefore omitted. 

In Theorem 1, let E0 and E denote the spectral measures of L and H, re
spectively, and let J^fac be the absolutely continuous subspace corresponding 
to H. The inner products for N and 3tif are denoted by ( • , • ) and ( • , • ), 
respectively, i.e., (f,g) = j dx(f(x), g(x)). Equation (4) is analogous to (2). 
The proof of Theorem 1 is dependent upon the two lemmas which follow it. 

THEOREM 1. Let V be a symmetric linear operator in ^ whose domain in
cludes that of L. Suppose that for each f in the domain of L and for each g £ ^ , 
(Vf(x), g(x)) = (/, vg(x)), where vg(-) is a locally strongly integrable Jtif'-valued 
function on the real line. Furthermore, assume H = L + V is self-adjoint. 

Then for f G J^an g G <&? and disjoint compact intervals / , / , 
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(4) (£(/)/, Eo(7)«)= f duLdxWf^x\ 
JlXJ M — X 

where Wfgijj,, x) = {d/d^){Ellf1vg{x)). 

Proof. Since L and iiT are self-adjoint, the resolvents R\° = (XI — L ) _ 1 

and i^x = (A/ — i ? ) _ 1 exist and are bounded operators on 34? for Im A ^ 0. 
Since L and H have common domain we have the resolvent equation 

Rx = Rx° + Rx°VRx. 

I t is clear t h a t R\°f(x) = f(x)/(\ — x) , and E0(J)f(x) = / ( x ) when x 6 J 
and is zero otherwise. Hence, for Im A ^ 0, 

(R^Eo(J)g) = J ^ x ( ^ x / ( x ) , ^ ( x ) ) 

= r ^/(fc»), &(«)) | (Fi?x/(x),gW)\ 
J j I A — x A — x j 

J j A — x J j A — x 

If /x is a positive distance from / , then 

(6) lim (dxm^)i= cdx(mim. 
By Lemma 1, (i?M±i0/ , E0(J)g) exists ju-a.e. T h u s we can conclude from (5) 
and (6) t ha t 

lim I ax \—y exists M-a.e., 
€^o+ J j [x ±.16 — x 

and 

(Rr-toftEoWg) - (R^f, Eo(J)g) = 

(7) lim f Jx / ( i w , *,(*)) (*,w, f,(*))l a 
€_̂ o+ • / j ( /x — ie — x n + ie — x ) ' 

T o compute the last limit we begin with the equation 

= J ^^7)2^7.-^2dp(Ev f , vg(x)) T i J T - — — T 2 - T - ^ d , ( £ / , ^ ( ^ ) ) . 

Then 
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J j { jd — ie — x fx + ie — x ; 

(8) \ dx ( . — — . ) I -——T-2--—g dv(Evf,vg{x)) 
J j \fjL — te — X fx + te — x/ J (fi — v) + e J y 

+ i I ( : h —— ) \r-—2d,(Evf, vg(x)). 
JJ\IJL — te — X fi + îe — X/ J (ju — v) + e 

If we take the limit as e —» 0 + in (8), the first term on the right tends to 
zero by Lemma 3, and the second term tends to 

by Lemma 4. T h u s (7) becomes 

(R,.i0f, E0(J)g) - (R,+(0f, Eo(J)g) = 2 « fdxW"^'x)
 M-a.e., 

as long as ju remains a positive distance from J. This condition is certainly 

satisfied if /x £ / . Then Lemma 1 yields 

(9) (£(/)/, Eo(J)g) = fdvfdx ^ ^ . 
%J j *s j fJL X 

By Lemma 2, wfg{n, x) is locally integrable and therefore wfg(fx, x)/(/x — x) 
is integrable over I X J. Consequently, the right side of (9) can be wri t ten 
as a double integral, yielding (4). 

L E M M A 3. Let £M be a resolution of the identity in Jrff with corresponding 
absolutely continuous subspace fflac- Let v(x) be a locally strongly integrable 
function from the real numbers into $f. Then, for f £ ^fac and n a positive 
distance from the bounded interval J, 

Km dx- -T2-7—2 7—-—\2~~-2 dv(Ef, v(x)) = 0. 
c_>o+ J j (ji — x) + e J (/x — v) + e 

Proof. Since f (: JrffaCJ {E^f.vix)) is an absolutely continuous function of 
fx, and 

w(n, x) = — (Erf, v(x)) exists /x-a.e. 

By Lemma 2, Jj dx J du \w(v, x)\ < °°. Hence 

Xdx$dv [Tr-xT+^W- V)^7]w{~v>x)-
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Observe that the integrand in the last integral approaches 0 as e —> 0 for 
each choice of u, v, and x. Hence, if we can show that the integrand is domi
nated by an integrable function of (v, x) which does not depend on e, our 
result will follow by the dominated convergence theorem. It is clear that 

Consequently, 

e(u — v) 

e(/x — v)w(v} x) 

which completes the proof. 

LEMMA 4. Under the assumptions of Lemma 3, 

U — X 

\w(v, x)\ 
2inf{|/x - x\:x£ J] ' 

lim I dx 
€->0+ « / J (M - xy + 

J 7~I_ y\2 jj^d.iEyf.vix)) = 
*Y + 

Sj^j^^(E^vix)) w -
Proof, Since/ Ç ^ac> (£/*/» *>(#)) is an absolutely continuous function of u. 

Therefore 

d\x (E„,f, v(x)) = w(u, x) exists ju-a.e., 

and 

i (M - vf + 
dv(Evf, v(x)) = I dv 

0* - *r + 
Z£j(l>, # ) . 

Then 

j r ^ A*.^_»_ dx -—-—Z2~~t—j I o>v 7_ 7̂ 2" 
(jU — X) +6 (M - vY + 

iwfj',») - I dx w(u,x) 
e J j u -~ x 

I fJL — X 
dX \ , 2 . 2 — 

j I (fX ~ X) + € 

+ I dx I dv 
\Jj fJL — X J 

—If* 0* - ") + 
\w(v, x)\ 

>w(v, x) — I dx w(u,x) 
J j IX — X 

We now use the result of Lemma 2 that jj dx J dv \w(v, x)\ < » , to obtain 

J UL — X 1 I € 

j I (u - X) + € /X - X I J 0 - *>) + € ' 

= I X̂ I dv Y~r 
J J J KM — x 

inf{|ju — x\:x 6 J} 
which tends to zero as e—»0+. 

)' + e'] |M - x\ 0. - *)' + 

I dx \ dv \w(y, x)\ 

2—-2 kO, x)| 
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lim 

Nex t we show t h a t ^t-a.e., 

(10) lim I dx \dv-, r r - ; — 2 w { v , x ) = I wifjL.x). 

€_,0+ J J H — X J (At — X) + € J j jJL — X 

Let / be a bounded interval . Since jdv jTdx \w(v, x)\ < °° and 

TT-MG* - ^ ) 2 + 62]-1 

is an approximate identi ty, it follows t h a t 

Jj J (n — v) + e J / 

Hence, if s(x) is a s tep function on / , we have t ha t 

(I1) i taf*,wf*7 V ^ . , , , ) . , U »<*>»(,,*> „-.«. 
c^o+ J j J (M — *V + e J j 

Denote the expression whose limit wre are taking by F(s, €, /x). Then 

|^ ( s , e, A0| ^ sup x | s (x) | 1 ^ 7 T2~T""2 I dx |w(i>,x) | , 
«/ (At — v) -+- e • / j 

so t h a t At-a.e. there exists ikfM > 0 such t h a t 

(12) \F(s,e,»)\ è ikfM s up , |s(x)j . 

Wi th the help of (12), (11) can be extended by means of an e lementary 
technique to the case where s is a uniform limit of s tep functions. T h u s (10) 
is proved. 

A p p l i c a t i o n of T h e o r e m 1. Let tf = L 2 ( — 00 f 00 ) and let L be the simple 
multiplication operator on Jtif. A per turbat ion V is given by 

Vf(x) =JK{x,y)f(y)dyt 

where 

(13) Sffi+)y*)d*dy = aK< «>. 
Here and in the following, j means Jlœ. 

Assumption (13) allows us to show t h a t the hypotheses of Theorem 1 are 
satisfied. Let h G SD(L) and define / Ç ̂  by f{x) = V ( l + x 2 )Mx) . Then 

Consequently, 

(14) \\Vh\\^ctK\\f\\^»K(\\h\\ + \\Lh\\), 

implying h € 3 ) ( F ) . 
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We next deduce an inequality which will imply that H = L + F is self-
adjoint. Let r > 0 and put K(x,y) = K'{x,y) + K"(xyy), where 

A {Xl y) " \ 0, otherwise. 

Certainly, both K' and K" are symmetric kernels satisfying (13), and by 
choosing r sufficiently large we can ensure that 

(15) oK„ < 1. 

Then 

(16) Jj\K'(x,y)\*dxdy£ (1 + r2) j j | j g ' ( * ' y]V dxdy 

so that K' is a Hilbert-Schmidt kernel. If V, V" are integral operators corre
sponding to the kernels K', K", then Vh = V'h + V"h, and, combining the 
results of (14) and (16) we have that 

(17) \\Vh\\ £ \\V"h\\ + \\V'h\\ £ o>K„\\Lh\\ + [(1 + r*)uK> + 1] ||A||. 

Since o)K>> < 1, it follows that L + V is self-adjoint by a result of Kato (4, 
Chapter 5, Theorem 4.3). 

We proceed to show that V is an operator of the kind envisaged in 
Theorem 1. L e t / £ SD(L) and g £ ̂  Then 

(Vf(x),g(x)) = g W / X ( x , y ) / ( y ) ^ = (/>*(*)), 
where 

^ M = g(x)K(x, •)• 
We have that 

IKWII = |g(x)|||X(x,-)ll, 
and 

JV<Mk(x)|| ^ | |g| |{J^x||K(x,-)ll2!1 /2<-
for every bounded interval / . Thus the hypotheses for Theorem 1 are satis
fied. 

Let £ 0 and E denote the spectral measures corresponding to L and L + V 
as before. Choose / £ ̂ an g 6 « ^ and disjoint compact intervals / , / . 
Theorem 1 then asserts that 

(18) (£ ( / ) / , Eo(J)g) = f < f / t r f s W / ' 0 t ' * ) , 
*SIXJ ix — x 

where 

W/„(M,*) = ^ (E^Vgipc)). 

We are now prepared to obtain a representation analogous to (2) of the 
Introduction. Let L2( — oo, oo ; JV) be a representation space for the absolutely 
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continuous part of H, and let U be the corresponding representation iso-
metry. Denote the inner product in N by (•, •) and the norm by \-\N. Then 

{EJ, v,(x)) = f ([Uf] (y), [Uv0(x)} (y))N dy 
«'-co 

which implies that 

Wain, x) = ([£//]Oz), [Uvg(x)](n))N M-a.e. 
Now, 

[Uve(x)](n) = g(x)[UK(£~T]b), 
where 

j\[UK(x, • ) ] ( M ) | / ^ £f\K(x,y)\'dy. 

If we define 

RQi,x) = [E/tffrTÔÏG*), 
then 

^
li?(in, x)\N

2 j , 

and finally, (18) becomes 

( £ ( / ) / , £ o ( / k ) = f dlldx^^iML^kMt 
JlXJ II — X 

which is analogous to (2). 
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