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CLOSED SYMMETRIC OVERGROUPS OF Sn IN On 

CHI-KWONG LI AND WAYNE WHITNEY 

ABSTRACT. A norm on IR" is said to be permutation invariant if its value is preserved 
under permutation of the coordinates of a vector. The isometry group of such a norm 
must be closed, contain Sn and —/, and be conjugate to a subgroup of On, the orthogonal 
group. Motivated by this, we are interested in classifying all closed groups G such that 
{—I,S„) < G < On. We use the theory of Lie groups to classify all possible infinite 
groups G, and use the theory of finite reflection groups to classify all possible finite 
groups G. In keeping with the original motivation, all groups arising are shown to be 
isometry groups. This completes the work of Gordon and Lewis, who studied the same 
problem and obtained the results for n > 13. 

1. Introduction. Let S„ be the group of n x n permutation matrices. A norm || • || on 
W1 is permutation invariant if \\Px\\ = \\x\\ for any x G W1 and for all P G S„. A standard 
example of such a norm is the lp norm, p > 1, defined by 

ipto = {tw)l,p-
i=\ 

This norm is also absolute, i.e., £p((x\,... ,*„)') = ^ ( ( | J C I | , . . . , |jc„|)r) for all x. An 
example of a permutation invariant norm which is not absolute is the Nk norm, 1 < k < n, 
defined by 

Nk(x) = max{|jc„ + • • • +jc,J : 1 < J'I < • • • < / * < w}. 

It is known (see [LM]) that permutation invariant norms are very useful in the study 
of other classes of norms on matrix spaces, and their basic properties are quite well-
studied. Moreover, the isometries for the Nk norms and other permutation invariant norms 
have been characterized in [LM]. The purpose of this paper is to determine all possible 
isometry groups of a given permutation invariant norm. 

Let {e\,... ,en} denote the standard basis of Rn, and let e = £"=1 e,. Denote by 
GL„(R), or simply GLW, the group of real nxn invertible matrices, and On the group of 
orthogonal matrices in GL„. Evidently, a norm || • || on W is permutation invariant if and 
only if the isometry group G of || • || satisfies S„ < G. Note that for any norm || • || on W1, 
its isometry group G is closed and bounded. Further, || — JC|| = ||JC|| for all x G W1, so that 
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G must satisfy —/ G G. Then for the isometry group G of a permutation invariant norm, 
we have ±S„ < G, where ±5,, = (-/ ,£„). 

Let Jn, or simply J, be the n x n matrix of all 1 's. We may then make use of the 
following theorem (see [LM, Proposition 8.1]). 

THEOREM 1.1. Let G be a bounded subgroup of GLn. Then G is conjugate to a 
subgroup ofOn. Moreover, ifSn < G, then S~lGS < Onfor some S = al + (3J £ GL„. 

Note that if S = al + (3J G GL„, then SP = PS for all P G ±Sn. It follows that 
S~l(±S„)S = ±S„. Therefore, to characterize the isometry groups G of a permutation 
invariant norm || • || up to conjugation by matrices S = od+ (3J G GLW, it is sufficient 
to consider groups G such that ±S„ < G < On. Furthermore, we have the following 
theorem [GLo, Theorem 3.1] showing that a finite group G is the isometry group of a 
permutation invariant norm if and only if ±S„ < S~lGS < On for some S = al + (3J £ 
GLW. 

THEOREM 1.2. Let G < Onbe a finite group containing —I. Then there exists a norm 
|| • || on Rn whose isometry group is G. 

Motivated by the study of the isometry groups of permutation invariant norms, we 
are interested in determining all closed groups G satisfying ±«Si, < G < On. In doing 
this, we consider the case of infinite groups G and finite groups G separately in the next 
two sections. This problem has been studied by Gordon and Lewis in [GLe], and results 
have been obtained for « > 13. In Section 2, we use a different method to reprove the 
result of Gordon and Lewis for the infinite case. In Section 3, we use the theory of finite 
reflection groups to study the finite case. In Section 4, we compare our results with those 
of Gordon and Lewis, and discuss some related problems. 

It is possible that some of our results can be deduced from advanced theory of Lie 
groups and reflection groups. The proofs presented in this paper depend only on basic 
results of the two subjects and elementary computations. 

The standard basis of Rnxn will be denoted by {E\\9 En,... ,Enn}. 

2. Infinite closed groups G satisfying ±Sn < G < On. Let G be an infinite closed 
group satisfying ±S„ < G < On. If n = 2, then G = 02. Thus we always assume n > 3 
in this section. Some basic theory of Lie groups will be used to determine G. Note that 
On is a compact Lie group and so does G. Since G < On, the Lie algebra g of G is a 
subalgebra of the Lie algebra on of On, where on is the linear space of all n x n skew-
symmetric matrices. Furthermore, since Sn < G, Sn acts on G by conjugation, and so g 
is a S„-module under the action of conjugation, i.e., (P,A) \—• PtAP for any P G Sn and 
A G g. The question of classifying G may then be approached by finding the subalgebras 
of on which are S„-modules. To this end, we first establish the following result. 

THEOREM 2.1. Let n > 3, and let V be a non-trivial vector subspace ofon which is 
a Sn-module under the action of conjugation. Then V is one of the following: 

(a) on; 
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0>) °n — {S £ o„ : Se = 0}, which is isomorphic to on-\; 
(c) W = {S = (sy) G on : Sij = sik + Skj, 1 < i,j, k < n}. 

PROOF. First note that these three subsets of on are vector subspaces of o„ and Sn-
modules. Now suppose that V £ W. Then there exists A G V,A = (ay), such that for 
some i,j, k, 1 < i,j, k < n, ay ^ a^ + ajy. Since F is an £„-module, we can permute 
the rows and columns of A as necessary and assume that an ^ ÛB — #23- We seek to 
simplify A as much as possible, to show that it generates under the action of S„ a basis 
foro». 

Now consider B = A — P lAP = (by), where P G Sn is obtained from / by in­
terchanging its first and second rows. Then B G V; bn = 2a\2, and for i,j > 3, 
bu = au - a2i, b2i = a2i - aXi, and by = 0. Let C = -B + F~XBP + g - ^ g = fey), 
where P = En + £31 + S y u ^ 6 = ^23 + £32 + £ # 2 , 3 ^ € S„. Then C G F; 
c,y = 0 for / or y > 3; en = 2̂3 = —C13 = 2613 — 2an- Note that 2b u — 2an = 
2(a\3 — 023 —012)7^ 0. Scaling C and permuting its rows and columns appropriately, we 
get Co = (£12 - E2\) + (£31 - £13) + (£23 - £32) G oj. It is not hard to check that the 
orbit of Co under the action of S„ spans o°n. So cPn Ç V. 

If V 7̂  0^, then there exists A € V such that 4̂e ^ 0, /.e., some row sum of A is 
non-zero. We show that A generates a basis for on. Denote by /1, the /th row sum of A. 
Choose B = (by) G o°n such that *,y = ay for all 1 < i,j < n - 1. Let C = f̂ - B = (c,y). 
Then CG F. For 1 < /,y < n — 1, c,y = 0 and C/„ = /x,. Since £?=1 /x,- = 0 and for 
some /, /i/ 7̂  0, there exist non-zero /ia, /x/, such that \ia ^ fib- Permuting the rows and 
columns of C appropriately, we may assume that a = 1, b = 2. Then, as previously, let 
D = C — P~lCP = (dij), where P G Sn is obtained from / by interchanging the first and 
secondrows.ThenZ) G Vwithdy = 0,exceptd\„ = dn2 = —d2n = —dn\ — [i\—\x2 ̂  0. 
Scaling appropriately, we may take d\n — — 1. Let S = E\2—E2\. Then D + S GoJ, and 
hence S £ V. Since the orbit of S under the action of Si, spans on, we see that V = o„. 

Thus if V % W, then F = o°n or F = on. Now consider VCW.LetA = (ay) G F, 
^ 7̂  0; by permuting the rows and columns of A appropriately, we assume that a\2 ^ 0. 
As before, let B = A —P~lAP = (by), where P G S„ is obtained from / by interchanging 
its first and second rows. Then for i,j > 3, b\2 = 2a\2, bu = —b2i = —bn = bi2 = an, 
and Zty = 0. Now an element of W is determined entirely by its first column, i.e., W is 
isomorphic to Rn_1. But we see that the first columns of the matrices in the orbit of B 
under S„ generates a basis for Rn~l. Therefore V = W. m 

As pointed out by the referee, Theorem 2.1 is equivalent to the assertion that on admits 
the (unique) decomposition o„ = oJJ © W into simple ^-modules. This result may be 
of independent interest. In addition, this observation makes the construction of W more 
natural; one need consider the complement of cPn in on. 

Although there are 3 possible linear subspaces of on that are invariant under the action 
of Sn as shown in the previous theorem, we are interested only in subalgebras of o„ 
which are Sn-modules. The question arises, then, as which of the three vector spaces of 
Theorem 2.2 are closed under the Lie product. The following proposition gives an answer 
to this question. 
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PROPOSITION 2.2. Of the three vector spaces on, on and W in Theorem 2.7, only the 
first two are Lie algebras. 

PROOF. We know that on is a Lie algebra. To see that o\ is closed under the Lie 
product, letX, Y G o°n. Then, 

[X, Y]e = {XY- YX)e = X(Ye) - Y(Xe) = XO - 70 = 0. 

So [X, Y] G o\, and o°n is a Lie algebra. 
To see that W is not a Lie algebra, it suffices to show that [A,B] $ W for an appropriate 

choice of A, B G W. Direct computation shows that this is the case for A with first row 
(0, 1 , . . . , 1) and B with first row (0, 2, 1 , . . . , 1). • 

Thus we have classified the possible Lie algebras of a closed, infinite group G satis­
fying ±Sn < G < On. In all cases, oQ

n < g, so exp(o^) < G, where exp: on —» On is the 
exponential map. Since ±Sn < G, we see that G contains the subgroup 

OS = <exp(o°), ± Sn) = {TeOn:Te= ±e}. 

By the following result, we see that G is either Cfn or On. 

THEOREM 2.3. Let n > 3. The group Cfn is maximal in On. 

PROOF. Let G be a group such that Cfn < G < On, with G ^ Cfn. We show construc­
tively that G = On. 

First consider^ € G\ Cfn, and l e t / = e/y/n. Then Af = cos Of + sin Ou, for some 
0 ^ ATTT, £ G Z, and for some w G / \ £2(«) = 1. Since (Af9f) = If, A~xf), and 
since A G On, A~lf = cos Of + sinOv, for some v G / x with ^(v) = 1. Since Cfn 

acts transitively o n / 1 , there exists T E O^ such that 7w = —v. Then A\ = AT G G, 
andv4i satisfies^/ = cos0f+ sinOu andAjlf = cos Of — sinOu. A s / = A\A\xf — 
cos 0(cos Of + sin0w) — sin 0/1 iw, we have ^ w = — sin Of + cos Ou. Therefore A\ has 
span!/*, w} as an invariant subspace. Choose S G Cfn such that A2 = A\S is the identity 
on {/", w}1; t h e n ^ G G. 

Given 5 G On\Cfn with 5 / = cos Of + sin 0v, for some v ef1, f>2(v) — 1, we may 
construct the analogous map £2. Weseethat^ = S~lB2S for appropriate S G 6^, where 
Su = v and S is the identity on {u, v}-1. Hence 52 G G, and since the construction of B2 

uses only elements of Cfn, B G G. 
Let AT be the collection of real numbers x G [— 1, 1] such that there exists D G G 

satisfying (Df,f) = x. By the discussion in the previous paragraphs, we see that G = On 

i f* = [ - 1 , 1 ] . 
Note that iC is symmetric with respect to the origin, as if D G G, then —D G G. 

So we need only show that [0, 1] Ç K. We have from above that A2 G G, where 
(Arf,/) = cosO. Assume that cos0 > 0; if not, consider —A2. Then we will show that 
[cos 20,1 ] Ç K. Inductively, [cos 2*0,1 ] Ç K, for all k G N. But for some k, cos 2*0 < 0, 
so [0, 1] Ç K. 

Now, given ^2 as above, with Arf = cos Of + sinOu, let v G {/*, w}1, ^(v) = 1. Let 
B = S " " 1 ^ , where S G <9£, Sv = w and S is the identity on {«, v} ± . Then 5 " 1 / = 
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cos Of — sin Ov. Let </> E [0, 2ir), and let C = TA2, where T E Cfn,Tu = cos <j>u + sin <j>v, 
7V = — sin^w+cos^Vjandristheidentityonlw^}1. ThenQ* = cos0/'+sin0cos<£w+ 
sin^sin(/>v. So5, CE G. 

Now £C E G, and let \i = (BCf,f). Then /x = (C/, 5"1 /) , as B E On. So /i = 
cos2 0 — sin2 0 sin (/>, and /x E À\ As sin (/> varies from 1 to — 1, /i varies from cos 20 to 1. 
Hence, [cos 20, 1] C K. Therefore, G = Ow as asserted. • 

Thus we have proven: 

THEOREM 2.4. Zef n > 3. 7f G is a closed, infinite group satisfying ±Sn <G <On, 
then G=OnorG=Oe

n. 

Since Theorem 1.2 applies only to finite groups, it remains of interest whether there 
exists norms whose isometry groups are On and Cfn. The Euclidean norm £2 has On as 
its isometry group. 

To construct a norm whose isometry group is Cfn, define ||x|| = tii*) + \(e, x)\. It is 
easy to check that || • || is a norm, and its isometry group G contains Cfn as a subgroup. 
By Theorem 2.4, we know that G is either Cfn or On. To show that G is not 0„, it suffices 
to choose T E On\O

e
n, and* E IR" such that ||7x|| ^ ||x||. Direct computation shows 

that this holds for x = e and T such that Te = (y/n, 0 , . . . , 0)'. 

3. Finite groups G satisfying ±5,, < G < On. Suppose G is a finite group such 
that ±Sn < G < On. A matrix of the form Lx = I — 2xxt E G, where x E IR" satisfies 
y * = 1, is called a reflection, and JC is a reflection point or a roctf of G. Clearly, Lx(v) = 
v — 2(JC/V)X for all x E IR". Geometrically, this corresponds to reflecting through the 
(n — ^-dimensionalhyperplanex-1. 

Let R = {x E Rn : (x, JC) = 1, Lx E G}. Then G acts on 7?: if A E G, and r E #, 
then 4̂r E R, for ALrA~l = LAr, as may be directly verified. Since S„ < G, all the 
vectors of the form ±(e, — ej)/y/2, 1 < i <j < n, are roots of G. Denote by H the 
reflection subgroup of G, i.e., / / = (K), the group generated by the reflections in G. We 
shall determine all possible G by studying H. 

The theory of finite reflection groups in On has been quite well-developed {e.g., see 
[BG] and [Bo]). It is known that if H is a finite irreducible reflection group with the 
standard root systems (see [BG, p. 76 Table 5.2]), then H is one of the following groups: 

A», %, <Dn, A, %, J4 , 2«, £7, 35» ^2
m(with m > 5). 

With the standard root systems, J^ = Sn+i acting on IRg+1 ~ Rn where IRg+1 is the set of 
vectors in Rn+l with sum of entries equal to zero, !B„ is the group ofsigned or generalized 
permutation matrices, i.e., matrices of the form DP for some diagonal D E On and some 
P E S„, (Dn is the group of signed permutation matrices having even number of negative 
entries, and Jïp is the dihedral group in O2 with 2m elements. Note that 9Q and tt£ 
are just &2 and $2, respectively. For our purpose, there is no need to list H^ as Ç2 as in 
standard references of finite reflection groups. 
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If n — 2, then G must be the dihedral group containing J, i.e., G is the dihe­

dral group with 2k elements for some positive integer k. We shall assume n > 2 in the 
following. 

Note that Rn decomposes into the irreducible subspaces span{e} and R$ = e1 under 
the action of Sn. Thus H is either irreducible, or reducible with span{<?} and RQ = e1 as 
invariant subspaces. It turns out that G is irreducible if and only if H is irreducible. We 
have the following two results characterizing G in the irreducible and reducible cases, 
respectively. 

THEOREM 3.1. Suppose n > 3 and G < On is a finite irreducible group containing 
±Sn. Then G = VKT, where K is one of the following groups: 

±J^, <Bn, <Dn when n is even, ± %>, <Elf T*, K J4, %, (<D4, I4 - J4/2), 

and T is an orthogonal transformation satisfying the following condition. 
(a) IfK = ±Ant then T G R^n+l^xn is the linear map from R%+1 to Rn such that 

, ~ , i±v«"+T 
T{ex - le) = e\ — en+\ with 7 = , 

n 
and T(e\ — ej) = ë\ — ëj 

for 2 <j < n, where {ë\,..., e„+\} is the standard basis ofRn+l. 
(b) IfK = <Bn, <Dn, <E&, or (<D4, I4 - J4/2), then T = I or I - 2J/n. 
(c) IfK = ft, then T G IR3x3 is the linear operator on R? such that 

T(ex - ei) = y/2ex, T(ex - e3) = >/2/?(2a,2cr + 1 , - 1 / , 

T(e) = ±2(0,/?,<*)', 

where a = (1+ v
/ 5) /4 and (3 = ( -1 + \ /5)/4. 

(d) IfK = J4,thenT=Y. 
(e) IfK = <E7, then T E R*xl is the linear map from R1 toWx\= (es - e/2)1 in Rs 

such that the i-th column ofT equals 

7 
v; = a - a ( £ ej) + be% G R*for 1 < i < 7, 

where {a, b) = (4 + y/l, -7>/2)/28 or (4 - y/2, 7v
/2)/28. 

(f) IfK = ±tEe, then T G RSx6 is the linear map from R6 to W2:= {e% - e/2, 
ej — es}1 in IR8 such that the i-th column of T equals 

1 6 1 
v« = ei ~ z Œ » ± -7=(*i + e*) e R*for 1 < i < 6. 

o j=\ y l 2 
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(g) IfK = % or (%, Y), then T = 74. 

THEOREM 3.2. Suppose n > 3 and G < On is a finite reducible group containing 
±Sn. Then G = THQT®Gx, where Gx = {/} or G{ = (I-2J/n) acts on (e), PH0T 
acts on e1 with Ho equal to one of the following groups: 

±J%„-\, %1-x with 8 < n < 9, or Of^for some positive integer k when n = 3, 

and T is an orthogonal transformation satisfying the following condition. 
(a) If Ho = ±J%n-\, then T is the identity map on R£. 
(b) Ifn = 9 and Ho = *£%, then T G R8x9 is the linear map from Rg to Rs such that 

T(et — ef) = ëi — ëjfor 1 < / <j < 8, and 

T(et - e9) = et - \(£ ëj)for 1 < i < 8, 
1 7=1 

where {ë\,..., eg } is the standard basis ofRs. 
(c)Ifn = S and Ho = £?> then T G RSxS is the linear map from Rg to W\ = 

(eg - e/2)1- in R8 such that 

T(ei — ej) = ei — ejfor 1 <i<j<7, and 

T(et — eg) = ef + eg for 1 < / < 7. 

(d) If Ho = M?, then T G R2x3 is the linear map from Rjj to R2 such that 

T(ex - ei) = V2(l,0y, andT{ex - e3) = (\9>f5f/2. 

Theorems 3.1 and 3.2 together classify all the finite groups G satisfying ±Sn < G < 
On. From Theorem 1.2, we know that each of these groups is realizable as the isometry 
group of a norm on Rn. 

As pointed out by the referee, Theorem 3.1 is closely related to an exercise in [Bo, 
Chapter 6, Problem 16]. Our statement is more specific and explicit. 

Note that whenever there are two choices for T, say T\ and T2, in Theorem 3.1, then 
Ti(I - Ujn) = T2. This also follows from [GLe, Theorem 1.3]. 

The advanced theory developed in [Bo] may be used to prove Theorems 3.1 and 3.2. 
In the following, we present proofs that depend only on basic results on reflection groups 
and elementary computations. 

PROOF OF THEOREM 3.1. In this subsection, we assume that the maximum reflection 
group //contained in G is irreducible. To determine G, we first determine the orthogonal 
transformations T that satisfy H = T~lHT9 where H is a finite reflection group in On 

with the standard root system/? (e.g., see [BG, Theorem 5.1.2 and Table 5.2]). Since we 
assume n>2,H must be one of the following groups: 

A», %, (Pn, J3, JA, 7A, £g, £7, Ee-
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In each case, since Twill map the roots of H to the roots of R, and since ±(ei — ej)j\fl 
with 1 < i <j < n are roots of//, we have ±T(et — ej)j\[2 G R for all 1 < / <j < n. 
Using this fact, one can determine the structure of 7, and then characterize H and G. 
Actually, except for the case when H is 2)4 or %, we always have G = ±7/ = (—/,//) 
(cf. [Bo, Chapter 6, Problem 16].) 

We shall sketch the proof of Theorem 3.1. The details for several cases, including the 
exceptional cases mentioned in [Bo, Chapter 6, Problem 16] will be worked out. 

Suppose// = %n. Then H has standard root system/£ = {±(e, — ëj)/y/2 : 1 < / < 
j < n +1}, where {ë\,..., ën+\} is the standard basis of Rn+l, and H — Sn+\ acts on W& . 
Let 7 be an orthogonal transformation mapping the roots of H to the roots of H. First, 
we may assume T(e\ — ei) — P(ë\ — ëi) for some ? G J ^ . Since T is orthogonal, we 
have (T(e\ — ei), T(e\ — ej)) = ((e\ — ei), (e\ — ej)) = 1 for all 3 <j < n, we may 
assume that T(e\ — ej) = P{ë\ — ëj) for 2 < j < n, by a suitable modification of P. 
Now, consider u ERn such that Tu = P(êi — êw+i). Since (u, (e\ — ej)) = ((ë\ — ën+\\ 
(ë\ - ëj)) = 1 for 1 <j < n, we see that u = e\ - 7(E?=i */) with 7 := (1 ± \/n+l)/n. 
Since P ^ P ^ = J^, we have / / = PJ^T = TPXnP'T. Hence, we may replace 7 by 
P*7 and obtain condition (a). 

Next, we show that G = ± / / . Let 7 satisfy FJ%n 7 = / /as determined in the preceding 
paragraph. Suppose 7*07 = G. The result will follow once we shew that G = ±J%„. 
Clearly, ±J%fl Ç G by our assumption. To prove the reverse inclusion, let L G G act on 
IRg, and let dj• = ë\ — ëi for 1 < / < n + 1. Then the map L is determined by its action on 
{dt? : 2 < i < n + 1}. Since L is orthogonal and maps the root system of J^i onto itself, 
one easily deduces that Ldt = Adi for 1 < / < n + 1, for some suitable A E ±J^,. Thus 
L£±An. 

The proof of the case H = *Bn is similar to the previous one. Note that #„ has standard 
root system^ = {±et : 1 < / < n} U {(±et ± e/)/\/2 : 1 <i<j < n}. If T £ On 

satisfies T(R) = R, one can show that T(e\ — e7) = P(e\ — ej) for some suitable P G #w, 
and either T(e\) = Pe\ or T(e\ — 2e/n) = e\. It follows that 7 == /„ or / — Unjn. 
Suppose T = I„. Then / / = *Bn < G. If L E G, one can show that there exists ^ G S„ 
such that L{ej) = 4̂e/ for all 1 < / < n. It follows that G < //, and hence G = H. One 
can get the conclusion by similar arguments ifT = In — 2Jn/n. Note that the conclusion 
can also be deduced from the results in [DLR] and the fact that G cannot contain ^4 by 
our assumption. 

Suppose// = CDn. Clearly, n is even, otherwise, *Bn = ±rDn < //, which is impossible. 
Note that CDn has standard root system^ = {(±e/ ± efrjyfl : / <y}. One can show that 
H = ©„ or (/ - 2//w)©w(/ - 2//w) as before. If « > 6, we can show that G = //. Now 
suppose « = 4, and 7 = I4 for simplicity. (The case of 7 = / — 2 / / 4 can be treated 
similarly.) One readily checks that {<DAJ- 7/4) = ©4 U {P(/ - J/2)Q :P,Qe'D4}, 
|(©4, / - 7 /4) | = 3|©4|, and ©4 is a maximal subgroup of (£>4, / - 7/4). 

If L E G, then L is orthogonal and maps the root system of ©4 onto itself. One easily 
verifies that there exists A G ©4 such that either 

(i) Lr = 4̂r for r = e\ — e2, e\ — £3, e\ — 24, ei + 24, and hence / G ©4, or 

https://doi.org/10.4153/CMB-1996-011-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1996-011-7


OVERGROUPS OF THE SYMMETRIC GROUP 91 

(ii) Lr = Ar for r = e\ — e2, e\ — £3, e\ — e4, L(e\ + e4) = —(e2 + ei), and hence 
L = P(I- J/2)Q for some P,Qe <D4. As a result, <D4 < G < {<D4,I- J /2 ) , 
and thus G = 2)4 or G = (©4, / - J /2 ) . 

Suppose # = A- Then Â consists of ±e,- with 1 < / < 3, /?(±(2a + 1), ± 1 , ±2af 
and all even permutations of the coordinates of these vectors, where a = (1 + \ /5)/4 
and /? = (—1 + \/5)/4. Suppose THT~{ = //. Since J3 is transitive on the roots (see 
[BG, pp. 78-79]), there exists P G J73 such that / T f a - ei) = \fle\. Note that (e{ - e2, 

ei-e3)=\9 We see that PT(ex - ei)/y/l must be of the form /?(2a, ±(2a + 1), i l ) ' . 
Since e,- E i£ for 1 < / < 3, % contains all diagonal orthogonal matrices. Thus we may 
adjust P and assume that PT(ex -ei)/ y/l = (3(2a, 2a+1, - 1 / . Finally, consider PT(e). 
Since (e, e\ — e2) = 0 and (e, e\ — ei) = 0, one sees that PT(e) is of the form (0, x,y)' 
such that (2a + l)x — y = 0 and*2 + y2 = 3. There are two solutions for this system of 
equations, and hence there are two possible choices of T. Direct computation shows that 
condition (c) holds, and one can then show that TGT~l = H = fa by arguments similar 
to the previous cases. 

Suppose H = J4, whose root system R consists of ±e,- with 1 < / < 4, £y=1 M/£/ with 

\ij = ± 1 , /?(±2a, 0, ±(2a + 1), ± l ) and all even permutations of the coordinates of 

these vectors, where a = (1 + \/5)/4 and f3 = (— 1 + A /5 ) /4 . Suppose r is orthogonal 

such that THT~l = H. One can show that there exists P G J 4 such that 

PT(ei - ei) = V2eu PT(ex - ei) = -J=, 
V2 

PT(ex - e4) = ^ 1 ^ , PT(e) = s/2(e2 - ei). 
V2 

Thus T satisfies condition (d). One can then show that G = T~XJ4T. 

Now suppose H = 74. Note that (e.g., see [DLR]) % = (<B4,I4 - J4/2), and the 
normalizer of 74 in O4 equals (#4, 7), where Y is defined as in the statement of the 
theorem. Now suppose THT~l = H. One can use arguments similar to those in the case 
of H = ©4 to show that T = I, and G = % or ( J4 , Y) (cf. [DLR]). 

Next supposed = 'Eg.Thentf = {(±ei±ej) / y/l :l<i<j < 8}U{£f=1 e,-e//>/8 : 
St = ± 1 , nf=1e/ = - 1 } . Let Tbe orthogonal such that THT~X = H. One can then show 
that there exists P E 2* such that PT(ex - ej) = ex- ey for 2 <j < n, and PT(e) = ±e. 
Thus T satisfies condition (b). To show that G = H, let A G TGT~X. Trient permutes 
the roots of T%. Suppose A(e\ + ei) = x. Since H is transitive on the root systems (e.g., 
see [BG, pp. 78-79]), there exists P EH such that Px = e\ + e2 and hence PA(e\ + ei) = 
e\ + e2. Now consider PA(e\ — e2) = y. If y ^ ±(^1 — e2), then y = £f=i /x/e,-, where 
\i\\i2 = - 1 and /xi • • • /i8 = - 1 . Note that the set { v G ^ : v*z/(||v|| ||z||) = 1/2 for 
z = ex±e2} = {ei±e,- : 3 < 1 < 8}has 12elements,but{v G ̂  : l/z/dHI ||z||) = 1/2 
for z = e\ + #2, j } = {̂ y + ^ i • ĵy = 1, 3 < / < 8} has only 6 elements, which is a 
contradiction. Thus PA(e\ — ei) = ±(e\ — ei). Further, PA(e3 + e4) must be orthogonal 
to e\ ± ^2, we can show that PA(e3 ± e4) = ±(et ± ej) for some i >j > 2. One can get 
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similar conclusions on ±(es ± ee) and ±(e-j ± es). Consequently, one sees that PA G S„ 
and hence TGT~l = <E%. 

Supposed = £7. Then^ Ç Rs consists of the roots of *Es lying in W\ = (es — e/2)1. 
One can get the conclusion by arguments similar to the previous case. 

Suppose H—%,. Then R CRS consists of the roots of £g lying in W2 — {e% — e/2, 
ei — es}1. One can first show that H = V%J by argument similar to last two cases, 
where T satisfies condition (f). Since —/ $ Œ4, one will conclude that G = ± Î 6 by 
arguments similar to those in the previous cases if TGT~X = G. 

Combining the above analysis, we get Theorem 3.1. 

PROOF OF THEOREM 3.2. In this subsection, we assume that the maximum reflection 
subgroup H contained in G is reducible. Then H = Ho 0 H\, where Ho acts on Rg and 
H\ acts on (e). If G has no other reflection points, then every A E G will maps the roots 
of H to themselves. Hence, G = Go 0 G\ with Go acting on Rg and G\ acting trivially on 
(e). If e is a reflection point of G, then for every A G G, Ae = ±e. Again, G = Go 0 G\. 

First, we use arguments similar to those in Theorem 3.1 to determine all the possible 
Ho. Let i?o be the root systems of i/o- Theni^o contains ±(e,- — ef)/\/2, 1 < i <j < n, 
and there is an orthogonal transformation T such that Ho = T~lHT, where H is a finite 
reflection group in On with the standard root system R (see [BG, p. 76, Table 5.2]), and 
must be one of the following: 

J V i , %-u Vn-xJn-x with H = 4 or 5, 

*En-i with 7 < n < 9, ^ m (with w > 5) when n = 3. 

Since 7 maps the roots of//o to those of //, and since ±(e/ — ej)j\/2 with 1 <i <j <n 
are roots of//o, i ^ f e — £/)/ \/2 G /£ for all 1 <i <j <n. For each H in the above list, 
we determine all possible orthogonal transformations T, which may not exist as will be 
seen, such that ±T(et — ej)jy/2 G R for all 1 < i <j < n. Once this is done, it is not 
hard to determine H and G. 

If H = J^-u then T{et - ej) = P{et - ej) for all 1 <i<j<n, for some P G Sn. 
Thus Ho = Sn = An-i. 

Next we show that it is impossible to have H equal to any one of the groups : 

Qn-u <Dn-Uy„-i (when n = 4 or 5), 

%-\ (when n — 5), or %> (when n = 7). 

First, note (e.g., see [BG, p. 80]) that the order of 2^ is 27 • 34 • 5, which is not divisible 
by 7!. Thus, it cannot contain a subgroup isomorphic to S7. For the other cases, consider 
di = (ex - ei)/y/2 G Rn

0 for 2<i<n. Then (dh dj) = 1 /2 for 2 < Ï <y < «, but there 
are no roots 7*2,..., r„ of unit length in the root system of any one of the groups 

%-u Vn-u 5n-\ (when n = 4 or 5), 

J„_i (whenw = 5), 
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such that (ri9 rj) = \/2for2<i<j<n. Thus H cannot be any one of these groups. 
In the following, we show that it is possible to have H = %for 7 < / < 8, or H = tHj" 

for some special m. Moreover, there is essentially only one orthogonal transformation T 
satisfying Ho = T~lHT in each case. 

Suppose H= % for / = 8 or 7. Let {ë\,..., es} be the standard basis of Rs, and let 

If H = £jg, then n — 9. By arguments similar to those in the irreducible cases, we 
see that there exists ? G % , which is a subgroup of the normalizer of 2* in 0$, such 
that the orthogonal transformation T: RQ —> Rs satisfies T(et — ej) = P{et — ëj) for all 
1 < / <j < 8, where {ë\,..., es} is the standard basis of IR8. Since T is orthogonal, it 
follows that T(et - e9) = P(ët - (E?=y ëj)/2) for 1 < i < 8. Thus H0=

rTx<E%T. 

If H = E7, then « = 8. One can show that T: R* —> fFi, where ^ i = (e8 - e /2 ) 1 in 
R8, satisfies T{et - ej) = P(ei - ej) for all 1 < i <j < 1 and T(et - e%) = P(et + es) for 
/ = 1, . . . , 7, for some P in the normalizer of £7 in O7. Thus Ho = T~l<BjT. 

Finally, suppose H = fHf1, i.e.,n = 3. Since tHj" is transitive on its roots, we may 
assume that T{ex - e2)/y/2 = (1, 0)'. It follows that T(ex - e^/y/l = (1, ±y/3y/2. 
Thus m must be a multiple of 6, and we have Ho = T^H^TWiûi T satisfying condition 
(d>. 

After determining Ho, one can show that Go = ±/7o and therefore G = ±Ho 0 G\ by 
arguments similar to those in the irreducible case. 

Combining the above analysis, we get Theorem 3.2. 

4. Remarks and open problems. In [GLe], the authors consider the norms on W1 

that are permutation invariant with respect a certain basis. In their setting, they only 
need to show that with a suitable choice of an inner product and an orthonormal basis, 
the isometry group must be of a certain form. In particular, they showed that for n > 13, 
if the isometry group of a permutation invariant norm is finite then with a suitable choice 
of orthonormal basis the group must be one of the following: 

±J%„, *Bn, *Dn when n is even, ± j^,_i or (±j^_i , In — 2J/n). 

From our results, we see that the above conclusion actually holds for n > 10. 
The referee pointed out that there are several results and references that are related to 

our work. 
First, W. Burnside [Bu] classified the finite subgroups of GL„(Q) which contain the 

symmetric group Sn. Burnside did not have root systems or the notion of reflection groups 
at his disposal, but nevertheless found the reflection groups of type ^4, £6, £7, £g. It was 
also noted by the referee that: 

(i) Burnside's list is not complete as mentioned in [Ba]. 
(ii) Since Burnside assumed that the ground field is Q, our list is bigger. 

(iii) Burnside's paper is, from present perspective, old fashioned and hard to read, and 
thus there is good reason to rework it. 
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Second, E. Bannai [Ba] classified subgroups of GLW(C) which contain the commutator 
subgroup [Sn, Sn] - the alternating group on the variables - and are conjugate in GL„(C) 
to a subgroup of GL„(Q). Bannai found some additions to Burnside's list. The paper of 
Bannai, according to the referee, is very difficult to read, and does more than we do in 
that S„ is replaced by [S„, Sn]. On the other hand, it does less than we do in that the ground 
field is Q not R. Thus Bannai would not capture the dihedral groups of orders different 
from 4, 6, 8, 12 or the reflection groups of type % and %, etc. 

To conclude our paper, we list some related problems that deserve further research. 
(a) Determine all possible isometry groups of a permutation invariant norm on Cw. 
(b) Determine all possible isometry groups of an absolute norm on Rn. For the com­

plex case, see [ST]. 
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