CLOSED SYMMETRIC OVERGROUPS OF S_{n} IN O_{n}

CHI-KWONG LI AND WAYNE WHITNEY

Abstract

A norm on \mathbb{R}^{n} is said to be permutation invariant if its value is preserved under permutation of the coordinates of a vector. The isometry group of such a norm must be closed, contain S_{n} and $-I$, and be conjugate to a subgroup of O_{n}, the orthogonal group. Motivated by this, we are interested in classifying all closed groups G such that $\left\langle-I, S_{n}\right\rangle<G<O_{n}$. We use the theory of Lie groups to classify all possible infinite groups G, and use the theory of finite reflection groups to classify all possible finite groups G. In keeping with the original motivation, all groups arising are shown to be isometry groups. This completes the work of Gordon and Lewis, who studied the same problem and obtained the results for $n \geq 13$.

1. Introduction. Let S_{n} be the group of $n \times n$ permutation matrices. A norm $\|\cdot\|$ on \mathbb{R}^{n} is permutation invariant if $\|P x\|=\|x\|$ for any $x \in \mathbb{R}^{n}$ and for all $P \in S_{n}$. A standard example of such a norm is the ℓ_{p} norm, $p \geq 1$, defined by

$$
\ell_{p}(x)=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p} .
$$

This norm is also absolute, i.e., $\ell_{p}\left(\left(x_{1}, \ldots, x_{n}\right)^{t}\right)=\ell_{p}\left(\left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)^{t}\right)$ for all x. An example of a permutation invariant norm which is not absolute is the N_{k} norm, $1<k<n$, defined by

$$
N_{k}(x)=\max \left\{\left|x_{i_{1}}+\cdots+x_{i_{k}}\right|: 1 \leq i_{1}<\cdots<i_{k} \leq n\right\} .
$$

It is known (see [LM]) that permutation invariant norms are very useful in the study of other classes of norms on matrix spaces, and their basic properties are quite wellstudied. Moreover, the isometries for the N_{k} norms and other permutation invariant norms have been characterized in [LM]. The purpose of this paper is to determine all possible isometry groups of a given permutation invariant norm.

Let $\left\{e_{1}, \ldots, e_{n}\right\}$ denote the standard basis of \mathbb{R}^{n}, and let $e=\sum_{i=1}^{n} e_{i}$. Denote by $\mathrm{GL}_{n}(\mathbb{R})$, or simply GL_{n}, the group of real $n \times n$ invertible matrices, and O_{n} the group of orthogonal matrices in GL_{n}. Evidently, a norm $\|\cdot\|$ on \mathbb{R}^{n} is permutation invariant if and only if the isometry group G of $\|\cdot\|$ satisfies $S_{n}<G$. Note that for any norm $\|\cdot\|$ on \mathbb{R}^{n}, its isometry group G is closed and bounded. Further, $\|-x\|=\|x\|$ for all $x \in \mathbb{R}^{n}$, so that

[^0]G must satisfy $-I \in G$. Then for the isometry group G of a permutation invariant norm, we have $\pm S_{n}<G$, where $\pm S_{n}=\left\langle-I, S_{n}\right\rangle$.

Let J_{n}, or simply J, be the $n \times n$ matrix of all l's. We may then make use of the following theorem (see [LM, Proposition 8.1]).

THEOREM 1.1. Let G be a bounded subgroup of GL_{n}. Then G is conjugate to a subgroup of O_{n}. Moreover, if $S_{n}<G$, then $S^{-1} G S<O_{n}$ for some $S=\alpha I+\beta J \in \mathrm{GL}_{n}$.

Note that if $S=\alpha I+\beta J \in \mathrm{GL}_{n}$, then $S P=P S$ for all $P \in \pm S_{n}$. It follows that $S^{-1}\left(\pm S_{n}\right) S= \pm S_{n}$. Therefore, to characterize the isometry groups G of a permutation invariant norm $\|\cdot\|$ up to conjugation by matrices $S=\alpha I+\beta J \in \mathrm{GL}_{n}$, it is sufficient to consider groups G such that $\pm S_{n}<G<O_{n}$. Furthermore, we have the following theorem [GLo, Theorem 3.1] showing that a finite group G is the isometry group of a permutation invariant norm if and only if $\pm S_{n}<S^{-1} G S<O_{n}$ for some $S=\alpha I+\beta J \in$ GL_{n}.

Theorem 1.2. Let $G<O_{n}$ be a finite group containing -I. Then there exists a norm $\|\cdot\|$ on \mathbb{R}^{n} whose isometry group is G.

Motivated by the study of the isometry groups of permutation invariant norms, we are interested in determining all closed groups G satisfying $\pm S_{n}<G<O_{n}$. In doing this, we consider the case of infinite groups G and finite groups G separately in the next two sections. This problem has been studied by Gordon and Lewis in [GLe], and results have been obtained for $n \geq 13$. In Section 2, we use a different method to reprove the result of Gordon and Lewis for the infinite case. In Section 3, we use the theory of finite reflection groups to study the finite case. In Section 4, we compare our results with those of Gordon and Lewis, and discuss some related problems.

It is possible that some of our results can be deduced from advanced theory of Lie groups and reflection groups. The proofs presented in this paper depend only on basic results of the two subjects and elementary computations.

The standard basis of $\mathbb{R}^{n \times n}$ will be denoted by $\left\{E_{11}, E_{12}, \ldots, E_{n n}\right\}$.
2. Infinite closed groups G satisfying $\pm S_{n}<G<O_{n}$. Let G be an infinite closed group satisfying $\pm S_{n}<G<O_{n}$. If $n=2$, then $G=O_{2}$. Thus we always assume $n \geq 3$ in this section. Some basic theory of Lie groups will be used to determine G. Note that O_{n} is a compact Lie group and so does G. Since $G<O_{n}$, the Lie algebra g of G is a subalgebra of the Lie algebra o_{n} of O_{n}, where o_{n} is the linear space of all $n \times n$ skewsymmetric matrices. Furthermore, since $S_{n}<G, S_{n}$ acts on G by conjugation, and so g is a S_{n}-module under the action of conjugation, i.e., $(P, A) \longmapsto P^{t} A P$ for any $P \in S_{n}$ and $A \in g$. The question of classifying G may then be approached by finding the subalgebras of o_{n} which are S_{n}-modules. To this end, we first establish the following result.

THEOREM 2.1. Let $n \geq 3$, and let V be a non-trivial vector subspace of o_{n} which is a S_{n}-module under the action of conjugation. Then V is one of the following:
(a) o_{n};
(b) $o_{n}^{0}=\left\{S \in o_{n}: S e=0\right\}$, which is isomorphic to o_{n-1};
(c) $W=\left\{S=\left(s_{i j}\right) \in o_{n}: s_{i j}=s_{i k}+s_{k j}, 1 \leq i, j, k \leq n\right\}$.

Proof. First note that these three subsets of o_{n} are vector subspaces of o_{n} and S_{n} modules. Now suppose that $V \nsubseteq W$. Then there exists $A \in V, A=\left(a_{i j}\right)$, such that for some $i, j, k, 1 \leq i, j, k \leq n, a_{i j} \neq a_{i k}+a_{k j}$. Since V is an S_{n}-module, we can permute the rows and columns of A as necessary and assume that $a_{12} \neq a_{13}-a_{23}$. We seek to simplify A as much as possible, to show that it generates under the action of S_{n} a basis for o_{n}^{0}.

Now consider $B=A-P^{-1} A P=\left(b_{i j}\right)$, where $P \in S_{n}$ is obtained from I by interchanging its first and second rows. Then $B \in V ; b_{12}=2 a_{12}$, and for $i, j \geq 3$, $b_{1 i}=a_{1 i}-a_{2 i}, b_{2 i}=a_{2 i}-a_{1 i}$, and $b_{i j}=0$. Let $C=-B+P^{-1} B P+Q^{-1} B Q=\left(c_{i j}\right)$, where $P=E_{13}+E_{31}+\sum_{i \neq 1,3} E_{i i}, Q=E_{23}+E_{32}+\sum_{i \neq 2,3} E_{i i} \in S_{n}$. Then $C \in V$; $c_{i j}=0$ for i or $j \geq 3 ; c_{12}=c_{23}=-c_{13}=2 b_{13}-2 a_{12}$. Note that $2 b_{13}-2 a_{12}=$ $2\left(a_{13}-a_{23}-a_{12}\right) \neq 0$. Scaling C and permuting its rows and columns appropriately, we get $C_{0}=\left(E_{12}-E_{21}\right)+\left(E_{31}-E_{13}\right)+\left(E_{23}-E_{32}\right) \in o_{n}^{0}$. It is not hard to check that the orbit of C_{0} under the action of S_{n} spans o_{n}^{0}. So $o_{n}^{0} \subseteq V$.

If $V \neq o_{n}^{0}$, then there exists $A \in V$ such that $A e \neq 0$, i.e., some row sum of A is non-zero. We show that A generates a basis for o_{n}. Denote by μ_{i} the i th row sum of A. Choose $B=\left(b_{i j}\right) \in o_{n}^{0}$ such that $b_{i j}=a_{i j}$ for all $1 \leq i, j \leq n-1$. Let $C=A-B=\left(c_{i j}\right)$. Then $C \in V$. For $1 \leq i, j \leq n-1, c_{i j}=0$ and $c_{i n}=\mu_{i}$. Since $\sum_{i=1}^{n} \mu_{i}=0$ and for some $i, \mu_{i} \neq 0$, there exist non-zero μ_{a}, μ_{b} such that $\mu_{a} \neq \mu_{b}$. Permuting the rows and columns of C appropriately, we may assume that $a=1, b=2$. Then, as previously, let $D=C-P^{-1} C P=\left(d_{i j}\right)$, where $P \in S_{n}$ is obtained from I by interchanging the first and second rows. Then $D \in V$ with $d_{i j}=0$, except $d_{1 n}=d_{n 2}=-d_{2 n}=-d_{n 1}=\mu_{1}-\mu_{2} \neq 0$. Scaling appropriately, we may take $d_{1 n}=-1$. Let $S=E_{12}-E_{21}$. Then $D+S \in o_{n}^{0}$, and hence $S \in V$. Since the orbit of S under the action of S_{n} spans o_{n}, we see that $V=o_{n}$.

Thus if $V \nsubseteq W$, then $V=o_{n}^{0}$ or $V=o_{n}$. Now consider $V \subseteq W$. Let $A=\left(a_{i j}\right) \in V$, $A \neq 0$; by permuting the rows and columns of A appropriately, we assume that $a_{12} \neq 0$. As before, let $B=A-P^{-1} A P=\left(b_{i j}\right)$, where $P \in S_{n}$ is obtained from I by interchanging its first and second rows. Then for $i, j \geq 3, b_{12}=2 a_{12}, b_{1 i}=-b_{2 i}=-b_{i 1}=b_{i 2}=a_{12}$, and $b_{i j}=0$. Now an element of W is determined entirely by its first column, i.e., W is isomorphic to \mathbb{R}^{n-1}. But we see that the first columns of the matrices in the orbit of B under S_{n} generates a basis for \mathbb{R}^{n-1}. Therefore $V=W$.

As pointed out by the referee, Theorem 2.1 is equivalent to the assertion that o_{n} admits the (unique) decomposition $o_{n}=o_{n}^{0} \oplus W$ into simple S_{n}-modules. This result may be of independent interest. In addition, this observation makes the construction of W more natural; one need consider the complement of o_{n}^{0} in o_{n}.

Although there are 3 possible linear subspaces of o_{n} that are invariant under the action of S_{n} as shown in the previous theorem, we are interested only in subalgebras of o_{n} which are S_{n}-modules. The question arises, then, as which of the three vector spaces of Theorem 2.2 are closed under the Lie product. The following proposition gives an answer to this question.

Proposition 2.2. Of the three vector spaces o_{n}, o_{n}^{0} and W in Theorem 2.1, only the first two are Lie algebras.

Proof. We know that o_{n} is a Lie algebra. To see that o_{n}^{0} is closed under the Lie product, let $X, Y \in o_{n}^{0}$. Then,

$$
[X, Y] e=(X Y-Y X) e=X(Y e)-Y(X e)=X 0-Y 0=0
$$

So $[X, Y] \in o_{n}^{0}$, and o_{n}^{0} is a Lie algebra.
To see that W is not a Lie algebra, it suffices to show that $[A, B] \notin W$ for an appropriate choice of $A, B \in W$. Direct computation shows that this is the case for A with first row $(0,1, \ldots, 1)$ and B with first row $(0,2,1, \ldots, 1)$.

Thus we have classified the possible Lie algebras of a closed, infinite group G satisfying $\pm S_{n}<G<O_{n}$. In all cases, $o_{n}^{0}<g$, so $\exp \left(o_{n}^{0}\right)<G$, where exp: $o_{n} \rightarrow O_{n}$ is the exponential map. Since $\pm S_{n}<G$, we see that G contains the subgroup

$$
O_{n}^{e}=\left\langle\exp \left(o_{n}^{0}\right), \pm S_{n}\right\rangle=\left\{T \in O_{n}: T e= \pm e\right\}
$$

By the following result, we see that G is either O_{n}^{e} or O_{n}.
THEOREM 2.3. Let $n \geq 3$. The group O_{n}^{e} is maximal in O_{n}.
Proof. Let G be a group such that $O_{n}^{e}<G<O_{n}$, with $G \neq O_{n}^{e}$. We show constructively that $G=O_{n}$.

First consider $A \in G \backslash O_{n}^{e}$, and let $f=e / \sqrt{n}$. Then $A f=\cos \theta f+\sin \theta u$, for some $\theta \neq k \pi, k \in \mathbb{Z}$, and for some $u \in f^{\perp}, \ell_{2}(u)=1$. Since $\langle A f, f\rangle=\left\langle f, A^{-1} f\right\rangle$, and since $A \in O_{n}, A^{-1} f=\cos \theta f+\sin \theta v$, for some $v \in f^{\perp}$ with $\ell_{2}(v)=1$. Since O_{n}^{e} acts transitively on f^{\perp}, there exists $T \in O_{n}^{e}$ such that $T u=-v$. Then $A_{1}=A T \in G$, and A_{1} satisfies $A_{1} f=\cos \theta f+\sin \theta u$ and $A_{1}^{-1} f=\cos \theta f-\sin \theta u$. As $f=A_{1} A_{1}^{-1} f=$ $\cos \theta(\cos \theta f+\sin \theta u)-\sin \theta A_{1} u$, we have $A_{1} u=-\sin \theta f+\cos \theta u$. Therefore A_{1} has $\operatorname{span}\{f, u\}$ as an invariant subspace. Choose $S \in O_{n}^{e}$ such that $A_{2}=A_{1} S$ is the identity on $\{f, u\}^{\perp}$; then $A_{2} \in G$.

Given $B \in O_{n} \backslash O_{n}^{e}$ with $B f=\cos \theta f+\sin \theta v$, for some $v \in f^{\perp}, \ell_{2}(v)=1$, we may construct the analogous map B_{2}. We see that $A_{2}=S^{-1} B_{2} S$ for appropriate $S \in O_{n}^{e}$, where $S u=v$ and S is the identity on $\{u, v\}^{\perp}$. Hence $B_{2} \in G$, and since the construction of B_{2} uses only elements of $O_{n}^{e}, B \in G$.

Let K be the collection of real numbers $x \in[-1,1]$ such that there exists $D \in G$ satisfying $\langle D f, f\rangle=x$. By the discussion in the previous paragraphs, we see that $G=O_{n}$ if $K=[-1,1]$.

Note that K is symmetric with respect to the origin, as if $D \in G$, then $-D \in G$. So we need only show that $[0,1] \subseteq K$. We have from above that $A_{2} \in G$, where $\left\langle A_{2} f, f\right\rangle=\cos \theta$. Assume that $\cos \theta \geq 0$; if not, consider $-A_{2}$. Then we will show that [$\cos 2 \theta, 1] \subseteq K$. Inductively, $\left[\cos 2^{k} \theta, 1\right] \subseteq K$, for all $k \in \mathbb{N}$. But for some $k, \cos 2^{k} \theta<0$, so $[0,1] \subseteq K$.

Now, given A_{2} as above, with $A_{2} f=\cos \theta f+\sin \theta u$, let $v \in\{f, u\}^{\perp}, \ell_{2}(v)=1$. Let $B=S^{-1} A_{2} S$, where $S \in O_{n}^{e}, S v=u$ and S is the identity on $\{u, v\}^{\perp}$. Then $B^{-1} f=$
$\cos \theta f-\sin \theta v$. Let $\phi \in[0,2 \pi)$, and let $C=T A_{2}$, where $T \in O_{n}^{e}, T u=\cos \phi u+\sin \phi v$, $T v=-\sin \phi u+\cos \phi v$, and T is the identity on $\{u, v\}^{\perp}$. Then $C f=\cos \theta f+\sin \theta \cos \phi u+$ $\sin \theta \sin \phi v$. So $B, C \in G$.

Now $B C \in G$, and let $\mu=\langle B C f, f\rangle$. Then $\mu=\left\langle C f, B^{-1} f\right\rangle$, as $B \in O_{n}$. So $\mu=$ $\cos ^{2} \theta-\sin ^{2} \theta \sin \phi$, and $\mu \in K$. As $\sin \phi$ varies from 1 to $-1, \mu$ varies from $\cos 2 \theta$ to 1 . Hence, $[\cos 2 \theta, 1] \subseteq K$. Therefore, $G=O_{n}$ as asserted.

Thus we have proven:
Theorem 2.4. Let $n \geq 3$. If G is a closed, infinite group satisfying $\pm S_{n}<G<O_{n}$, then $G=O_{n}$ or $G=O_{n}^{e}$.

Since Theorem 1.2 applies only to finite groups, it remains of interest whether there exists norms whose isometry groups are O_{n} and O_{n}^{e}. The Euclidean norm ℓ_{2} has O_{n} as its isometry group.

To construct a norm whose isometry group is O_{n}^{e}, define $\|x\|=\ell_{2}(x)+|\langle e, x\rangle|$. It is easy to check that $\|\cdot\|$ is a norm, and its isometry group G contains O_{n}^{e} as a subgroup. By Theorem 2.4, we know that G is either O_{n}^{e} or O_{n}. To show that G is not O_{n}, it suffices to choose $T \in O_{n} \backslash O_{n}^{e}$, and $x \in \mathbb{R}^{n}$ such that $\|T x\| \neq\|x\|$. Direct computation shows that this holds for $x=e$ and T such that $T e=(\sqrt{n}, 0, \ldots, 0)^{t}$.
3. Finite groups G satisfying $\pm S_{n}<G<O_{n}$. Suppose G is a finite group such that $\pm S_{n}<G<O_{n}$. A matrix of the form $L_{x}=I-2 x x^{t} \in G$, where $x \in \mathbb{R}^{n}$ satisfies $x^{t} x=1$, is called a reflection, and x is a reflection point or a root of G. Clearly, $L_{x}(v)=$ $v-2\left(x^{t} v\right) x$ for all $x \in \mathbb{R}^{n}$. Geometrically, this corresponds to reflecting through the ($n-1$)-dimensional hyperplane x^{\perp}.

Let $R=\left\{x \in \mathbb{R}^{n}:\langle x, x\rangle=1, L_{x} \in G\right\}$. Then G acts on R : if $A \in G$, and $r \in R$, then $A r \in R$, for $A L_{r} A^{-1}=L_{A r}$, as may be directly verified. Since $S_{n}<G$, all the vectors of the form $\pm\left(e_{i}-e_{j}\right) / \sqrt{2}, 1 \leq i<j \leq n$, are roots of G. Denote by H the reflection subgroup of G, i.e., $H=\langle R\rangle$, the group generated by the reflections in G. We shall determine all possible G by studying H.

The theory of finite reflection groups in O_{n} has been quite well-developed (e.g., see [BG] and [Bo]). It is known that if \tilde{H} is a finite irreducible reflection group with the standard root systems (see [BG, p. 76 Table 5.2]), then \tilde{H} is one of the following groups:

$$
\mathcal{A}_{n}, \mathcal{B}_{n}, \mathcal{D}_{n}, \mathcal{I}_{3}, \mathcal{I}_{4}, \mathcal{F}_{4}, \mathcal{E}_{8}, \mathcal{E}_{7}, \mathcal{E}_{6}, \mathcal{H}_{2}^{m}(\text { with } m \geq 5)
$$

With the standard root systems, $\mathcal{A}_{n}=S_{n+1}$ acting on $\mathbb{R}_{0}^{n+1} \simeq \mathbb{R}^{n}$ where \mathbb{R}_{0}^{n+1} is the set of vectors in \mathbb{R}^{n+1} with sum of entries equal to zero, \mathcal{B}_{n} is the group of signed or generalized permutation matrices, i.e., matrices of the form $D P$ for some diagonal $D \in O_{n}$ and some $P \in S_{n}, \mathcal{D}_{n}$ is the group of signed permutation matrices having even number of negative entries, and $\mathcal{H}_{2}{ }^{m}$ is the dihedral group in O_{2} with $2 m$ elements. Note that $\mathcal{H}_{2}{ }^{3}$ and \mathcal{H}_{2}^{4} are just \mathcal{A}_{2} and \mathcal{B}_{2}, respectively. For our purpose, there is no need to list \mathcal{H}_{2}^{6} as \mathcal{G}_{2} as in standard references of finite reflection groups.

If $n=2$, then G must be the dihedral group containing $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, i.e., G is the dihedral group with $2 k$ elements for some positive integer k. We shall assume $n>2$ in the following.

Note that \mathbb{R}^{n} decomposes into the irreducible subspaces span $\{e\}$ and $\mathbb{R}_{0}^{n}=e^{\perp}$ under the action of S_{n}. Thus H is either irreducible, or reducible with span $\{e\}$ and $\mathbb{R}_{0}^{n}=e^{\perp}$ as invariant subspaces. It turns out that G is irreducible if and only if H is irreducible. We have the following two results characterizing G in the irreducible and reducible cases, respectively.

THEOREM 3.1. Suppose $n \geq 3$ and $G<O_{n}$ is a finite irreducible group containing $\pm S_{n}$. Then $G=T^{t} K T$, where K is one of the following groups:
$\pm \mathcal{A}_{n}, \mathcal{B}_{n}, \mathcal{D}_{n}$ when n is even, $\pm \mathcal{E}_{6}, \mathcal{E}_{7}, \mathcal{E}_{8}, \mathcal{I}_{3}, \mathcal{J}_{4}, \mathcal{F}_{4},\left\langle\mathcal{D}_{4}, I_{4}-J_{4} / 2\right\rangle$,

$$
\operatorname{or}\left\langle\mathcal{F}_{4}, Y\right\rangle \text { with } Y=\frac{1}{\sqrt{2}}\left\{\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \oplus\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\right\}
$$

and T is an orthogonal transformation satisfying the following condition.
(a) If $K= \pm \mathcal{A}_{n}$, then $T \in \mathbb{R}^{(n+1) \times n}$ is the linear map from \mathbb{R}_{0}^{n+1} to \mathbb{R}^{n} such that

$$
\begin{gathered}
T\left(e_{1}-\gamma e\right)=\tilde{e}_{1}-\tilde{e}_{n+1} \text { with } \gamma=\frac{1 \pm \sqrt{n+1}}{n}, \\
\text { and } T\left(e_{1}-e_{j}\right)=\tilde{e}_{1}-\tilde{e}_{j}
\end{gathered}
$$

for $2 \leq j \leq n$, where $\left\{\tilde{e}_{1}, \ldots, \tilde{e}_{n+1}\right\}$ is the standard basis of \mathbb{R}^{n+1}.
(b) If $K=\mathcal{B}_{n}, \mathcal{D}_{n}, \mathcal{E}_{8}$, or $\left\langle\mathcal{D}_{4}, I_{4}-J_{4} / 2\right\rangle$, then $T=I$ or $I-2 J / n$.
(c) If $K=\mathcal{I}_{3}$, then $T \in \mathbb{R}^{3 \times 3}$ is the linear operator on \mathbb{R}^{3} such that

$$
\begin{gathered}
T\left(e_{1}-e_{2}\right)=\sqrt{2} e_{1}, \quad T\left(e_{1}-e_{3}\right)=\sqrt{2} \beta(2 \alpha, 2 \alpha+1,-1)^{t}, \\
T(e)= \pm 2(0, \beta, \alpha)^{t}
\end{gathered}
$$

where $\alpha=(1+\sqrt{5}) / 4$ and $\beta=(-1+\sqrt{5}) / 4$.
(d) If $K=g_{4}$, then $T=Y$.
(e) If $K=\mathcal{E}_{7}$, then $T \in \mathbb{R}^{8 \times 7}$ is the linear map from \mathbb{R}^{7} to $W_{1}:=\left(e_{8}-e / 2\right)^{\perp}$ in \mathbb{R}^{8} such that the i-th column of T equals

$$
v_{i}=e_{i}-a\left(\sum_{j=1}^{7} e_{j}\right)+b e_{8} \in \mathbb{R}^{8} \text { for } 1 \leq i \leq 7
$$

where $(a, b)=(4+\sqrt{2},-7 \sqrt{2}) / 28$ or $(4-\sqrt{2}, 7 \sqrt{2}) / 28$.
(f) If $K= \pm \mathcal{E}_{6}$, then $T \in \mathbb{R}^{8 \times 6}$ is the linear map from \mathbb{R}^{6} to $W_{2}:=\left\{e_{8}-e / 2\right.$, $\left.e_{7}-e_{8}\right\}^{\perp}$ in \mathbb{R}^{8} such that the i-th column of T equals

$$
v_{i}=e_{i}-\frac{1}{6}\left(\sum_{j=1}^{6} e_{j}\right) \pm \frac{1}{\sqrt{12}}\left(e_{7}+e_{8}\right) \in \mathbb{R}^{8} \text { for } 1 \leq i \leq 6
$$

(g) If $K=\mathcal{F}_{4}$ or $\left\langle\mathcal{F}_{4}, Y\right\rangle$, then $T=I_{4}$.

THEOREM 3.2. Suppose $n \geq 3$ and $G<O_{n}$ is a finite reducible group containing $\pm S_{n}$. Then $G=T^{t} H_{0} T \oplus G_{1}$, where $G_{1}=\{I\}$ or $G_{1}=\langle I-2 J / n\rangle$ acts on $\langle e\rangle, T^{t} H_{0} T$ acts on e^{\perp} with H_{0} equal to one of the following groups:
$\pm \mathcal{A}_{n-1}, \mathcal{E}_{n-1}$ with $8 \leq n \leq 9$, or $\mathcal{H}_{2}^{6 k}$ for some positive integer k when $n=3$,
and T is an orthogonal transformation satisfying the following condition.
(a) If $H_{0}= \pm \mathcal{A}_{n-1}$, then T is the identity map on \mathbb{R}_{0}^{n}.
(b) If $n=9$ and $H_{0}=\mathcal{E}_{8}$, then $T \in \mathbb{R}^{8 \times 9}$ is the linear map from \mathbb{R}_{0}^{9} to \mathbb{R}^{8} such that

$$
\begin{gathered}
T\left(e_{i}-e_{j}\right)=\tilde{e}_{i}-\tilde{e}_{j} \text { for } 1 \leq i<j \leq 8, \text { and } \\
T\left(e_{i}-e_{9}\right)=\tilde{e}_{i}-\frac{1}{2}\left(\sum_{j=1}^{8} \tilde{e}_{j}\right) \text { for } 1 \leq i \leq 8,
\end{gathered}
$$

where $\left\{\tilde{e}_{1}, \ldots, \tilde{e}_{8}\right\}$ is the standard basis of \mathbb{R}^{8}.
(c) If $n=8$ and $H_{0}=\mathcal{E}_{7}$, then $T \in \mathbb{R}^{8 \times 8}$ is the linear map from \mathbb{R}_{0}^{8} to $W_{1}=$ $\left(e_{8}-e / 2\right)^{\perp}$ in \mathbb{R}^{8} such that

$$
\begin{gathered}
T\left(e_{i}-e_{j}\right)=e_{i}-e_{j} \text { for } 1 \leq i<j \leq 7, \text { and } \\
T\left(e_{i}-e_{8}\right)=e_{i}+e_{8} \text { for } 1 \leq i \leq 7 .
\end{gathered}
$$

(d) If $H_{0}=\mathcal{H}_{2}^{m}$, then $T \in \mathbb{R}^{2 \times 3}$ is the linear map from \mathbb{R}_{0}^{3} to \mathbb{R}^{2} such that

$$
T\left(e_{1}-e_{2}\right)=\sqrt{2}(1,0)^{t}, \text { and } T\left(e_{1}-e_{3}\right)=(1, \sqrt{3})^{t} / 2
$$

Theorems 3.1 and 3.2 together classify all the finite groups G satisfying $\pm S_{n}<G<$ O_{n}. From Theorem 1.2, we know that each of these groups is realizable as the isometry group of a norm on \mathbb{R}^{n}.

As pointed out by the referee, Theorem 3.1 is closely related to an exercise in [Bo, Chapter 6, Problem 16]. Our statement is more specific and explicit.

Note that whenever there are two choices for T, say T_{1} and T_{2}, in Theorem 3.1, then $T_{1}(I-2 J / n)=T_{2}$. This also follows from [GLe, Theorem 1.3].

The advanced theory developed in [Bo] may be used to prove Theorems 3.1 and 3.2. In the following, we present proofs that depend only on basic results on reflection groups and elementary computations.

Proof of Theorem 3.1. In this subsection, we assume that the maximum reflection group H contained in G is irreducible. To determine G, we first determine the orthogonal transformations T that satisfy $H=T^{-1} \tilde{H} T$, where \tilde{H} is a finite reflection group in O_{n} with the standard root system \tilde{R} (e.g., see [BG, Theorem 5.1.2 and Table 5.2]). Since we assume $n>2, \tilde{H}$ must be one of the following groups:

$$
\mathcal{A}_{n}, \mathcal{B}_{n}, \mathcal{D}_{n}, \mathcal{I}_{3}, \mathcal{I}_{4}, \mathcal{F}_{4}, \mathcal{E}_{8}, \mathcal{E}_{7}, \mathcal{E}_{6} .
$$

In each case, since T will map the roots of H to the roots of \tilde{R}, and since $\pm\left(e_{i}-e_{j}\right) / \sqrt{2}$ with $1 \leq i<j \leq n$ are roots of H, we have $\pm T\left(e_{i}-e_{j}\right) / \sqrt{2} \in \tilde{R}$ for all $1 \leq i<j \leq n$. Using this fact, one can determine the structure of T, and then characterize H and G. Actually, except for the case when \tilde{H} is \mathcal{D}_{4} or \mathcal{F}_{4}, we always have $G= \pm H=\langle-I, H\rangle$ (cf. [Bo, Chapter 6, Problem 16].)

We shall sketch the proof of Theorem 3.1. The details for several cases, including the exceptional cases mentioned in [Bo, Chapter 6, Problem 16] will be worked out.

Suppose $\tilde{H}=\mathcal{A}_{n}$. Then \tilde{H} has standard root system $\tilde{R}=\left\{ \pm\left(\tilde{e}_{i}-\tilde{e}_{j}\right) / \sqrt{2}: 1 \leq i \leq\right.$ $j \leq n+1\}$, where $\left\{\tilde{e}_{1}, \ldots, \tilde{e}_{n+1}\right\}$ is the standard basis of \mathbb{R}^{n+1}, and $\tilde{H}=S_{n+1}$ acts on \mathbb{R}_{0}^{n+1}. Let T be an orthogonal transformation mapping the roots of H to the roots of \tilde{H}. First, we may assume $T\left(e_{1}-e_{2}\right)=P\left(\tilde{e}_{1}-\tilde{e}_{2}\right)$ for some $P \in \mathcal{A}_{n}$. Since T is orthogonal, we have $\left\langle T\left(e_{1}-e_{2}\right), T\left(e_{1}-e_{j}\right)\right\rangle=\left\langle\left(e_{1}-e_{2}\right),\left(e_{1}-e_{j}\right)\right\rangle=1$ for all $3 \leq j \leq n$, we may assume that $T\left(e_{1}-e_{j}\right)=P\left(\tilde{e}_{1}-\tilde{e}_{j}\right)$ for $2 \leq j \leq n$, by a suitable modification of P. Now, consider $u \in \mathbb{R}^{n}$ such that $T u=P\left(\tilde{e}_{1}-\tilde{e}_{n+1}\right)$. Since $\left\langle u,\left(e_{1}-e_{j}\right)\right\rangle=\left\langle\left(\tilde{e}_{1}-\tilde{e}_{n+1}\right)\right.$, $\left.\left(\tilde{e}_{1}-\tilde{e}_{j}\right)\right\rangle=1$ for $1 \leq j \leq n$, we see that $u=e_{1}-\gamma\left(\sum_{i=1}^{n} e_{i}\right)$ with $\gamma:=(1 \pm \sqrt{n+1}) / n$. Since $P \mathcal{H}_{n} P^{t}=\mathcal{A}_{n}$, we have $H=T^{t} \mathcal{A}_{n} T=T^{t} P \mathcal{A}_{n} P^{t} T$. Hence, we may replace T by $P^{t} T$ and obtain condition (a).

Next, we show that $G= \pm H$. Let T satisfy $T^{t} \mathcal{A}_{n} T=H$ as determined in the preceding paragraph. Suppose $T^{t} \tilde{G} T=G$. The result will follow once we show that $\tilde{G}= \pm \mathcal{A}_{n}$. Clearly, $\pm \mathcal{A}_{n} \subseteq \tilde{G}$ by our assumption. To prove the reverse inclusion, let $L \in \tilde{G}$ act on \mathbb{R}_{0}^{n}, and let $d_{i}=\tilde{e}_{1}-\tilde{e}_{i}$ for $1 \leq i \leq n+1$. Then the map L is determined by its action on $\left\{d_{i}: 2 \leq i \leq n+1\right\}$. Since L is orthogonal and maps the root systern of \mathcal{A}_{n} onto itself, one easily deduces that $L d_{i}=A d_{i}$ for $1 \leq i \leq n+1$, for some suitable $A \in \pm \mathcal{A}_{n}$. Thus $L \in \pm \mathcal{A}_{n}$.

The proof of the case $\tilde{H}=\mathcal{B}_{n}$ is similar to the previous one. Note that \mathcal{B}_{n} has standard root system $\tilde{R}=\left\{ \pm e_{i}: 1 \leq i \leq n\right\} \cup\left\{\left(\pm e_{i} \pm e_{j}\right) / \sqrt{2}: 1 \leq i<j \leq n\right\}$. If $T \in O_{n}$ satisfies $T(R)=\tilde{R}$, one can show that $T\left(e_{1}-e_{j}\right)=P\left(e_{1}-e_{j}\right)$ for some suitable $P \in \mathcal{B}_{n}$, and either $T\left(e_{1}\right)=P e_{1}$ or $T\left(e_{1}-2 e / n\right)=e_{1}$. It follows that $T=I_{n}$ or $I-2 J_{n} / n$. Suppose $T=I_{n}$. Then $H=\mathcal{B}_{n}<G$. If $L \in G$, one can show that there exists $A \in \mathcal{B}_{n}$ such that $L\left(e_{i}\right)=A e_{i}$ for all $1 \leq i \leq n$. It follows that $G<H$, and hence $G=H$. One can get the conclusion by similar arguments if $T=I_{n}-2 J_{n} / n$. Note that the conclusion can also be deduced from the results in [DLR] and the fact that G cannot contain \mathcal{F}_{4} by our assumption.

Suppose $\tilde{H}=\mathcal{D}_{n}$. Clearly, n is even, otherwise, $\mathcal{B}_{n}= \pm \mathcal{D}_{n}<\tilde{H}$, which is impossible. Note that \mathcal{D}_{n} has standard root system $\tilde{R}=\left\{\left(\pm e_{i} \pm e_{j}\right) / \sqrt{2}: i<j\right\}$. One can show that $H=\mathcal{D}_{n}$ or $(I-2 J / n) \mathcal{D}_{n}(I-2 J / n)$ as before. If $n \geq 6$, we can show that $G=H$. Now suppose $n=4$, and $T=I_{4}$ for simplicity. (The case of $T=I-2 J / 4$ can be treated similarly.) One readily checks that $\left\langle\mathcal{D}_{4}, I-J / 4\right\rangle=\mathcal{D}_{4} \cup\left\{P(I-J / 2) Q: P, Q \in \mathcal{D}_{4}\right\}$, $\left|\left\langle\mathcal{D}_{4}, I-J / 4\right\rangle\right|=3\left|\mathcal{D}_{4}\right|$, and \mathcal{D}_{4} is a maximal subgroup of $\left\langle\mathcal{D}_{4}, I-J / 4\right\rangle$.

If $L \in G$, then L is orthogonal and maps the root system of \mathcal{D}_{4} onto itself. One easily verifies that there exists $A \in \mathcal{D}_{4}$ such that either
(i) $L r=A r$ for $r=e_{1}-e_{2}, e_{1}-e_{3}, e_{1}-e_{4}, e_{1}+e_{4}$, and hence $L \in \mathcal{D}_{4}$, or
(ii) $L r=A r$ for $r=e_{1}-e_{2}, e_{1}-e_{3}, e_{1}-e_{4}, L\left(e_{1}+e_{4}\right)=-\left(e_{2}+e_{3}\right)$, and hence $L=P(I-J / 2) Q$ for some $P, Q \in \mathcal{D}_{4}$. As a result, $\mathcal{D}_{4}<G<\left\langle\mathcal{D}_{4}, I-J / 2\right\rangle$, and thus $G=\mathcal{D}_{4}$ or $G=\left\langle\mathcal{D}_{4}, I-J / 2\right\rangle$.
Suppose $\tilde{H}=\mathcal{I}_{3}$. Then \tilde{R} consists of $\pm e_{i}$ with $1 \leq i \leq 3, \beta(\pm(2 \alpha+1), \pm 1, \pm 2 \alpha)^{t}$ and all even permutations of the coordinates of these vectors, where $\alpha=(1+\sqrt{5}) / 4$ and $\beta=(-1+\sqrt{5}) / 4$. Suppose $T H T^{-1}=\tilde{H}$. Since J_{3} is transitive on the roots (see [BG, pp. 78-79]), there exists $P \in \mathcal{J}_{3}$ such that $P T\left(e_{1}-e_{2}\right)=\sqrt{2} e_{1}$. Note that $\left\langle e_{1}-e_{2}\right.$, $\left.e_{1}-e_{3}\right\rangle=1$, we see that $P T\left(e_{1}-e_{3}\right) / \sqrt{2}$ must be of the form $\beta(2 \alpha, \pm(2 \alpha+1), \pm 1)^{t}$. Since $e_{i} \in \tilde{R}$ for $1 \leq i \leq 3, J_{3}$ contains all diagonal orthogonal matrices. Thus we may adjust P and assume that $P T\left(e_{1}-e_{3}\right) / \sqrt{2}=\beta(2 \alpha, 2 \alpha+1,-1)^{t}$. Finally, consider $P T(e)$. Since $\left\langle e, e_{1}-e_{2}\right\rangle=0$ and $\left\langle e, e_{1}-e_{3}\right\rangle=0$, one sees that $P T(e)$ is of the form $(0, x, y)^{t}$ such that $(2 \alpha+1) x-y=0$ and $x^{2}+y^{2}=3$. There are two solutions for this system of equations, and hence there are two possible choices of T. Direct computation shows that condition (c) holds, and one can then show that $T G T^{-1}=\tilde{H}=J_{3}$ by arguments similar to the previous cases.

Suppose $\tilde{H}=J_{4}$, whose root system \tilde{R} consists of $\pm e_{i}$ with $1 \leq i \leq 4, \Sigma_{j=1}^{4} \mu_{j} e_{i}$ with $\mu_{j}= \pm 1, \beta(\pm 2 \alpha, 0, \pm(2 \alpha+1), \pm 1)^{t}$ and all even permutations of the coordinates of these vectors, where $\alpha=(1+\sqrt{5}) / 4$ and $\beta=(-1+\sqrt{5}) / 4$. Suppose T is orthogonal such that $T H T^{-1}=\tilde{H}$. One can show that there exists $P \in J_{4}$ such that

$$
\begin{gathered}
P T\left(e_{1}-e_{2}\right)=\sqrt{2} e_{1}, \quad P T\left(e_{1}-e_{3}\right)=\frac{e}{\sqrt{2}} \\
P T\left(e_{1}-e_{4}\right)=\frac{e-2 e_{3}}{\sqrt{2}}, \quad P T(e)=\sqrt{2}\left(e_{2}-e_{3}\right) .
\end{gathered}
$$

Thus T satisfies condition (d). One can then show that $G=T^{-1} \mathcal{J}_{4} T$.
Now suppose $\tilde{H}=\mathcal{F}_{4}$. Note that (e.g., see [DLR]) $\mathcal{F}_{4}=\left\langle\mathcal{B}_{4}, I_{4}-J_{4} / 2\right\rangle$, and the normalizer of \mathcal{F}_{4} in O_{4} equals $\left\langle\mathcal{B}_{4}, Y\right\rangle$, where Y is defined as in the statement of the theorem. Now suppose $T H T^{-1}=\tilde{H}$. One can use arguments similar to those in the case of $\tilde{H}=\mathcal{D}_{4}$ to show that $T=I$, and $G=\mathcal{F}_{4}$ or $\left\langle\mathcal{F}_{4}, Y\right\rangle(c f$. [DLR]).

Next suppose $\tilde{H}=\mathcal{E}_{8}$. Then $\tilde{R}=\left\{\left(\pm e_{i} \pm e_{j}\right) / \sqrt{2}: 1 \leq i<j \leq 8\right\} \cup\left\{\sum_{i=1}^{8} \varepsilon_{i} e_{i} / \sqrt{8}\right.$: $\left.\varepsilon_{i}= \pm 1, \Pi_{i=1}^{8} \varepsilon_{i}=-1\right\}$. Let T be orthogonal such that $T H T^{-1}=\tilde{H}$. One can then show that there exists $P \in \mathcal{E}_{8}$ such that $P T\left(e_{1}-e_{j}\right)=e_{1}-e_{j}$ for $2 \leq j \leq n$, and $P T(e)= \pm e$. Thus T satisfies condition (b). To show that $G=H$, let $A \in T G T^{-1}$. Then A permutes the roots of \mathcal{E}_{8}. Suppose $A\left(e_{1}+e_{2}\right)=x$. Since \tilde{H} is transitive on the root systems (e.g., see [BG, pp. 78-79]), there exists $P \in H$ such that $P x=e_{1}+e_{2}$ and hence $P A\left(e_{1}+e_{2}\right)=$ $e_{1}+e_{2}$. Now consider $P A\left(e_{1}-e_{2}\right)=y$. If $y \neq \pm\left(e_{1}-e_{2}\right)$, then $y=\sum_{i=1}^{8} \mu_{i} e_{i}$, where $\mu_{1} \mu_{2}=-1$ and $\mu_{1} \cdots \mu_{8}=-1$. Note that the set $\left\{v \in \mathcal{R}: v^{t} z /(\|v\|\|z\|)=1 / 2\right.$ for $\left.z=e_{1} \pm e_{2}\right\}=\left\{e_{1} \pm e_{i}: 3 \leq i \leq 8\right\}$ has 12 elements, but $\left\{v \in \mathcal{R}: v^{t} z /(\|v\|\|z\|)=1 / 2\right.$ for $\left.z=e_{1}+e_{2}, y\right\}=\left\{e_{j}+y_{i} e_{i}: e_{j}^{t} y=1,3 \leq i \leq 8\right\}$ has only 6 elements, which is a contradiction. Thus $P A\left(e_{1}-e_{2}\right)= \pm\left(e_{1}-e_{2}\right)$. Further, $P A\left(e_{3}+e_{4}\right)$ must be orthogonal to $e_{1} \pm e_{2}$, we can show that $P A\left(e_{3} \pm e_{4}\right)= \pm\left(e_{i} \pm e_{j}\right)$ for some $i>j>2$. One can get
similar conclusions on $\pm\left(e_{5} \pm e_{6}\right)$ and $\pm\left(e_{7} \pm e_{8}\right)$. Consequently, one sees that $P A \in S_{n}$ and hence $T G T^{-1}=\mathcal{E}_{8}$.

Suppose $\tilde{H}=\mathcal{E}_{7}$. Then $\tilde{R} \subseteq \mathbb{R}^{8}$ consists of the roots of \mathcal{E}_{8} lying in $W_{1}=\left(e_{8}-e / 2\right)^{\perp}$. One can get the conclusion by arguments similar to the previous case.

Suppose $\tilde{H}=\mathcal{E}_{6}$. Then $\tilde{R} \subseteq \mathbb{R}^{8}$ consists of the roots of \mathcal{E}_{8} lying in $W_{2}=\left\{e_{8}-e / 2\right.$, $\left.e_{7}-e_{8}\right\}^{\perp}$. One can first show that $H=T^{t} \mathcal{E}_{6} T$ by argument similar to last two cases, where T satisfies condition (f). Since $-I \notin \mathcal{E}_{6}$, one will conclude that $\tilde{G}= \pm \mathcal{E}_{6}$ by arguments similar to those in the previous cases if $T \tilde{G} T^{-1}=G$.

Combining the above analysis, we get Theorem 3.1.
PROOF OF THEOREM 3.2. In this subsection, we assume that the maximum reflection subgroup H contained in G is reducible. Then $H=H_{0} \oplus H_{1}$, where H_{0} acts on \mathbb{R}_{0}^{n} and H_{1} acts on $\langle e\rangle$. If G has no other reflection points, then every $A \in G$ will maps the roots of H to themselves. Hence, $G=G_{0} \oplus G_{1}$ with G_{0} acting on \mathbb{R}_{0}^{n} and G_{1} acting trivially on $\langle e\rangle$. If e is a reflection point of G, then for every $A \in G, A e= \pm e$. Again, $G=G_{0} \oplus G_{1}$.

First, we use arguments similar to those in Theorem 3.1 to determine all the possible H_{0}. Let R_{0} be the root systems of H_{0}. Then R_{0} contains $\pm\left(e_{i}-e_{j}\right) / \sqrt{2}, 1 \leq i<j \leq n$, and there is an orthogonal transformation T such that $H_{0}=T^{-1} \tilde{H} T$, where \tilde{H} is a finite reflection group in O_{n} with the standard root system \tilde{R} (see [BG, p. 76, Table 5.2]), and must be one of the following:

$$
\begin{gathered}
\mathcal{A}_{n-1}, \mathcal{B}_{n-1}, \mathcal{D}_{n-1} \mathcal{I}_{n-1} \text { with } n=4 \text { or } 5, \\
\mathcal{E}_{n-1} \text { with } 7 \leq n \leq 9, \quad \mathcal{H}_{2}^{m}(\text { with } m \geq 5) \text { when } n=3
\end{gathered}
$$

Since T maps the roots of H_{0} to those of \tilde{H}, and since $\pm\left(e_{i}-e_{j}\right) / \sqrt{2}$ with $1 \leq i<j \leq n$ are roots of $H_{0}, \pm T\left(e_{i}-e_{j}\right) / \sqrt{2} \in \tilde{R}$ for all $1 \leq i<j \leq n$. For each \tilde{H} in the above list, we determine all possible orthogonal transformations T, which may not exist as will be seen, such that $\pm T\left(e_{i}-e_{j}\right) / \sqrt{2} \in \tilde{R}$ for all $1 \leq i<j \leq n$. Once this is done, it is not hard to determine H and G.

If $\tilde{H}=\mathcal{A}_{n-1}$, then $T\left(e_{i}-e_{j}\right)=P\left(e_{i}-e_{j}\right)$ for all $1 \leq i<j \leq n$, for some $P \in S_{n}$. Thus $H_{0}=S_{n}=\mathcal{A}_{n-1}$.

Next we show that it is impossible to have \tilde{H} equal to any one of the groups :

$$
\begin{gathered}
\mathcal{B}_{n-1}, \mathcal{D}_{n-1}, \mathcal{I}_{n-1}(\text { when } n=4 \text { or } 5), \\
\mathcal{F}_{n-1}(\text { when } n=5), \text { or } \mathcal{E}_{6}(\text { when } n=7)
\end{gathered}
$$

First, note (e.g., see [BG, p. 80]) that the order of \mathcal{E}_{6} is $2^{7} \cdot 3^{4} \cdot 5$, which is not divisible by 7 !. Thus, it cannot contain a subgroup isomorphic to S_{7}. For the other cases, consider $d_{i}=\left(e_{1}-e_{i}\right) / \sqrt{2} \in R_{0}^{n}$ for $2 \leq i \leq n$. Then $\left\langle d_{i}, d_{j}\right\rangle=1 / 2$ for $2 \leq i<j \leq n$, but there are no roots r_{2}, \ldots, r_{n} of unit length in the root system of any one of the groups

$$
\begin{gathered}
\mathcal{B}_{n-1}, \mathcal{D}_{n-1}, \mathcal{I}_{n-1}(\text { when } n=4 \text { or } 5) \\
\mathcal{F}_{n-1}(\text { when } n=5)
\end{gathered}
$$

such that $\left\langle r_{i}, r_{j}\right\rangle=1 / 2$ for $2 \leq i<j \leq n$. Thus \tilde{H} cannot be any one of these groups.
In the following, we show that it is possible to have $\tilde{H}=\mathcal{E}_{i}$ for $7 \leq i \leq 8$, or $\tilde{H}=\mathcal{H}_{2}{ }^{m}$ for some special m. Moreover, there is essentially only one orthogonal transformation T satisfying $H_{0}=T^{-1} \tilde{H} T$ in each case.

Suppose $\tilde{H}=\mathcal{E}_{i}$ for $i=8$ or 7 . Let $\left\{\tilde{e}_{1}, \ldots, \tilde{e}_{8}\right\}$ be the standard basis of \mathbb{R}^{8}, and let $\tilde{e}=\sum_{i=1}^{8} \tilde{e}_{i}$.

If $\tilde{H}=\mathcal{E}_{8}$, then $n=9$. By arguments similar to those in the irreducible cases, we see that there exists $P \in \mathcal{D}_{8}$, which is a subgroup of the normalizer of \mathcal{E}_{8} in O_{8}, such that the orthogonal transformation $T: \mathbb{R}_{0}^{9} \rightarrow \mathbb{R}^{8}$ satisfies $T\left(e_{i}-e_{j}\right)=P\left(\tilde{e}_{i}-\tilde{e}_{j}\right)$ for all $1 \leq i<j \leq 8$, where $\left\{\tilde{e}_{1}, \ldots, \tilde{e}_{8}\right\}$ is the standard basis of \mathbb{R}^{8}. Since T is orthogonal, it follows that $T\left(e_{i}-e_{9}\right)=P\left(\tilde{e}_{i}-\left(\sum_{i=j}^{8} \tilde{e}_{j}\right) / 2\right)$ for $1 \leq i \leq 8$. Thus $H_{0}=T^{-1} \mathcal{E}_{8} T$.

If $\tilde{H}=\mathcal{E}_{7}$, then $n=8$. One can show that $T: \mathbb{R}^{8} \rightarrow W_{1}$, where $W_{1}=\left(e_{8}-e / 2\right)^{\perp}$ in \mathbb{R}^{8}, satisfies $T\left(e_{i}-e_{j}\right)=P\left(e_{i}-e_{j}\right)$ for all $1 \leq i<j \leq 7$ and $T\left(e_{i}-e_{8}\right)=P\left(e_{i}+e_{8}\right)$ for $i=1, \ldots, 7$, for some P in the normalizer of \mathcal{E}_{7} in O_{7}. Thus $H_{0}=T^{-1} \mathcal{E}_{7} T$.

Finally, suppose $\tilde{H}=\mathcal{H}_{2}^{m}$, i.e., $n=3$. Since \mathcal{H}_{2}^{m} is transitive on its roots, we may assume that $T\left(e_{1}-e_{2}\right) / \sqrt{2}=(1,0)^{t}$. It follows that $T\left(e_{1}-e_{3}\right) / \sqrt{2}=(1, \pm \sqrt{3})^{t} / 2$. Thus m must be a multiple of 6 , and we have $H_{0}=T^{-1} H_{2}^{m} T$ with T satisfying condition (d).

After determining H_{0}, one can show that $G_{0}= \pm H_{0}$ and therefore $G= \pm H_{0} \oplus G_{1}$ by arguments similar to those in the irreducible case.

Combining the above analysis, we get Theorem 3.2.
4. Remarks and open problems. In [GLe], the authors consider the norms on \mathbb{R}^{n} that are permutation invariant with respect a certain basis. In their setting, they only need to show that with a suitable choice of an inner product and an orthonormal basis, the isometry group must be of a certain form. In particular, they showed that for $n \geq 13$, if the isometry group of a permutation invariant norm is finite then with a suitable choice of orthonormal basis the group must be one of the following:

$$
\pm \mathcal{A}_{n}, \mathcal{B}_{n}, \mathcal{D}_{n} \text { when } n \text { is even, } \pm \mathcal{A}_{n-1} \text { or }\left\langle \pm \mathcal{A}_{n-1}, I_{n}-2 J / n\right\rangle
$$

From our results, we see that the above conclusion actually holds for $n \geq 10$.
The referee pointed out that there are several results and references that are related to our work.

First, W. Burnside $[\mathrm{Bu}]$ classified the finite subgroups of $\mathrm{GL}_{n}(\mathbb{Q})$ which contain the symmetric group S_{n}. Burnside did not have root systems or the notion of reflection groups at his disposal, but nevertheless found the reflection groups of type $\mathcal{F}_{4}, \mathcal{E}_{6}, \mathcal{E}_{7}, \mathcal{E}_{8}$. It was also noted by the referee that:
(i) Burnside's list is not complete as mentioned in [Ba].
(ii) Since Burnside assumed that the ground field is \mathbb{Q}, our list is bigger.
(iii) Burnside's paper is, from present perspective, old fashioned and hard to read, and thus there is good reason to rework it.

Second, E. Bannai $[\mathrm{Ba}]$ classified subgroups of $\mathrm{GL}_{n}(\mathbb{C})$ which contain the commutator subgroup $\left[S_{n}, S_{n}\right]$ - the alternating group on the variables - and are conjugate in $\mathrm{GL}_{n}(\mathbb{C})$ to a subgroup of $\mathrm{GL}_{n}(\mathbb{Q})$. Bannai found some additions to Burnside's list. The paper of Bannai, according to the referee, is very difficult to read, and does more than we do in that S_{n} is replaced by $\left[S_{n}, S_{n}\right]$. On the other hand, it does less than we do in that the ground field is \mathbb{Q} not \mathbb{R}. Thus Bannai would not capture the dihedral groups of orders different from $4,6,8,12$ or the reflection groups of type I_{3} and I_{4}, etc.

To conclude our paper, we list some related problems that deserve further research.
(a) Determine all possible isometry groups of a permutation invariant norm on \mathbb{C}^{n}.
(b) Determine all possible isometry groups of an absolute norm on \mathbb{R}^{n}. For the complex case, see [ST].

Acknowledgement. Thanks are due to Professors D. Z̆. Đoković, Y. Gordon, L. Grove and R. Loewy for some correspondence on the subject. Thanks are also due to the referee and the editor for their helpful suggestions.

References

[Ba] E. Bannai, On some finite subgroups of $\mathrm{GL}(n, \mathbf{Q})$, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20(1973), 319-340.
[BG] C. T. Benson and L. C. Grove, Finite Reflection Groups, Springer-Verlag, New York, 1985.
[Bo] N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4-6, Hermann, Paris, 1968.
[Bu] W. Burnside, The determination of all groups of rational linear groups of finite order which contain the symmetric group in the variables, Proc. London Math. Soc. (Series 2) 10(1912), 284-308.
[DLR] D. Ž. Doković, C. K. Li and L. Rodman, Isometries for symmetric gauge functions, Linear and Multilinear Algebra 30(1991), 81-92.
[GLe] Y. Gordon and D. R. Lewis, Isometries of Diagonally Symmetric Banach Spaces, Israel J. Math. 28 (1977), 45-67.
[GLo] Y. Gordon and R. Loewy, Uniqueness of (Δ) Bases and Isometries of Banach Spaces, Math. Ann. 241(1979), 159-180.
[LM] C. K. Li and P. Mehta, Permutation Invariant Norms, Linear Algebra Appl.
[ST] H. Schneider and R. E. L. Turner, Matrices hermitian for an absolute norm, Linear and Multilinear Algebra 1(1973), 9-31.

Department of Mathematics
The College of William and Mary
Williamsburg, VA 23188
U.S.A.
e-mail: ckli@cs.wm.edu

Department of Mathematics
University of California
Berkeley, CA 94720
U.S.A.
e-mail: whitney@math.berkeley.edu

[^0]: Research of first author was partially supported by an NSF grant and a Faculty Research Grant from the College of William and Mary.

 Research of second author was partially supported by an NSF grant in conjunction with the REU Research Experiences for Undergraduates programs.

 Received by the editors March 1, 1994; revised January 4, 1995.
 AMS subject classification: 20B30, 20F55, 20H15, 15A60.
 Key words and phrases: Permutation invariant norm, isometry, reflection groups.
 (c) Canadian Mathematical Society 1996.

