
Canad. Math. Bull. Vol. 52 (1), 2009 pp. 72–83

A SAGBI Basis For F[V2 ⊕V2 ⊕V3]C p

Alexander Duncan, Michael LeBlanc, and David L. Wehlau

Abstract. Let C p denote the cyclic group of order p, where p ≥ 3 is prime. We denote by Vn the

indecomposable n dimensional representation of C p over a field F of characteristic p. We compute a

set of generators, in fact a SAGBI basis, for the ring of invariants F[V2 ⊕ V2 ⊕ V3]Cp .

1 Introduction

Let F be any field of characteristic p > 0. We denote by Cp the cyclic group of order

p. Let ρ : Cp → GL(Vn, F) be an n-dimensional indecomposable representation of

Cp defined over F.

Fix σ, a non-trivial element of Cp, and select a basis for Vn such that the matrix

of ρn(σ) is in Jordan normal form. Since ρn is indecomposable, ρn(σ) consists of a

single Jordan block. Further, since σ has order p, we have ρn(σ)p
= In, and so the

eigenvalues of ρn(σ) must be pth roots of unity. Since the only root of unity in F is 1,

we have

ρn(σ) =



















1 1 0 . . . 0 0

0 1 1 . . . 0 0

0 0 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . 1 1

0 0 0 . . . 0 1



















Note that this matrix has order p if and only if 2 ≤ n ≤ p. Any n×n matrix of this

form generates a representation of Cp over F if n ≤ p, and so ρn is of the form above

for all 1 ≤ n ≤ p and is the unique n-dimensional indecomposable representation

of Cp over F.

Let ρ : Cp → GL(W, F) be a representation of Cp. The action of Cp on W naturally

induces an action on W ∗ given by

(g · f )(w) = f (g−1 ·w)

where g ∈ Cp , f ∈ W ∗ and w ∈ W . This action extends to an action by algebra

automorphisms on F[W ], the symmetric algebra of W ∗.

Since F[V1 ⊕W ]Cp ∼= F[V1]⊗F F[W ]Cp , we may assume that W does not contain

V1 as a summand. Such a representation is called reduced.

In 1913, L. Dickson[5] gave generators for the two rings of invariants F[V2]Cp and

F[V3]Cp . In 1990, David Richman[9] described a conjectural set of generators for
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F[V2 ⊕V2 ⊕ · · · ⊕V2]Cp (for any number of copies of V2). In 1997, Campbell and

Hughes[3] proved Richman’s conjecture.

In 1998, Shank [11] introduced a new method using SAGBI bases and used it to

find generating sets for the both the rings of invariants F[V4]Cp and F[V5]Cp . This

method gives, in fact, not just a generating set but indeed a SAGBI basis for the ring

of invariants. In 2002, Shank and Wehlau [13] extended this method and found a

SAGBI basis for F[V2 ⊕ V3]Cp . Recently Campbell, Fodden and Wehlau [2] gave a

SAGBI basis for F[V3 ⊕ V3]Cp

It seems that this method for finding algebra generators will be effective for rep-

resentations of Cp for which the Cohen–Macaulay defect of the ring of invariants

(i.e., the dimension of the ring minus its depth) is at most 2. For larger values of

the Cohen–Macaulay defect the chain complex (6) described below is increasingly

complicated, and furthermore we have no analogue of [8, Theorem 3] to apply. In

particular, this restriction on the Cohen–Macaulay defect requires that every inde-

composable summand Vn of W satisfy n ≤ 5. Furthermore Shank [12] has shown

other reasons why this method should not be expected to work for representations

with an indecomposable summand of dimension 6 or more.

The above rings of invariants include those of all reduced representations of Cp

whose Cohen–Macaulay defect is at most 2 with the two exceptions F[V2⊕V2⊕V3]Cp

and F[V4 ⊕V2]Cp . The former we treat here, leaving only the latter unknown. Since

it is known that form of the Hilbert series of the latter ring depends upon the residue

of p modulo 4, we know a priori that analysis of that ring of invariants will involve

extra complications.

Since ρ3(σ) has order 4 when p = 2 (and not order p), we will assume p ≥ 3.

However, for p = 2 a short Magma [1] computation reveals that F[V2 ⊕V2 ⊕V3]C4

is generated by 18 invariants in degrees 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5.

For all p ≥ 3, we will describe a finite set of invariants in F[V2 ⊕ V2 ⊕ V3]Cp

and prove that it is a SAGBI basis and thus also an algebra generating set for

F[V2 ⊕V2 ⊕V3]Cp .

There are a number of computational steps in the proof of our main theorem.

Each of these steps has been confirmed for small primes by computer computations

using the computer algebra system Magma [1]. We were able to compute generators

directly for Fp[V2 ⊕V2 ⊕V3]Cp with p = 3, 5. We computed lead terms of transfers

and confirmed that the free resolution (6) is exact and that the summing and sim-

plification described in the final paragraph of the paper are correct for many small

values of p. While these computer calculations may lend confidence in our result,

there is no reliance on them in the proof of Theorem 1.

2 Preliminaries

We direct the reader to [4, Chapter 2] for the appropriate definitions and a detailed

discussion of monomial orders. We use the convention that a monomial is a product

of variables and that a term is a monomial multiplied by a non-zero scalar coefficient.

For f ∈ F[W ], LT( f ) denotes the leading term of f , and LM( f ) denotes the

leading monomial of f .
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Note that the lead monomial and lead term of an element depend on the choice

of basis and ordering.

For Q ⊂ F[W ], LT(Q) := span
F
{LM( f )| f ∈ Q}. If the set Q is a subalgebra, then

LT(Q) is also a subalgebra.

If Q is a graded subalgebra of F[W ] and B ⊆ Q is some subset of Q then B is a

SAGBI basis for Q if the algebra generated by {LM( f ) | f ∈ B} is equal to LT(Q).

For more about SAGBI bases see [7, 10] or [14, Chapter 11].

For a graded F vector space, Q = ⊕∞
i=0Qi , the Hilbert Series of Q is

H(Q, λ) :=

∞
∑

i=0

dimFQiλ
i .

Given two Hilbert Series H =
∑∞

i=0 diλ
i and H ′

=
∑∞

i=0 d ′
i λ

i , we write H ≤ H ′

if di ≤ d ′
i for all i.

An important property, which is easily verified, is H(Q, λ) = H(LT(Q), λ). For

any SAGBI basis B of Q, we have LT(F[B]) ⊇ F[LT(B)] = LT(Q), so H(F[B], λ) ≥
H(Q, λ). Combined with F[B] ⊆ Q, this shows that any SAGBI basis B for Q is also

an algebra generating set for Q.

The Transfer Homomorphism or Trace is given by

Tr : F[W ] −→ F[W ]Cp ,

f 7−→
∑

g∈Cp

g · f .

The Norm Homomorphism is given by

N: F[W ] −→ F[W ]Cp

f 7−→
∏

g∈Cp

g · f .

3 A SAGBI Basis for F[V2 ⊕V2 ⊕V3]C p

We write W to denote the representation V2 ⊕ V2 ⊕ V3. Fix a non-trivial element

σ ∈ Cp. We choose a basis {x1, y1, x2, y2, x3, y3, z3} for W ∗ such that the matrix of σ
is in Jordan normal form. In particular, we have σ · xi = xi and σ · yi = yi + xi for

i = 1, 2, 3 and σ · z3 = z3 + y3. We use the graded reverse lexicographic monomial

order on F[W ] with x1 < y1 < x2 < y2 < x3 < y3 < z3.

Consider ρ ′ : Z → GL(V2 ⊕V2⊕V3, K), a 7-dimensional representation of Z over

a field K of characteristic 0 generated by

ρ ′(1) =





















1 1 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 1 0

0 0 0 0 0 1 1

0 0 0 0 0 0 1





















.
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Let φ1 : Z → Cp and φ2 : K[V2 ⊕V2 ⊕V3] → F[W ] be defined as reduction modulo

p. Then for σ ∈ Cp and v ∈ F[W ] we define σ · v = φ2(σ ′ · v ′) where φ1(σ ′) = σ
and φ2(v ′) = v. It is easy to see that this operation is well defined and that it induces

the same action of Cp as ρ. This shows that for v ∈ K[V2 ⊕ V2 ⊕ V3]Z, we have

φ2(v) ∈ F[W ]Cp . Such elements are called rational invariants. Using a Magma script,

we find that the rational invariants are generated by the following polynomials:

ui j = yix j − xi y j for 1 ≤ i < j ≤ 3,

wi = xi yix3 + y2
i x3 − 2xi yi y3 + 2x2

i z3 for i = 1, 2,

s = y1x2x3 + y1 y2x3 − y1x2 y3 − x1 y2 y3 + 2x1x2z3,

d3 = x3 y3 − y2
3 + 2x3z3

We now consider the set h = {x1, N(y1), x2, N(y2), x3, d3, N(z3)}. The set h is a

homogeneous system of parameters for F[W ], and therefore for F[W ]Cp . Therefore

there exists a finite subset Ĉ ⊂ F[W ]Cp such that

F[W ]Cp =
⊕

f∈Ĉ

f B,

where B = F[x1, N(y1), x2, N(y2), x3, d3, N(z3)].

Theorem 1 Let F be any field of characteristic p where p ≥ 3. Let C denote the set

consisting of the following elements of F[V2 ⊕V2 ⊕V3]Cp :

ui
12w

j
1wk

2 for all i + 2 j + 2k < p,

sui
12w

j
1wk

2 for all i + 2 j + 2k < p − 2,

u23w
j
1wk

2 for all 2 j + 2k + 1 < p,

u13w
j
1wk

2 for all 2 j + 2k + 1 < p,

Tr(zi
3y

j
2 yk

1) for all j + k > 0, 2i + j + k ≥ 2p − 1, and 0 ≤ i, j, k ≤ p − 1,

Tr(z
p−1
3 y3 yi

2 y
j
1) for all 0 ≤ i, j ≤ p − 1.

Then

{x1, N(y1), x2, N(y2), x3, d3, N(z3)} ∪C

is a SAGBI basis for F[V2 ⊕V2 ⊕V3]Cp .

Let A = LT(B) = F[x1, y
p
1 , x2, y

p
2 , x3, y2

3, z
p
3 ]. Let M =

∑

f∈C LT( f )A and con-

sider the subalgebra R of F[W ] generated by the elements of h∪C. Then M ⊆ LT(R)

and R ⊆ F[W ]Cp . Therefore

H(M, λ) ≤ H(LT(R), λ) = H(R, λ) ≤ H(F[W ]Cp , λ) .

We will show that H(M, λ) = H(F[W ]Cp , λ) and thus R = F[W ]Cp (and M =

LT(R)) and h ∪C is a SAGBI basis for F[W ]Cp .
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4 Hilbert Series of F[V2 ⊕V2 ⊕V3]C p

Using the method of Hughes and Kemper [6], one can compute the Hilbert series of

F[W ]Cp . Gregor Kemper has written a Magma script implementing this algorithm.

This script yields the following expression for H(F[W ]Cp , λ) as a rational function:

2λ6+3q + 12λ5+3q − λ4+3p − 3λ4+2p − 3λ4+p + 18λ4+3q − λ4

− 6λ3+2p − 6λ3+p + 18λ3+3q − 3λ2+3p − 9λ2+2p − 9λ2+p + 12λ2+3q

−3λ2 − 6λ1+2p − 6λ1+p + 2λ1+3q − λ3p − 3λ2p − 3λp − 1

λ11+3p − 3λ11+2p + 3λ11+p − λ11 − 3λ10+3p + 9λ10+2p − 9λ10+p

+ 3λ10 + 2λ9+3p − 6λ9+2p + 6λ9+p − 2λ9 + 3λ7+3p − 9λ7+2p

+ 9λ7+p − 3λ7 − 3λ6+3p + 9λ6+2p − 9λ6+p + 3λ6 − 3λ5+3p

+ 9λ5+2p − 9λ5+p + 3λ5 + 3λ4+3p − 9λ4+2p + 9λ4+p − 3λ4

+ 2λ2+3p − 6λ2+2p + 6λ2+p − 2λ2 − 3λ1+3p + 9λ1+2p − 9λ1+p

+ 3λ + λ3p − 3λ2p + 3λp − 1,

where q = (p − 1)/2.

Factoring the numerator and denominator gives

(1 + λ)(1 − λ3)2 f̂p(λ)

(1 − λ)3(1 − λ2)(1 − λp)3(1 + λ)(1 − λ3)2
=

f̂p(λ)

(1 − λ)3(1 − λ2)(1 − λp)3

where f̂p is a polynomial dependent on p.

5 Leading Terms

5.1 Rational Invariants

The set C contains four families of rational invariants. Since LT( f h) = LT( f ) LT(h)

for all f , h ∈ F[W ] we see that their leading monomials are

Family Leading Term

ui
12w

j
1wk

2 y
i+2 j
1 xi

2 y2k
2 x

j+k
3

sui
12w

j
1wk

2 y
i+2 j+1
1 xi

2 y2k+1
2 x

j+k+1
3

u23w
j
1wk

2 y
2 j
1 y2k+1

2 x
1+ j+k
3

u13w
j
1wk

2 y
2 j+1
1 y2k

2 x
1+ j+k
3

5.2 Transfers

Using the fact that σq(zi
3 y

j
2 yk

1) = (z3 + qy3 +
(

q
2

)

)i(y2 + qx2) j(y1 + qx1)k and that

(1)
∑

q∈Fp

ql
=

{

−1, if p − 1 divides l;

0, otherwise;
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we see that the coefficient of zc3

3 yb3

3 xa3

3 yb2

2 xa2

2 yb1

1 xa1

1 (where a1 + b1 = k, etc.) in

Tr(zi
3y

j
2 yk

1) is

1

2a3

(

i

a3, b3

)(

j

a2

)(

k

a1

) a3
∑

n=0

p−1
∑

q=0

(−1)a3−nqa1+a2+a3+b3+n.

Since i, j, k ≤ p − 1, the above multinomial coefficients are all nonzero. Thus by

(1) the coefficient is nonzero if and only if there is an n with 0 ≤ n ≤ a3 such that

p− 1 divides a1 + a2 + a3 + b3 + n. Thus if i ≥ p−1
2

then Tr(zi
3y

j
2 yk

1) contains the term

y
2i−p+1
3 x

p−1−i
3 y

j
2 yk

1 (arising from n = p− 1− i) and no greater terms. If i < p−1
2

the

greatest term in Tr(zi
3y

j
2 yk

1) is xi
3 y

j+2i+1−p
2 x

p−1−2i
2 yk

1 arising from n = i.

Now

σq(z
p−1
3 y3 y

j
2 yk

1) = (y3 + qx3)σq(z
p−1
3 y

j
2 yk

1),

and so the coefficient in Tr(z
p−1
3 y3 y

j
2 yk

1) of zc3

3 yb3

3 xa3

3 yb2

2 xa2

2 yb1

1 xa1

1 (with a3+b3+c3 = p,

etc.) is

1

2a3

(

j

a2

)(

k

a1

) p−1
∑

q=0

[

(

p − 1

a3, b3 − 1

)

(−1)a3qa1+a2+a3+b3−1+

((

p − 1

a3, b3 − 1

)

− 2

(

p − 1

a3 − 1, b3

)) a3
∑

n=1

(−1)a3−nqa1+a2+a3+b3+n−1

]

.

Thus by (1) the coefficient is nonzero if and only if there is an n with 0 ≤ n ≤ a3

such that p − 1 divides a1 + a2 + a3 + b3 + n − 1 and either n = 0 or b3 6= 2a3. Thus

the lead monomial of Tr(z
p−1
3 y3 y

j
2 yk

1) is y
p
3 y

j
2 yk

1 (corresponding to n = 0).

6 Computing H(M, λ)

Let G denote the group Cp ×Cp ×C2. We introduce a G-grading on M by declaring

the multidegree of y1 to be (1, 0, 0), of y2 to be (0, 1, 0), of y3 to be (0, 0, 1), and of

the other four variables to be (0, 0, 0).

Note that the action of A on M leaves the multidegree invariant. Thus M de-

composes as the direct sum of finitely generated A-modules, M =
⊕

ω∈G Mω where

Mω consists of those of M elements with multidegree ω. Therefore H(M, λ) =
∑

ω∈G H(Mω, λ).

For all 0 ≤ i, j ≤ p−1 the submodule M(i, j,1) is generated by the single monomial

yi
1 y

j
2 y

p
3 , and so H(M(i, j,1), λ) = H(A, λ)λi+ j+p.

For 1 ≤ i, j ≤ p − 1, and i + j ≥ p, the submodule M(i, j,0) is generated by

ũi j(s) :=yi
1 y

j
2xs

3 y
p−1−2s
3 for 0 ≤ s ≤

p − 3

2
,

ṽi j(s) :=yi
1x

p−1−2s
2 y

j
2xs

3 for ⌈
j

2
⌉ ≤ s ≤

p − 1

2
.
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For 0 ≤ i, j ≤ p− 1 and i + j ≤ p− 1 and i + j ≡ 0 (mod 2) the submodule M(i, j,0)

is generated by

ũi j(s) :=yi
1 y

j
2xs

3 y
p−1−2s
3 for 0 ≤ s ≤

i + j

2
− 1,

ṽi j(s) :=yi
1x

i+ j−2s
2 y

j
2xs

3 for ⌈
j

2
⌉ ≤ s ≤

i + j

2
.

For 0 ≤ i, j ≤ p − 1 and i + j ≤ p − 1 and i + j ≡ 1 (mod 2) the submodule

M(i, j,0) is generated by

ũi j(s) :=yi
1 y

j
2xs

3 y
p−1−2s
3 for 0 ≤ s ≤

i + j − 1

2
,

ṽi j(s) :=yi
1x

i+ j−2s
2 y

j
2xs

3 for ⌈
j

2
⌉ ≤ s ≤

i + j − 1

2
,

ṽi j(
i + j + 1

2
) :=yi

1 y
j
2x

(i+ j+1)/2
3 .

To calculate H(M(i, j,0), λ) we will construct a free resolution of M(i, j,0) as an A-

module. Define P := F[x2, x3, y2
3] and P ′ := F[x1, y

p
1 , y

p
2 , z

p
3 ]. Then A = P ⊗F P ′.

We will denote by us the monomial us = ũi j(s)/(yi
1y

j
2) ∈ P. Similarly we define

vs := ṽi j(s)/(yi
1 y

j
2) ∈ P. Let q0 and q1 denote respectively the minimum and maxi-

mum values of s for which us is defined, i.e., for which ũi j(s) is one of the generators

of M(i, j,0) listed above. Similarly let r0 and r1 denote respectively the minimum and

maximum values of s for which vs is defined. Note that q0 ≤ r0 and q1 = r1 − 1. Let

V = Vi j be the set of monomials

V := {us | q0 ≤ s ≤ q1} ∪ {vs | r0 ≤ s ≤ r1} .

Let M(i, j,0) denote the P-module generated by the elements of Vi j . We begin by

constructing a free resolution of M(i, j,0) as a P-module.

We consider the following graph Γ = Γi j with vertices V = V (Γ) and edge set:

E(Γ) := {〈us−1, us〉 | q0 + 1 ≤ s ≤ q1} ∪ {〈vs−1, vs〉 | r0 + 1 ≤ s ≤ r1}

∪ {〈us, vs〉 | r0 ≤ s ≤ q1} ∪ {〈uq1
, vr1

〉} .

Note that we only include the edge 〈uq1
, vr1

〉 if both of its endpoints are among the

vertices in V (which only fails to occur for i = j = 0).

We view the vertices uq0
, uq0+1, . . . , uq1

as lying on a straight line in a plane and

the vertices vr0
, vr0+1, . . . , vr1

as lying on another. This shows that Γ is a planar graph.

With this embedding the bounded regions enclosed by Γ are a single triangle (pro-

vided r1 > r0) and q1 − r0 quadrilaterals. We let F(Γ) denote the set of these regions:

F(Γ) := {〈vr1
, uq1

, vq1
〉} ∪ {〈us−1, vs−1, us, vs〉 | r0 + 1 ≤ s ≤ q1} .

Again we only include the face 〈vr1
, uq1

, vq1
〉 if all of its edges are included in E, i.e., if

r1 > r0.
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We use the planar graph Γ to construct a complex as follows. See [8, Section 4]

for another discussion of this construction. For any edge ∆ ∈ E(Γ) or face ∆ ∈ F(Γ)

we define LCM(∆) = xa
2xb

3 yc
3 to be the least common multiple of the monomials of

V which form the vertices of ∆.

For each edge, e = 〈wa, wb〉 ∈ E(Γ) and each face ∆ ∈ F(Γ) we define ε(e, ∆) to

be 0 if e is not an edge of ∆, otherwise it is +1 if ∆ lies on the left as one goes from

wa to wb, and −1 if ∆ is on the right.

Define three free graded P-modules by

K0 :=
⊕

w∈V (Γ)

P(− deg(LCM(w)))〈w〉,

K1 :=
⊕

e∈E(Γ)

P(− deg(LCM(e)))e,

K2 :=
⊕

∆∈F(Γ)

P(− deg(LCM(∆)))∆,

and consider the complex

0 → K2
∂2−→ K1

∂1−→ K0
∂0−→ M(i, j,0) → 0 .

Here the P-module map ∂0 is given by ∂0(〈w〉) = w. The P-module map ∂1 is defined

by ∂1(〈w0, w1〉) =
m
w0
〈w0〉−

m
w1
〈w1〉, where m = LCM(w0, w1). Finally the P-module

map ∂2 is defined by ∂2(∆) =
∑

e∈E(Γ) ε(e, ∆) LCM(∆)
LCM(e)

e.

It is easily verified that (6) is a complex, i.e., that ∂i ◦ ∂i+1 = 0 for i=0,1. We claim

moreover that it is exact.

By [8, Theorem 3] there is some planar graph G for which the corresponding

complex is the minimal resolution of M(i, j,0). We will show that G = Γ. Note that

[8, Theorem 3] requires the hypothesis that the base ring P be a polynomial ring on

three variables. This is our reason for replacing A by P. This is also why the method

used here may fail if the Cohen–Macaulay defect of the ring of invariants exceeds 2.

As an aside we note here that in [8] the situation is slightly different. In [8] the

goal is to find the Hilbert series of a ring modulo a monomial ideal rather than the

Hilbert series of a module M generated by monomials. To compare the two settings,

let I denote the ideal of P generated by a set of monomials. In both cases we have

a P-module map ∂0 carrying the generators of a free P-module onto the monomials

in the generating set. For us this is the final (non-zero) map in our resolution, with

image M. In [8] however the authors consider the image of ∂0 as lying in P, and

their resolution has one extra map, ∂−1 : P ։ P/I. Thus in the two settings the exact

resolutions are the same except for the additonal final map in the ideal setting.

By construction the two graphs Γ and G have the same vertex set V . We will show

Γ = G by showing they also share the same edge set and the same face set. For ease

of notation, we will show that Γ = G only in the case where 1 ≤ i, j ≤ p − 1 and

i + j ≥ p. The other two cases are entirely similar.
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Note that for k ≥ 2 we have the following four equalities:

∂1(〈us, us+k〉) = xk−1
3 ∂1(〈us, us+1〉) + y2

3∂1(〈us+1, us+k〉),

∂1(〈vs, vs+k〉) = xk−1
3 ∂1(〈vs, vs+1〉) + x2

2∂1(〈vs+1, vs+k〉),

∂1(〈us, vs+k〉) = y2
3∂1(〈us+1, vs+k〉) + x

p−1−2s−2k
2 xk−1

3 ∂1(〈us, us+1〉),

∂1(〈us+k, vs〉) = x2
2∂1(〈us+k, vs+1〉) − xk−1

3 y
p−1−2s−2k
3 ∂1(〈vs, vs+1〉) .

These equations show that ∂1(〈w1, w2〉) is contained in ∂1(E(Γ)) = ker ∂0 =

∂1(E(G)) for every pair w1, w2 ∈ V . Thus none of the edges not in E(Γ) is required

for the minimal resolution, and therefore E(G) ⊆ E(Γ).

Consider e = 〈us−1, us〉 ∈ E(Γ). Note that deg(LCM(e)) = (0, s, p + 1 − 2s),

and thus LCM(e) is divisible only by two monomials of V , namely us−1 and us. This

implies that ∂1(e) /∈ ∂1(E(G) \ {e}), and thus that e must lie in E(G). Similarly for

each r0 + 1 ≤ s ≤ r1 we must have 〈vs−1, vs〉 ∈ E(G).

Finally we consider edges of the form e = 〈us, vs〉 ∈ E(Γ). Here deg(LCM(e)) =

(p−1−2s, s, p−1−2s), and thus LCM(e) is again divisible by exactly two monomials

of V : us and vs. This shows that ∂1(e) /∈ ∂1(E(G)\{e}), and thus that e ∈ E(G). Thus

we see that E(Γ) = E(G).

It only remains to show that the faces of G are exactly those lying in F(Γ). Al-

though this may seem obvious, we have to allow for the possibility that G has been

embedded into the plane in some way other than that described above.

First we consider the triangle ∆ = 〈vr1
, uq1

, vq1
〉 contained in F(Γ). Expressly,

uq1
= x

(p−3)/2
3 y2

3, vq1
= x2

2x
(p−3)/2
3 , vr1

= x
(p−1)/2
3

and deg(LCM(〈vr1
, uq1

, vq1
〉)) = (2, (p − 1)/2, 2). Thus the only monomials of V

which divide LCM(〈vr1
, uq1

, vq1
〉) are vr1

, uq1
, and vq1

. Therefore ∂2(∆) /∈ ∂2(F(G) \
{e}), and thus ∆ must be contained in F(G).

Let r0 + 1 ≤ s ≤ q − 1. Since

deg(LCM(〈us−1, vs−1, us, vs〉)) = (p + 1 − 2s, s, p + 1 − 2s),

the only monomials of V which divide LCM(〈us−1, vs−1, us, vs〉 are us−1, vs−1, us, vs.

Thus F(G) must contain at least one of the faces 〈us−1, vs−1, us〉, 〈us−1, vs−1, vs〉,
〈us−1, us, vs〉, 〈vs−1, us, vs〉, and 〈us−1, vs−1, us, vs〉. However, since each of the four

triangles contains an edge not lying in E(G), the region in F(G) must be the quadri-

lateral.

Hence we have shown that F(G) ⊆ F(Γ).

We have that |E(G)| = (q1−q0)+(r1−r0)+(q1−r0+1)+1, |V (G)| = (q1−q0 +1)+

(r1−r0+1), and therefore by Euler’s formula, |F(G)| = |E(G)|−|V (G)|+1 = q1−r0+1

which is exactly the size of F(Γ). Therefore F(G) = F(Γ), and thus G = Γ. This

shows that the complex arising from Γ is the same as the exact complex arising from

G, and thus that the complex (6) is an exact sequence of P-modules.
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Now we may tensor this exact sequence with the free (hence flat) cyclic P-module,

P ′yi
1 y

j
2, to obtain an exact sequence of A-modules:

0 → K2
∂2−→ K1

∂1−→ K0
∂0−→ M(i, j,0) → 0 ,

where

K0 :=
⊕

w∈V (Γ)

A(− deg(LCM(w)))wyi
1y

j
2,

K1 :=
⊕

e∈E(Γ)

A(− deg(LCM(e)))eyi
1y

j
2,

K2 :=
⊕

∆∈F(Γ)

A(− deg(LCM(∆)))∆yi
1y

j
2 .

Therefore

(2) H(M(i, j,0), λ) = H(K0λ) − H(K1, λ) + H(K2, λ).

Now

H(K0, λ) = λi+ j
∑

w∈V

λdeg(w)
H(A, λ),

H(K1, λ) = λi+ j
∑

∆1∈E

λdeg(LCM(∆1))
H(A, λ),

H(K2, λ) = λi+ j
∑

∆2∈F

λdeg(LCM(∆2))
H(A, λ).

This gives the following expressions.

If i + j ≥ p then

H(K0, λ) = H(A, λ)λi+ j
(

p−3
2

∑

s=0

λp−1−s +

p−1
2

∑

s=⌈ j
2
⌉

λp−1−s
)

,

H(K1, λ) = H(A, λ)λi+ j
(

p−1
2

∑

s=1

λp+1−s +

p−1
2

∑

s=⌈ j
2
⌉+1

λp+1−s +

p−3
2

∑

s=⌈ j
2
⌉

λ2p−2−3s
)

,

H(K2, λ) = H(A, λ)λi+ j
(

p−1
2

∑

s=⌈ j
2
⌉+1

λ2p+2−3s
)

.
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If i + j ≤ p − 1 and i + j ≡ 0 (mod 2), then

H(K0, λ) = H(A, λ)λi+ j
(

i+ j
2
−1

∑

s=0

λp−1−s +

i+ j
2

∑

s=⌈ i
2
⌉

λi+ j−s
)

,

H(K1, λ) = H(A, λ)λi+ j
(

i+ j
2

∑

s=1

λp+1−s +

i+ j
2

∑

s=⌈ j
2
⌉+1

λi+ j+2−s +

i+ j
2
−1

∑

s=⌈ j
2
⌉

λi+ j+p−1−3s
)

,

H(K2, λ) = H(A, λ)λi+ j
(

i+ j
2

∑

s=⌈ j
2
⌉+1

λp+3+i+ j−3s
)

.

If i + j ≤ p − 1 and i + j ≡ 1 (mod 2) then

H(K0, λ) = H(A, λ)λi+ j
(

λ
i+ j+1

2 +

i+ j−1
2

∑

s=0

λp−1−s +

i+ j−1
2

∑

s=⌈ j
2
⌉

λi+ j−s
)

,

H(K1, λ) = H(A, λ)λi+ j
(

i+ j+1
2

∑

s=1

λp+1−s +

i+ j+1
2

∑

s=⌈ j
2
⌉+1

λi+ j+2−s +

i+ j−1
2

∑

s=⌈ j
2
⌉

λp−1+i+ j−3s
)

,

H(K2, λ) = H(A, λ)λi+ j
(

i+ j+1
2

∑

s=⌈ j
2
⌉+1

λp+1+i+ j+2−3s
)

.

Using the above formulae and equation (2) and summing over all ω ∈ G, we get a

huge expression for H(M, λ). Now it is clear that H(A, λ) = (1 − λ)3(1 − λ2)(1 −
λp)3. Multiplying the numerator and denominator by (1+λ)(1−λ3)2 causes the sums

to telescope, and we get the desired result that H(M, λ) = H(F[W ]Cp , λ). Therefore

h ∪C is a SAGBI basis for F[W ]Cp , and the proof of Theorem 1 is complete.

Acknowledgment The authors gratefully acknowledge the assistance of Mike Roth.

References

[1] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system I. The user language. J. Symbolic
Comput. 24(1997), no. 3-4, 235–265.

[2] H. E. A. Campbell, B. Fodden, and D. L. Wehlau, Invariants of the diagonal C p-action on V3. J.
Algebra 303(2006), no. 2, 501–513. Also see the appendix with additional details contained in the
online version of this paper at the Journal of Algebra web site.

[3] H. E. A. Campbell and I. P. Hughes, Vector invariants of U2(Fp): A proof of a conjecture of Richman.
Adv. Math. 126(1997), no. 1, 1–20.

[4] D. Cox, J. Little, and D. O’Shea, Ideals, varieties, and algorithms. An introduction to computational
algebraic geometry and commutative algebra. Undergraduate Texts in Mathematics, Springer-Verlag,
New York, 1992.

[5] L. E. J. Dickson, On invariants and the theory of numbers. Dover Publications, Inc., New York, 1966.

https://doi.org/10.4153/CMB-2009-009-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-009-2


A SAGBI Basis For F[V2 ⊕V2 ⊕V3]Cp 83

[6] I. Hughes and G. Kemper, Symmetric powers of modular representations, Hilbert series and degree
bounds. Comm. Algebra 28(2000), no. 4, 2059–2088.

[7] D. Kapur and K. Madlener, A completion procedure for computing a canonical basis of a
k-subalgebra. Computers and Mathematics, Springer, New York, 1989, pp. 1–11.

[8] E. Miller and B. Sturmfels, Monomial Ideals and Planar Graphs. In: Applied algebra, algebraic
algorithms and error-correcting codes, Lecture Notes in Comput. Sci. 1719, Springer, Berlin, 1999,
pp. 19–28.

[9] D. Richman, On vector invariants over finite fields. Adv. Math. 81(1990), no. 1, 30–65.
[10] L. Robbiano and M. Sweedler, Subalgebra bases, In: Commutative algebra, Lecture Notes in Math.

1430, Springer, Berlin, 1990, pp. 61–87.
[11] R. J. Shank, S.A.G.B.I. bases for rings of formal modular seminvariants. Comment. Math. Helv.

73(1998), no. 4, 548–565.
[12] , Classical Covariants and Modular Invariants. In: Invariant Theory in All Characteristics,

CRM Proc. Lecture Notes 35, Amer. Math. Soc., Providence, RI, 2004, pp. 241–249.
[13] R. J. Shank and D. L. Wehlau, Noether numbers for subrepresentations of cyclic groups of prime order.

Bull. London Math. Soc. 34(2002), no. 4, 438–450.
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