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Description of Entire Solutions of
Eiconal Type Equations

Der-Chen Chang and Bao Qin Li

Abstract. The paper describes entire solutions to the eiconal type non-linear partial differential equa-

tions, which include the eiconal equations (X1(u))2 + (X2(u))2
= 1 as special cases, where X1 =

p1∂/∂z1 + p2∂/∂z2, X2 = p3∂/∂z1 + p4∂/∂z2 are linearly independent operators with p j being

arbitrary polynomials in C2.

1 Introduction

In a recent paper [8], we showed that entire solutions to eiconal (eikonal) type non-

linear partial differential equations

(1.1) u2
z1 + u2

z2 = p

for a polynomial p in C2 must be either of the form u = F(z1, z2 − iz1) + f (z2 − iz1)

or of the form u = φ1(z1 + iz2) + φ2(z1 − iz2), where F is a two-variable polynomial

and f , φ1, φ2 are one-variable polynomials, which are characterized by certain con-

ditions in terms of p. These nonlinear partial differential equations and certain gen-

eralizations in real variables arise in wave propagation, geometric optics, quantum

mechanics, for example, in describing the wave fronts of light in an inhomogeneous

medium with a variable index of refraction p (see [2, 3, 5]).

We note that an equation (1.1) can be turned to a Monge–Ampére equation by

a variable change and differentiation [7, 8]. It is known that entire solutions to the

eiconal equation u2
z1

+ u2
z2
= 1, the equation (1.1) with p = 1, are necessarily linear

[7, 10], which is, as mentioned in [7], close in flavor to a result due to Bernstein

on linearity of solutions to a minimal surface equation in a whole plane [1, 9], as

well as some of the results stemming from [1], such as the theorem of Jörgens [6]

stating that a C2-solution in R2 of the non-degenerated Monge–Ampère equation

uxxuy y − u2
xy = 1 must be a quadratic polynomial.

We observe that when p is a certain linear function, entire solutions of (1.1) may

be quadratic polynomials; for instance, u2
z1

+u2
z2
= p with p = z1 +z2 +1 has the entire

solution u =
1
4
z2

1 + i
2
z1z2 −

1
4
z2

2 + z1. On the other hand, for some linear functions p,

the equation (1.1) does not even admit any entire solutions. It is desirable to further

understand these situations. It turns out (see Corollary 2.4 below) that all entire

solutions of (1.1), if there are any, must be quadratic polynomials when p is linear,

and these quadratic polynomials and such p’s can be explicitly given; in fact, the

Received by the editors April 9, 2009.
Published electronically April 25, 2011.
AMS subject classification: 32A15, 35F20.
Keywords: entire solution, eiconal equation, polynomial, transcendental function.

249

https://doi.org/10.4153/CMB-2011-080-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-080-8


250 D.-C. Chang and B. Q. Li

result holds for arbitrary irreducible polynomials p. This led us to write the present

paper, as a continuation of the work [8]. The result will be treated as a consequence

of a theorem for more general equations

(1.2) (X1(u))2 + (X2(u))2
= p,

where X1 = p1∂/∂z1 + p2∂/∂z2, X2 = p3∂/∂z1 + p4∂/∂z2 are linearly independent

operators in C2, i.e., D = p1 p4 − p2 p3 6≡ 0, with p j ’s being polynomials in C2 and p

an irreducible polynomial in C2. This contains some well-known equations as special

cases. When p ≡ 1, the equations of the form (1.2) are often referred to as eiconal

equations. For such equations with arbitrary polynomial coefficients, entire solutions

in general may be algebraic or transcendental. For example, entire solutions of the

complex Grusin equation u2
z1

+ (zn
1 uz2

)2
= 1 (n is a positive integer) are linear, while

entire solutions of the equation u2
z1

+ (z1z3
2uz1

− (z4
2/3)uz2

)2
= 1 are transcendental

(Corollary 2.3 and Remark 2.6 below). All entire solutions of these equations can be

explicitly found using the theorem in the paper. We will state the detailed results in

Section 2 and give the proofs in Section 3.

2 Results

Theorem 2.1 Let u be an entire solution of the equation

(2.1) (X1(u))2 + (X2(u))2
= p,

where X1 = p1∂/∂z1 + p2∂/∂z2, X2 = p3∂/∂z1 + p4∂/∂z2 are linearly independent

operators in C2 and p, p j (1 ≤ j ≤ 4) are polynomials in C2 with p 6≡ 0 irreducible.

Then u is given by

(2.2)

uz1
=

1

D

(

p4
eih + pe−ih

2
− cp2

eih − pe−ih

2i

)

,

uz2
=

1

D

(

cp1
eih − pe−ih

2i
− p3

eih + pe−ih

2

)

,

where c = ±1, D = p1 p4 − p2 p3, h is a constant or a nonconstant polynomial deter-

mined by

(2.3) hz1
=

acp2 + bp4

cD2
, hz2

= −
acp1 + bp3

cD2
,

and

(2.4)

a = −
iC

2p
+ cD(p2)z2

− cp2Dz2
+ cD(p1)z1

− cp1Dz1
,

b = −
C

2p
+ D(p3)z1

− p3Dz1
+ D(p4)z2

− p4Dz2
,

C = −p3 pz1
− p4 pz2

−
1

i
cp1 pz1

−
1

i
cp2 pz2

.
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The expression in (2.2), which depends only on the given data p1, p2, p3, p4, and

p, characterizes the partial derivatives of the solution u and thus the solution u itself.

In particular, when these polynomials are explicitly given, one can find all the exist-

ing entire solutions u explicitly by integrating (2.2) (see the examples in Remark 2.6

below).

For the eiconal equations with p ≡ 1, Theorem 2.1 is specified to the following.

Corollary 2.2 Let u be an entire solution of the equation

(2.5) (X1(u))2 + (X2(u))2
= 1

in C2, where X1 = p1(∂/∂z1) + p2(∂/∂z2), X2 = p3(∂/∂z1) + p4(∂/∂z2) are linearly

independent operators with p j being polynomials in C2. Then u is given by

(2.6) uz1
=

1

D
(p4 cos h − p2 sin h), uz2

=

1

D
(p1 sin h − p3 cos h),

where D = p1 p4 − p2 p3, h is a constant or a nonconstant polynomial given by

(2.7) hz1
=

ap2 + bp4

D2
, hz2

=

−ap1 + bp3

D2

and

(2.8)
a = D(p2)z2

− p2Dz2
+ D(p1)z1

− p1Dz1
,

b = D(p3)z1
− p3Dz1

+ D(p4)z2
− p4Dz2

.

As mentioned in §1, entire solutions to the equations u2
z1

+(zn
1 uz2

)2
= 1 (where n is

a positive integer) are linear. This is clearly contained in the following more general

characterization.

Corollary 2.3 Let P(z1; z2) and Q(z1; z2) be arbitrary polynomials in C2. Then u is

an entire solution of the equation

(2.9) (Puz1
)2 + (Quz2

)2
= 1

if and only if u = c1z1 + c2z2 + c3 is a linear function, where c j ’s are constants, and

exactly one of the following holds:

(i) c1 = 0 and Q is a constant satisfying that (c2Q)2
= 1;

(ii) c2 = 0 and P is a constant satisfying that (c1P)2
= 1;

(iii) c1c2 6= 0 and P,Q are both constant satisfying that (c1P)2 + (c2Q)2
= 1.

Another special case of Corollary 2.3 is the eiconal equation u2
z1

+ u2
z2
= 1, which

is equation (2.9) with P = Q = 1, and thus has exactly linear solutions

u = c1z1 + c2z2 + c3

with c2
1 + c2

2 = 1. This was shown in different ways in [7, 10].

As another corollary, we have the following characterization for the equation u2
z1

+

u2
z2
= p, when p is an irreducible polynomial, which was mentioned in the beginning

of the introduction.
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Corollary 2.4 Let p 6≡ 0 be an irreducible polynomial in C2. Then u is an entire

solution to the partial differential equation

(2.10) u2
z1

+ u2
z2
= p

in C2 if and only if p is a linear function of the form p = c1(iz1−cz2)+c2, where c1, c2, c

are constants with c = ±1 and

(2.11) u = α(iz1 − cz2)2 + β(iz1 − cz2) + γz1 + δ

is a quadratic polynomial, where α = (c1γ
−1/4i), β = (1/2i)(γ−1c2 − γ), and γ 6=

0, δ are constants.

Remark 2.5 The polynomial p in Corollary 2.4 is assumed to be irreducible. When

p is not irreducible, the result fails and entire solutions may be polynomials of ar-

bitrarily given degree. For example, consider the equation u2
z1

+ u2
z2

= p with p =

−2i(z2 − iz1)n−1 + 1, where n is any given positive integer. Then the polynomial

u =
1
n

(z2 − iz1)n + z1 is a solution of the equation with the arbitrarily given degree n.

When n ≥ 3, p is not irreducible and the solution is not quadratic.

Remark 2.6 In view of Corollary 2.3, where entire solutions are linear, and Corol-

lary 2.4, where entire solutions are quadratic, it would be tempting to think that

entire solutions in Theorem 2.1 or Corollary 2.2 always could be polynomials and

something could be said about the degrees. It turns out that entire solutions may

be polynomials of arbitrarily given degrees or even transcendental, as shown in the

following examples.

(i) Let n be any given positive integer. Consider the equation

u2
z1

+ (zn−1
2 uz1

− uz2
)2

= 1,

which is the equation (2.1) with p1 = 1, p2 = 0, p3 = zn−1
2 , and p4 = −1. Thus,

D = −1. We will use Corollary 2.2 to find all entire solutions of the equation. By the

corollary, entire solutions are given by (2.6). If h in (2.6) is a polynomial, by (2.8) we

see that a = b = 0. Then by (2.7), we see that hz1
= hz2

= 0. We thus must have

that h is a constant. Let cos h = c1 and sin h = c2. Then c2
1 + c2

2 = 1. And by (2.6),

uz1
= c1 and uz2

= −c2 + c1zn−1
2 . Integrating them yields that entire solutions are

exactly u = c1z1−c2z2 + c1

n
zn

2 , where c1, c2 are any constants satisfying that c2
1 +c2

2 = 1.

They are polynomials of the given degree n with c1 6= 0.

(ii) Consider the equation u2
z1

+ (z1z3
2uz1

− (z4
2/3)uz2

)2
= 1, which is equation

(2.5) with p1 = 1, p2 = 0p3 = z1z3
2 and p4 = −(z4

2/3). Thus, D = p4. We will

use Corollary 2.2 to find all entire solutions of the equation. By the corollary, entire

solutions are given by (2.6). If h in (2.6) is a constant, then uz2
= −(3/z4

2)(sin h −
z1z3

2 cos h) by (2.6). Since cos h and sin h cannot both be zero, we see that uz2
has

poles when z2 = 0, which is impossible. Thus, h is a nonconstant polynomial by

Corollary 2.2. By (2.8), we have that a = 0 and b = − 1
3
z7

2. By (2.7), we obtain

that hz1
= z3

2 and hz2
= 3z1z2

2 , which yields from integration that h = z1z3
2 + c1
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for a constant c1. Then by (2.6) we deduce that uz1
= cos(z1z3

2 + c1) and uz2
=

−3z−4
2 sin(z1z3

2 + c1) + 3z1z−1
2 cos(z1z3

2 + c1). Integrating these two equalities yields

that u = (1/z3
2) sin(z1z3

2 + c1) + c for a constant c. But we are solving the given

equation for entire solutions u. Thus, we must have that c1 = kπ for an integer k,

since otherwise u would have poles. Thus, entire solutions of the given equation are

exactly u = ±(1/z3
2) sin(z1z3

2) + c for a constant c, which are transcendental entire

functions in C2.

Remark 2.7 Consider the eiconal equation on R2

(2.12) u2
x + u2

y = 1,

(x, y) ∈ R2. It is apparent that linear functions u(x, y) = ax + by + c with a2 + b2
= 1

are solutions of (2.12), as in the complex case. If we impose an initial condition, then

for any constant λ the linear functions

fλ(x, y) = (x − x0) cosλ + (y − y0) sinλ

give a family of solutions satisfying the initial condition fλ(x0, y0) = 0. However, be-

sides the linear solutions, the same eiconal equation (2.12) and initial condition are

satisfied also by the radical function f (x, y) =
√

(x − x0)2 + (y − y0)2. This result in

R2 can be also carried over to the eiconal equation |∇ f |2g = 1 on Riemannian mani-

folds (M, g) [2, Theorem 7.3.2]. We refer to [2] for related results and applications.

3 Proofs

Proof of Theorem 2.1 Let u be an entire solution of (2.1). Then

X2
1 + X2

2 = (X1 + iX2)(X1 − iX2) = p,

where X1 = p1uz1
+ p2uz2

, X2 = p3uz1
+ p4uz2

. Since p is irreducible, there exists an

entire function h such that X1+iX2 = eih and then X1−iX2 = pe−ih, or X1−iX2 = eih

and then that X1 + iX2 = pe−ih; each gives a linear system in X1,X2. In each case,

solving for X1 and X2 we obtain that

p1uz1
+ p2uz2

= X1 =
eih + pe−ih

2
,(3.1)

p3uz1
+ p4uz2

= X2 = c
eih − pe−ih

2i
,(3.2)

where c = 1 in the first case and c = −1 in the second case. To simplify the calcula-

tion and expressions below, we introduce

sinp h =

eih − pe−ih

2i
, cosp h =

eih + pe−ih

2
.
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Then

∂

∂z j

sinp h = hz j
cosp h −

1

2i
pz j

e−ih,
∂

∂z j

cosp h = −hz j
sinp h +

1

2
pz j

e−ih.

Solving uz1
and uz2

from the system (3.1) and (3.2), we obtain that

uz1
=

1

D
(p4 cosp h − cp2 sinp h), uz2

=

1

D
(cp1 sinp h − p3 cosp h)

as given in (2.2), where D = p1 p4 − p2 p3 is the determinant of the above system. We

next need to show that h is a constant or a nonconstant polynomial given by (2.3).

To this end, we differentiate the above two equalities to obtain

uz2z1
=

1

D2

{

D((p4)z2
cosp h − p4hz2

sinp h +
1

2
p4 pz2

e−ih − c(p2)z2
sinp h

− cp2hz2
cos h +

1

2i
cp2 pz2

e−ih) − (p4 cosp h − cp2 sinp h)Dz2

}

,

uz1z2
=

1

D2

{

D(c(p1)z1
sinp h + cp1hz1

cosp h −
1

2i
cp1 pz1

e−ih − (p3)z1
cosp h

+ p3hz1
sinp h −

1

2
p3 pz1

e−ih) − (cp1 sinp h − p3 cosp h)Dz1

}

.

Using the fact that uz1z2
= uz2z1

, we obtain that

sinp h
{

−Dp4hz2
− cD(p2)z2

+ cp2Dz2
− cD(p1)z1

− Dp3hz1
+ cp1Dz1

}

= cosp h
{

cDp1hz1
− D(p3)z1

+ p3Dz1
− D(p4)z2

+ cDp2hz2
+ p4Dz2

}

+
1

2
e−ih

{

−
1

i
cp1 pz1

− p3 pz1
− p4 pz2

−
1

i
cp2 pz2

}

.

Write the above equality as A sinp h = B cosp h + 1
2
e−ihC , where A,B,C are defined

from above, i.e.,

A = −Dp4hz2
− cD(p2)z2

+ cp2Dz2
− cD(p1)z1

− Dp3hz1
+ cp1Dz1

,

B = cDp1hz1
− D(p3)z1

+ p3Dz1
− D(p4)z2

+ cDp2hz2
+ p4Dz2

,

C = −
1

i
cp1 pz1

− p3 pz1
− p4 pz2

−
1

i
cp2 pz2

.

We then deduce, by the definitions of sinp h and cosp h that

e2ih − p

2i
A =

e2ih + p

2
B +

1

2
C

or A(e2ih − p) = iB(e2ih + p) + iC , i.e.,

(3.3) (A − iB)e2ih
= i pB + pA + iC.
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If h is a constant, the theorem already holds. Assume in the following that h is not

a constant.

We assert that A − iB ≡ 0 in (3.3). Otherwise, we would have from (3.3) that

(3.4) e2ih
=

i pB + pA + iC

A − iB
.

Then h cannot be a nonconstant polynomial, since otherwise the left-hand side of

(3.4) is transcendental, while the right-hand side of (3.4) is a polynomial, which is

impossible. Thus, h is transcendental. We can then adopt Nevanlinna theory to

derive a contradiction. Let T(r, F) denote the Nevanlinna characteristic function of a

meromorphic function F in Cn. On one hand, we have that

lim
r→∞

T(r, e2ih)

T(r, h)
= +∞

(see [4, p. 88]). On the other hand, the equality (3.4) implies that T(r, e2ih) =

O{T(r, h) + log r} = O{T(r, h)} outside possibly a set of finite Lebesgue measure

by the arithmetic properties of the characteristic and the facts (see [11], [12, p. 99])

that T(r, Fz j
) = O{T(r, F)} for any meromorphic function F outside a set of finite

Lebesgue measure and that log r = O{T(r, g)} for any transcendental meromorphic

function g in Cn. We thus obtain a contradiction. This proves the above assertion

that A − iB = 0 and then by (3.3) that i pB + pA + iC = 0. Solving for A and B

from these two equalities, we obtain that A = − iC
2p

and B = − C
2p

, which yields by the

definitions of A and B that

−Dp3hz1
− Dp4hz2

= −
iC

2p
+ cD(p2)z2

− cp2Dz2
+ cD(p1)z1

− cp1Dz1
:= a,

cDp1hz1
+ cDp2hz2

= −
C

2p
+ D(p3)z1

− p3Dz1
+ D(p4)z2

− p4Dz2
:= b.

The above system in hz1
and hz2

has determinant cD3. Solving for hz1
and hz2

from

the system yields that

hz1
=

acp2 + bp4

cD2
, hz2

= −
bp3 + acp1

cD2

as given in the theorem. Note that each function in the right-hand sides of the above

two equalities is a polynomial. Thus, hz1
, hz2

must be polynomials, since they are

entire functions. Hence, h is a polynomial.

Proof of Corollary 2.2 Equation (2.5) is equation (2.1) in Theorem 2.1 with p ≡ 1.

Thus, by Theorem 2.1 entire solutions u are given by

(3.5) uz1
=

1

D
(p4 cos h − cp2 sin h), uz2

=

1

D
(cp1 sin h − p3 cos h),
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where h is a constant, or a nonconstant polynomial given by (2.3), i.e.,

(3.6) hz1
=

acp2 + bp4

cD2
, hz2

= −
acp1 + bp3

cD2
,

c = ±1, D = p1 p4 − p3 p4, and

(3.7)
a = cD(p2)z2

− cp2Dz2
+ cD(p1)z1

− cp1Dz1
,

b = D(p3)z1
− p3Dz1

+ D(p4)z2
− p4Dz2

.

Noting that when p ≡ 1, we can always take c = 1 in the equalities (3.1) and (3.2) in

the proof of Theorem 2.1. In fact, if c = −1 in (3.2), we then replace h by h1 = −h,

then (3.1) and (3.2) become

p1uz1
+ p2uz2

= X1 =
eih1 + e−ih1

2
,

p3uz1
+ p4uz2

= X2 =
eih1 − e−ih1

2i
.

Therefore, in any case we can always have c = 1 in (3.1) and (3.2) (for some entire

function h or h1 there) and thus in the entire proof of Theorem 2.1. The above

results (3.5), (3.6), and (3.7) with c = 1 then yield the equalities (2.6), (2.7), and

(2.8), respectively.

Proof of Corollary 2.3 The sufficiency is easy to check. To prove the necessity, as-

sume that u is an entire solution of (2.9), which is equation (2.5) with p1 = P, p2 =

p3 = 0, p4 = Q and D = PQ. Then by Corollary 2.2, u is given by (2.6). If the

function h in (2.6) is a polynomial given by (2.7), then by (2.8), we have that

a = DPz1
− PDz1

, b = DQz2
− QDz2

.

Thus, we have by (2.7)) that

(3.8) hz1
=

bQ

D2
= Q

DQz2
− QDz2

D2
= Q

( Q

D

)

z2

= Q
( 1

P

)

z2

= −Q
Pz2

P2
.

From the given equation (2.9), it is clear that P and Q do not have any common

zeros (since the right-hand side of (2.9) is 1). This implies that Pz2
in (3.8) must be

identically 0, since otherwise hz1
= −Q(Pz2

/P2) has poles at some zeros of P due to

the fact that the degree of the polynomial P in the denominator is higher than the

one of its derivative Pz2
in the numerator. This is absurd, since h is entire. Thus, we

have shown by (3.8) that hz1
≡ 0. Also, by (2.7) we have that

hz2
= −

aP

D2
= −P

DPz1
− PDz1

D2
= −P

( P

D

)

z1

= −P
( 1

Q

)

z1

.
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Thus, the same argument shows that hz2
≡ 0. Therefore, we must have that h is a

constant in (2.6), which gives us

uz1
=

1

D
Q cos h =

cos h

P
, uz2

=

1

D
P sin h =

sin h

Q
.

If cos h ≡ 0, then uz1
≡ 0 is a constant. If cos h 6≡ 0, then P must be a constant, since

otherwise uz1
has poles at zeros of P, which is impossible. This shows that uz1

is also

a constant. That is, in any case we always have that uz1
is a constant. The same way

shows that uz2
is a constant. Thus, u = c1z1 + c2z2 + c3 is a linear function. Plugging

it into the given equation (2.9), we have that

(3.9) (c1P)2 + (c2Q)2
= 1.

If c1 = 0, then Q must be a constant satisfying (c2Q)2
= 1 by (3.9), as given in

the conclusion of the corollary. If c2 = 0, then P must be a constant satisfying that

(c1P)2
= 1 by (3.9), as given in the conclusion of the corollary. If c1c2 6= 0, then we

can change (3.9) into (c1P+ic2Q)(c1P−ic2Q) = 1, which implies that c1P+ic2Q = eiα

and then (c1P− ic2Q) = e−iα for some entire function α. Solving P and Q from these

last two identities yields that

P =

1

2c1

(eiα + e−iα) =
1

c1

cosα.

Similarly, Q =
1
c2

sinα. But P and Q are polynomials. Thus, α must be a constant,

since otherwise P and Q will become transcendental functions. Now that α is a con-

stant, P and Q are constant and satisfy (3.9), as given in the corollary.

Proof of Corollary 2.4 For the sufficiency, suppose that u is given as (2.11). Then

uz1
= 2αi(iz1 − cz2) + iβ + γ, uz2

= −2αc(iz1 − cz2) − cβ.

Note that c2
= 1. It is easy to check that

u2
z1

+ u2
z2
= 4αi(iβ + γ)(iz1 − cz2) + (iβ + γ)2 + +4αc2β(iz1 − cz2) + c2β2

= 4αiγ(iz1 − cz2) + 2iβγ + γ2
= c1(iz1 − cz2) + c2 = p

by the expressions of α, β and p given in the theorem.

To prove the necessity, let u be an entire solution of (2.10). Then by Theorem 2.1

entire solutions u are given by (2.2) with p1 = p4 = 1 and p2 = p3 = 0. Thus,

D = 1 and

(3.10) uz1
=

eih + pe−ih

2
, uz2

= c
eih − pe−ih

2i
,

where c = ±1 and h is a constant or a nonconstant polynomial given in (2.3). In the

latter case, we have by (2.4) that

a = −
iC

2p
, b = −

C

2p
, C = −pz2

−
1

i
cpz1

.
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Thus, the equalities in (2.3) become

(3.11)

hz1
=

b

c
= −

C

2pc
= −

− 1
i
cpz1

− pz2

2pc
=

cpz1
+ i pz2

2pci
,

hz2
= −a =

iC

2p
= i

− 1
i
cpz1

− pz2

2p
= −

cpz1
+ i pz2

2p
.

If p is nonconstant, then (3.11) implies that

(3.12) cpz2
+ i pz2

≡ 0,

since otherwise cpz1
+ i pz2

would be a nonzero polynomial with degree less than the

degree of p, which implies by (3.11) that hz1
, hz2

, and thus h would have poles, a

contradiction to the fact that h is a polynomial. The equality (3.12) is clearly also

true when p is a constant. We can treat (3.12) as a linear partial differential equation

in p and solve it in a standard way to obtain that p = f (iz1 − cz2) for a polynomial f

in one complex variable. But, p is an irreducible polynomial. Thus, the polynomial f

must be linear, say f = c1z + c2, z ∈ C, where c1, c2 are two complex numbers. Then

(3.13) p = c1(iz1 − cz2) + c2,

as given in the corollary. Also, by (3.11) and (3.12), h is a constant. Set eih
= γ. By

(3.10), we have that

uz1
=

γ + γ−1 p

2
, uz2

= c
γ − γ−1 p

2i
.

Integrating the above equalities and in view of (3.13), after some algebra manip-

ulation, we obtain that

u =

1

2
γz1 +

γ−1

2

( c1

2i
(iz1 − cz2)2 + c2z1

)

+
c

2i
(γ − γ−1c2)z2 + δ

= α(iz1 − cz2)2 + β(iz1 − cz2) + γz1 + δ,

where α =
c1γ

−1

4i
, β =

1
2i

(γ−1c2 − γ) and γ 6= 0, δ are constants, as given in Corol-

lary 2.4.
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