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Abstract

Domestic cats are obligate carnivores and in this light hindgut fermentation has been considered unimportant in this species. However,

a diverse microbiota has been found in the small and large intestines of domestic cats. Additionally, in vitro and in vivo studies support

the hypothesis that microbial fermentation is significant in felines with potential benefits to the host. Results on microbiota composition

and microbial counts in different regions of the feline gastrointestinal tract are compiled, including a description of modulating host

and technical factors. Additionally, the effects of dietary fibre supplementation on the microbiota composition are described. In a

second section, in vitro studies, using inocula from fresh feline faeces and focusing on the fermentation characteristics of diverse plant

substrates, are described. In vivo studies have investigated the effects of dietary fibre on a broad range of physiological outcomes. Results

of this research, together with studies on effects of plant fibre on colonic morphology and function, protein and carbohydrate metabolism,

and the effects of plant fibre on disease conditions that require a decrease in dietary protein intake, are shown in a third section of

the present review. Conclusively, for fructans and beet pulp, for example, diverse beneficial effects have been demonstrated in the

domestic cat. Both dietary fibre sources are regularly used in the pet food industry. More research is warranted to reveal the potential

benefits of other fibre sources that can be used on a large scale in feline diets for healthy and diseased cats.
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Introduction

Despite a short colon and the lack of a functional caecum

as evolutionary adaptations to a strict carnivorous diet,

considerable microbial fermentation occurs in the hindgut

of domestic cats(1). Microbiota of domestic cats are capable

of fermenting a broad range of dietary plant fibres(1–4). An

in vitro study on the fermentation of various plant fibre

sources using faecal inoculum of different species and

ruminal fluid of cattle showed that the feline faecal

inoculum produced the highest concentrations of total

SCFA and acetate, supporting the hypothesis of substantial

fermentation activity of the feline colonic microbiota(5). In

addition, in vivo research demonstrated that concentrations

of volatile fatty acids in the colon of healthy cats were

comparable with those measured in the forestomach of

ruminants and large intestines of other single-stomached

mammals, while concentrations in the small intestine

were higher than those reported in other species(1).

The study, therefore, provides another indirect proof

of the fermentation potential of the feline gut microbiota.

As in other species, the supplementation of plant fibre to

feline diets has been associated with beneficial effects on

several disease conditions (for example, Elliott(6), Rutgers &

Biourge(7), Freiche et al.(8) and Fischer et al.(9)) and on the

general health of the gastrointestinal tract(10–12). The majority

of the information on the benefit of dietary plant fibre is,

however, extrapolated from human nutrition as described

by Sunvold(13). Dietary and metabolic interspecies differences

shouldbe taken intoaccount, and specified invitroand invivo

studies have been undertaken in dogs and to a lesser extent in

cats. A first overview of in vitro and in vivo studies on the

effects of dietary plant fibre supplementation to canine and

feline diets was done by Sunvold(13) and Buddington and

Sunvold(10). Additionally, more recent studies in felines are

described and discussed in the present review. Besides plant

fibres, the importance of animal fibre for carnivorous species

has been discussed by Depauw et al.(14) in cheetahs. Animal

fibre is defined by the latter authors as low- to non-digestible

(glyco)protein-rich substances that are potential substrates

for large-intestinal fermentation(14). Plantinga et al.(15) hypo-

thesised that the consumption of whole prey, which is
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a major source of animal fibre, by feral cats might

enhance gut health and affect the microbiota differently as

compared with foods of plant origin. In domestic cats,

however, little research has been done on animal fibre,

despite the fact that animal meal, which is a source of

animal fibre, is the main protein source in the majority of the

commercially available extruded and wet diets(16,17) and

despite the growing popularity of feeding raw meat-based

diets containing animal fibre to pets(18). The results of the

scarce in vivo research in domestic cats on the effects of

animal fibre on nutrient digestibility and faecal fermentation

endproduct concentrations are also described in the present

review.

Bacterial populations in the gastrointestinal tract

Apparent quantitative and qualitative differences have

been shown among bacterial populations present in the

different anatomic regions of the gastrointestinal tract

of cats(10,19). Qualitatively, the microbiota in different

intestinal compartments tend to be more similar within

the individual, than between corresponding compart-

ments of different cats, suggesting a large inter-individual

variation(19). Quantitative data not only depend on host

characteristics, such as age, gastrointestinal disease and

environment, but also on the sample collection method,

and the enumeration technique (culture plating v. mole-

cular techniques). An overview of studies investigating

the effects of these factors is given in Tables 1 and 2.

For a review of different enumeration techniques, their

advantages and disadvantages, see Suchodolski(20).

Microbiota in the different regions of the feline
gastrointestinal tract

An overview of the microbiota in different regions of the

gastrointestinal tract is given in Fig. 1 and has recently

been reviewed by Minamoto et al.(21).

Stomach. Microbiota in the stomach contents of suck-

ling kittens and adult cats were studied by Osbaldiston &

Stowe(22). The samples were collected after euthanasia,

laparotomy and incision of the stomach wall, and culture-

plating techniques were used(22). In this part of the

gastrointestinal tract, the microbiota mainly constituted

of enterococci (log10 5·64 (SD 0·97)). Likewise, all kittens

and six out of nine adult cats showed similar counts of

lactobacilli (log10 5·55 (SD 0·67)). Comparable counts of

five other genera of anaerobic micro-organisms were

isolated from the stomach contents of some cats (Strepto-

coccus spp., Staphylococcus spp., Proteus spp., Bacillus

spp., Pasteurella spp., Mima spp., Escherichia spp.,

Clostridium spp., Catenabacterium spp., Eubacterium spp.,

Bacteroides spp. and Veillonella spp.). No effects of diet

Table 1. Overview of effects of the host factors age, gastrointestinal (GI) disease and environment on quantitative data of the gastrointestinal
microbiota in cats

Host factor Comparison Main results Reference

Age Suckling v. weaned kittens Diet change most important influence on changes in microbiota 95
Suckling (4 weeks) v. weaned

(9 months) kittens
Before weaning more diverse and variable faecal

microbiota compared with post-weaning
43

Suckling kittens v. adult cats Predominant GI microbiota similar (qualitative) 22
Weaned kittens v. adult cats Faecal Clostridium perfringens conc.:

4·7 v. 11·6 log10 CFU/g faeces*
Faecal Escherichia coli conc.:

2·7 v. 9·0 log10 CFU/g faeces*
Faecal Lactobacillus spp. conc.:

6·0 v. 12·4 log10 CFU/g faeces*
Faecal Bifidobacterium spp. conc.:

7·9 v. 7·5 log10 CFU/g faeces*

95,96,97

95,97

95,97

95,97

Elderly v. young and adult cats Lower faecal Bifidobacterium spp. conc. 96
Geriatric cats v. weaned kittens Predominant gastrointestinal microbiota similar (qualitative) 42,43

GI disease IBD-inflicted v. healthy cats Total bacteria: 10·0 v. 10·3 log10 CFU/g faeces
Bifidobacterium spp.: 7·6 v. 9·3 log10 CFU/g faeces
Bacteroides spp.: 8·3 v. 9·1 log10 CFU/g faeces
Desulfovibrio spp.: 7·8 v. 7·3 log10 CFU/g faeces
Similar faecal microbiota (qualitative)
Enterobacteriaceae associated with duodenal

mucosa: 17 v. 0 bacteria/mm2†

98
98
98
98
99

100

GI tract disease-inflicted v. healthy cats # Pasteurella, Bacteroides, Lactobacillus
spp. in duodenum (data not shown in 27)

27

Environment Outdoor predatory v. indoor Faecal Bacteroidetes: 2 v. 16 % of clones
Faecal Proteobacteria absent v. present
Lactobacillus spp. v. Bifidobacterium spp. most prevalent

faecal micro-organism

36
36
36

conc., Concentrations; CFU, colony-forming unit; IBD, inflammatory bowel disease; # , decrease.
* Mean over both diets (34 and 53 % DM crude protein) and different ages of kittens (8, 12 and 16 weeks)
† Median of seventeen IBD-inflicted and ten healthy cats, ranges are 0–4219 bacteria/mm2 for IBD-inflicted and 0–3 for healthy cats; values determined by fluorescence

in situ hybridisation.
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were observed between adult cats on a standard feline

diet (Hill’s Prescription Diet Feline c/d; Hill’s Pet Nutrition

Inc.) and adult cats on a chemically defined, liquid

elemental diet (amino acids, carbohydrates, fats, vitamins

and minerals), both fed for 6 weeks(22). In humans, the

microbiota of individuals on elemental diets decrease both

in number and diversity, due to a lack of continuous

supply of nutrients to the large intestine, since these diets

are highly digestible(23). In cats, the reason for the lack of

diet effect was postulated to be the different passage rates

through the gastrointestinal tract compared with humans.

The elemental diet thus provided a sufficient and con-

tinuous supply of nutrients necessary for bacterial survival

and replication throughout the whole feline gastrointesti-

nal tract on both diets(22). No information on the number

of meals was available in the above-mentioned study.

However, this factor could influence the study outcome

significantly. No raw meat or ‘natural’ diets were fed to

the cats in this study.

Small intestine microbiota: duodenum. The

microbiota, determined by culture-plate techniques, in

the proximal part of the small intestine have been found

to show quantitative and qualitative changes over time,

and a considerable variation among individual cats at the

same time point, regardless of the sampling technique

(direct needle aspiration after laparotomy v. endoscopy;

diluted v. undiluted endoscopic samples)(24,25). Despite

this variation, both studies found large numbers of bacteria

in the proximal part of the small intestine in healthy cats,

which is in accordance with the results of Johnston

et al.(26,27) and Smith(28). Due to the use of diluted endo-

scopic samples (Table 2), lower numbers of bacteria

were observed by Muir et al.(29).

Controversy has arisen about the reliability and the clini-

cal significance of the absolute numbers of bacteria

counted from small-intestinal fluid samples(30). In cats, con-

siderably higher numbers of bacteria were found in the

proximal small intestine in comparison with humans(31)

and dogs(32), possibly as an adaptation to an obligate car-

nivorous diet(27). The causative factors in the carnivorous

diet responsible for this high bacterial number in the prox-

imal small intestine are yet to be unravelled. Furthermore,

it is suggested that feline host defences to indigenous

microbiota may be particularly well developed, and

small-intestinal bacterial overgrowth is not a common

clinical syndrome in cats with chronic non-obstructive

gastrointestinal disease (Table 1)(27).

Qualitatively, the most abundant bacterial phylum in the

feline duodenal microbiota was Firmicutes, consisting pri-

marily of Clostridiales, detected with both culture-plating

Table 2. Overview of the effects of sampling and enumeration techniques on quantitative data of the gastrointestinal microbiota in cats

Techniques Main results Reference

Sampling techniques
Direct needle aspiration v. endoscopy Similar counts in duodenal fluids 25,26
Diluted v. undiluted endoscopic samples Diluted endoscopic samples:

underestimation of duodenal populations
25

Enumeration techniques
Culture-plating v. molecular techniques Culture plating: underestimation of the bacterial

diversity, overestimation of Bifidobacterium spp.
26,39,44

16S rRNA gene analysis v. other molecular techniques
(for example, FISH, analysis of the 60 kDa chaperonin gene)

Uncommon detection of Bifidobacterium spp. 36,39,44

FISH, fluorescence in situ hybridisation.

Stomach of suckling kittens and adults cats(14): Predominance of Enterococcus
spp. (log10 5·64 (SD 0·97)/g) and Lactobacillus spp. (log10 5·55 (SD 0·67)/g) 

Duodenum of healthy adult cats(12,16,17,19,37):
– Total bacterial counts log10 5·7–6·2 CFU/ml, especially Bacteroidetes,
Firmicutes, Fusobacteria
– Anaerobic counts log10 5·3–5·6 CFU/ml

Jejunum and ileum of healthy adult cats(12,14):
– No quantitative data on anaerobic or total counts
– Predominance in jejunum of Enterococcus, Streptococcus, Lactobacillus spp.
– Predominance in ileum of Clostridium spp., Bacteroides spp.

Colon and faeces of healthy adult cats(12,14,15,26–33):
– Total bacterial counts log10 9·43 CFU/g faeces
– Most abundant phyla are Firmicutes (especially Enterococcus spp.,
Streptococcus spp., Lactobacillus spp., Erysipelotrix spp. and Clostridium
clusters), Bacteroidetes, Proteobacteria and Actinobacteria (especially
Coriobacteriaceae group)

Fig. 1. Overview of the feline microbiota in different regions of the gastrointestinal tract. CFU, colony-forming unit.
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as well as molecular techniques(19,25,27). The majority of the

identified Clostridiales belonged to Clostridium clusters I

and XIVa(19), the latter of which is known to encompass

beneficial butyric acid-producing species(33). Clostridium

spp. were found in more than 50 % of the duodenal

aspirates together with Enterococcus faecalis, Bacteroides

spp., Pasteurella spp., Streptococcus spp., and unidentified

Gram-negative aerobic rods(24). In contrast, Johnston

et al.(26,27) found Bacteroides spp. to be the most abundant

anaerobic bacteria accompanied by Eubacterium spp. and

Fusobacterium spp. Again, Pasteurella spp. were found

to be the most abundant aerobic bacteria in duodenal

fluid(26). Ritchie et al.(19) did not find Bacteroides spp. in

the duodenum, which could be explained by the low

number of cats in which duodenal samples were obtained.

The differences in the recovery of Bacteroides among the

above-mentioned studies is most probably not affected

by diet or age differences, since in all studies commercial

wet or dry diets were fed and only young cats with an

age between 1 and 2 years were included. Effects of cat

sex could be excluded, as Sparkes et al.(24) used both

female and male cats, whereas Johnston et al.(26) used

female cats only, and both studies recovered Bacteroides

spp. as (one of) the major bacterial species. Body-weight

differences between studies are assumed to be small,

since in all studies healthy cats were included, so an

effect of body weight on the recovery of Bacteroides spp.

seems unlikely.

Small intestine microbiota: jejunum and ileum. In the

feline jejunum, the predominant species were Enterococcus

spp., Streptococcus spp. and Lactobacillus spp., detected

with both culture-plating as well as molecular tech-

niques(19,22). In addition, Osbaldiston & Stowe(22) observed

higher frequencies of the latter two species and coliforms

in the jejunum as compared with the stomach. In com-

parison with the microbiota of the stomach, jejunal

microbiota showed the presence of three other bacterial

species (Micrococcus spp., Klebsiella spp., Enterobacter

spp.) and, in one cat, yeasts were cultured from jejunal

contents. Again, no differences due to diet were found(22).

For more details on the diet types, see the ‘Stomach’ section.

The ileal microbiota consisted mainly of Clostridium

spp. and Bacteroides spp.(19). For the Clostridiales class,

the predominant clusters were the same as in the

duodenum(19). Papasouliotis et al.(34) observed significan-

tly higher numbers of bacteria, particularly aerobes, in

the ileum compared with the duodenum after culturing

intestinal juice, simultaneously aspirated at the two sites.

As in the study of Johnston et al.(26), Pasteurella spp.

were the predominating aerobe species in the duodenum,

whereas in the ileum, enterococci and Escherichia coli

were the most common aerobes(34,35). As in Ritchie

et al.(19), the predominating anaerobes in both segments

were Clostridium spp., especially clusters I and XIVa(34,35).

Large intestine and faeces. In the colon and faeces of

domestic cats, the most abundant phylum was Firmicutes,

which was dominated by Enterococcus spp.(19,22,36), Strep-

tococcus spp.(22), Lactobacillus spp.(19,22,36,37), Erysipelotrix

spp.(37) or Clostridium clusters(37–39). In two studies, the

phyla Bacteroidetes and Proteobacteria were the second

and third most abundant, respectively(39,40), whereas in

the study of Tun et al.(41) the Bacteroidetes/Chlorobi

group was the predominant phylum. In contrast, two

studies(37,38) observed that the phylum Actinobacteria was

the second most abundant in cats, while in the study of

Desai et al.(36) even higher numbers of Actinobacteria

were found. Likewise, in kittens and geriatric cats, the

Coriobacteriaceae group, belonging to this phylum was

highly present in the faecal microbiota(42,43) (see Table 1).

The discrepancy in predominant phyla is probably due

to the underestimation of Bifidobacterium spp. when

using the 16S rRNA target gene(19,39,44) (see Table 2).

Desai et al.(36) stated that, in general, the overall taxonomic

profile is similar in domestic cats to that of most of the

studies in mammals. In mammalian faecal microbiota a

predominance of bacteria belonging to the phylum Firmi-

cutes has been shown with variation in constituent

bacterial species due to animal species(45). This finding

was confirmed in a recent study using the newer massive

parallel 16S rRNA gene pyrosequencing technique on

faecal samples of pet dogs and cats(38).

On the species level, Sparkes et al.(46) observed Bacter-

oides spp. and Clostridium perfringens as predominant

anaerobes, and E. coli, Lactobacillus spp. and Plesiomonas

shigelloides as predominant aerobes in the faecal microbiota

of cats. Again, Itoh et al.(47) found Bacteroidaceae and

Eubacteriaceae (phylum Firmicutes) as the most predomi-

nant families in the faecal microbiota of conventionally

raised cats, followed by Clostridiaceae, Streptococcacceae

and Lactobacillaceae families.

A potential problem with the use of faecal samples to

estimate the microbiota in the large intestine is a possible

underestimation of Lactobacillus spp., especially when

enumerated with general bacterial primers. The use of

group-specific primers might circumvent this problem(39).

Additionally, the lumen and the mucosa of the gastro-

intestinal tract harbour bacteria, which are hypothesised

to be both represented in the faecal microbiota(48);

hence, faecal samples appear to represent the ‘total’ gut

microbiota, at least qualitatively. Quantitatively, the faecal

excretion of mucosal bacteria might be an underestimation

of the actual number of bacteria attached to the mucosa.

The fraction of mucosal bacteria that is excreted in

the faeces remains to be investigated. In addition, using

faecal samples has advantages of non-invasive sampling

techniques(36) and a larger availability compared with

intestinal fluids(38).

Effects of dietary fibre on the gastrointestinal microbiota

The results of the studies on the effects of supple-

menting fructo-oligosaccharides (FOS), short-chain FOS
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(sc-FOS), galacto-oligosaccharides (GOS), sc-FOSþGOS

and lactosucrose(24,40,46,49–53) on the faecal microbiota

are depicted in Table 3. In most of the studies, an increase

in faecal Bifidobacterium spp. was observed. Barry et al.

concluded that FOS might be a useful fibre source for

promotion of feline gastrointestinal health based on

changes in the faecal microbiota(51). The lack of a signifi-

cant treatment effect in the studies of Sparkes et al.(24,46)

and a rather low response (increase of log10 0·5) in the

study of Kanakupt et al.(52) might have been due to the

low inclusion level of (sc-)FOS. When GOS or a sc-FOS

þ GOS combination was supplemented, the increase in

Bifidobacterium spp. counts was higher (increase of log10

0·7 and 0·9, respectively)(52). In contrast, the decreased

numbers of bacteria in cats fed diets supplemented with

sc-FOS in the study of Johnston et al.(49) might also have

been due to other differences in diet composition (different

level of protein, fat and other carbohydrates). Additionally,

the number of animals used in this experiment was very

low (three for the control diet and four for the ‘FOS

diet’)(49).

In two feline studies, the effects of a synbiotic for-

mulation on the faecal microbiota of healthy cats were

studied(37,53). The first study used a mixture of seven

probiotic strains and a blend of FOS and arabinogalac-

tans(37), whereas in the second study a combination of

GOS and a specific Bifidobacterium strain was used(53).

No changes in major bacterial phyla were discovered

between faecal samples before, during or after adminis-

tration of the synbiotic supplement(37). During product

administration, probiotic species were detected in eleven

out of twelve cats, and abundances of Enterococcus

spp. and Streptococcus spp. were increased in at least

one time point during administration and decreased

back to baseline values after discontinuation of the sup-

plementation(37). Likewise, in another study, cats were

supplemented with a probiotic for 4·5 weeks, and the

supplemented species (Lactobacillus acidophilus) was

recovered from faeces of cats during the supplementation

period, but not before or after the supplementation was

ceased(54). In contrast, 10 d after cessation of daily syn-

biotic administration, a significant increase in faecal

bifidobacteria content was observed compared with

counts before supplementation(53).

In vitro and in vivo fermentation studies

As stated previously, intestinal fermentation might be an

important process in healthy domestic cats. A literature

overview of the fermentation studies done in vitro and in

domestic cats is given in the next sections. Furthermore,

for several disease conditions, dietary fibre can exert

beneficial effects. An overview of the effects of dietary

fibre on a broad variety of diseases was beyond the

scope of the present review. Therefore, the focus is on T
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diseases in which dietary protein restriction is a treatment

cornerstone, such as chronic kidney disease (CKD).

In vitro fermentation studies

All in vitro fermentation studies done in cats used fresh

faecal samples as a source of inocula(3,4,55,56). Samples

were immediately placed in a sterile sample bag(55) or

within 15 min post-voiding in a container pre-filled with

carbon dioxide and kept on crushed ice before incubation

(maximum 4 h post-voiding of first sample)(56). A recent

study with canine faeces revealed that chilling the faecal

samples for 24 h in crushed ice maintained the fermenta-

tion characteristics of substrates compared with incubation

with fresh faecal inoculum(57). Furthermore, in another

in vitro study from the same group, faeces appeared to be

applicable for inoculum preparation for in vitro screening

purposes, although the fermentation in the proximal and

transverse colon might be overestimated(58). These inocula

were used to ferment different fibre sources. In the studies

of Sunvold et al.(3,4), fermentation was described based on

organic matter disappearance from the culture media and

the concentrations and ratios of SCFA. Only one study in

cats investigated the interdependency of fermentation

characteristics of select fermentable fibres(56). The main

conclusions of the in vitro studies are compiled in Table 4.

Besides the source (intestinal fluid v. faeces) of the

inocula, another important factor that influences the out-

come of in vitro fermentation studies is the diet of

the inoculum donors(4,55). This statement contrasts with

the above-mentioned findings of Osbaldiston & Stowe,

where no effect of diet on the microbiota composition

was found (see the ‘Stomach’ and ‘Jejunum and ileum’

sections)(22). However, the latter study used culture

techniques, which underestimate the diversity of the

microbiota(19), whereas in the in vitro system, the end-

product and metabolite concentrations and the volumes

of gas produced upon fibre fermentation are measured,

hence the metabolism of the microbiota as a whole is

evaluated. In the study of Barry et al.(55), cats were

adapted to different dietary fibre sources (cellulose, FOS,

pectin) in vivo before fermenting these fibres in vitro.

Overall, in vivo adaptation to FOS or pectin resulted

in higher in vitro SCFA concentrations and more gas

produced as compared with adaptation to cellulose(55).

The differences found in the present study were of a

great magnitude and most probably biologically relevant

considering careful extrapolation to in vivo situations (for

example, total in vitro gas produced in ml/g DM averaged

over the three adaptation diets: 0·0 for cellulose v. 90·5

for FOS v. 61·1 for pectin; total SCFA in mmol/g DM aver-

aged over the three adaptation diets: 0·1 for cellulose v. 5·0

for FOS v. 2·8 for pectin)(55). Sunvold et al.(4) compared

in vitro organic matter disappearance and SCFA produc-

tion from fermentation of different fibre sources, using

inocula from cats fed a diet without supplemental fibre

or supplemented with beet pulp. In vitro fermentation of

fibrous substrates by faecal microbiota from cats increased

when fermentable fibre was included in the donor diet(4).

In vivo studies

The in vivo effects of dietary fibre, including oligosacchar-

ides and animal fibre, on nutrient intake and digestibility,

faecal characteristics, the morphology and function of

the colon, N and energy metabolism, and some disease

conditions are compiled in this section.

Effects of dietary fibre on nutrient intake, nutrient

digestibility and faecal characteristics: viscous fibres.

Sunvold et al. performed in vivo investigations following

in vitro fermentation trials(3,4). These authors concluded

that the in vitro method appeared to be a good estimator

of in vivo fermentation with the exception of the most

fermentable fibres (pectin and gums with high viscosity).

However, the in vivo fermentation calculation, based

on the comparison of organic matter in food and faeces,

was lower than could be predicted in vitro because of a

decrease in digestibility of the other nutrients in the diet(4).

Besides difficulties of extrapolating in vitro data, another

disadvantage of supplementing viscous fibres in vivo was

an increased defecation frequency and a poor stool quality

with a supplementation level of 9·5 % total dietary fibre(3).

Table 4. Overview of in vitro fermentation studies of plant fibres using feline faecal inoculum

Study Main results Reference

In vitro fermentation of selected fibre sources by cat faecal inoculum Citrus pectin, guar gum and locust bean gum highly
fermentable, cellulose poorly fermentable

3

In vitro fermentation of selected fibre sources by cat faecal inoculum
– influence of diet composition on fermentation parameters

Fermentable fibre included in donor diet resulted in
" in vitro fermentation of fibrous substrates

4

Adaptation of healthy adult cats to select dietary fibres in vivo affects
fibre fermentation in vitro

In vivo adaptation to FOS or pectin resulted in
" in vitro SCFA concentrations and gas production

55

Incubation of select fermentable fibres with feline faecal inoculum
– correlations between in vitro fermentation characteristics

Differences in fermentation rate resulted in typical
changes in bacterial fermentation products

Fibre supplementation, stimulating bacterial
propionic or butyric acid production, cause of beneficial
effects might also be a decrease in the large-intestinal
production of putrefactive compounds

56

" , Increase; FOS, fructo-oligosaccharides.
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Loose stools with a strong odour were also confirmed by

Bueno et al.(11,12) when a pectin–gum arabic blend was

included in the diets (total dietary fibre 8·6 %). It has to be

noted that the doses used in the above-mentioned

experiments are very high. Barry et al.(51) supplemented a

lower dose of pectin (4 % as fed) to domestic cats and

observed softer faeces as compared with the control group,

cellulose. The decrease was, however, small and the authors

concluded that pectin, like FOS, might be a useful fibre

source for the promotion of feline gastrointestinal health(51).

Sunvold et al.(3), on the contrary, advised the use of a

moderately fermentable fibre source, such as beet pulp, in

feline diets (see the ‘Effects of dietary fibre on nutrient

intake, nutrient digestibility and faecal characteristics:

moderate (beet pulp) and less fermentable fibre sources’

section). In a recent feline study, another viscous fibre

source, guar gum, was used as the sole source of

fermentable soluble fibre, supplemented to a moderate-

protein diet(59). The apparent protein digestibility coefficient

tended to be lower in guar gum- (71·8 (SEM 3·6) %) than in cel-

lulose (79·7 (SEM 1·0) %)-supplemented cats, and the faecal

and plasma metabolites from protein fermentation (for

example, faecal ammonia in mg/l: 390 for guar gum v. 227

for cellulose; plasma isovaleryl- þ2-methylbutyrylcarnitine

in mmol/l: 0·32 (SEM 0·06) for guar gum v. 0·21 (SEM 0·05) for

cellulose) were higher in the former cats, which confirmed

highly viscous fibres to be less suitable soluble fibre sources

for in vivo use in domestic cats(59).

Effects of dietary fibre on nutrient intake, nutrient

digestibility and faecal characteristics: fructans, mannano-

ligosaccharides, galacto-oligosaccharides and lactosucrose.

Studies on the effect of fructans (FOS, oligofructose, inulin),

mannano-oligosaccharides (MOS) and GOS on faecal

characteristics (consistency score and pH) are shown in

Table 5(50–53,60–62).Differences in resultsmight be explained

by differences in the levels of supplementation among

studies: for example, up to 9·0 % as fed oligofructose in

Hesta et al.(60); maximum 0·6 % DM MOS in Aquino

et al.(62); 1 % synbiotic in Biagi et al.(53).

Decreased faecal consistency (looser stools) can have

implications for the host animal, for the use of fibres in

the pet food industry and for the appreciation of the foods

by pet owners. On the contrary, the effects on stool

consistency can be advantageous in the treatment of cats

with constipation(8). A decrease in faecal pH is caused by

an increased production of bacterial endproducts, such as

lactic acid and SCFA, in the hindgut. This decrease can

exert several effects both on the microbiota and the host

animal, such as stimulation of the growth of beneficial

bacteria like Lactobacillus spp.(63) or an increased mineral

absorption from the hindgut(64,65). Likewise, the absorption

of ammonia from the hindgut can be reduced by decreasing

pH. Lactic acid molecules produced can be converted to

weaker acids, such as acetic, propionic and butyric acids,

by cross-feeding bacteria(66), which prevents a severe

decrease in pH and the development of lactic acidosis.

The latter disease condition can be observed in cats with

gastrointestinal disease(67).

The above-mentioned SCFA have been associated with

different beneficial effects on the hosts’ general health(68)

and the function of the gastrointestinal tract(11,12). Besides

faecal characteristics, the in vivo studies listed in Table 5

Table 5. Overview of the effects of dietary fructans, mannanoligosaccharides (MOS), galacto-oligosaccharides (GOS) and lactosucrose on faecal
characteristics in cats

Fibre source Dosage Main results Reference

OF 6, 9 % as-is More, wetter faeces resulted in lower consistency
scores (20·5 and 20·7, respectively)*

60

FOS 4·0 % as-is More, wetter faeces resulted in higher
consistency scores (þ0·8)†

51

Pectin 4·0 % as-is More, wetter faeces resulted in higher
consistency scores (þ0·7)†

51

FOS 3·11 % as-is Trend towards " faecal output, due to " moisture
content þ faecal DM production

No difference in faecal consistency score

61

MOS 0·2, 0·4, 0·6 % DM No difference in faecal consistency score 52
Probiotic þ GOS 1·0 % as-is No difference in faecal consistency score 53
OF 3, 6, 9 % as-is Faecal pH:

6 % , 0 % (20·38); 6 % , 3 % (20·22); 9 % , 0 %
(20·64); 9 % , 3 % (20·48); 9 % , 6 % (20·26)

Highest faecal total SCFA concentrations in
highest supplementation groups

60

Inulin 3, 6 % as-is Faecal pH ¼ 0 % group: 6·86 (0 %) v. 6·81 (3 %) v. 6·94 (6 %) 60
sc-FOS þ GOS 1·0 % as -is # Faecal pH (20·7), trend towards " total SCFA and

branched-chain fatty acids
52

GOS 0·5 % as-is Faecal pH ¼ 0 % group 52
Probiotic þ GOS 1·0 % as-is Faecal pH ¼ 0 % group 53

OF, oligofructose; FOS, fructo-oligosaccharides; " , increase; sc, short-chain.
* Consistency score: 1 represented watery diarrhoea; 3, normal consistency; and 5, constipation(60).
† Consistency score: 1 represented dry, hard pellets; 2, hard, dry, formed stool; 3, soft, formed, moist stool; 4, soft, unformed stool that assumes form of container; 5, watery

liquid that can poured(51).
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also investigated the effects of various oligosaccharides on

nutrient digestibility. In the study of Hesta et al.(60), the

apparent digestibility of protein decreased significantly as

the level of fructan inclusion increased (from 87·0 % with

0 % inulin to 82·8 and 77·3 % with 3 and 6 % inulin

inclusion, respectively; 83·1 % with 3 % oligofructose

inclusion in the diet), which was confirmed with the sup-

plementation of sc-FOS þ GOS to feline diets(52) (from

84·2 % in control to 81·9 % in sc-FOS þ GOS). The latter

decrease(52) was lower than compared with the study of

Hesta et al.(60), most probably caused by the lower

inclusion levels of the fibres. The decreased protein digest-

ibility was probably due to a higher faecal excretion of

bacterial protein with a higher level of fructan in the

diet(60) (from 25·4 % with 0 % inulin to 31·1 and 35·2 %

with 3 and 6 % inulin inclusion, respectively; 32·8 %

with 3 % oligofructose inclusion in the diet). Low-level

MOS supplementation did not affect nutrient digestibility

when supplemented to a wet diet, but slightly improved

the DM digestibility if supplemented to a dry commercial

diet(62) (from 73 (SD 4) % in control to 76 (SD 4) % in a 0·6 %

MOS diet). In addition, a beneficial effect on palatability

was only seen with MOS supplementation to the dry diet

(for example, 11 % increase in DM intake between control

and the 0·6 % dry diet)(62). According to these authors,

MOS is thus preferably supplemented to dry diets(62).

A decreased ileal protein digestibility might result

in an increased large-intestinal protein and amino acid

fermentation(59,69). Besides SCFA, microbial degradation of

amino acids can result in putrefactive endproducts, such as

branched-chain fatty acids, valeric acid, ammonia (NH3)

and phenolic compounds (for example, indole, p-cresol,

phenol)(70). Some putrefactive endproducts, such as polya-

mines, appear to be required for normal development and

repair of the gastrointestinal tract(71,72). However, many of

these compounds are suggested to be related to colorectal

disease in humans and rats(73–75). Different sources of diet-

ary fibres have, therefore, been applied in domestic cats

in an attempt to reduce the production and excretion of

these potentially harmful substances and to attempt the

reduction of faecal odour(50–53,61,76). Faecal concentrations

of ammonia (339 (SD 210) mg/g wet faeces before

supplementation), indole (48 (SD 19) mg/g wet faeces

before supplementation), ethylphenol (20 (SD 6) mg/g wet

faeces before supplementation) and urinary ammonia (17

(SD 8) mg/ml urine before supplementation) were reduced

significantly on day 14 of lactosucrose administration(50) (to

162 (SD 34), 30 (SD 12), 8 (SD 3) mg/g wet faeces and 10

(SD 4) mg/ml urine, respectively). This decrease might

be explained by the concomitant decrease in counts of

Clostridia (20·25 log numbers per g faeces for the average

of lecithinase-positive and -negative Clostridia, difference

between before and after 14 d of lactosucrose adminis-

tration) and Enterobacteriaceae (21·6 log numbers per g

faeces, difference between before and after 14 d of

lactosucrose administration) due to the lactosucrose

supplementation, as both groups are known to produce

these putrefactive substances. In addition, the environ-

mental ammonia (ammonia in room from 22 (SD 2) parts

per million (ppm) before administration to 16 (SD 1) ppm

after 14 d of administration) and the faecal odour (no

quantitative data available) decreased remarkably during

administration(50). Likewise, supplementation of oligofruc-

tose led to decreased faecal concentrations of histamine,

spermidine and indole(76) (quantitative data not available),

and a synbiotic combination of GOS and a Bifidobacterium

strain decreased faecal ammonia concentrations (inmmol/g

faecal DM) even 10 d post-supplementation(53) (from 353

before to 288 at 1 d post- administration and 281 at 10 d

post-administration). In contrast, Hesta et al.(61) found no

effects of FOS supplementation to cats on twenty-seven

different odour components, and Kanakupt et al.(52)

observed no differences in faecal protein catabolites

among control, sc-FOS-, GOS- and sc-FOS þ GOS-

supplemented cats. In the latter study, no differences in

protein catabolite-producing bacteria were observed(52).

Increased faecal concentrations of ammonia (small differ-

ences), 4-methyl phenol and indole were observed when

feline diets were supplemented with FOS (differences

compared with cellulose in mmol ormmol/g of faecal

DM: 0·1, 2·1 and 1·0, respectively) and pectin (differences

compared with cellulose in mmol ormmol/g of faecal

DM: 0·1, 1·9 and 0·7, respectively), possibly due to the

fast fermentation of both supplements(51). Different out-

comes in the studies might again be explained by different

sources and inclusion levels of fibres.

Effects of dietary fibre on nutrient intake, nutrient

digestibility and faecal characteristics: moderate (beet

pulp) and less fermentable fibre sources. The effects of

moderately and less-fermentable fibre sources on nutrient

intake have been studied by different groups. Fekete

et al.(77) observed slightly different DM intake among

diets supplemented with high levels (10 % DM) of beet

pulp (263 (SD 42) g/4 d), peanut hulls (274 (SD 31) g/4

d) and alfalfa meal (257 (SD 37) g/4 d). In contrast,

Sunvold et al.(3) did not observe differences in DM, organic

matter or N intake between beet pulp- and cellulose-

supplemented cats and cats on a control diet without

supplemented fibre. Both studies used a similar inclusion

level of the dietary fibre sources. Likewise, the inclusion

of cellulose at a high level (17 % DM) did not alter food

intake in cats(78,79) and the addition of psyllium husks

and seeds did not decrease diet acceptance in cats with

constipation(8).

In all the above-mentioned studies nutrient digestibility

was studied as well. In peanut hull- and alfalfa meal-sup-

plemented cats, a decreased DM digestibility (222·4 and

27·2 % compared with the control diet) was seen(77),

which was confirmed in healthy beet pulp-(3) and cellu-

lose(78)-supplemented cats (27·6 and 215 % (average of

the three types of cellulose used) compared with control).

Likewise, another study confirmed a decreased DM
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digestibility when diets of overweight cats were sup-

plemented with beet pulp (211 % compared with control),

wheat bran (213 % compared with control) or sugarcane

fibre (221 % compared with control)(9). Only peanut

hull and alfalfa meal supplementation decreased protein

digestibility(77) (210 and 22 % compared with control,

respectively). Likewise, Fischer et al.(9) observed different

effects on protein and fat digestibility depending on the

chemical composition of the supplemented fibre source.

No other studies in which cats were supplemented with

peanut hulls, alfalfa meal, wheat bran or sugarcane fibre

were found. Conclusively, moderately fermentable fibre

sources, such as beet pulp, appear to be beneficial for

normal-weight cats. In contrast, low-fermentable fibres,

such as sugarcane fibre, might have adequate properties

in low-energy weight-loss diets(9). However, the high

water-binding activity of the latter fibre source, comparable

with that of long-fibre cellulose(79), can lead to extremely

dry faeces, limiting the inclusion level in the diet(9). This

problem might be overcome by using short-fibre or micro-

crystalline cellulose(79). An important factor in determining

the outcome of the supplementation of fibres is the

inclusion level, which was very high in the above-

mentioned studies. Therefore, more research using lower

levels is warranted.

Effects of dietary fibre on nutrient intake, nutrient

digestibility and faecal characteristics: animal fibre.

Differences in nutrient digestibility and fermentation end-

products between a high-protein, extruded feline diet

and a raw and cooked beef-based diet, which is a source

of animal fibre, were studied by Kerr et al.(18). The

extruded diet had a much higher protein content (57 %

crude protein) compared with a conventional extruded

feline diet (for adult cats between 32 and 35 % crude

protein) to mimic the composition of the beef-based

diets. The effect of processing of the diets was investigated.

However, due to a different ingredient composition

between the extruded and beef-based diets, this compari-

son was biased. The extruded diet contained, for example,

chicken meal as the major protein source. The latter might

have contained a considerable amount of animal fibre

from cartilage, for example, and might be considerably

less digestible than beef meat. Two other studies that

investigated the effects of feeding raw-meat diets on nutri-

ent digestibility and faecal characteristics in domestic cats

were found(80,81). Comparisons of results between both

studies are again biased by the use of different ingredient

sources, such as different sources of plant fibre. Further

studies using diets with an equal ingredient composition

of all diets are necessary to study the effects of animal

fibre fermentation on nutrient digestibility, the host’s

metabolism and the interaction with plant fibres in dom-

estic cats.

Effects of dietary fibre on colonic morphology and

function. The influence of fibre fermentation and conco-

mitant SCFA production on colonic morphology was studied

in adult healthy cats by Bueno et al.(11,12), and in overweight

cats by Fischer et al.(9). Beneficial effects on morphology

(colonic weight, mucosal cell density, crypt structure),

function (mucosal tissue energetics, transport of SCFA, etc.)

and microbiota of the colon (less pathogenic bacteria) were

observed(11,12). According to these authors, the supple-

mentation of a moderately fermentable fibre source to

feline diets generated the best combination of beneficial

effects on morphology, function and microbiota. In contrast,

in overweight cats, the supplementation of beet pulp, wheat

bran or sugarcane fibre did not affect the histological

image of the colon biopsies(9). Nevertheless, these fibres

demonstrated other beneficial properties upon in vivo

fermentation, as stated in other parts of the present review.

Effects of dietary fibre on nitrogen and energy

metabolism. The principle of the N trap is that blood

urea concentrations decrease when fermentable fibre is

supplemented to the diet. Fermentable fibre stimulates

the growth of and provides energy to the anaerobic micro-

organisms in the large intestine(82). For bacterial protein

anabolism, not only an energy source, such as fermentable

fibre, but also a source of N should be available(83).

N sources include undigested dietary protein entering the

large intestine, endogenous protein and blood urea(82).

Bacterial protein is not absorbed in the large intestine,

but is excreted in the faeces(7). When blood urea is the

major N source to the intestinal microbiota, blood urea

concentrations decrease and a decreased N excretion

by the kidneys is observed, while N excretion in the

faeces increases. Furthermore, fermentable fibre increased

caecal blood flow in rats(82), which might enhance the

passive diffusion of urea from the blood to the intestine.

The N trap hypothesis has been proven in the rat(82,84)

and dog(85), whereas in the cat tendencies towards

an N shift from urine to faeces were found using diets sup-

plemented with oligofructose(61,76). Verbrugghe et al.(86–88)

studied the effects of oligofructose and inulin on glucose

and amino acid metabolism in domestic cats. In the first

study(86), a control diet was tested against a prebiotic

diet with 2·5 % of a blend of oligofructose and inulin.

Diets did not affect fasting plasma glucose and insulin

concentrations, blood glucose and insulin responses to

glucose administration, or area under the glucose and

insulin curves. In contrast, a decreased mean blood

glucose concentration and area under the curve were

achieved by supplementing sugarcane fibre to diets of over-

weight cats(9). Despite an apparent absence of effects on

carbohydrate metabolism in the study of Verbrugghe

et al.(86), analysis of plasma acylcarnitine profiles revea-

led higher propionylcarnitine concentrations when the pre-

biotic diet was fed, suggesting colonic fermentation and

propionate absorption. Prebiotic supplementation reduced

methylmalonylcarnitine and aspartate aminotransferase

concentrations, both indicating reduced gluconeogenesis

from amino acids(86). Further studies confirmed the amino

acid-sparing potential of propionic acid from dietary
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fructan fermentation(87) and signs of sparing of the amino

acid valine with propionylated high-amylose maize starch

supplementation provided that protein intake was suffi-

cient(89). The quantification of the amino acid-sparing poten-

tial of propionic acid in healthy and disease-inflicted cats

remains to be done. In contrast, this mechanism was not

confirmed with guar gum supplementation, due to its high

viscosity(59). The guar gum’s high viscosity impaired the

small-intestinal protein digestion, causing a large load of

undigested protein being fermented in the large intestine,

which biased the proper assessment of the amino acid spar-

ing by the produced propionic acid(59). Further research

using guar gum with lower viscosity might be warranted.

The applicability of low-viscous guar gummight be restricted

to dry extruded feline diets or homemade diets, since, for the

production of canned diets, the gelling properties of highly

viscous guar gum are advantageous.

Effects of dietary fibre on diseases with dietary protein

restriction as a treatment cornerstone, such as chronic

kidney and liver disease. CKD is a very common disease

in middle-aged to elderly cats(90). The cornerstones of the

dietary management of CKD are a modification of the

quantity (decrease) and quality (increase) of protein

and a restriction of the dietary P intake(91). Liver disease

encompasses a range of different aetiologies, such as

hepatic lipidosis and portosystemic shunts. The sympto-

matic treatment of liver disease, specifically in case of

hyperammonaemia and hepatic encephalopathy, is based

on dietary protein restriction(92,93). Additionally, the sup-

plementation of dietary fibre can exert beneficial effects

on these disease conditions and the mechanisms behind

these effects are explained in the next paragraphs.

The N trap principle, explained in the previous section,

might be advantageous in animals suffering from hyper-

ammonaemia (liver disease) or azotaemia (CKD), since an

increase in the faecal N excretion and decreases in blood

urea and ammonia concentrations can be achieved(82).

Until now, no studies investigating the N trap principle

have been performed in cats with CKD. As mentioned

above (‘Effects of dietary fibre on nutrient intake, nutrient

digestibility and faecal characteristics: fructans, mannanoli-

gosaccharides and galacto-oligosaccharides’ section), a

decrease in large-intestinal pH occurs when SCFA and

lactate are produced upon fermentation of dietary fibre.

Another consequence of this decrease, besides the ones

mentioned above, is that the overload of protons (Hþ),

that are present in a more acidic environment, leads to

the ionisation of the ammonia (NH3) molecules present

to ammonium (NH4
þ) ions(82). The absorption of NH4

þ

ions from the intestine to the bloodstream is far less

effective, and the majority of these ions are excreted in

the faeces(94). That way, the ammonia concentration in

the blood decreases, which benefits patients with hyper-

ammonaemia(7). Furthermore, less urea will be produced

in the liver, resulting in lower blood urea N concentrations,

beneficial to azotaemic patients. Additionally, the recently

suggested amino acid-sparing potential of propionic

acid(86–89) (see above) might be advantageous to patients

whose diseases urge a dietary protein restriction, such as

kidney(91) or liver(92,93) disease patients with evidence of

hyperammonaemia or hepatic encephalopathy.

Conclusions

Despite the growing interest in dietary fibre supplemen-

tation to feline nutrition, research on this topic remains

scarcer in cats compared with dogs and humans. The

newest molecular techniques for qualitative and quantita-

tive assessment of the microbiota have been applied to

feline samples of different parts of the feline gastrointesti-

nal tract. Therefore, a detailed assessment of the complex

and diverse microbiota is available in the literature.

Furthermore, in vitro batch culture systems are assumed

to be suitable for screening several indigestible substrates

for fermentation kinetics and endproduct concentrations

and this technique has been used in several animal species.

However, the use of this technique with feline inoculum

remains scarce, despite the fact that valuable estimations

of the fermentation potential and kinetics of various fibre

sources for felines can be gained non-invasively. Research

on in vivo fermentation is rather scarce in cats, despite

the fact that fermentation endproducts might appear to

exert different beneficial effects on the host animal. More

research is warranted to reveal potential (plant or animal)

fibre sources that can be used on a large scale in feline

nutrition for healthy and diseased cats.
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