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COMPARISON THEOREM AND STABILITY UNDER PERTURBATION OF
TRANSITION RATE MATRICES FOR REGIME-SWITCHING PROCESSES
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Abstract

A comparison theorem for state-dependent regime-switching diffusion processes is
established, which enables us to pathwise-control the evolution of the state-dependent
switching component simply by Markov chains. Moreover, a sharp estimate on the sta-
bility of Markovian regime-switching processes under the perturbation of transition rate
matrices is provided. Our approach is based on elaborate constructions of switching
processes in the spirit of Skorokhod’s representation theorem varying according to the
problem being dealt with. In particular, this method can cope with switching processes
in an infinite state space and not necessarily of birth–death type. As an application,
some known results on the ergodicity and stability of state-dependent regime-switching
processes can be improved.
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1. Introduction

Stochastic processes with regime-switching have been extensively studied in many research
fields due to their characterization of random changes of the environment between different
regimes; see, for instance, [4, 8, 9, 13, 17, 18, 19, 22, 28, 31] and references therein. In par-
ticular, when the switching of the environment depends on the state of the dynamic system
studied, usually called a state-dependent regime-switching process (RSP), the properties of
such a system become much more complicated due to their intensive interaction. The mono-
graph [28] introduced various properties of state-dependent RSPs, telling us that it is a very
challenging task to provide easily verifiable conditions to justify the ergodicity and stability of
state-dependent RSPs.

In view of the relatively abundant results on state-independent RSPs, it is natural to sim-
plify a state-dependent RSP into a state-independent one. So, we need to establish some kind
of comparison theorem for state-dependent RSPs. Such an idea has been used in many works.
For instance, [4] used this idea to study the exponential ergodicity in the Wasserstein distance
for birth–death-type state-dependent RSPs based on an application of the weak Harris’s the-
orem. The state-dependent switching process and the constructed state-independent process
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Comparison theorem and stability 541

constitute a coupling process. However, the constructed coupling process in [4] is no longer a
Markovian process and needs modification in applications (cf. [4, Remark 3.10]). Majda and
Tong used the same method to study the exponential ergodicity in the setting of piecewise
deterministic processes with regime-switching and applied their results to tropical stochas-
tic lattice models. In [20], the author constructed a Markovian coupling for birth–death-type
state-dependent RSPs; this was extended in [22] to a general case under the condition of the
existence of an order-preserving coupling for Markov chains (cf. [22, Lemma 2.7]). This result
is not constructive, and the verification of [22, Assumption 2.6] is not easy in applications.

Accordingly, our first purpose is to establish a comparison theorem for more general state-
dependent RSPs, in particular to get rid of the restriction of birth–death-type switching and
to be applicable to switching processes in an infinitely countable state space. Our comparison
theorem is in the pathwise sense. As a consequence, the corresponding results in [4, 12, 20,
22] can be generalized after certain necessary modifications.

For state-dependent RSPs, study of the Feller property and the smooth dependence of ini-
tial values is of great interest. It is quite different to that of Markovian RSPs and diffusion
processes, as noted in [17], [27], [28, Chapter 2], and references therein. For instance, in [17,
Theorem 3.1], the continuous differentiability of the continuous component of an RSP with
respect to the initial value in Lp with p ∈ (0, 1) was proved under suitable regular conditions.
Moreover, restricted to a bounded set, certain gradient estimates associated with the continu-
ous component of an RSP can be derived from [17, Theorem 4.1]. Recently, [24] studied the
continuous dependence of initial values for state-dependent RSPs, which are solutions to cer-
tain stochastic functional differential equations with regime-switching. As shown in [24], the
key point is the estimate for the quantity

�(t, �, �̃) := 1

t

∫ t

0
P
(
�s �= �̃s

)
ds, t > 0. (1.1)

Moreover, it was also shown in [23] that the quantity �(t, �, �̃) plays a crucial role in study
of the stability of RSPs under perturbation of the Q-matrix. However, the estimates in [23, 24]
do not work for switching processes in an infinite state space, which needs to be generalized
from the viewpoint of applications. Also, the estimation of �(t, �, �̃) develops the classical
perturbation theory for Markov chains (cf. [14, 15, 16, 29]). More details on this are given in
Section 3.

Our improvements in the previous two concerned problems are all based on a new obser-
vation on Skorokhod’s representation theorem for jumping processes. The approach of using
Skorokhod’s representation theorem to study RSPs has been widely used in the literature; see,
e.g., [8, 17, 18, 23, 28], etc. The basic idea of Skorokhod’s representation theorem is to rep-
resent the switching process in terms of an integral with respect to a Poisson random measure
based on a sequence of constructed intervals on the real line. The length of each interval is
determined by (qij(x)). However, the impact of the construction and sort order of the intervals
on the jumping processes obtained has been neglected in all the previous works. In this work,
we show that it is necessary to carry out different constructions of the intervals to solve differ-
ent problems. This is illustrated through establishing the comparison theorem and studying the
stability problem under perturbation of the Q-matrix.

This work is organized as follows. In Section 2, we first provide the construction of the
coupling process, then establish the comparison theorem for state-dependent RSPs. As an illus-
trative example, we use this comparison theorem to study the stability of state-dependent RSPs.
In Section 3, we also first provide the construction of the coupling process (�t, �̃t) in (1.1), the

https://doi.org/10.1017/jpr.2023.54 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.54


542 J. SHAO

key point of which is the construction of intervals used in Skorokhod’s representation theorem.
Then we provide an estimate of (1.1) which improves the one given in [23].

2. Comparison theorem for state-dependent RSPs

Let S = {1, 2, . . . , N} with 2 ≤ N ≤ ∞. So, S is allowed to be an infinitely countable state
space by taking N = ∞. Consider

dXt = b(Xt, �t) dt + σ (Xt, �t) dBt, (2.1)

where b : Rd × S →R
d, σ : Rd × S →R

d×d satisfying suitable conditions, and (Bt) is a d-
dimensional Brownian motion. Here, (�t) is a jumping process on S satisfying

P(�t+δ = j | �t = i, Xt = x) =
{

qij(x)δ + o(δ) if i �= j,

1 + qii(x)δ + o(δ) if i = j,
(2.2)

provided δ > 0 is sufficiently small. When (qij(x)) does not depend on x, (Xt, �t) is called
a state-independent RSP or a Markovian RSP. Meanwhile, when (qij(x)) does depend on x,
(Xt, �t) is called a state-dependent RSP, which is used to model the phenomenon that the
dynamic system (Xt) can impact the change rate of the random environment in applications.
There is an intensive interaction between (Xt) and (�t) for state-dependent RSPs, and hence it
is quite desirable to develop a stochastic comparison theorem to simplify such a system. Since
(Xt) can be simplified, if necessary, by using a classical comparison theorem for diffusion
processes (cf. [10, 11]) or for Lévy processes (cf. [26]) performed separately in each fixed
regime i, the key point is to control the jumping component (�t) whose transition rates vary
with (Xt).

Theorem 2.1. Assume that the stochastic differential equations (SDEs) (2.1) and (2.2) admit
a solution (Xt, �t) for any initial value (X0, �0) = (x, i) ∈R

d × S . Suppose that (qij(x)) is
conservative for every x ∈R

d and satisfies

(Q1) K0 := supx∈Rd supi∈S |qii(x)| < ∞;

(Q2) for all i ∈ S , there is a ci ∈N such that qij(x) = 0 for all j ∈ S with |j − i| > ci and all
x ∈R

d.

Define

q∗
ij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

sup
x∈Rd

max
j<�≤i

q�j(x), j < i,

inf
x∈Rd

min
�≤i

q�j(x), j > i,

−∑i �=j q∗
ij, j = i,

and q̄ij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

inf
x∈Rd

min
j<�≤i

q�j(x), j < i,

sup
x∈Rd

max
�≤i

q�j(x), j > i,

−∑j �=i q̄ij, j = i.

Then there exist two continuous-time Markov chains
(
�∗

t

)
and

(
�̄t
)

on S with transition rate
matrices

(
q∗

ij

)
and

(
q̄ij
)

respectively such that

P
(
�∗

t ≤ �t ≤ �̄t for all t ≥ 0
)= 1.
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Remark 2.1.

(i) For birth–death-type (qij(x)), i.e. qij = 0 for |i − j| ≥ 2, we have

q∗
i(i−1) = sup

x∈Rd
qi(i−1)(x), q∗

i(i+1) = inf
x∈Rd

qi(i+1)(x),

q̄i(i−1) = inf
x∈Rd

qi(i−1)(x), q̄i(i+1) = sup
x∈Rd

qi(i+1)(x).

This coincides with the Markov chain constructed in [20].

(ii) There are many works that investigate the existence of a solution to (2.1) and (2.2); see
[28] under Lipschitzian conditions, [18] under non-Lipschitzian conditions, and [31]
under integrable conditions.

(iii) Assumption (Q1) ensures that there exists a unique Markov chain
(
�∗

t

)
t≥0

((
�̄t
)

t≥0

)
associated with

(
q∗

ij

) ((
q̄ij
))

; see, e.g., [3, Corollary 2.24].

As mentioned in the introduction, this comparison theorem can help us to generalize the
corresponding results in [4, 12, 20, 22]. More precisely, we can remove Assumption 3.1 of
birth–death-type restriction in [4] and generalize [4, Theorems 3.3, 3.4] there. Also, the expo-
nential convergence results, [12, Theorems 2.1, 2.3], for the two stochastic lattice models for
moist tropical convection in climate science studied can be generalized by considering more
general jumping processes besides the birth–death processes used in [12].

As an illustrative example, we apply Theorem 2.1 to investigate the stability of state-
dependent RSPs. The stability of stochastic processes with regime switching has been studied
in many works. We refer the reader to [13, 28] for surveys on this topic, and also to [21] for
some recent results on the stability of state-dependent RSPs based on M-matrix theory, the
Perron–Frobenius theorem, and the Friedholm alternative.

Theorem 2.2. Let
(
Xx,i

t , �
x,i
t
)

be the solution to (2.1) and (2.2) with initial value (x,i). Assume
that the conditions of Theorem 2.1 hold. Suppose that there exist a function ρ ∈ C2(Rd),
constants βi ∈R for i ∈ S , and constants p, c̃ > 0 such that

L (i)ρ(x) ≤ βiρ(x), ρ(x) ≥ c̃|x|p, x ∈R
d, i ∈ S, (2.3)

where

L (i)ρ(x) =
d∑

k=1

bk(x, i)∂kρ(x) + 1

2

d∑
k,l=1

akl(x, i)∂k∂lρ(x), akl(x, i) =
d∑

j=1

σkj(x, i)σlj(x, i).

Through reordering S , without loss of the generality we may assume that (βi)i∈S is nonde-
creasing. Let

(
q̄ij
)

be defined as in Theorem 2.1. Assume that
(
q̄ij
)

is irreducible, and admits a
unique invariant probability measure μ̄ such that∑

i∈S
μ̄iβi < 0. (2.4)

Then there exists p′ ∈ (0, p] such that limt→∞ E
∣∣Xx,i

t

∣∣p′ = 0 for x ∈R
d, i ∈ S .

https://doi.org/10.1017/jpr.2023.54 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.54


544 J. SHAO

Remark 2.2. In Theorem 2.2, via condition (2.3), we characterize the stability property of the
process (Xt) at each fixed state i ∈ S by a constant βi ∈R, which is measured under a common
Lyapunov type function ρ. Then, with the help of the auxiliary Markov chain

(
q̄ij
)
, the average

condition (2.4) yields the stability of (Xt).

Next, we provide an example to illustrate the application of Theorem 2.2.

Example 2.1. Consider dXt = b�t Xt dt + σ�t Xt dBt, where (�t) is a jumping process on S =
{1, 2, 3} with the state-dependent transition rate matrix (qij(x))i,j∈S given by qij(x) = 1 + |i −
j|(x2 ∧ 1), i, j ∈ S , x ∈R.

Take ρ(x) = x2 in (2.3) to yield βi = 2bi + σ 2
i , i ∈ S . By virtue of Theorem 2.1, direct

calculation yields

(
q̄ij
)

i,j∈S =
⎛⎜⎝−5 2 3

1 −4 3

1 1 −2

⎞⎟⎠ ,

and its unique invariant probability measure is (μ̄1, μ̄2, μ̄3) = ( 1
6 , 7

30 , 3
5

)
. Then, by

Theorem 2.2, if

1

6

(
2b1 + σ 2

1

)+ 7

30

(
2b2 + σ 2

2

)+ 3

5

(
2b3 + σ 2

3

)
< 0,

the process (Xt) is stable in the sense that limt→∞ E
[∣∣Xx,i

t

∣∣p]= 0, x ∈R, i ∈ S , for some p ∈
(0, 2].

Example 2.2. Consider the regime-switching diffusion process dXt = b�t Xt dt + σ�t Xt dBt,
and (�t) a jumping process on S = {1, 2, . . .} with state-dependent transition rate matrix
(qij(x)) given by q12(x) = 1 + sin x, q1k(x) = 0 if k ≥ 3, q11(x) = −1 − sin x, and, for
n ≥ 2, qn(n+1)(x) = 1 + sin x, qn1(x) = 3 − sin x, qnk(x) = 0 if k �∈ {1, n + 1}, and qnn(x) = −4.
According to the definition of

(
q̄ij
)

in Theorem 2.1, direct calculation yields q̄12 = 2, q̄1k = 0
if k ≥ 3, q̄11 = −2, and, for n ≥ 2, q̄n1 = 2, q̄n(n+1) = 2, q̄nk = 0 if k �∈ {1, n, n + 1}, q̄nn = −4.
The invariant probability measure μ̄ = (μ̄n)n∈S for

(
q̄ij
)

is given by μ̄n = 1/2n, n ≥ 1. Take
ρ(x) = x2, then ρ ∈ C2(R) and L (i)ρ(x) ≤ βiρ(x) with βi = 2bi + σ 2

i , i ∈ S . According to
Theorem 2.2, if

∞∑
n=1

1

2n

(
2bn + σ 2

n

)
< 0,

the process is stable in the sense that limt→∞ E
[∣∣Xx,i

t

∣∣p]= 0, x ∈R, i ∈ S , for some p ∈ (0, 2].

2.1. Construction of the coupling process

In the spirit of Skorokhod [25] in the study of processes with rapid switching, [8] presented
a representation of a Markov chain in terms of a Poisson random measure and studied the
stability of RSPs. This kind of representation theorem has been widely applied in the study of
various properties of RSPs.

Before giving out our precise representation theorem for establishing the comparison the-
orem, let us recall the construction in [8] for comparison. When S = {1, 2, . . . , N} is a finite
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state space, let 
ij(x) be consecutive, left-closed, right-open intervals on [0, ∞), each having
length qij(x). More precisely,


12(x) = [0, q12(x)), 
13(x) = [q12(x), q12(x) + q13(x)), . . . , 
1N(x) = [∑j �=1 q1j(x), q1(x)
)
,


21(x) = [q1(x), q1(x) + q21(x)), . . . ,

...

Define a function h : Rd × S ×R→R by h(x, i, z) =∑j∈S,j �=i (j − i)1
ij(x)(z). Then, (�t) is a
jumping process satisfying (2.2) as a solution to the SDE d�t = ∫[0,∞) h(Xt, �t−, z) N (dt, dz),
where (Xt) satisfies (2.1), and N (dt, dz) is a Poisson random measure with intensity dt × dz.

We can now introduce our construction of the coupling process in three steps. We assume
that conditions (Q1) and (Q2) hold in this section.

Step 1: Construction of intervals. For every fixed x ∈R
d and i, j ∈ S , we define the intervals

�ij(x), �∗
ij, and �̄ij in the following way. Starting from 0, the intervals �ij(x) for j < i are

defined on the positive half-line, while �ij(x) for j > i are defined on the negative half-line.
More precisely,

�i1(x) = [0, qi1(x)),

�i2(x) = [qi1(x), qi1(x) + qi2(x)),

...

�i(i−1)(x) = [∑i−2
j=1 qij(x),

∑i−1
j=1 qij(x)

)
,

(2.5)

and
�i(i+ci)(x) = [−qi(i+ci)(x), 0),

�i(i+ci−1)(x) = [−qi(i+ci−1)(x) − qi(i+ci)(x), −qi(i+ci)(x)),

...

�i(i+1)(x) = [−∑i+ci
j=i+1 qij(x), −∑i+ci

j=i+2 qij(x)
)
,

(2.6)

where ci is given in (Q2). Analogously, by replacing qij(x) in (2.5) and (2.6) with q̄ij and q∗
ij

respectively, we can define the intervals �̄ij and �∗
ij. Here and in what follows, we put �ij(x) = ∅

if qij(x) = 0 and �ii(x) = ∅ for the convenience of notation. This convention also applies to the
intervals �̄ij and �∗

ij.

The sort order of the intervals �ij(x), �̄ij, and �∗
ij according to j > i or j < i will play an

important role in the argument below. The assumption on the existence of ci is used here such
that on the negative half-line, the first interval starting from 0 is associated with the state j ∈ S
satisfying j = max{k ∈ S;k > i, qik(x) > 0}. The common starting point 0 of �ij(x), �̄ij, and �∗

ij
for different i ∈ S also plays an important role in our construction of the order-preservation
coupling process.

Step 2: Explicit construction of Poisson random measure. Here we use the method of [11,
Chapter I, p. 44] to present a concrete construction of the Poisson random measure. Denote
by m(dx) the Lebesgue measure over R. Let ξk, k = 1, 2, . . ., be random variables taking val-
ues in [−K0, K0] with P(ξk ∈ dx) = m(dx)/2K0, and τk, k = 1, 2, . . ., be non-negative random
variables such that P(τk > t) = e−2tK0 , t ≥ 0. Assume that all ξk and τk, k ≥ 1, are mutu-
ally independent. Let ζn = τ1 + τ2 + · · · + τn, n = 1, 2, . . ., and ζ0 = 0, Dp =⋃n≥1{ζn}, and
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p(t) =∑0≤s<t 
p(s), with 
p(s) = 0 for s �∈Dp, and 
p(ζn) = ξn, n ≥ 1, where 
p(s) :=
p(s) − p(s−). The finiteness of K0 means that limn→∞ ζn = ∞ almost surely (a.s.); that is,
during each finite time period, there exists a finite number of jumps for (p(t)). Let

Np([0, t] × A) = #{s ∈Dp;0 ≤ s ≤ t, 
p(s) ∈ A}, t > 0, A ∈ B(R).

As a consequence, p(t) and Np(dt, dz) are respectively a Poisson point process and a Poisson
random measure with intensity measure dt m(dx). It is always assumed that p(t) is independent
of the Brownian motion (Bt) in (2.1).

Step 3: Construction of coupling processes. Define three functions ϑ , ϑ∗, and ϑ̄ as follows:

ϑ(x, i, z) =
∑

j∈S,j �=i

(j − i)1�ij(x)(z),

ϑ∗(i, z) =
∑

j∈S,j �=i

(j − i)1�∗
ij
(z),

ϑ̄(i, z) =
∑

j∈S,j �=i

(j − i)1�̄ij
(z).

Then, consider the following SDEs:

d�t =
∫
R

ϑ(Xt, �t−, z) Np(dt, dz), (2.7)

d�̄t =
∫
R

ϑ̄(�̄t−, z) Np(dt, dz), (2.8)

d�∗
t =

∫
R

ϑ∗(�∗
t−, z

)Np(dt, dz), (2.9)

and �0 = �̄0 = �∗
0 = i0 ∈ S . Here, recall that (Xt) satisfies (2.1).

The fact that the solution to (2.7) satisfies (2.2) can be checked directly using the property
that P(Np((0, δ] × A) ≥ 2) = o(δ), δ > 0. Next, we verify that

(
�̄t
)

and
(
�∗

t

)
given by (2.8)

and (2.9) are the jumping processes associated with
(
q̄ij
)

and
(
q∗

ij

)
respectively. According to

Itô’s formula, for any bounded measurable function F on S ,

EF
(
�̄t
)= F

(
�̄0
)+E

∫ t

0

∫
R

(
F
(
�̄s− + ϑ̄

(
�̄s−, z

))− F
(
�̄s−

))Np(ds, dz)

= F
(
�̄0
)+E

∫ t

0

∫
R

∑
j∈S

(
F(j) − F

(
�̄s−

))
1�̄�̄s− j

(z) ds m(dz)

= F
(
�̄0
)+E

∫ t

0

∑
j∈S

q̄�̄s−j

(
F(j) − F

(
�̄s−

))
ds.

Writing P̄tF(i0) =EF
(
�̄t
)

with �̄0 = i0, we obtain from the above integral equation that
P̄tF(i0) = F(i0) + ∫ t

0 P̄s(Q̄F) ds, where Q̄F(i) =∑j∈S,j �=i q̄ij(F(j) − F(i)), and the correspond-
ing differential form is

dP̄tF

dt
= P̄tQ̄F. (2.10)
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Due to (Q1), the Kolmogorov forward equation (2.10) admits a unique solution, and hence(
�̄t
)

is a continuous-time Markov chain with transition rate matrix Q̄ = (q̄ij
)

(cf. [3, Corollary
2.24]). The corresponding conclusion for

(
�∗

t

)
can be proved by the same method.

Consequently, through the previous three steps, we have completed the construction of the
desired Markov chains

(
�∗

t

)
and

(
�̄t
)

used in Theorem 2.1.

Remark 2.3. Our constructed coupling process
(
Xt, �t, �∗

t , �̄t
)

in terms of a common
Poisson random measure presents a good order relation, and is not restricted to be of birth–
death type. Let us compare it with the coupling constructed in [4] (presented in the argument
of [4, Lemma 3.9]). In [4], the constructed Markov chain (Lt) and the original jumping pro-
cess (�t) will move independently of each other until the time when they meet. During their
meeting time, the coupling is designed such that �t ≥ Lt. After the meeting time, the two pro-
cesses �t and Lt locate at different states and then they move independently once again until
the next meeting time. However, the restriction of jumping in a birth–death type could ensure
that �t ≥ Lt after the meeting time.

2.2. Proofs of the comparison theorem and its application

Let us first present the proof of the comparison theorem.

Proof of Theorem 2.1. We only provide the proof of �t ≤ �̄t for all t ≥ 0 almost surely; the
corresponding solution for �t and �∗

t can be proved in the same way.
According to the representation of (2.7) and (2.8), the processes (�t) and

(
�̄t
)

have no
jumps outside Dp. So, we only need to prove that

P
(
�t ≤ �̄t, t ∈Dp

)= 1. (2.11)

By the definition of q̄ij, for j > i, q̄ij ≥ qlj(x) for all 1 ≤ l ≤ i and all x ∈R
d; for j < i, q̄ij ≤

qlj(x) for all j < l ≤ i and all x ∈R
d. By the sort order of the intervals �ij(x) and �̄ij, we have,

for i < k ∈ S , ⋃
r≥m

�ir(x) ⊂
⋃
r≥m

�̄kr for all m > k and all x ∈R
d, (2.12)

⋃
r≤m

�ir(x) ⊃
⋃
r≤m

�̄kr for all m < i and all x ∈R
d. (2.13)

Assuming i = �ζn−1 ≤ �̄ζn−1 = k for some n ≥ 1, we are going to show that �ζn ≤ �̄ζn ,
whose proof is divided into four cases.

For case (i), �ζn = m ≥ k, by (2.7) and the construction of the Poisson random measure
Np(dt, dz), we get ξn ∈ �im

(
Xζn

)
. By (2.12), this yields that ξn ∈⋃r≥m �̄kr. Together with (2.8),

this means that �̄ζn must jump into the set {l ∈ S; l ≥ m}. Whence, �ζn ≤ �̄ζn .
For case (ii), �ζn = m with i < m < k, (2.7) implies that ξn ∈ �im

(
Xζn

)
, and hence ξn < 0.

So, ξn �∈⋃j≤k �̄kj ⊂ [0, ∞), which means that �̄ζn cannot jump into the set {j ∈ S;j ≤ k}, and

hence �ζn ≤ �̄ζn . But, if �ζn = m with m ≤ i and �̄ζn ≤ i, this situation is studied in case (iii).
For case (iii), �ζn = m with m ≤ i and �̄ζn > i, it is obvious that �ζn ≤ �̄ζn . If �̄ζn = m′ ≤ i,

(2.8) and (2.13) yield ξn ∈ �̄km′ ⊂⋃r≤m′ �ir
(
Xζn

)
. Whence, �ζn jumps into {j ∈ S; j ≤ m′}, and

hence �ζn ≤ �̄ζn still holds.
For case (iv), if �̄ζn = m with i < m < k, then ξn ∈ �̄km, ξn > 0, and ξn /∈⋃j>i �ij

(
Xζn

)
. So,

�ζn ≤ i < m = �̄ζn .
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Consequently, if �ζn−1 ≤ �̄ζn−1 , we have �ζn ≤ �̄ζn for n ≥ 1. By induction on n, we
prove that (2.11) holds, and finally P(�t ≤ �̄t, t ≥ 0) = 1. The proof of Theorem 2.1 is
complete. �

Proof of Theorem 2.2. For each i ∈ S , denote by
(
X(i)

t
)

the solution to the SDE

dX(i)
t = b

(
X(i)

t , i
)

dt + σ
(
X(i)

t , i
)

dBt, X(i)
0 = x,

and by
(
P(i)

t
)

its associated semigroup. According to Itô’s formula and Gronwall’s inequality, it

follows from (2.3) that P(i)
t ρ(x) =Eρ

(
X(i)

t
)≤ eβitρ(x). Let ζn, Np(dt, dz), and

(
�̄t
)

be defined
as at the beginning of this section. Let ENp[·] =E[ · | FNp ] be the conditional expectation
with respect to the σ -algebra FNp = σ {p(s); s ≥ 0}. The mutual independence of Np and (Bt)
yields

E
Np
[
ρ
(
Xζn

)]≤E
Np
[
ρ
(
Xζn−1

)]+E
Np

[ ∫ ζn

ζn−1

β�ζn−1
ρ(Xs) ds

]
.

By Theorem 2.1, β�s ≤ β�̄s
a.s. Furthermore, since (�̄s) depends only on Np, we have

E
Np
[
ρ
(
Xζn

)]≤E
Np
[
ρ
(
Xζn−1

)]+ β�̄ζn−1
E
Np

[ ∫ ζn

ζn−1

ρ(Xs) ds

]
.

Then, as �̄s ≡ �̄ζn−1 for s ∈ [ζn−1, ζn) by (2.8),

E
Np
[
ρ
(
Xζn

)]≤ exp

{ ∫ ζn

ζn−1

β�̄s
ds

}
E
Np
[
ρ
(
Xζn−1

)]
.

Setting mt := sup{n ∈N; ζn ≤ t}, deducing recursively, we obtain

E
Np [ρ(Xt)] ≤ exp

{ ∫ t

ζmt

β�̄s
ds

}
E
Np
[
ρ
(
Xζmt

)]
≤ exp

{ ∫ t

ζmt

β�̄s
ds

}
exp

{ ∫ ζmt

ζmt−1

β�̄s
ds

}
E
Np
[
ρ
(
Xζmt−1

)]
≤ · · · ≤ exp

{ ∫ t

0
β�̄s

ds

}
ρ(x).

Consequently, E[ρ(Xt)] ≤E
[

exp
{ ∫ t

0 β�̄s
ds
}]

ρ(x), and further, by Hölder’s inequality, for
p′ ∈ (0, 1],

E[ρp′
(Xt)] ≤E

[
exp

{ ∫ t

0
p′β�̄s

ds

}]
ρp′

(x). (2.14)

According to [1, Propositions 4.1, 4.2], (2.4) yields that there exist p′ ∈ (0, 1], C, η > 0
such that E

[
exp

{ ∫ t
0 p′β�̄s

ds
}]≤ Ce−ηt. Combining this with (2.3) and (2.14), the desired

conclusion follows immediately. �
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3. Perturbation of continuous-time Markov chain

Given two transition rate matrices Q = (qij)i,j∈S and Q̃ = (q̃ij)i,j∈S on S = {1, 2, . . . , N},
2 ≤ N ≤ ∞, there are two continuous-time Markov chains (�t) and

(
�̃t
)

associated with Q
and Q̃ respectively with �0 = �̃0; the purpose of this section is to estimate the quantity

1

t

∫ t

0
P
(
�s �= �̃s

)
ds, t > 0, (3.1)

in terms of the difference between Q and Q̃. The quantity in (3.1) plays an important role in
the study of regime-switching processes. For instance, in [23], it is the key point to show the
stability of the process (Xt) under the perturbation of Q. In [20], it is the basis for proving
the Euler–Maruyama approximation of state-dependent regime-switching processes. Also, as
mentioned in the introduction, it was used in [24] to study the smooth dependence of initial val-
ues for state-dependent RSPs. In this section, we improve the estimate of the quantity in (3.1),
and apply it to develop the perturbation theory associated with regime-switching processes.

In the classical perturbation theory of Markov chains, there has been a lot of research on
an upper estimate of the total variation distance

∥∥Pt − P̃t
∥∥

var between the semigroups Pt and

P̃t associated with (�t) and
(
�̃t
)

respectively; see, e.g., [5, 14–16] and references therein. For
instance, [14, 15] showed that ∥∥Pt − P̃t

∥∥
var ≤ eτ1

e − 1

∥∥Q − Q̃
∥∥

�1
, (3.2)

where β(t) = 1
2 maxi,j∈S ‖(ei − ej) exp (tQ)‖�1 , τ1 = inf{t > 0; β(t) ≤ e−1}. Recall that the �1-

norm of a matrix A = (aij)i,j∈S is defined by ‖A‖�1 = supi∈S
∑

j∈S |aij|, and the total variation
distance between any two probability measures μ and ν on S is defined by ‖μ − ν‖var =
sup|h|≤1

∣∣∑
i∈S hi(μi − νi)

∣∣. However, the estimate in (3.2) and the method of establishing it

is not applicable to (3.1). Moreover, notice that
∥∥Pt − P̃t

∥∥
var = 2 inf P

(
ξ �= ξ̃

)≤ 2P(�t �= �̃t),

where the infimum is over all couplings (ξ, ξ̃ ) with marginal distributions Pt and P̃t respec-
tively. The method in [5, 14, 15] cannot be extended to deal with (3.1) because the total
variation norm plays an essential role in establishing (3.2). In [23], we provided an estimate
of (3.1) through constructing a coupling process (�t, �̃t) using Skorokhod’s representation,
where the intervals were constructed as in [8]. Consequently, [23] can only cope with jumping
processes in a finite state space and the estimate obtained is not satisfactory, especially for
large t.

In this section we use the following assumptions:

(H1) K0 := sup{qi, q̃j; i, j ∈ S} < ∞.

(H2) There exists a c0 ∈N such that qij = q̃ij = 0 for all i, j ∈ S with |j − i| > c0.

Theorem 3.1. Assume that (H1) and (H2) hold. Then there exist processes (�t) and
(
�̃t
)

such
that, for all t > 0,

1

t

∫ t

0
P
(
�s �= �̃s

)
ds ≤ 1 − 1

t
∥∥Q − Q̃

∥∥
�1

(
1 − e

−
∥∥Q−Q̃

∥∥
�1

t
)

, (3.3)

which implies that

1

t

∫ t

0
P
(
�s �= �̃s

)
ds ≤ min

{
1

2

∥∥Q − Q̃
∥∥

�1
t, 1

}
. (3.4)
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Also, for all t > 0,

1

t

∫ t

0
P
(
�s �= �̃s

)
ds ≥

inf
i∈S
∑
j �=i

|qij − q̃ij|

M + ∥∥Q − Q̃
∥∥

�1

⎛⎝1 − 1(
M + ∥∥Q − Q̃

∥∥
�1

)
t

(
1 − e

−
(

M+
∥∥Q−Q̃

∥∥
�1

)
t
)⎞⎠ ,

where M = 4c0K0.

Remark 3.1. In [23, Lemma 2.2], given two transition rate matrices Q and Q̃ on a finite state
space S = {1, 2, . . . , N}, a coupling process (�t, �̃t) was constructed that satisfies

1

t

∫ t

0
P
(
�s �= �̃s

)
ds ≤ N2t

∥∥Q − Q̃
∥∥

�1
. (3.5)

There is an important drawback in (3.5): the appearance of N2 on the right-hand side, which
restricts the application of this result to Markov chains on an infinite state space. This drawback
has been removed in Theorem 3.1, and, further, a lower estimate of 1

t

∫ t
0 P
(
�s �= �̃s

)
ds is

provided in the current work.

3.1. Construction of the coupling process

In this part, we introduce the coupling process (�t, �̃t) on S × S that will be used in
the proof of Theorem 3.1. Similarly to Section 2, it is also constructed using the Skorokhod
representation theorem. However, there are several subtle differences to fit the current purpose.

Step 1: Construction of intervals Due to (H1) and (H2), we let

�1k = [(k − 2)K0, (k − 2)K0 + q1k), �̃1k = [(k − 2)K0, (k − 2)K0 + q̃1k)

for 2 ≤ k ≤ c0 + 1, and U1 = [0, c0K0). By (H1), q1k ≤ K0 and q̃1k ≤ K0, and hence
�1k

⋂
�1j = ∅ and �̃1k

⋂
�̃1j = ∅, k �= j. Moreover, �1k ⊂ U1 and �̃1k ⊂ U1 for all 2 ≤ k ≤

c0 + 1. For n ≥ 2, define

�nk =
⎧⎨⎩
[
2(n − 1)c0K0 − (n − k)K0, 2(n − 1)c0K0 − (n − k)K0 + qnk

)
, n − c0 ≤ k < n,[

2(n − 1)c0K0 + (k − n − 1)K0, 2(n − 1)c0K0 + (k − n − 1)K0 + qnk
)
, n + c0 ≥ k > n.

Define, similarly, �̃nk by replacing qnk above with q̃nk. Let Un = [(2n − 3)c0K0, (2n − 1)c0K0
)
,

n ≥ 2. So �nk ⊂ Un and �̃nk ⊂ Un for all k, n ∈ S with |k − n| ≤ c0.
Compared with the intervals constructed in [8], the starting point of each interval �nk

constructed above does not depend on any other intervals �ij, i, j ∈ S with i �= n, j �= k. We
construct �nk in this way in order to remove the term N2 that appears in (3.5).

Step 2: Construction of Poisson random measure Denote by m(dx) the Lebesgue measure
over the real line R. Let ξ

(k)
i , k, i = 1, 2, . . ., be Uk-valued random variables with P

(
ξ

(k)
i ∈

dx
)= m(dx)/m(Uk), and τ

(k)
i , k, i = 1, 2, . . ., be non-negative random variables such that

P
(
τ

(k)
i > t

)= exp [−tm(Uk)], t ≥ 0. Assume all ξ
(k)
i , τ

(k)
i to be mutually independent. Write

ζ
(k)
n = τ

(k)
1 + · · · + τ

(k)
n for k, n ≥ 1 and ζ

(k)
0 = 0 for k ≥ 1. We define Dp̃ =⋃k≥1

⋃
n≥0

{
ζ

(k)
n
}

and p̃(t) =∑0≤s<t 
p̃(s), 
p̃(s) = 0 for s �∈Dp̃, and 
p̃
(
ζ

(k)
n
)= ξ

(k)
n , k, n = 1, 2, . . . Let

Np̃([0, t] × A) = #
{
s ∈Dp̃; 0 < s ≤ t, p̃(s) ∈ A

}
, t > 0, A ∈ B([0, ∞)).
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As a consequence, we get a Poisson random process (p̃(t)) and its associated Poisson random
measure Np̃(dt, dx) with intensity measure dt m(dx).

The construction of (p̃(t)) is more complicated than that of (p(t)) in Section 2, which is
caused by the fact that the union of �nk for n, k = 1, 2, . . . may be unbounded.

Step 3: Construction of coupling processes Define two functions ϑ , ϑ̃ associated with �ij

and �̃ij, i, j ∈ S , by

ϑ(i, z) =
∑

j∈S,j �=i

(j − i)1�ij(z), ϑ̃(i, z) =
∑

j∈S,j �=i

(j − i)1�̃ij
(z). (3.6)

Then, the desired coupling process (�t, �̃t) is given as the solution of the following SDEs:

d�t =
∫

[0,∞)
ϑ(�t−, z) Np̃(dt, dz), �0 = i0 ∈ S, (3.7)

d�̃t =
∫

[0,∞)
ϑ̃(�̃t−, z) Np̃(dt, dz), �̃0 = i0 ∈ S . (3.8)

Remark 3.2. The coupling process (�t, �̃t) constructed above is different from the basic cou-
pling of (�t) and

(
�̃t
)

(see [3, p. 11]). Indeed, the transition rate matrix Q̄ = (q̄(ij)(k�))i,j,k,�∈S
of (�t, �̃t) is given as follows: for i, j, k, r ∈ S , which are different from each other, q̄(ij)(kr) =
0, q̄(ij)(ik) = q̃jk, q̄(ij)(kj) = qik, q̄(ii)(jj) = qij ∧ q̃ij, q̄(ii)(ji) = (qij − q̃ij) ∨ 0, q̄(ii)(ij) = (q̃ij − qij) ∨ 0,
and q̄(ii)(ii) = − ∑

(�,�′)�=(i,i)

q̄(ii)(��′).

The transition rate matrix of the basic coupling is given by q(ij)(kj) = (qik − q̃jk) ∨ 0, q(ij)(ik) =
(q̃jk − qik) ∨ 0, and q(ij)(kk) = qik ∧ q̃jk, for all i, j, k ∈ S , and i,j not necessarily different.

By the previous construction of �ij, �̃ij, and Np(dt, dx), the following properties hold:

(i) The processes (�t) and
(
�̃t
)

can jump only when the Poisson process (p̃(t)) jumps.

(ii) If �t = �̃t = k, for δ > 0, �t+δ �= �̃t+δ may happen only when ζ
(k)
n ∈ [t, t + δ) and

ξ
(k)
n ∈ �kj
�̃kj for some n ≥ 1, where A
B := (A\B) ∪ (B\A) for Borel sets A, B.

3.2. Proof of Theorem 3.1 and its application

Proof of Theorem 3.1. To get the upper estimate, for δ > 0, let

α(δ) = sup
i∈S

P(�δ �= �̃δ | �0 = �̃0 = i), β(δ) = 1 − α(δ).

Now we use the representations in (3.7) and (3.8) of (�t) and
(
�̃t
)

to estimate α(δ). Noting
that �0 = �̃0 = i0 for some i0 ∈ S , by (3.6), (3.7), and (3.8) we have

P
(
�δ �= �̃δ

)= P
(
�δ �= �̃δ | �0 = �̃0) = P

(
�δ �= �̃δ,Np̃([0, δ] × Ui0 ) ≥ 1

)
= P

(
�δ �= �̃δ,Np̃

(
[0, δ] × Ui0

)= 1
)+ P

(
�δ �= �̃δ,Np̃([0, δ] × Ui0 ) ≥ 2

)
.

(3.9)

Since H := m(Ui0 ) = 2c0K0 < ∞, there exists a C > 0 independent of the choice of i0 ∈ S
such that

P
(Np̃([0, δ] × Ui0 ) ≥ 2

)= 1 − e−Hδ − Hδe−Hδ ≤ Cδ2.
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Moreover,

P
(
�δ �= �̃δ,Np̃

(
[0, δ] × Ui0

)= 1
)= ∫ δ

0
P

(
�δ �= �̃δ, τ

(i0)
1 ∈ ds, τ

(i0)
2 > δ − s

)
=
∫ δ

0
P

(
ξ

(i0)
1 ∈ ∪j∈S

(
�i0j
�̃i0j

)
, τ

(i0)
1 ∈ ds, τ

(i0)
2 > δ − s

)
= δe−Hδ

∑
j∈S,j �=i0

|qi0j − q̃i0j|

≤ δe−Hδ
∥∥Q − Q̃

∥∥
�1

≤ δ
∥∥Q − Q̃

∥∥
�1

. (3.10)

In the light of (3.9) and (3.10), we get

P
(
�δ �= �̃δ

)= P(�δ �= �̃δ | �0 = �̃0 = i0) ≤ δ
∥∥Q − Q̃

∥∥
�1

+ Cδ2, (3.11)

and hence

α(δ) ≤ δ
∥∥Q − Q̃

∥∥
�1

+ Cδ2, β(δ) = 1 − α(δ) ≥ 1 − δ
∥∥Q − Q̃

∥∥
�1

− Cδ2. (3.12)

Next, let us consider the time 2δ.

P
(
�2δ �= �̃2δ

)= P
(
�2δ �= �̃2δ, �δ = �̃δ

)+ P
(
�2δ �= �̃2δ, �δ �= �̃δ

)
= P

(
�2δ �= �̃2δ | �δ = �̃δ

)
P
(
�δ = �̃δ

)+ P
(
�2δ �= �̃2δ | �δ �= �̃δ

)
P
(
�δ �= �̃δ

)
≤ α(δ)P

(
�δ = �̃δ

)+ P
(
�δ �= �̃δ

)
= α(δ) + (1 − α(δ))P

(
�δ �= �̃δ

)
≤ α(δ)(1 + β(δ)),

where we have used the time homogeneity of Markov chain (�t, �̃t) to get the esti-
mate P

(
�2δ �= �̃2δ | �δ = �̃δ

)≤ α(δ). Analogously, using the time homogeneity of (�t) and(
�̃t
)
,

P
(
�3δ �= �̃3δ

)≤ P
(
�3δ �= �̃3δ | �2δ = �̃2δ

)
P
(
�2δ = �̃2δ

)+ P
(
�2δ �= �̃2δ

)
≤ α(δ) + β(δ)P

(
�2δ �= �̃2δ

)
≤ α(δ)

(
1 + β(δ) + β(δ)2)= 1 − β(δ)3.

Deducing inductively, we get

P
(
�kδ �= �̃kδ

)≤ α(δ)
k∑

m=1

β(δ)m−1 = 1 − β(δ)k for k ≥ 4.
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Therefore, for t > 0, setting K(t) = [t/δ], tk = kδ for k ≤ K, and tK+1 = t, by (3.12),∫ t

0
P
(
�s �= �̃s

)
ds ≤

K(t)∑
k=0

∫ tk+1

tk

(
P
(
�s �= �̃s, �kδ = �̃kδ

)+ P
(
�s �= �̃s, �kδ �= �̃kδ

))
ds

≤
K(t)∑
k=0

∫ tk+1

tk
P
(
�s �= �̃s | �kδ �= �̃kδ

)
ds +

K(t)∑
k=0

∫ tk+1

tk
P
(
�kδ �= �̃kδ

)
ds

≤ α(δ)t + δ

(
K(t) + 1 −

K(t)∑
k=0

β(δ)k

)

≤ α(δ)t + δ(K(t) + 1) − δ

K(t)∑
k=0

(
1 − δ

∥∥Q − Q̃
∥∥

�1
− Cδ2)k

≤ α(δ)t + δ(K(t) + 1) − 1 − (1 − δ
∥∥Q − Q̃

∥∥
�1

− Cδ2
)K(t)+1∥∥Q − Q̃

∥∥
�1

+ Cδ
.

Letting δ ↓ 0 and then dividing both sides by t, we get the upper estimate

1

t

∫ t

0
P
(
�s �= �̃s

)
ds ≤ 1 − 1

t
∥∥Q − Q̃

∥∥
�1

(
1 − e

−
∥∥Q−Q̃

∥∥
�1

t
)

≤ 1.

Using the inequality e−x ≤ 1 − x + 1
2 x2 for x ≥ 0, we further get

1

t

∫ t

0
P
(
�s �= �̃s

)
ds ≤ min

{
1

2

∥∥Q − Q̃
∥∥

�1
t, 1

}
.

Therefore, the upper estimates (3.3) and (3.4) have been proved.
For the lower estimate, We will estimate the difference by induction. Due to (3.9),

P
(
�δ �= �̃δ

)= P
(
�δ �= �̃δ | �0 = �̃0

)
≥ P

(
�δ �= �̃δ, Np̃

(
[0, δ] × Ui0

)= 1
)

= δe−Hδ
∑
j �=i

|qi0j − q̃i0j| ≥ δe−Hδ inf
i∈S
∑
j �=i

|qij − q̃ij| =: α̃(δ).

Then,

P
(
�2δ �= �̃2δ

)= P
(
�2δ �= �̃2δ, �δ = �̃δ

)+ P
(
�2δ �= �̃2δ, �δ �= �̃δ

)
= P

(
�2δ �= �̃2δ | �δ = �̃δ

)(
1 − P

(
�δ �= �̃δ

))
+ P

(
�δ �= �̃δ

)− P
(
�2δ = �̃2δ | �δ �= �̃δ

)
P
(
�δ �= �̃δ

)
≥ P

(
�2δ �= �2δ | �δ = �̃δ

)(
1 − P

(
�δ �= �̃δ

))+ P
(
�δ �= �̃δ

)
− P

(
there exist jumps for (p̃(t)) during [δ, 2δ) localizing in U�δ ∪ U�̃δ

)
P
(
�δ �= �̃δ

)
≥ P

(
�2δ �= �2δ | �δ = �̃δ

)(
1 − P

(
�δ �= �̃δ

))
+ P

(
�δ �= �̃δ

)− (1 − e−Mδ
)
P
(
�δ �= �̃δ

)
≥ α̃(δ)(1 − α(δ)) + e−Mδα̃(δ)

≥ α̃(δ) + (e−Mδ − δ
∥∥Q − Q̃

∥∥
�1

− Cδ2)α̃(δ),
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where we have used (3.11) and P
(
Np̃
(
[δ, 2δ] × (U�δ ∪ U�̃δ

))≥ 1
)≤ 1 − e−Mδ , since m(Ui ∪

Uj) ≤ M = 4c0K0 for all i, j ∈ S . Setting γ (δ) = e−Mδ − δ
∥∥Q − Q̃

∥∥
�1

− Cδ2, which is positive

when δ is small enough, we rewrite the previous estimate in the form P
(
�2δ �= �̃2δ

)≥ α̃(δ) +
γ (δ)α̃(δ). Repeating this procedure, we obtain

P(�kδ �= �̃kδ) ≥ α̃(δ)
k∑

m=1

γ (δ)m−1, k ≥ 3.

Then, from this, for K ∈N,

∫ Kδ

0
P
(
�s �= �̃s

)
ds =

K∑
k=0

∫ (k+1)δ

kδ

(
P
(
�s �= �̃s, �kδ �= �̃kδ

)+ P
(
�s �= �̃s, �kδ = �̃kδ

))
ds

≥
K∑

k=0

∫ (k+1)δ

kδ

(
P
(
�kδ �= �̃kδ

)− P
(
�kδ �= �̃kδ, �s = �̃s

))
ds

≥ δ

K∑
k=1

P
(
�kδ �= �̃kδ

)− δ
(
1 − e−Mδ

) K∑
k=1

P
(
�kδ �= �̃kδ

)
≥ δe−Mδ

K∑
k=1

α̃(δ)
1 − γ (δ)k

1 − γ (δ)

= e−Mδ δα̃(δ)

1 − γ (δ)

(
K − γ (δ)

(
1 − γ (δ)K

)
1 − γ (δ)

)
.

Since

lim
δ↓0

α̃(δ)

1 − γ (δ)
=

inf
i∈S
∑
j �=i

|qij − q̃ij|

M + ∥∥Q − Q̃
∥∥

�1

, lim
δ↓0

γ (δ)
t
δ = e

−
(

M+
∥∥Q−Q̃

∥∥
�1

)
t
,

by taking K = [t/δ] in the previous estimation and letting δ tend downward to 0, we finally get

∫ t

0
P
(
�s �= �̃s

)
ds ≥

inf
i∈S
∑
j �=i

|qij − q̃ij|

M + ∥∥Q − Q̃
∥∥

�1

(
t − 1

M + ∥∥Q − Q̃
∥∥

�1

(
1 − e

−
(

M+
∥∥Q−Q̃

∥∥
�1

)
t
))

,

which is the desired lower estimate. The proof is complete. �

Next, we consider the application of Theorem 3.1. First, let us consider its application to
perturbation theory on the invariant probability measures of continuous-time Markov chains
on infinite state spaces. There have been many works on perturbation theory of Markov chains,
such as [16, 29] and references therein. We refer readers to the recent review paper [30] for
more discussions on this topic.

Let Pt and P̃t denote the semigroups with respect to the transition rate matrices Q and
Q̃ respectively. Assume that there exist invariant probability measures π = (πi)i∈S and π̃ =
(π̃i)i∈S associated respectively with Pt and P̃t, i.e. πPt = π , π̃ P̃t = π̃ .
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Corollary 3.1. Assume (H1) and (H2) hold. Suppose that there exists a function η : [0, ∞) →
[0, 2] satisfying

∫∞
0 ηs ds < ∞ such that, for some i0 ∈ S , ‖Pt(i0, ·) − π‖var ≤ ηt and

‖P̃t(i0, ·) − π̃‖var ≤ ηt for t ≥ 0. Then,

‖π − π̃‖var ≤ 2
√

2

( ∫ ∞

0
ηs ds

)1/2√∥∥Q − Q̃
∥∥

�1
.

Proof. For any bounded function h on S with |h|∞ := supi∈S |hi| ≤ 1,

|π (h) − π̃ (h)| =
∣∣∣∣∣∑

i∈S
πihi −

∑
i∈S

π̃ihi

∣∣∣∣∣
≤
∣∣∣∣π (h) − 1

t

∫ t

0
Psh(i0) ds

∣∣∣∣+ ∣∣∣∣π̃ (h) − 1

t

∫ t

0
P̃sh(i0) ds

∣∣∣∣
+
∣∣∣∣1t
∫ t

0
Psh(i0) − P̃sh(i0) ds

∣∣∣∣
≤ 1

t

∫ t

0
|Psh(i0) − π (h)| ds + 1

t

∫ t

0
|̃Psh(i0) − π̃ (h)| ds + ∥∥Q − Q̃

∥∥
�1

t

≤ 2

t

∫ ∞

0
ηs ds + ∥∥Q − Q̃

∥∥
�1

t for all t > 0,

where we have used (3.4) in Theorem 3.1. By taking t =
(

2
∫∞

0 ηs ds/
∥∥Q − Q̃

∥∥
�1

)1/2
, we

arrive at

‖π − π̃‖var = sup
|h|≤1

|π (h) − π̃ (h)| ≤ 2
√

2

( ∫ ∞

0
ηs ds

) 1
2√∥∥Q − Q̃

∥∥
�1

,

which is the desired conclusion. �

Remark 3.3. When S is a finite state space, the stability of π in terms of the perturbation of
Q has been studied in [6, 7]. [7] proved it through expressing π as a polynomial of transition
probabilities. This result was applied in [2] to establish the averaging principle for multiple-
timescale systems. [6] proved a similar result by the Perron–Frobenius theorem to express π

in terms of a non-zero right eigenvector of the Q-matrix with eigenvalue 0.

Second, we can apply Theorem 3.1 to improve all the main results [23, Theorems 1.1–1.4].
Here we only state the improvement of [23, Theorem 1.1] to save space.

Consider the regime-switching system (Xt, �t) satisfying

dXt = b(Xt, �t) dt + σ (Xt, �t) dBt, X0 = x0 ∈R
d, �0 = i0 ∈ S,

with (�t) a Markov chain on S = {1, 2, . . . , N}, 2 ≤ N ≤ ∞. In realistic applications, we can
sometimes only get an estimation Q̃ of the original transition rate matrix Q of (�t). Q̃ deter-
mines another Markov chain

(
�̃t
)
. Correspondingly, the studied system (Xt) turns into (X̃t)

satisfying
dX̃t = b

(
X̃t, �̃t

)
dt + σ

(
X̃t, �̃t

)
dBt, X̃0 = x0, �̃0 = i0.

It is necessary to measure the difference between Xt and X̃t caused by the difference between
Q and Q̃. We shall characterize the difference between Xt and X̃t via the Wasserstein distance
between their distributions.
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For any two probability measures μ, ν on R
d, define the L2-Wasserstein distance between

them by

W2(μ, ν)2 = inf
π∈C(μ,ν)

{ ∫
Rd×Rd

|x − y|2 π (dx, dy)

}
,

where C(μ, ν) denotes the set of all the couplings of μ, ν on R
d ×R

d.

Corollary 3.2. Assume that (Q1), (Q2), (H1), and (H2) hold. Denote by L(Xt) and L(X̃t) the
distributions of Xt and X̃t respectively. Then

W2
(L(Xt),L

(
X̃t
))2 ≤ C(p, t)

(∥∥Q − Q̃
∥∥

�1

)(p−1)/p
, t > 0,

where p > 1 and C(p,t) is a positive constant depending only on p and t.

Proof. This result can be proved along the lines of [23, Theorem 1.1] by replacing the upper
bound of [23, Lemma 2.2] with the upper bound given in Theorem 3.1. The constant C(p,t)
can be explicitly expressed as in [23]. �
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