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Abstract
Let G be a permutation group on a finite set Ω. The base size of G is the minimal size of a subset of Ω with trivial
pointwise stabiliser in G. In this paper, we extend earlier work of Fawcett by determining the precise base size of
every finite primitive permutation group of diagonal type. In particular, this is the first family of primitive groups
arising in the O’Nan–Scott theorem for which the exact base size has been computed in all cases. Our methods also
allow us to determine all the primitive groups of diagonal type with a unique regular suborbit.
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1. Introduction

Let 𝐺 � Sym(Ω) be a permutation group on a finite set Ω of size n. A subset of Ω is called a base for
G if its pointwise stabiliser in G is trivial. The minimal size of a base, denoted 𝑏(𝐺), is called the base
size of G. Equivalently, if G is transitive with point stabiliser H, then 𝑏(𝐺) is the smallest number b such
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that the intersection of some b conjugates of H in G is trivial. This classical concept has been studied
since the early years of permutation group theory in the 19th century, finding natural connections to
other areas of algebra and combinatorics. For example, see [3] for details of the relationship between
the metric dimension of a finite graph and the base size of its automorphism group and [52, Section 4]
for an account of the key role played by bases in the computational study of finite groups. We refer the
reader to survey articles [9, Section 5] and [44] for further connections.

In general, determining 𝑏(𝐺) is a difficult problem and there are no efficient algorithms for computing
𝑏(𝐺), or constructing a base of minimal size. Blaha [4] proves that determining whether G has a base
of size a given constant is an NP-complete (nondeterministic polynomial-time complete) problem.
Historically, there has been an intense focus on studying the base sizes of finite primitive groups (recall
that a transitive permutation group is primitive if its point stabiliser is a maximal subgroup). A trivial
lower bound is 𝑏(𝐺) � log𝑛 |𝐺 | and it turns out that all primitive groups admit small bases in the sense
that there is an absolute constant c such that 𝑏(𝐺) � 𝑐 log𝑛 |𝐺 | for every primitive group G. This was
originally conjectured by Pyber [51] in the 1990s and the proof was completed by Duyan et al. in [23].
It was subsequently extended by Halasi et al. [35], who show that

𝑏(𝐺) � 2 log𝑛 |𝐺 | + 24

and the multiplicative constant 2 is best possible. In fact, one can prove stronger bounds in special cases.
For example, Seress [54] proves that 𝑏(𝐺) � 4 if G is soluble, and this result was recently extended by
Burness [8] who shows that 𝑏(𝐺) � 5 if G has a soluble point stabiliser (both bounds in [8] and [54]
are best possible).

The O’Nan–Scott theorem divides the finite primitive groups into several families that are defined in
terms of the structure and action of the socle of the group (recall that the socle of a group is the product
of its minimal normal subgroups). Following [42], these families are: affine, almost simple, diagonal
type, product type and twisted wreath products. There are partial results on base sizes when G is affine,
product type or a twisted wreath product. For example, if 𝐺 = 𝑉𝐻 � AGL(𝑉) is affine, then Halasi and
Podoski [36] show that 𝑏(𝐺) � 3 if (|𝑉 |, |𝐻 |) = 1, and we refer the reader to [16, 24] for some results
on base sizes of product type groups and twisted wreath products. In recent years, base sizes of almost
simple primitive groups have been intensively studied (recall that G is called almost simple if there
exists a nonabelian simple group 𝐺0 such that 𝐺0 � 𝐺 � Aut(𝐺0)). Roughly speaking, such a group is
said to be standard if 𝐺0 = 𝐴𝑚 and Ω is a set of subsets or partitions of {1, . . . , 𝑚}, or 𝐺0 is a classical
group and Ω is a set of subspaces of the natural module for 𝐺0, otherwise G is nonstandard (see [11,
Definition 1] for the formal definition). A conjecture of Cameron [21, p. 122] asserts that 𝑏(𝐺) � 7 if G
is nonstandard, with equality if and only if 𝐺 = M24 in its natural action of degree 24. This conjecture
was proved in a sequence of papers by Burness et al. [11, 14, 18, 20]. In addition, the precise base sizes of
all nonstandard groups with alternating or sporadic socle are computed in [14] and [20, 50], respectively.

In this paper, we focus on bases for primitive diagonal type groups. Here, 𝐺 � Sym(Ω) has socle 𝑇 𝑘 ,
where T is a nonabelian simple group and 𝑘 � 2 is an integer. More precisely, we have |Ω| = |𝑇 |𝑘−1 and

𝑇 𝑘 � 𝐺 � 𝑇 𝑘 .(Out(𝑇) × 𝑆𝑘 ).

The primitivity of G implies that the subgroup 𝑃 � 𝑆𝑘 induced by the conjugation action of G on the
set of factors of 𝑇 𝑘 is either primitive, or 𝑘 = 2 and 𝑃 = 𝐴2 = 1. The group P is called the top group of
G and we note that

𝑇 𝑘 � 𝐺 � 𝑇 𝑘 .(Out(𝑇) × 𝑃). (1)

The first systematic study of bases for diagonal type groups was initiated by Fawcett in [25]. Here,
she shows that 𝑏(𝐺) = 2 if 𝑃 ∉ {𝐴𝑘 , 𝑆𝑘 }, and in the general setting she determines the exact base size
of G up to one of two possibilities (see Theorem 2.3). One of the key ingredients in [25] is a theorem
of Seress [53], which asserts that if 𝑘 > 32 and 𝑃 ∉ {𝐴𝑘 , 𝑆𝑘 }, then there exists a subset of {1, . . . , 𝑘}
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with trivial setwise stabiliser in P. However, this does not hold if 𝑃 ∈ {𝐴𝑘 , 𝑆𝑘 }, and hence a different
approach is required. In this paper, we extend Fawcett’s work by determining the exact base size in all
cases (see Theorem 3 below).

In recent years, there has been significant interest in studying the base-two primitive groups (we
say G is base-two if 𝑏(𝐺) = 2). Indeed, a project with the ambitious aim of classifying these groups
was initiated by Jan Saxl in the 1990s and it continues to be actively pursued, with many interesting
applications and open problems. For example, Burness and Giudici [12] define the Saxl graph of a base-
two group 𝐺 � Sym(Ω) to be the graph with vertex set Ω, with two vertices adjacent if they form a base
for G. It is easy to see that the Saxl graph of a base-two primitive group is connected and an intriguing
conjecture asserts that its diameter is at most 2 (see [12, Conjecture 4.5]). This has been verified in
several special cases (for example, see [16, 17, 22, 40]), but it remains an open problem.

Returning to a diagonal type group G as in (1), recall that Fawcett [25] has proved that 𝑏(𝐺) = 2 if
𝑃 ∉ {𝐴𝑘 , 𝑆𝑘 }. Our first result resolves the base-two problem for diagonal type groups in full generality.

Theorem 1. Let G be a diagonal type primitive group with socle 𝑇 𝑘 and top group 𝑃 � 𝑆𝑘 . Then
𝑏(𝐺) = 2 if and only if one of the following holds:

(i) 𝑃 ∉ {𝐴𝑘 , 𝑆𝑘 }.
(ii) 3 � 𝑘 � |𝑇 | − 3.

(iii) 𝑘 ∈ {|𝑇 | − 2, |𝑇 | − 1} and G does not contain 𝑆𝑘 .

Note that 𝑏(𝐺) � 2 if and only if G has a regular suborbit, and there is a natural interest in studying
the finite primitive groups with a unique regular suborbit. For example, notice that G has a unique regular
suborbit if and only if the Saxl graph of G is G-arc-transitive. In this direction, we refer the reader to
[17, Theorem 1.6] for a classification of the relevant almost simple primitive groups with soluble point
stabilisers, and [16, Corollary 5] for partial results on product type groups. Here, we resolve this problem
for diagonal type groups.

Theorem 2. Let G be a diagonal type primitive group with socle 𝑇 𝑘 . Then G has a unique regular
suborbit if and only if 𝑇 = 𝐴5, 𝑘 ∈ {3, 57} and 𝐺 = 𝑇 𝑘 .(Out(𝑇) × 𝑆𝑘 ).

We now present our main result, which determines the precise base size of every primitive group of
diagonal type. This is the first family of primitive groups arising in the O’Nan–Scott theorem for which
the exact base sizes are known.

Theorem 3. Let G be a diagonal type primitive group with socle 𝑇 𝑘 and top group 𝑃 � 𝑆𝑘 .

(i) If 𝑃 ∉ {𝐴𝑘 , 𝑆𝑘 }, then 𝑏(𝐺) = 2.
(ii) If 𝑘 = 2, then 𝑏(𝐺) ∈ {3, 4}, with 𝑏(𝐺) = 4 if and only if 𝑇 ∈ {𝐴5, 𝐴6} and 𝐺 = 𝑇2.(Out(𝑇) × 𝑆2).

(iii) If 𝑘 � 3, 𝑃 ∈ {𝐴𝑘 , 𝑆𝑘 } and |𝑇 |ℓ−1 < 𝑘 � |𝑇 |ℓ with ℓ � 1, then 𝑏(𝐺) ∈ {ℓ + 1, ℓ + 2}. Moreover,
𝑏(𝐺) = ℓ + 2 if and only if one of the following holds:
(a) 𝑘 = |𝑇 |.
(b) 𝑘 ∈ {|𝑇 | − 2, |𝑇 |ℓ − 1, |𝑇 |ℓ } and 𝑆𝑘 � 𝐺.
(c) 𝑘 = |𝑇 |2 − 2, 𝑇 ∈ {𝐴5, 𝐴6} and 𝐺 = 𝑇 𝑘 .(Out(𝑇) × 𝑆𝑘 ).

Let us briefly discuss the methods we will use to establish our main theorems. Focusing first on
Theorem 1, recall that the holomorph of a nonabelian finite simple group T is the group

Hol(𝑇) = 𝑇 :Aut(𝑇) = 𝑇2.Out(𝑇),

which can be viewed as a primitive diagonal type group (with 𝑘 = 2 and top group 𝑃 = 1) in terms of its
natural action on T. We write Hol(𝑇, 𝑆) for the setwise stabiliser of 𝑆 ⊆ 𝑇 in Hol(𝑇). A key observation
is Lemma 2.15, which implies that

𝑏(𝐺) = 2 if there exists 𝑆 ⊆ 𝑇 such that |𝑆 | = 𝑘 and Hol(𝑇, 𝑆) = 1.
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This essentially reduces the proof of Theorem 1 to the cases where 3 � 𝑘 � |𝑇 |/2. However, it is rather
difficult to directly construct an appropriate subset S of T such that Hol(𝑇, 𝑆) = 1.

To overcome this difficulty, we adopt a probabilistic approach for 𝑘 � 5 in the proof of Theorem 1
(see Section 3 for more details). More specifically, we estimate the probability that a random k-subset
S of T satisfies Hol(𝑇, 𝑆) = 1, and we also use fixed point ratios to study the probability that a random
pair in Ω is a base for G. The former is a new idea, which involves computing

max{|𝐶𝑇 (𝑥) | : 1 ≠ 𝑥 ∈ Aut(𝑇)}

in Theorem 2.12, while the latter is a widely used technique in the study of base sizes introduced by
Liebeck and Shalev [45]. The cases where 𝑘 = 3 or 4 will be treated separately in Section 4.1. Here,
we use the fact that T is invariably generated by two elements (which is proved in [34] and [38],
independently), and a theorem of Gow [32] on the products of regular semisimple classes in groups of
Lie type. We will use a very similar approach to establish Theorem 2.

The proof of Theorem 3 will be completed in Section 5, and the main step involves constructing a
base of size ℓ + 1 when |𝑇 |ℓ−1 < 𝑘 � |𝑇 |ℓ − 3 for some ℓ � 2. Once again, our construction requires
the existence of a suitable subset S of T such that Hol(𝑇, 𝑆) = 1. We will treat the case where 𝑘 = 2
separately, working with a theorem of Leemans and Liebeck [41] on the existence of a generating pair
of T with a certain property (see Theorem 5.2).

As described above, a key ingredient in our study of bases for diagonal type groups is the following
result, which may be of independent interest.

Theorem 4. Let T be a nonabelian finite simple group, and suppose 3 � 𝑚 � |𝑇 | − 3. Then there exists
𝑆 ⊆ 𝑇 such that |𝑆 | = 𝑚 and Hol(𝑇, 𝑆) = 1.

Similarly, let Aut(𝑇, 𝑆) be the setwise stabiliser of 𝑆 ⊆ 𝑇# in Aut(𝑇), where 𝑇# = 𝑇 \ {1}. Note that
Aut(𝑇, 𝑆) = Aut(𝑇, 𝑇# \ 𝑆). By Theorem 4 and the transitivity of Hol(𝑇), if 3 � 𝑚 � |𝑇 | − 3, then there
exists 𝑆 ⊆ 𝑇 containing 1 such that |𝑆 | = 𝑚 and Hol(𝑇, 𝑆) = 1. This implies that Aut(𝑇, 𝑆 \ {1}) = 1
and we have the following corollary.

Corollary 5. Let T be a nonabelian finite simple group, and suppose 2 � 𝑚 � |𝑇 | − 3. Then there exists
𝑆 ⊆ 𝑇# such that |𝑆 | = 𝑚 and Aut(𝑇, 𝑆) = 1.

To conclude this section, we highlight a connection to some interesting problems in algebraic
combinatorics. A digraph Γ is said to be a digraphical regular representation (DRR) of a group X if
Aut(Γ) � 𝑋 acts regularly on the vertex set of Γ. In particular, if Γ is a DRR of X, then Γ is isomorphic
to a Cayley digraph Cay(𝑋, 𝑆) for some 𝑆 ⊆ 𝑋# with Aut(𝑋, 𝑆) = 1. A classical result of Babai [1]
shows that a finite group X admits a DRR if and only if X is not a quaternion group nor one of four
elementary abelian groups. Moreover, it was conjectured by Babai and Godsil [2, 30] that if X is a group
of order n, then the proportion of subsets 𝑆 ⊆ 𝑋# such that Cay(𝑋, 𝑆) is a DRR tends to 1 as 𝑛 → ∞.
This conjecture has been proved recently by Morris and Spiga [49].

Given a finite group X, it is natural to consider the existence of a DRR with a prescribed valency,
noting that the valency of Cay(𝑋, 𝑆) is |𝑆 |. Recently, there are some results concerning this problem in
relation to finite simple groups (for example, see [58, 61] for the existence of some families of DRRs
with a fixed valency 𝑘 � 3, and [60] for 𝑘 � 5). However, there appear to be no asymptotic results in
the literature concerning the proportion of DRRs of a fixed valency of a given finite group. With this
problem in mind, let Q𝑘 (𝑋) be the probability that a random k-subset of 𝑋# has a nontrivial setwise
stabiliser in Aut(𝑋). That is,

Q𝑘 (𝑋) =
|{𝑅 ∈ 𝒮𝑘 : Aut(𝑋, 𝑅) ≠ 1}|

|𝒮𝑘 |
,

where 𝒮𝑘 is the set of k-subsets of 𝑋#. In Section 6, we will prove the following results.
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Theorem 6. Let 𝑘 � 4 be an integer and let (𝑇𝑛) be a sequence of nonabelian finite simple groups such
that |𝑇𝑛 | → ∞ as 𝑛 → ∞. Then Q𝑘 (𝑇𝑛) → 0 as 𝑛 → ∞.

Theorem 7. Let T be a nonabelian finite simple group and let k be an integer such that 5 log2 |𝑇 | < 𝑘 <
|𝑇 | − 5 log2 |𝑇 |. Then Q𝑘 (𝑇) < 1/|𝑇 |.

We anticipate that these two results will be useful in studying the abundance of fixed-valent DRRs
of nonabelian finite simple groups.

Notation

Let 𝐺 � Sym(Ω) be a permutation group and Δ ⊆ Ω. Then the pointwise and setwise stabilisers of
Δ in G are sometimes denoted 𝐺 (Δ) and 𝐺 {Δ }, respectively. We adopt the standard notation for simple
groups of Lie type from [39]. All logarithms, if not specified, are in base two. Finally, if k is a positive
integer, then we write [𝑘] for the set {1, . . . , 𝑘}.

2. Preliminaries

2.1. Diagonal type groups

Here, we adopt the notation in [25]. Let 𝑘 � 2 be an integer, and let T be a nonabelian finite simple
group. Define

𝑊 (𝑘, 𝑇) := {(𝛼1, . . . , 𝛼𝑘 )𝜋 ∈ Aut(𝑇) �𝑘 𝑆𝑘 : 𝛼1Inn(𝑇) = 𝛼𝑖Inn(𝑇) for all 𝑖},
𝐷 (𝑘, 𝑇) := {(𝛼, . . . , 𝛼)𝜋 ∈ Aut(𝑇) �𝑘 𝑆𝑘 },
Ω(𝑘, 𝑇) := [𝑊 (𝑘, 𝑇) : 𝐷 (𝑘, 𝑇)] .

Then |Ω(𝑘, 𝑇) | = |𝑇 |𝑘−1 and 𝑊 (𝑘, 𝑇) = 𝑇 𝑘 .(Out(𝑇) × 𝑆𝑘 ) acts faithfully on Ω(𝑘, 𝑇). We say that a
group 𝐺 � Sym(Ω) with Ω = Ω(𝑘, 𝑇) is of diagonal type if

𝑇 𝑘 � 𝐺 � 𝑇 𝑘 .(Out(𝑇) × 𝑆𝑘 ).

Let 𝑃𝐺 denote the subgroup of 𝑆𝑘 induced by the conjugation action of G on the set of factors of 𝑇 𝑘 .
That is,

𝑃𝐺 = {𝜋 ∈ 𝑆𝑘 : (𝛼1, . . . , 𝛼𝑘 )𝜋 ∈ 𝐺 for some 𝛼1, . . . , 𝛼𝑘 ∈ Aut(𝑇)}.

Then naturally we have 𝐺 � 𝑇 𝑘 .(Out(𝑇) × 𝑃𝐺) as in (1). Moreover, G is primitive if and only if either
𝑃𝐺 is primitive on [𝑘] = {1, . . . , 𝑘}, or 𝑘 = 2 and 𝑃𝐺 = 1. From now on, if G is clear from the context,
we denote 𝑃 = 𝑃𝐺 and

𝑊 := 𝑇 𝑘 .(Out(𝑇) × 𝑃),
𝐷 := {(𝛼, . . . , 𝛼)𝜋 : 𝛼 ∈ Aut(𝑇), 𝜋 ∈ 𝑃},
Ω := Ω(𝑘, 𝑇) = [𝑊 : 𝐷] .

We write 𝜑𝑡 ∈ Inn(𝑇) for the inner automorphism such that 𝑥𝜑𝑡 = 𝑡−1𝑥𝑡 for any 𝑥 ∈ 𝑇 . Thus,

Ω = {𝐷 (𝜑𝑡1 , . . . , 𝜑𝑡𝑘 ) : 𝑡1, . . . , 𝑡𝑘 ∈ 𝑇}.

The action of G on Ω is given by

𝐷 (𝜑𝑡1 , . . . , 𝜑𝑡𝑘 ) (𝛼1 ,...,𝛼𝑘 ) 𝜋 = 𝐷 (𝜑𝑡
1𝜋−1 𝛼1𝜋−1 , . . . , 𝜑𝑡

𝑘𝜋
−1 𝛼𝑘 𝜋−1 ),
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and the stabiliser of 𝐷 ∈ Ω in W is D itself. In particular, for any element (𝛼, . . . , 𝛼)𝜋 ∈ 𝐷, we have

𝐷 (𝜑𝑡1 , . . . , 𝜑𝑡𝑘 ) (𝛼,...,𝛼) 𝜋 = 𝐷 (𝜑𝑡𝛼
1𝜋−1

, . . . , 𝜑𝑡𝛼
𝑘𝜋

−1
),

noting that 𝛼−1𝜑𝑡𝛼 = 𝜑𝑡𝛼 for all 𝑡 ∈ 𝑇 .
We begin by recording some preliminary results on bases for diagonal type groups from [25]. We

start with [25, Lemma 3.4].

Lemma 2.1. Let 𝑡1, . . . , 𝑡𝑘 be elements of T such that the following two properties are satisfied:

(i) At least two of the 𝑡𝑖 are trivial and at least one is nontrivial.
(ii) If 𝑡𝑖 and 𝑡 𝑗 are nontrivial and 𝑖 ≠ 𝑗 , then 𝑡𝑖 ≠ 𝑡 𝑗 .

Then (𝛼, . . . , 𝛼)𝜋 ∈ 𝐺 fixes 𝐷 (𝜑𝑡1 , . . . , 𝜑𝑡𝑘 ) only if 𝑡𝛼𝑖 = 𝑡𝑖𝜋 for all i.

For any x = (𝜑𝑡1 , . . . , 𝜑𝑡𝑘 ) ∈ Inn(𝑇)𝑘 , we define an associated partition Px = {P𝑡 : 𝑡 ∈ 𝑇} of [𝑘]
such that 𝑖 ∈ P𝑡 if 𝑡𝑖 = 𝑡. Note that some parts P𝑡 in Px might be empty. The following lemma is
an extension of Lemma 2.1, which will be useful later in Section 5. Recall that 𝑃{Px } is the setwise
stabiliser of the partition Px in P. In particular, if 𝑡𝑖𝜋 = 𝑡 𝑗 𝜋 whenever 𝑡𝑖 = 𝑡 𝑗 , then we have 𝜋 ∈ 𝑃{Px }.

Lemma 2.2. Let x = (𝜑𝑡1 , . . . , 𝜑𝑡𝑘 ) ∈ Inn(𝑇)𝑘 , 𝜔 = 𝐷x ∈ Ω and let Px = {P𝑡 : 𝑡 ∈ 𝑇} be the associated
partition of [𝑘] as above. Suppose (𝛼, . . . , 𝛼)𝜋 ∈ 𝐺𝜔 . Then

(i) 𝜋 ∈ 𝑃{Px };
(ii) If 0 < |P1 | ≠ |P𝑡 | for all 𝑡 ≠ 1, then 𝑡𝛼𝑖 = 𝑡𝑖𝜋 for all i.

Proof. As (𝛼, . . . , 𝛼)𝜋 fixes 𝜔 = 𝐷 (𝜑𝑡1 , . . . , 𝜑𝑡𝑘 ), there exists a unique 𝑔 ∈ 𝑇 such that 𝑡𝛼𝑖 = 𝑔𝑡𝑖𝜋

for all 𝑖 ∈ {1, . . . , 𝑘}. Suppose 𝑡𝑖 = 𝑡 𝑗 for some 𝑖 ≠ 𝑗 (so i and j are in the same part of Px). Then
𝑡𝑖𝜋 = 𝑔−1𝑡𝛼𝑖 = 𝑔−1𝑡𝛼𝑗 = 𝑡 𝑗 𝜋 . This gives part (i).

For part (ii), it suffices to show that 𝑔 = 1. If 𝑡𝑖 = 1, then 𝑡𝑖𝜋 = 𝑔−1, and we get 𝑡 𝑗 𝜋 = 𝑔−1𝑡𝛼𝑗 ≠ 𝑔−1 if
𝑡 𝑗 ≠ 1. This implies that |P𝑔−1 | = |P1 |, so 𝑔 = 1 by our assumption. �

The following theorem combines Fawcett’s main results on base sizes of diagonal type groups
from [25].

Theorem 2.3. Let G be a diagonal type primitive group with socle 𝑇 𝑘 and top group 𝑃 � 𝑆𝑘 .

(i) If 𝑃 ∉ {𝐴𝑘 , 𝑆𝑘 }, then 𝑏(𝐺) = 2.
(ii) If 𝑘 = 2, then 𝑏(𝐺) = 3 if 𝑃 = 1, and 𝑏(𝐺) ∈ {3, 4} if 𝑃 = 𝑆2.

(iii) If 𝑘 � 3, 𝑃 ∈ {𝐴𝑘 , 𝑆𝑘 } and |𝑇 |ℓ−1 < 𝑘 � |𝑇 |ℓ with ℓ � 1, then 𝑏(𝐺) ∈ {ℓ + 1, ℓ + 2}. Moreover, if
either 𝑘 = |𝑇 |, or 𝑘 ∈ {|𝑇 |ℓ − 1, |𝑇 |ℓ } and 𝑆𝑘 � 𝐺, then 𝑏(𝐺) = ℓ + 2.

Corollary 2.4. If 𝑃 ∈ {𝐴𝑘 , 𝑆𝑘 } and 𝑏(𝐺) = 2, then 2 < 𝑘 < |𝑇 |.

The following is [25, Lemma 3.11].

Lemma 2.5. Suppose 𝑃 ∈ {𝐴𝑘 , 𝑆𝑘 } and there exists an odd integer 3 � 𝑠 � 𝑘 that is relatively prime
to the order of every element of Out(𝑇). Then G contains 𝐴𝑘 .

Corollary 2.6. If 𝑃 ∈ {𝐴𝑘 , 𝑆𝑘 } and 𝑘 � |𝑇 | − 3, then G contains 𝐴𝑘 .

Proof. We have |Out(𝑇) | < |𝑇 |1/3 by Lemma 2.9 below. In particular, |Out(𝑇) | < |𝑇 |/3, so there exists
a prime s such that |Out(𝑇) | < 𝑠 < 𝑘 (Bertrand’s postulate). Now, apply Lemma 2.5. �

The following extends [25, Proposition 3.3], which asserts that 𝑏(𝐺) = 2 if 𝑘 > 32 and 𝑃 ∉ {𝐴𝑘 , 𝑆𝑘 }.
Here, 𝑟 (𝐺) is the number of regular suborbits of G, noting that 𝑟 (𝐺) � 1 if and only if 𝑏(𝐺) � 2.

Proposition 2.7. If 𝑘 > 32 and 𝑃 ∉ {𝐴𝑘 , 𝑆𝑘 }, then 𝑟 (𝐺) � 2.
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Proof. We use the same construction as in the proof of [25, Proposition 3.3]. By [53, Theorem 1],
there exists a partition P = {Π1,Π2,Π3} of [𝑘] such that each Π𝑖 is nonempty, |Π1 |, |Π2 | and |Π3 | are
distinct, and

3⋂
𝑚=1

𝑃{Π𝑚 } = 1. (2)

Let 𝑥1, 𝑥2 ∈ 𝑇 be nontrivial elements of distinct orders. By the main theorem of [33], there exist
𝑦1, 𝑦2 ∈ 𝑇 such that 〈𝑥𝑖 , 𝑦𝑖〉 = 𝑇 . Let Δ 𝑖 = {𝐷, 𝐷 (𝜑𝑡𝑖,1 , . . . , 𝜑𝑡𝑖,𝑘 )} for 𝑖 ∈ {1, 2}, where 𝑡𝑖, 𝑗 = 1 if
𝑗 ∈ Π1, 𝑡𝑖, 𝑗 = 𝑥𝑖 if 𝑗 ∈ Π2, and 𝑡𝑖, 𝑗 = 𝑦𝑖 if 𝑗 ∈ Π3. As explained in the proof of [25, Proposition 3.3],
both Δ1 and Δ2 are bases for G.

Suppose Δ (𝛼,...,𝛼) 𝜋
1 = Δ2. Then there exists 𝑔 ∈ 𝑇 such that 𝑡𝛼1, 𝑗 = 𝑔𝑡2, 𝑗 𝜋 for all 𝑗 ∈ [𝑘]. If 𝑡1, 𝑗 = 𝑡1, 𝑗′

for some 𝑗 ′ ∈ [𝑘], then 𝑡2, 𝑗 = 𝑡2, 𝑗′ and

𝑡2, 𝑗 𝜋 = 𝑔−1𝑡𝛼1, 𝑗 = 𝑔−1𝑡𝛼1, 𝑗′ = 𝑡2, ( 𝑗′) 𝜋 .

Hence, 𝜋 ∈ 𝑃{P }, and so 𝜋 ∈ 𝑃{Π𝑚 } for each 𝑚 ∈ {1, 2, 3} as |Π1 |, |Π2 | and |Π3 | are distinct. This
implies that 𝜋 = 1 by (2), and so 𝑔 = 1. However, it follows that 𝑥𝛼1 = 𝑥2, which is incompatible with
|𝑥1 | ≠ |𝑥2 |. We conclude that Δ1 and Δ2 are in distinct 𝐺𝐷-orbits, and thus 𝑟 (𝐺) � 2. �

Remark 2.8. In fact, as we will show in Section 4, we have 𝑟 (𝐺) � 1 whenever 3 � 𝑘 � |𝑇 | − 3, with
equality if and only if 𝑇 = 𝐴5, 𝑘 ∈ {3, 57} and 𝐺 = 𝑇 𝑘 .(Out(𝑇) × 𝑆𝑘 ). In particular, it follows that
𝑟 (𝐺) � 2 if 𝑘 � 32 and 𝑃 ∉ {𝐴𝑘 , 𝑆𝑘 }.

2.2. Simple groups

In this section, we record some properties of finite simple groups that will be used to prove our main
results. In the whole paper, T is a nonabelian finite simple group. We start with [25, Lemma 4.8].

Lemma 2.9. We have |Out(𝑇) | < |𝑇 |1/3.

Let T be a finite simple group of Lie type defined over F𝑞 , where 𝑞 = 𝑝 𝑓 and p is a prime. Then
we may write 𝑇 = 𝑂 𝑝′ (𝑌𝜎), where Y is the ambient simple algebraic group over the algebraic closure
K of F𝑞 and 𝜎 is an appropriate Steinberg endomorphism. Note that 𝑌𝜎 = Inndiag(𝑇) is the group of
inner-diagonal automorphisms of T.

Lemma 2.10. Let 𝑑 = 1
2 · dim𝑌 if 𝑇 ∈ {2𝐵2 (𝑞), 2𝐺2 (𝑞)′, 2𝐹4 (𝑞)′} and 𝑑 = dim𝑌 otherwise. Then

1
2𝑞

𝑑 < |Inndiag(𝑇) | < 𝑞𝑑 .

Proof. This is [10, Proposition 3.9(i)] when T is a classical group, and the bounds for exceptional groups
are clear. �

Recall that a semisimple element 𝑥 ∈ 𝑇 is regular if the connected component of 𝐶𝑌 (𝑥) is a maximal
torus of Y. Equivalently, 𝑥 ∈ 𝑇 is regular semisimple if and only if |𝐶𝑇 (𝑥) | is indivisible by p. In
particular, if T is a classical group with natural module V, then a semisimple element 𝑥 ∈ 𝑇 is regular
if a preimage �̂� ∈ GL(𝑉) has distinct eigenvalues on 𝑉 = 𝑉 ⊗ 𝐾 . And if T is an orthogonal group, then
x is also regular if �̂� has a two-dimensional (±1)-eigenspace and all the other eigenvalues are distinct.

We say that a subset {𝑡1, . . . , 𝑡𝑚} of T is an invariable generating set if 〈𝑡𝑔1
1 , . . . , 𝑡

𝑔𝑚
𝑚 〉 = 𝑇 for any

𝑔1, . . . , 𝑔𝑚 ∈ 𝑇 . It has been proved in [34] and [38], independently, that every nonabelian finite simple
group is invariably generated by two elements.

Theorem 2.11. Suppose 𝑇 ∉ {L2(5),L2 (7),Ω+
8 (2), PΩ

+
8 (3)} is a finite simple group of Lie type. Then

there exist regular semisimple elements x and y of distinct orders such that T is invariably generated by
{𝑥, 𝑦}.

https://doi.org/10.1017/fms.2023.121 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.121


8 Hong Yi Huang

Proof. If T is an exceptional group, then we take x and y to be 𝑡1 and 𝑡2 in [38, Table 2], respectively,
noting that 𝑡1 is a generator of the maximal torus 𝑇1 in that table. It is evident that |𝑡1 | ≠ |𝑡2 | in each
case, and {𝑡1, 𝑡2} invariably generates T by [38] (see [38, p. 312]). Moreover, we observe that 〈𝑡1〉 and
〈𝑡2〉 are both maximal tori, which implies that each 𝑡𝑖 is regular semisimple.

To complete the proof, we may assume T is a classical group. Here, we will work with the corre-
sponding quasisimple group 𝑄 ∈ {SL𝜀

𝑛 (𝑞), Sp𝑛 (𝑞),Ω𝜀
𝑛 (𝑞)}, noting that if Q is invariably generated by

{𝑡1, 𝑡2}, with 𝑡1 and 𝑡2 regular semisimple, then T is invariably generated by {𝑥, 𝑦}, where x and y are
the images of 𝑡1 and 𝑡2 in T, respectively (so x and y are also regular semisimple). Moreover, |𝑥 | = |𝑡1 |/𝑎
and |𝑦 | = |𝑡2 |/𝑏 for some integers 𝑎, 𝑏 dividing |𝑄 |/|𝑇 |, so |𝑥 | ≠ |𝑦 | if

|𝑡1 | is indivisible by |𝑡2 | |𝑄 |/|𝑇 | and |𝑡2 | is indivisible by |𝑡1 | |𝑄 |/|𝑇 |. (3)

First, assume 𝑄 ∉ {SL2 (𝑞),Ω+
8 (𝑞)}. Here, we use the same 𝑡1 and 𝑡2 as presented in [38, Table 1].

In each case, it is clear that 𝑡1 and 𝑡2 are semisimple elements satisfying (3), and {𝑡1, 𝑡2} invariably
generates Q by [38, Lemma 5.3]. Thus, it suffices to show that 𝑡1 and 𝑡2 are regular in every case, which
is a straightforward exercise (for instance, we can work with the criterion for regularity in terms of the
eigenvalues on 𝑉 discussed as above). For example, consider the element 𝑡2 ∈ 𝑄 = Ω+

4𝑚(𝑞). Here, 𝑡2
lifts to an element 𝑡2 ∈ GL(𝑉) of the form

𝑡2 =

(
𝐴

𝐵

) 𝛿
with respect to a standard basis (see [39, Proposition 2.5.3]), where 𝛿 ∈ {1, 2}, 𝐴 ∈ SO−

4𝑚−4(𝑞) has
order 𝑞2𝑚−2 + 1 and 𝐵 ∈ SO−

4 (𝑞) has order 𝑞2 + 1. We only deal with the case where 𝛿 = 1 since a
similar argument holds for 𝛿 = 2. Then the eigenvalues of A over the algebraic closure K of F𝑞 are

𝜆, 𝜆𝑞 , . . . , 𝜆𝑞
4𝑚−3

for some 𝜆 ∈ 𝐾 of order 𝑞2𝑚−2 + 1. Similarly, the set of eigenvalues of B over K is {𝜇, 𝜇𝑞 , 𝜇𝑞2
, 𝜇𝑞

3 }
for some 𝜇 ∈ 𝐾 of order 𝑞2 + 1. If 𝜇 = 𝜆𝑞

𝑖 for some 𝑖 ∈ {0, . . . , 4𝑚 − 3}, then 𝜆𝑞
𝑖 (𝑞2+1) = 1 and so

𝑞2𝑚−2 + 1 divides 𝑞𝑖 (𝑞2 + 1), which implies that 𝑞2𝑚−2 + 1 divides 𝑞2 + 1 since (𝑞2𝑚−2 + 1, 𝑞𝑖) = 1.
However, since 𝑚 � 3, this is impossible. It follows that the eigenvalues of 𝑡2 over K are distinct, and so
𝑡2 is a regular semisimple element.

Finally, let us handle the two excluded cases above. If 𝑄 = SL2(𝑞) with 𝑞 ∉ {4, 5, 7, 9}, then we take
the same 𝑡1 and 𝑡2 as indicated in the proof of [38, Lemma 5.3]. The group L2 (4) is invariably generated
by an element of order 3 and an element of order 5, and if 𝑞 = 9, then we take x and y to be of order 4
and 5, respectively. If 𝑄 = Ω+

8 (𝑞) with 𝑞 ∉ {2, 3}, then we take 𝑡1 as in [38, Table 1], and 𝑡2 an element
of order (𝑞3 − 1)/(2, 𝑞 − 1) as described in the proof of [38, Lemma 5.4], where it is denoted 𝑡3. �

It is worth noting that the excluded groups L2 (5), L2 (7), Ω+
8 (2) and PΩ+

8 (3) in Theorem 2.11 are
not invariably generated by any pair of regular semisimple elements of distinct orders. This is can be
checked using Magma V2.26-11 [5]. More specifically, we find the set of maximal overgroups of an
element 𝑥 ∈ 𝑇 up to T-conjugacy using the method as in [15, Section 1.2], noting that x and y do not
invariably generate T if they have a common maximal overgroup in T up to T-conjugacy.

From now on, we will assume 𝑛 � 3 if 𝑇 = U𝑛 (𝑞), 𝑛 � 4 is even if 𝑇 = PSp𝑛 (𝑞), and 𝑛 � 7 if
𝑇 = PΩ𝜀

𝑛 (𝑞). We will also exclude the groups

L2(4),L2 (5),L2 (9),L3 (2),L4 (2),U4(2), Sp4 (2)′, 𝐺2(2)′, 2𝐺2(3)′ (4)

as each of them is isomorphic to one of the following groups:

𝐴5, 𝐴6, 𝐴8,L2 (7),L2 (8),U3(3), PSp4(3).
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Table 1. ℎ (𝑇 ) in Theorem 2.12.

T ℎ (𝑇 ) x Conditions

𝐴𝑛 (𝑛 − 2)! (1, 2)
M11 48 2A
M12 240 2A
M22 1344 2B
M23 2688 2A
M24 21504 2A
J1 120 2A
J2 1920 2A
J3 2448 2B
J4 21799895040 2A
HS 40320 2C
McL 40320 2A
Suz 9797760 3A
He 161280 2A
HN 177408000 2A
Ru 245760 2A
Ly 2694384000 3A
Co1 1345036492800 3A
Co2 743178240 2A
Co3 2903040 2A
Th 92897280 2A
O′N 175560 2B
Fi22 18393661440 2A
Fi23 129123503308800 2A
Fi′24 4089470473293004800 2C
B 306129918735099415756800 2A
M 8309562962452852382355161088000000 2A
𝐸8 (𝑞) 𝑞57 |𝐸7 (𝑞) | (2, 𝑞 − 1) 𝑢𝛼

𝐸7 (𝑞) 𝑞33 |SO+
12 (𝑞) |/(2, 𝑞) 𝑢𝛼

𝐸 𝜀
6 (𝑞) 𝑞21 |SL𝜀

6 (𝑞) |/(3, 𝑞 − 𝜀) 𝑢𝛼

𝐹4 (𝑞) 𝑞15 |Sp6 (𝑞) | 𝑢𝛼

𝐺2 (𝑞) 𝑞5 |SL2 (𝑞) | 𝑢𝛼
3𝐷4 (𝑞) 𝑞12 (𝑞6 − 1) 𝑢𝛼
2𝐹4 (𝑞) 𝑞10 |2𝐵2 (𝑞) | 𝑢𝛼 𝑞 > 2
2𝐹4 (2)′ 10240 𝑢𝛼
2𝐺2 (𝑞) 𝑞3 𝑢𝛼
2𝐵2 (𝑞) 𝑞2 𝑢𝛼

L𝜀
𝑛 (𝑞) |PGL2 (𝑞1/2) | 𝜙 𝑓 /2 𝑛 = 2, 𝑓 is even

𝑞 + 1 s 𝑛 = 2, 𝑓 is odd
|PGL3 (𝑞1/2) | 𝜙 𝑓 /2 𝑛 = 3, 𝜀 = +, 𝑓 is even, 3 | 𝑞1/2 + 1
|PGU3 (𝑞1/2) | 𝜙 𝑓 /2𝛾 𝑛 = 3, 𝜀 = +, 𝑓 is even, 3 � 𝑞1/2 + 1
(2, 𝑞 − 𝜀) |PGSp4 (𝑞) |/(4, 𝑞 − 𝜀) 𝛾1 𝑛 = 4
|GU𝑛−1 (𝑞) |/(𝑛, 𝑞 + 1) [𝜔𝐼1 , 𝐼𝑛−1 ] 𝑛 � 6 is even, 𝜀 = −
𝑞2𝑛−3 |GL𝜀

𝑛−2 (𝑞) |/(𝑛, 𝑞 − 𝜀) 𝑢𝛼 otherwise
PSp𝑛 (𝑞) |Sp2 (𝑞2) | 𝑡1 𝑛 = 4, q is odd

𝑞𝑛−1 |Sp𝑛−2 (𝑞) | 𝑢𝛼 otherwise
PΩ𝜀

𝑛 (𝑞) |SO−
𝑛−1 (𝑞) | 𝑡′1 n is odd

|Sp𝑛−2 (𝑞) | 𝑏1 q is even
|Ω𝑛−1 (𝑞) | 𝛾1 n is even, q is odd

As mentioned in Section 1, one of our probabilistic approaches in Section 3 relies on computing

ℎ(𝑇) := max{|𝐶𝑇 (𝑥) | : 1 ≠ 𝑥 ∈ Aut(𝑇)}

for every nonabelian finite simple group T.

Theorem 2.12. Let T be a nonabelian finite simple group. Then ℎ(𝑇) is listed in Table 1.

Remark 2.13. Let us briefly comment on the notation we adopt in the third column of Table 1, where
we record an element 𝑥 ∈ Aut(𝑇) with |𝐶𝑇 (𝑥) | = ℎ(𝑇).
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(i) We adopt the notation in [59] for labelling conjugacy classes when T is a sporadic group. If T is
Lie type, then we write 𝑢𝛼 for a long root element.

(ii) When 𝑇 = L𝑛 (𝑞), we write 𝜙 for a field automorphism of order 𝑓 = log𝑝 𝑞, where p is the
characteristic of the field F𝑞 .

(iii) If 𝑇 = L2 (𝑞), then let H be the normaliser in PGL2(𝑞) of a nonsplit maximal torus of T, so
𝐻 � 𝐷2(𝑞+1) . We then define 𝑠 ∈ 𝐻 to be the central involution if q is odd, and an arbitrary element
of odd prime order if q is even.

(iv) We adopt the notation in [13, Chapter 3] for elements of classical groups. For example, if 𝑇 =
PΩ𝜀

𝑛 (𝑞), where n is even and q is odd, then a preimage in O𝜀
𝑛 (𝑞) of an element of type 𝛾1 is an

involution of the form [−𝐼1, 𝐼𝑛−1] (see [13, Section 3.5.2.14]).

Proof of Theorem 2.12. First, observe that we only need to consider prime order elements in Aut(𝑇),
since 𝐶𝑇 (𝑥) � 𝐶𝑇 (𝑥𝑚) for any integer m and 𝑥 ∈ Aut(𝑇).

Assume 𝑇 = 𝐴𝑛 is an alternating group. If 𝑛 = 5 or 6, then the result can be checked using Magma.
Now, assume 𝑛 � 7, so Aut(𝑇) = 𝑆𝑛. It is easy to see that |𝐶𝑇 (𝑥) | is maximal when x is a transposition,
in which case𝐶𝑆𝑛 (𝑥) � 𝑆2×𝑆𝑛−2 and thus |𝐶𝑇 (𝑥) | = (𝑛−2)!. Hence, ℎ(𝑇) = (𝑛−2)!. If T is a sporadic
group, then |𝐶𝑇 (𝑥) | can be read off from the character table of T, which can be accessed computationally
via the GAP Character Table Library [6].

For the remainder, we may assume T is a simple group of Lie type over F𝑞 , where 𝑞 = 𝑝 𝑓 with p
a prime. Assume 𝑥 ∈ Aut(𝑇) is of prime order r. If 𝑥 ∈ Inndiag(𝑇), then x is semisimple if 𝑝 ≠ 𝑟 ,
otherwise x is unipotent. And if 𝑥 ∉ Inndiag(𝑇), then x is a field, graph or graph-field automorphism.
Here, if x is a graph or graph-field automorphism, then 𝑟 ∈ {2, 3}.

Assume T is an exceptional group. Here, we assume 𝑇 ≠ 2𝐺2(3)′ � L2 (8) and 𝑇 ≠ 𝐺2 (2)′ � U3 (3)
as noted in (4). By [19, Proposition 2.11], |𝐶𝑇 (𝑥) | is maximal when 𝑥 ∈ 𝑇 is a long root element. Now,
assume 𝑥 ∈ 𝑇 is a long root element. If T is not 3𝐷4 (𝑞) or 2𝐵2(𝑞), then |𝐶𝑇 (𝑥) | can be read off from
the tables in [43, Chapter 22], noting that 𝑥Inndiag(𝑇 ) = 𝑥𝑇 by [43, Corollary 17.10]. If 𝑇 = 3𝐷4 (𝑞) or
2𝐵2(𝑞), then we can find |𝐶𝑇 (𝑥) | in [55, p. 677] and [57], respectively.

For the remainder of the proof, we assume T is a classical group defined over F𝑞 . Let V be the natural
module of T, and write 𝑉 = 𝑉 ⊗ 𝐾 , where K is the algebraic closure of F𝑞 . For 𝑥 ∈ PGL(𝑉), let �̂� be a
preimage of x in GL(𝑉). Following [10, Definition 3.16], we define

𝜈(𝑥) = min{dim[𝑉, 𝜆�̂�] : 𝜆 ∈ 𝐾∗},

where [𝑉, 𝜆�̂�] = {𝑣 −𝜆�̂�𝑣 : 𝑣 ∈ 𝑉}. That is, 𝜈(𝑥) is the codimension of the largest eigenspace of �̂� on𝑉 ,
noting that 𝜈(𝑥) is independent of the choice of the preimage �̂�. Upper and lower bounds on |𝑥𝑇 | in terms
of n, q and 𝜈(𝑥) are given in [10, Section 3]. Similarly, if x is a field, graph or graph-field automorphism,
then lower bounds for |𝑥𝑇 | can be read off from [10, Table 3.11]. In addition, |𝐶Inndiag(𝑇 ) (𝑥) |, and a
description of the splitting of 𝑥Inndiag(𝑇 ) into distinct T-classes, can be found in [13, Chapter 3]. In
particular, note that if 𝑥 ∈ Inndiag(𝑇) is a semisimple element of prime order, then 𝑥Inndiag(𝑇 ) = 𝑥𝑇 (see
[31, Theorem 4.2.2(j)], also recorded as [13, Theorem 3.1.12]).

We start with the case where 𝑇 = L2 (𝑞). Let H be the normaliser in PGL2(𝑞) of a nonsplit
maximal torus of T, so 𝐻 � 𝐷2(𝑞+1) . If q is odd, then we let x be the central involution in H, and
if q is even, let 𝑥 ∈ 𝐻 be an element of odd prime order. Then |𝐶𝑇 (𝑥) | = 𝑞 + 1, so ℎ(𝑇) � 𝑞 + 1.
Let 𝑦 ∈ Aut(𝑇) be an element of prime order. Note that if y is unipotent, then |𝐶𝑇 (𝑦) | = 𝑞, and
|𝐶𝑇 (𝑦) | divides 𝑞 + 1 or 𝑞 − 1 if y is semisimple. Thus, we only need to consider field automorphisms,
noting that |𝐶PGL2 (𝑞) (𝑦) | = |PGL2 (𝑞1/𝑟 ) | if y is a field automorphism of prime order r. It follows that
|𝐶PGL2 (𝑞) (𝑦) | > 𝑞 + 1 only if 𝑟 = 2 (so f is even). Indeed,

|𝐶𝑇 (𝑦) | = |𝐶PGL2 (𝑞) (𝑦) | = |PGL2 (𝑞1/2) | > 𝑞 + 1

if y is an involutory field automorphism, and so we conclude that ℎ(𝑇) = |PGL2(𝑞1/2) | if f is even, and
ℎ(𝑇) = 𝑞 + 1 if f is odd.
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To complete the proof for linear and unitary groups, we assume 𝑇 = L𝜀
𝑛 (𝑞) with 𝑛 � 3. Let 𝑥 ∈ 𝑇

be a unipotent element with Jordan form [𝐽2, 𝐽
𝑛−2
1 ] on the natural module, noting that x is a long root

element. Then |𝐶PGL𝜀
𝑛 (𝑞) (𝑥) | can be read off from [13, Tables B.3 and B.4], and we have 𝑥PGL𝜀

𝑛 (𝑞) = 𝑥𝑇

by [13, Propositions 3.2.7 and 3.3.10]. More specifically,

|𝐶𝑇 (𝑥) | = (𝑛, 𝑞 − 𝜀)−1𝑞2𝑛−3 |GL𝜀
𝑛−2 (𝑞) |

and

|𝑥𝑇 | = |𝑥PGL𝜀
𝑛 (𝑞) | =

|PGL𝜀
𝑛 (𝑞) |

𝑞2𝑛−3 |GL𝜀
𝑛−2 (𝑞) |

<
2𝑞2𝑛−1

𝑞 − 1
.

The cases where 𝑛 ∈ {3, 4} require special attention, which will be treated separately.
Assume 𝑇 = L𝜀

3 (𝑞), so |𝐶𝑇 (𝑥) | = (3, 𝑞 − 𝜀)−1𝑞3 (𝑞 − 𝜀), and let y be an element in Aut(𝑇) of prime
order that is not of Jordan form [𝐽2, 𝐽1]. If y is unipotent or semisimple and 𝜈(𝑦) = 2, then either y has
Jordan form [𝐽3] or |𝑦 | is odd, so by [10, Propositions 3.22 and 3.36],

|𝑦𝑇 | > 1
2(3, 𝑞 − 𝜀)

(
𝑞

𝑞 + 1

)
𝑞6 > (𝑞2 − 1) (𝑞2 + 𝜀𝑞 + 1) = |𝑥𝑇 |.

If 𝜈(𝑦) = 1 and y is semisimple, then a preimage �̂� of y in GL(𝑉) is [𝜔𝐼1, 𝐼2], so |𝐶𝑇 (𝑦) | =
(3, 𝑞 − 𝜀)−1 |GL𝜀

2 (𝑞) |. It is easy to see that |𝐶𝑇 (𝑦) | < |𝐶𝑇 (𝑥) |. If y is a graph automorphism, then
|𝐶PGL𝜀

3 (𝑞) (𝑦) | = |SL2(𝑞) |, so |𝐶𝑇 (𝑦) | < |𝐶𝑇 (𝑥) | evidently. If y is a field automorphism of odd prime
order r, then by [13, Propositions 3.2.9 and 3.3.12],

|𝐶PGL𝜀
3 (𝑞) (𝑦) | = |PGL𝜀

3 (𝑞
1/𝑟 ) | � 𝑞(𝑞2/3 − 1) (𝑞 − 𝜀),

so |𝐶𝑇 (𝑦) | � |𝐶PGL𝜀
3 (𝑞) (𝑦) | < |𝐶𝑇 (𝑥) |. Thus, we only need to consider involutory field or graph-field

automorphisms, so we can assume 𝜀 = + and f is even. Let 𝑦1 be an involutory field automorphism.
Then by [13, Proposition 3.2.9],

|𝐶𝑇 (𝑦1) | =
(3, 𝑞1/2 + 1)
(3, 𝑞 − 1) |PGL3 (𝑞1/2) |.

Similarly, if 𝑦2 is a graph-field automorphism, then

|𝐶𝑇 (𝑦2) | =
(3, 𝑞1/2 − 1)
(3, 𝑞 − 1) |PGU3 (𝑞1/2) |

by [13, Proposition 3.2.15]. Note that

|PGL3(𝑞1/2) | < 𝑞3(𝑞 − 1) < |PGU3(𝑞1/2) | < 3|PGL3(𝑞1/2) |.

Therefore, ℎ(𝑇) = |𝐶𝑇 (𝑥) | if f is odd or 𝜀 = −, ℎ(𝑇) = |𝐶𝑇 (𝑦1) | if 𝜀 = +, f is even and 3 | 𝑞1/2 + 1,
otherwise ℎ(𝑇) = |𝐶𝑇 (𝑦2) |.

Next, assume 𝑇 = L𝜀
4 (𝑞) and let z be a graph automorphism of type 𝛾1 (see [13, Sections 3.2.5 and

3.3.5]), so by [13, Propositions 3.2.14 and 3.3.17], we have

|𝐶𝑇 (𝑧) | =
(2, 𝑞 − 𝜀)
(4, 𝑞 − 𝜀) |PGSp4 (𝑞) | >

1
(4, 𝑞 − 𝜀) 𝑞

6 (𝑞2 − 1) (𝑞 − 𝜀) = |𝐶𝑇 (𝑥) |
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and we claim that ℎ(𝑇) = |𝐶𝑇 (𝑧) |. Note that

|𝑧𝑇 | = 𝑞2 (𝑞3 − 𝜀)
(2, 𝑞 − 𝜀) .

By [10, Propositions 3.22, 3.36, 3.37 and 3.48], we have

|𝑦𝑇 | > 1
2

(
𝑞

𝑞 + 1

)
𝑞6

for any unipotent, semisimple, field or graph-field element 𝑦 ∈ Aut(𝑇) of prime order. Hence, |𝑦𝑇 | > |𝑧𝑇 |
if 𝑞 � 4, and for 𝑞 ∈ {2, 3} we can check that |𝑦𝑇 | > |𝑧𝑇 | using Magma. Similarly, if y is a graph
automorphism, then |𝑦𝑇 | � |𝑧𝑇 | by inspecting [13, Tables B.3 and B.4].

Finally, assume 𝑇 = L𝜀
𝑛 (𝑞) and 𝑛 � 5. Then by applying the bounds in [10, Table 3.11] we see that

|𝑦𝑇 | > 1
2

(
𝑞

𝑞 + 1

) 1
2 (1−𝜀)

𝑞
1
2 (𝑛

2−𝑛−4) >
2𝑞2𝑛−1

𝑞 − 1
> |𝑥𝑇 |

if y is a field, graph or graph-field automorphism, unless (𝑛, 𝑞) = (5, 2) or (6, 2), in which cases one can
check that |𝑦𝑇 | > |𝑥𝑇 | with the aid of Magma. If y is a unipotent or semisimple element with 𝜈(𝑦) � 2,
then

|𝑦𝑇 | > 1
2

(
𝑞

𝑞 + 1

)
𝑞4𝑛−8 >

2𝑞2𝑛−1

𝑞 − 1
> |𝑥𝑇 |

by [10, Proposition 3.36]. Thus, we only need to consider the cases where 𝜈(𝑦) = 1 and y is not Aut(𝑇)-
conjugate to x. In this setting, y is semisimple, and a preimage �̂� of y in GL(𝑉) is [𝜔𝐼1, 𝐼𝑛−1], where 𝜔
is a nontrivial r-th root of unity in F𝑞 if 𝜀 = +, or F𝑞2 if 𝜀 = −, for some prime r. It follows that

|𝐶𝑇 (𝑦) | = (𝑛, 𝑞 − 𝜀)−1 |GL𝜀
𝑛−1 (𝑞) |.

Note that |𝐶𝑇 (𝑦) | > |𝐶𝑇 (𝑥) | if and only if 𝜀 = − and n is even. This implies that

ℎ(𝑇) = (𝑛, 𝑞 − 𝜀)−1 |GL𝜀
𝑛−1(𝑞) |

if 𝜀 = − and n is even, otherwise ℎ(𝑇) = |𝐶𝑇 (𝑥) |.
This concludes the proof of Theorem 2.12 for linear and unitary groups. We can use a very similar

approach to handle the symplectic and orthogonal groups and we omit the details. But let us remark that
if 𝑇 = PSp𝑛 (𝑞) is a symplectic group, then |𝐶𝑇 (𝑥) | is maximal when x is a long root element, unless
𝑛 = 4 and q is odd, where an involution of type 𝑡1 gives the maximal centraliser. If 𝑇 = PΩ𝜀

𝑛 (𝑞), where
n is odd or q is even, then |𝐶𝑇 (𝑥) | is maximal when x is an involution of type 𝑡 ′1 or 𝑏1, respectively.
Finally, if 𝑇 = PΩ𝜀

𝑛 (𝑞) with n even and q odd, then a graph automorphism of type 𝛾1 has the maximal
centraliser. All the relevant information about these elements can be found in [13, Chapter 3]. �

An immediate corollary is the following, which will be useful in Section 3.

Corollary 2.14. We have ℎ(𝑇) � |𝑇 |/10 for any nonabelian finite simple group T.

2.3. Holomorph of simple groups

Recall that Hol(𝑇) = 𝑇 :Aut(𝑇) is the holomorph of T, which acts faithfully and primitively on T (in
fact, Hol(𝑇) = 𝑇2.Out(𝑇) is a diagonal type primitive group). Note that every element in Hol(𝑇) can
be uniquely written as 𝑔𝛼, where 𝑔 ∈ 𝑇 acts on T by left translation and 𝛼 ∈ Aut(𝑇) acts naturally on
T. That is,
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𝑡𝑔𝛼 = (𝑔−1𝑡)𝛼

for every 𝑡 ∈ 𝑇 . Let Hol(𝑇, 𝑆) be the setwise stabiliser of 𝑆 ⊆ 𝑇 in Hol(𝑇). Throughout this section, we
assume 𝑃 = 𝑆𝑘 , so 𝑊 = 𝑇 𝑘 .(Out(𝑇) × 𝑆𝑘 ). The following result is a key observation.

Lemma 2.15. The following statements are equivalent.

(i) {𝐷, 𝐷 (𝜑𝑡1 , . . . , 𝜑𝑡𝑘 )} is a base for W;
(ii) 𝑡1, . . . , 𝑡𝑘 are distinct and Hol(𝑇, {𝑡1, . . . , 𝑡𝑘 }) = 1.

Proof. First, assume (i) holds. If 𝑡𝑖 = 𝑡 𝑗 for some 𝑖 ≠ 𝑗 , then (𝑖, 𝑗) ∈ 𝑊 stabilises D and 𝐷 (𝜑𝑡1 , . . . , 𝜑𝑡𝑘 ),
which is incompatible with (i). Thus, 𝑡1, . . . , 𝑡𝑘 are distinct. Suppose 𝑔𝛼 ∈ Hol(𝑇, {𝑡1, . . . , 𝑡𝑘 }). Then
for any i we have

𝑡 𝑗 = 𝑡
𝑔𝛼
𝑖 = (𝑔−1𝑡𝑖)𝛼 = (𝑔−1)𝛼𝑡𝛼𝑖 (5)

for some j. That is, 𝑔𝛼 induces a permutation 𝜋 ∈ 𝑆𝑘 by (𝑔−1)𝛼𝑡𝛼𝑖 = 𝑡𝑖𝜋 . Now, it is easy to see that
(𝛼, . . . , 𝛼)𝜋 fixes 𝐷 (𝜑𝑡1 , . . . , 𝜑𝑡𝑘 ). Hence, 𝛼 = 1 and 𝜋 = 1, which implies that 𝑔 = 1 by (5), noting that
𝑖 = 𝑗 since 𝜋 = 1.

Conversely, suppose (ii) holds and (𝛼, . . . , 𝛼)𝜋 fixes D and 𝐷 (𝜑𝑡1 , . . . , 𝜑𝑡𝑘 ). Then there exists 𝑔 ∈ 𝑇

such that 𝑡𝑖𝜋 = 𝑔−1𝑡𝛼𝑖 for all i. It follows that 𝑔𝛼−1
𝛼 ∈ Hol(𝑇, {𝑡1, . . . , 𝑡𝑘 }), which implies that 𝑔 = 1 and

𝛼 = 1. As 𝑡1, . . . , 𝑡𝑘 are distinct, this gives 𝜋 = 1 and so (i) holds. �

Let 𝒫𝑘 (𝑇) (or just 𝒫𝑘 if T is clear from the context) be the set of k-subsets of T. Recall that 𝑟 (𝐺) is
the number of regular suborbits of G.

Lemma 2.16. The number of regular orbits of Hol(𝑇) on𝒫𝑘 or𝒫|𝑇 |−𝑘 is 𝑟 (𝑊). In particular, 𝑏(𝑊) = 2
if and only if Hol(𝑇) has a regular orbit on 𝒫𝑘 or 𝒫|𝑇 |−𝑘 .

Proof. This follows directly from Lemma 2.15, noting that Hol(𝑇, 𝑆) = Hol(𝑇, 𝑇 \ 𝑆). �

Given a subset 𝑆 ⊆ 𝑇 , it is difficult to determine Hol(𝑇, 𝑆). In particular, it is difficult to construct a
subset 𝑆 ⊆ 𝑇 such that Hol(𝑇, 𝑆) = 1. By the transitivity of Hol(𝑇) on T, we may assume 1 ∈ 𝑆.

Lemma 2.17. Let 𝑆1 and 𝑆2 be subsets of T such that 1 ∈ 𝑆1 ∩ 𝑆2 and 𝑆
𝑔𝛼
1 = 𝑆2. Then 𝑔 ∈ 𝑆1.

Proof. We have 𝑔−1𝑆1 = 𝑆𝛼
−1

2 , so 1 ∈ 𝑔−1𝑆1 and thus 𝑔 ∈ 𝑆1. �

Now, we give some sufficient conditions that allow us to deduce that Hol(𝑇, 𝑆) = 1 for a subset 𝑆 ⊆ 𝑇
containing 1. Here, we write Aut(𝑇, 𝑅) for the setwise stabiliser of 𝑅 ⊆ 𝑇# in Aut(𝑇).

Lemma 2.18. Let 𝑆 = {𝑡1, . . . , 𝑡𝑘 } ∈ 𝒫𝑘 with 𝑡1 = 1. Then Hol(𝑇, 𝑆) = 1 if the following conditions
are satisfied:

(i) Aut(𝑇, {𝑡2, . . . , 𝑡𝑘 }) = 1;
(ii) for all 2 � 𝑖 � 𝑘 , {|𝑡−1

𝑖 𝑡1 |, . . . , |𝑡−1
𝑖 𝑡𝑘 |} ≠ {1, |𝑡2 |, . . . , |𝑡𝑘 |}.

Proof. Suppose 𝑔𝛼 ∈ Hol(𝑇, 𝑆), where 𝑔 ∈ 𝑇 and 𝛼 ∈ Aut(𝑇). By Lemma 2.17, we have 𝑔 ∈ 𝑆. If
𝑔 = 𝑡1 = 1, then 𝛼 ∈ Aut(𝑇, {𝑡2, . . . , 𝑡𝑘 }) and the condition (i) forces 𝛼 = 1. If 𝑔 = 𝑡𝑖 for some 2 � 𝑖 � 𝑘 ,
then 𝑡−1

𝑖 𝑆 = 𝑆𝛼
−1 , which implies that {|𝑡−1

𝑖 𝑡1 |, . . . , |𝑡−1
𝑖 𝑡𝑘 |} = {1, |𝑡2 |, . . . , |𝑡𝑘 |}, which is incompatible

with the condition (ii). �

Corollary 2.19. Let 𝑆 = {𝑡1, . . . , 𝑡𝑘 } ∈ 𝒫𝑘 with 𝑡1 = 1. If Out(𝑇) = 1, then Hol(𝑇, 𝑆) = 1 if all the
following conditions are satisfied:

(i) 𝑡2, . . . , 𝑡𝑘 have distinct orders;
(ii) 𝑀 = 〈𝑡2, . . . , 𝑡𝑘〉 is a maximal subgroup of T such that 𝑍 (𝑀) = 1;

(iii) for all 2 � 𝑖 � 𝑘 , {|𝑡−1
𝑖 𝑡1 |, . . . , |𝑡−1

𝑖 𝑡𝑘 |} ≠ {1, |𝑡2 |, . . . , |𝑡𝑘 |}.
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Proof. In view of Lemma 2.18, it suffices to show that the conditions (i) and (ii) imply that
Aut(𝑇, {𝑡2, . . . , 𝑡𝑘 }) = 1. Suppose 𝛼 ∈ Aut(𝑇, {𝑡2, . . . , 𝑡𝑘 }). Then 𝛼 ∈ 𝐶Aut(𝑇 ) (𝑡𝑖) for each i, as
𝑡2, . . . , 𝑡𝑘 have distinct orders. It follows that 𝛼 centralises 〈𝑡2, . . . , 𝑡𝑘〉 = 𝑀 and so 𝛼 ∈ 𝐶Aut(𝑇 ) (𝑀).
Since Out(𝑇) = 1, this implies that 𝛼 ∈ 𝐶𝑇 (𝑀) � 𝑁𝑇 (𝑀) = 𝑀 since M is maximal, so 𝛼 ∈ 𝑍 (𝑀) = 1.
This completes the proof. �

Lemma 2.20. Let 𝑆1 = {𝑡1, . . . , 𝑡𝑘 } and 𝑆2 = {𝑠1, . . . , 𝑠𝑘 } be elements in 𝒫𝑘 such that 1 ∈ 𝑆1 ∩ 𝑆2 and
Hol(𝑇, 𝑆 𝑗 ) = 1 for each 𝑗 ∈ {1, 2}. Then 𝑆1 and 𝑆2 are in distinct Hol(𝑇)-orbits if

{|𝑡−1
𝑖 𝑡1 |, . . . , |𝑡−1

𝑖 𝑡𝑘 |} ≠ {|𝑠1 |, . . . , |𝑠𝑘 |}

for any 𝑖 ∈ [𝑘].

Proof. This follows immediately from Lemma 2.17. �

Remark 2.21. Let us briefly discuss the main computational techniques we will use to prove 𝑟 (𝑊) � 2
for some suitable T and k.

(i) Let 𝑆1 and 𝑆2 be k-element subsets of T containing 1, and let 𝑂 𝑗 = {|𝑡 | : 𝑡 ∈ 𝑆 𝑗 }. Assume that
|𝑂 𝑗 | = 𝑘 , 〈𝑆 𝑗〉 = 𝑇 and

𝑂 𝑗 ≠ {|𝑥−1𝑡 | : 𝑡 ∈ 𝑆 𝑗 }

for any 𝑥 ∈ 𝑆 𝑗 \ {1}. Then Hol(𝑇, 𝑆 𝑗 ) = 1 by Lemma 2.18, noting that the first two conditions imply
that Aut(𝑇, 𝑆 𝑗 \ {1}) = 1. Combining Lemmas 2.16 and 2.20, we have 𝑟 (𝑊) � 2 if

𝑂2 ≠ {|𝑥−1𝑡 | : 𝑡 ∈ 𝑆1}

for any 𝑥 ∈ 𝑆1. For suitable T and k, we can construct T with an appropriate permutation represen-
tation in Magma and implement this approach to find k-subsets 𝑆1 and 𝑆2 of T with these properties
by random search. We will only need to use this method for 𝑘 � 11.

(ii) In some cases where Out(𝑇) = 1, we will work with a centreless maximal subgroup M of T,
rather than T itself. More precisely, if 𝑆1 and 𝑆2 are k-element subsets of M containing 1 and
𝑂 𝑗 = {|𝑡 | : 𝑡 ∈ 𝑆 𝑗 }, then by Corollary 2.19, we have Hol(𝑇, 𝑆 𝑗 ) = 1 if |𝑂 𝑗 | = 𝑘 , 〈𝑆 𝑗〉 = 𝑀 and

𝑂 𝑗 ≠ {|𝑥−1𝑡 | : 𝑡 ∈ 𝑆 𝑗 }

for any 𝑆 𝑗 \ {1}. Again, by Lemmas 2.16 and 2.20, we have 𝑟 (𝑊) � 2 if

𝑂2 ≠ {|𝑥−1𝑡 | : 𝑡 ∈ 𝑆1}

for any 𝑥 ∈ 𝑆1. For example, if 𝑇 = M is the monster sporadic group and 3 � 𝑘 � 5, then we
will work with a maximal subgroup M of T isomorphic to L2 (71) (this case arises in the proofs of
Lemma 4.1 and Proposition 4.8).

3. Probabilistic methods

In this section, we assume 𝐺 = 𝑇 𝑘 .(Out(𝑇) × 𝑆𝑘 ) with 2 < 𝑘 < |𝑇 |. By Lemma 2.16, we have 𝑟 (𝐺) � 2
for 𝑘 = 𝑚 if and only if 𝑟 (𝐺) � 2 for 𝑘 = |𝑇 | − 𝑚, so we will assume 5 � 𝑘 � |𝑇 |/2 throughout this
section (we will treat the cases where 𝑘 ∈ {3, 4} separately in Section 4).
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In Section 3.1, we will estimate the probability Pr𝑘 (𝑇) that a random k-subset of T has nontrivial
setwise stabiliser in Hol(𝑇), noting that

Pr𝑘 (𝑇) =
|{𝑆 ∈ 𝒫𝑘 : Hol(𝑇, 𝑆) ≠ 1}|( |𝑇 |

𝑘

) . (6)

As noted above, we have 𝑟 (𝐺) � 2 if and only if

Pr𝑘 (𝑇) < 1 − |Hol(𝑇) |( |𝑇 |
𝑘

) . (7)

To establish this inequality, we will give upper bounds on Pr𝑘 (𝑇) in Section 3.1. In particular, we will
show that 𝑟 (𝐺) � 2 if 4 log |𝑇 | < 𝑘 � |𝑇 |/2 (see Proposition 3.7).

Finally, to handle certain cases where k is small, we will consider the probability that a random pair of
elements in Ω is not a base for G in Section 3.2, which is a widely used method in the study of base sizes.

3.1. Holomorph and subsets

We first consider Pr𝑘 (𝑇) defined as in (6). Let F = {𝑆 ∈ 𝒫𝑘 : Hol(𝑇, 𝑆) ≠ 1} and suppose 𝑆 ∈ F .
Then there exists 𝜎 ∈ Hol(𝑇, 𝑆) of prime order. In other words, 𝑆 ∈ fix(𝜎,𝒫𝑘 ), where

fix(𝜎,𝒫𝑘 ) = {𝑆 ∈ 𝒫𝑘 : 𝜎 ∈ Hol(𝑇, 𝑆)}

is the set of fixed points of 𝜎 on 𝒫𝑘 . It follows that

|F | =

����� ⋃
𝜎∈R

fix(𝜎,𝒫𝑘 )

����� � ∑
𝜎∈R

|fix(𝜎,𝒫𝑘 ) |,

where R is the set of elements of prime order in Hol(𝑇). As discussed above, we have 𝑟 (𝐺) � 2 if and
only if (7) holds. Thus, 𝑟 (𝐺) � 2 if∑

𝜎∈R
|fix(𝜎,𝒫𝑘 ) | <

(
|𝑇 |
𝑘

)
− |Hol(𝑇) |.

Moreover, since 5 � 𝑘 � |𝑇 |/2, we note that |Hol(𝑇) | < 1
2
( |𝑇 |
𝑘

)
by Lemma 2.9. This observation yields

the following result.

Lemma 3.1. We have 𝑟 (𝐺) � 2, and hence 𝑏(𝐺) = 2, if(
|𝑇 |
𝑘

)
> 2

∑
𝜎∈R

|fix(𝜎,𝒫𝑘 ) |. (8)

In order to apply Lemma 3.1, we need to derive a suitable upper bound for the summation appearing
on the right-hand side of (8).

Lemma 3.2. Let 𝜎 ∈ Hol(𝑇) be of prime order r with cycle shape [𝑟𝑚, 1 |𝑇 |−𝑚𝑟 ]. Then

|fix(𝜎,𝒫𝑘 ) | =
𝑘/𝑟 �∑
𝑢=0

(
𝑚

𝑢

) (
|𝑇 | − 𝑚𝑟

𝑘 − 𝑟𝑢

)
.

Proof. This follows by noting that any subset fixed by 𝜎 is a union of some cycles comprising 𝜎. �
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If 𝜎 ∈ Hol(𝑇) is an element as described in Lemma 3.2, then |𝑇 | − 𝑚𝑟 is the number of elements in
T fixed under 𝜎. It follows that |𝑇 | − 𝑚𝑟 � fix(Hol(𝑇)), where fix(Hol(𝑇)) is the fixity of Hol(𝑇) (the
fixity of a permutation group is the maximum number of elements fixed by a nonidentity permutation).
Recall that

ℎ(𝑇) = max{|𝐶𝑇 (𝑥) | : 1 ≠ 𝑥 ∈ Aut(𝑇)},

which has been determined in Theorem 2.12.

Lemma 3.3. We have fix(Hol(𝑇)) = ℎ(𝑇).

Proof. Let 𝜎 ∈ Hol(𝑇) be such that it fixes at least one element in T. We may assume 𝜎 fixes 1 ∈ 𝑇
by the transitivity of Hol(𝑇). Thus, 𝜎 ∈ Aut(𝑇) and hence 𝐶𝑇 (𝜎) is the set of fixed points of 𝜎, which
completes the proof. �

Corollary 3.4. Let 𝜎 ∈ Hol(𝑇) be of prime order r. Then

|fix(𝜎,𝒫𝑘 ) | �
𝑘/𝑟 �∑
𝑢=0

(
|𝑇 |/𝑟
𝑢

) (
ℎ(𝑇)
𝑘 − 𝑟𝑢

)
.

The following bounds on binomial coefficients come from [56, Theorem 2.6], where e is the expo-
nential constant.

Lemma 3.5. Let ℓ, 𝑚, 𝑛 be positive integers with 𝑛 > 𝑚. Then

𝑒−
1

8ℓ 𝑎(ℓ, 𝑚, 𝑛) <
(
𝑛ℓ

𝑚ℓ

)
< 𝑎(ℓ, 𝑚, 𝑛),

where

𝑎(ℓ, 𝑚, 𝑛) = 1
√

2𝜋
ℓ−

1
2

(
𝑛

(𝑛 − 𝑚)𝑚

) 1
2
(

𝑛𝑛

(𝑛 − 𝑚)𝑛−𝑚𝑚𝑚

)ℓ
.

Corollary 3.6. Suppose 𝑛 = 𝑡𝑚 for some integer 𝑡 � 2. Then

𝑒−
1
8

(
𝑡2

(𝑡 − 1)𝑛

) 1
2
(

𝑡𝑡

(𝑡 − 1)𝑡−1

) 𝑛
𝑡

<
√

2𝜋
(
𝑛

𝑚

)
<

(
𝑡2

(𝑡 − 1)𝑛

) 1
2
(

𝑡𝑡

(𝑡 − 1)𝑡−1

) 𝑛
𝑡

. (9)

Proof. Put ℓ = 1 and 𝑚 = 𝑛/𝑡 in Lemma 3.5. �

Proposition 3.7. If 4 log |𝑇 | < 𝑘 � |𝑇 |/2, then 𝑟 (𝐺) � 2. In particular, 𝑏(𝐺) = 2.

Proof. First, if 𝑇 = 𝐴5, then we construct the permutation group Hol(𝑇) on T using the function
Holomorph in Magma. Then we find two random k-subsets of T lying in distinct regular Hol(𝑇)-orbits
by random search.

Hence, we may assume |𝑇 | � 168 and thus 4 log |𝑇 | < |𝑇 |/4. First, assume |𝑇 |/4 � 𝑘 � |𝑇 |/2. By
Corollary 3.4, we have

|fix(𝜎,𝒫𝑘 ) | �
𝑘/𝑟 �∑
𝑢=0

(
|𝑇 |/𝑟
𝑢

) (
ℎ(𝑇)

ℎ(𝑇)/2�

)
� 2 |𝑇 |/𝑟

(
ℎ(𝑇)

ℎ(𝑇)/2�

)
� 2 |𝑇 |/2

(
ℎ(𝑇)

ℎ(𝑇)/2�

)
for every element 𝜎 ∈ Hol(𝑇) of prime order. Hence, (8) holds if(

|𝑇 |
𝑘

)
> |Hol(𝑇) |2 |𝑇 |/2+1

(
ℎ(𝑇)

ℎ(𝑇)/2�

)
, (10)
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and it suffices to consider 𝑘 = |𝑇 |/4. Now, we apply (9), which gives(
|𝑇 |
|𝑇 |/4

)
>

1
√

2𝜋
𝑒−

1
8

4√
3|𝑇 |

(
4

33/4

) |𝑇 |

and (
ℎ(𝑇)

ℎ(𝑇)/2�

)
<

1
√

2𝜋
·

√
4

ℎ(𝑇) · 2ℎ (𝑇 ) �
1

√
2𝜋

·

√
40
|𝑇 | · 2 |𝑇 |/10

as ℎ(𝑇) � |𝑇 |/10 by Corollary 2.14. Combining the inequalities above, we see that (10) holds for
𝑘 = |𝑇 |/4 if

1
√

2𝜋
𝑒−

1
8

4√
3|𝑇 |

(
4

33/4

) |𝑇 |
> |Hol(𝑇) | · 2 |𝑇 |/2+1 · 1

√
2𝜋

·

√
40
|𝑇 | · 2 |𝑇 |/10.

Finally, since |Out(𝑇) | < |𝑇 |1/3 by Lemma 2.9, it suffices to show that

𝑡 |𝑇 |
0 >

√
30𝑒

1
8 |𝑇 |

7
3 , (11)

where

𝑡0 = 4 · 3−
3
4 · 2−

1
2−

1
10 = 1.1577....

and it is easy to check that the inequality in (11) holds for all |𝑇 | � 168.
Now, assume 4 log |𝑇 | < 𝑘 < |𝑇 |/4 and let 𝜎 ∈ Hol(𝑇) be of prime order r. Observe that 𝑟𝑢 � 𝑘 <

|𝑇 |/4 for all 𝑢 ∈ {0, . . . , 𝑘/𝑟�}, so

𝑘/𝑟 �∑
𝑢=0

(
|𝑇 |/𝑟
𝑢

) (
ℎ(𝑇)
𝑘 − 𝑟𝑢

)
<

𝑘/𝑟 �∑
𝑢=0

(
|𝑇 |/2
𝑢

) (
ℎ(𝑇)
𝑘 − 𝑟𝑢

)
<

𝑘/𝑟 �∑
𝑢=0

(
|𝑇 |/2
𝑟𝑢

) (
ℎ(𝑇)
𝑘 − 𝑟𝑢

)
<

(
|𝑇 |/2 + ℎ(𝑇)

𝑘

)
,

noting that the third inequality follows from the Vandermonde’s identity. Thus, (8) holds if(
|𝑇 |
𝑘

)
> 2|Hol(𝑇) |

(
|𝑇 |/2 + ℎ(𝑇)

𝑘

)
. (12)

It is easy to see that (12) is equivalent to

|𝑇 |!
(|𝑇 | − 𝑘)! > 2|Hol(𝑇) | ( |𝑇 |/2 + ℎ(𝑇))!

(|𝑇 |/2 + ℎ(𝑇) − 𝑘)! .

Now,

|𝑇 | − 𝑚

|𝑇 |/2 + ℎ(𝑇) − 𝑚
�

|𝑇 |
|𝑇 |/2 + ℎ(𝑇) =: 𝑡
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for every 𝑚 ∈ {0, . . . , 𝑘 − 1} and thus (12) holds if 𝑡𝑘 > 2|Hol(𝑇) |. By Corollary 2.14, we have
|𝑇 |/ℎ(𝑇) � 10, and hence 𝑡 � 5/3. Therefore, (12) holds if (5/3)𝑘 > |𝑇 |8/3 (by applying Lemma 2.9),
which implies the desired result. �

Now, we turn to the cases where 5 � 𝑘 � 4 log |𝑇 |. We will give some sufficient conditions for
𝑟 (𝐺) � 2.

Lemma 3.8. Suppose 5 � 𝑘 � 4 log |𝑇 |. Then 𝑟 (𝐺) � 2, and hence 𝑏(𝐺) = 2, if(
|𝑇 |
𝑘

)
> 2|Hol(𝑇) |

𝑘/2�∑
𝑢=0

(
|𝑇 |/2
𝑢

) (
ℎ(𝑇)
𝑘 − 2𝑢

)
. (13)

Proof. If 8 log |𝑇 | < ℎ(𝑇), then 𝑘 < ℎ(𝑇)/2 and (8) follows via (13) and Corollary 3.4. By inspecting
Table 1, we see that 8 log |𝑇 | � ℎ(𝑇) only if T is isomorphic to one of the following groups:

M11, J1,
2𝐵2 (8), L3(3), L2 (𝑞) (𝑞 � 167). (14)

Assume T is one of the groups in (14), and suppose 𝜎 ∈ Hol(𝑇) has prime order r. We claim that

|fix(𝜎,𝒫𝑘 ) | <
𝑘/2�∑
𝑢=0

(
|𝑇 |/2
𝑢

) (
ℎ(𝑇)
𝑘 − 2𝑢

)
. (15)

To see this, first assume 𝜎 is fixed-point-free on T. Here, |fix(𝜎,𝒫𝑘 ) | = 0 if 𝑟 � 𝑘 , and

|fix(𝜎,𝒫𝑘 ) | =
(
|𝑇 |/𝑟
𝑘/𝑟

)
otherwise. In particular, the inequality in (15) holds. Now, assume 𝜎 has a fixed point on T. Since 𝜎 is
conjugate to an element fixing the identity element in T, we may assume 𝜎 ∈ Aut(𝑇). Then with the aid
of Magma and Corollary 3.4, it is easy to check that (15) holds when T is one of the groups in (14).

We conclude that the proof is complete by combining (13) and (15) with Lemma 3.1. �

Lemma 3.9. The inequality (13) holds if

2𝑢𝑢𝑢 |𝑇 |𝑘−𝑢 > 2|Hol(𝑇) | 𝑘/2�𝑘2𝑢𝑒𝑘+𝑢ℎ(𝑇)𝑘−2𝑢 (16)

for every 𝑢 ∈ {0, . . . , 𝑘/2�}, where we define 𝑢𝑢 = 1 if 𝑢 = 0.

Proof. First, observe that (13) holds if(
|𝑇 |
𝑘

)
> 2|Hol(𝑇) | 𝑘/2�

(
|𝑇 |/2
𝑢

) (
ℎ(𝑇)
𝑘 − 2𝑢

)
(17)

for every 𝑢 ∈ {0, . . . , 𝑘/2�}. Now, (
𝑘

𝑘 − 2𝑢

) 𝑘−2𝑢
< 𝑒2𝑢

for all such u. Therefore, (17) follows by combining (16) and the well-known bounds on binomial
coefficients
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𝑛𝑚

𝑚𝑚
<

(
𝑛

𝑚

)
<

(𝑒𝑛)𝑚
𝑚𝑚

for any integers 𝑛 � 𝑚 � 0, where we define 𝑚𝑚 = 1 if 𝑚 = 0. �

We conclude this section by establishing two more technical lemmas, which will play a key role in
Section 4.

Lemma 3.10. Suppose |𝑇 | > 4080 and 5 � 𝑘 � 4 log |𝑇 |. Then (13) holds if there exists an integer 𝑘0
such that 5 � 𝑘0 � 𝑘 ,

|𝑇 |𝑘0 > |Hol(𝑇) |2𝑘2+𝑘0
0 𝑒3𝑘0 (18)

and

ℎ(𝑇)2 < 𝑘0 |𝑇 |. (19)

Proof. We first prove that (13) holds if 𝑘 = 𝑘0. In view of Lemma 3.9, it suffices to verify the inequality
in (16) for all 𝑢 ∈ {0, . . . , 𝑘/2�} and we will do this by induction. First assume 𝑢 = 𝑘/2� and note
that (18) is equivalent to (16) if k is even. For k odd, we have 𝑢 = (𝑘 − 1)/2 and the inequality in (16) is
as follows: (

|𝑇 | (𝑘 − 1)
𝑘2𝑒3

) 𝑘
|𝑇 | > 𝑘 − 1

𝑘2𝑒
· 4|Hol(𝑇) |2

(
𝑘 − 1

2

)2
ℎ(𝑇)2. (20)

In view of (19), we see that (20) holds if(
|𝑇 |
𝑘𝑒3

) 𝑘 (
𝑘 − 1
𝑘

) 𝑘−1
𝑒 > 𝑘2 |Hol(𝑇) |2,

which is implied by (18) since ( 𝑘−1
𝑘 )𝑘−1 > 𝑒−1. Therefore, (16) holds for 𝑢 = 𝑘/2� and we have

established the base case for the induction. Now, suppose (16) holds for 𝑢 = 𝑢0, where 1 � 𝑢0 � 𝑘/2�.
It suffices to show that (16) holds for 𝑢 = 𝑢0 − 1. Here, the desired inequality holds if

2−1 |𝑇 | · (𝑢0 − 1)𝑢0−1

𝑢𝑢0
0

> 𝑘−2𝑒−1 · ℎ(𝑇)2,

but this is implied by (19), noting that ( 𝑢0−1
𝑢0

)𝑢0−1 > 𝑒−1 and 2𝑢0 � 𝑘 . In conclusion, if 𝑘 = 𝑘0, then
(16) holds for all 𝑢 ∈ {0, . . . , 𝑘/2�} and thus (13) holds by Lemma 3.9.

Finally, we need to show that (13) holds when 𝑘0 < 𝑘 . By (19), we have ℎ(𝑇)2 < 𝑘0 |𝑇 | < 𝑘 |𝑇 |, and
by arguing as above, it suffices to show that

|𝑇 |𝑘 > |Hol(𝑇) |2𝑘2+𝑘𝑒3𝑘 . (21)

Since |𝑇 | > 4080 and 5 � 𝑘 � 4 log |𝑇 |, we get

|𝑇 | > 2𝑒4(4 log |𝑇 | + 1) � 2𝑒4(𝑘 + 1) >
(
𝑘 + 1
𝑘

) 𝑘+2
𝑒3(𝑘 + 1).

Therefore, (21) holds for all 𝑘0 � 𝑘 � 4 log |𝑇 | by induction on k, and the proof is complete. �
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Lemma 3.11. Suppose 5 � 𝑘 � 4 log |𝑇 |. Then (13) holds if there exists an integer 𝑘0 such that
5 � 𝑘0 � 𝑘 ,

|𝑇 |𝑘0 > 2|Hol(𝑇) | 𝑘0/2�𝑒𝑘0ℎ(𝑇)𝑘0 (22)

and

2ℎ(𝑇)2 > (4 log |𝑇 |)2𝑒 |𝑇 |. (23)

Proof. This is similar to the proof of Lemma 3.10, working with Lemma 3.9 to establish the inequality
in (13). First, assume 𝑘 = 𝑘0 and note that (22) is equivalent to (16) with 𝑢 = 0. We now use induction
to show that (16) holds for all 𝑢 ∈ {0, . . . , 𝑘/2�}. To do this, suppose (16) holds for 𝑢 = 𝑢0, where
0 � 𝑢0 � 𝑘/2� − 1. Then (23) implies that

2|𝑇 |−1 · (𝑢0 + 1)𝑢0+1

𝑢𝑢0
0

> 𝑘2𝑒 · ℎ(𝑇)−2,

and thus (16) holds for 𝑢 = 𝑢0 + 1 and the result follows.
Finally, let us assume 𝑘0 < 𝑘 . It suffices to show that

|𝑇 |𝑘 > 2|Hol(𝑇) | 𝑘/2�𝑒𝑘ℎ(𝑇)𝑘

for all 𝑘0 � 𝑘 � 4 log |𝑇 |. This is clear by induction on k, since we have

|𝑇 | > 2𝑒ℎ(𝑇)

for every T by Corollary 2.14. �

3.2. Fixed point ratios

Now, we turn to another powerful probabilistic approach to study 𝑏(𝐺), where 𝐺 = 𝑇 𝑘 .(Out(𝑇) × 𝑆𝑘 ),
which was initially introduced by Liebeck and Shalev [45]. Here, we will estimate the probability P𝑘 (𝑇)
that a random element in Ω is in a regular orbit of 𝐺𝐷 = 𝐷, noting that 𝑏(𝐺) = 2 if and only if
P𝑘 (𝑇) > 0. Equivalently,

P𝑘 (𝑇) =
𝑟 (𝐺) |𝐺 |
|𝑇 |2𝑘−2

is the probability that a random pair of elements in Ω is a base for G.
Clearly, {𝜔1, 𝜔2} ⊆ Ω is not a base for G if and only if there exists an element 𝑥 ∈ 𝐺𝜔1 ∩ 𝐺𝜔2 of

prime order. Now, the probability that 𝑥 ∈ 𝐺 fixes a random element in Ω is given by the fixed point ratio

fpr(𝑥) = |fix(𝑥,Ω) |
|Ω| =

|𝑥𝐺 ∩ 𝐷 |
|𝑥𝐺 |

,

where fix(𝑥,Ω) is the set of fixed points of x on Ω. Hence, we have

1 − P𝑘 (𝑇) �
∑

𝑥∈𝑅 (𝐺)
|𝑥𝐺 | · fpr(𝑥)2 =

∑
𝑥∈𝑅 (𝐺)

|𝑥𝐺 ∩ 𝐷 |2 |𝐶𝐺 (𝑥) |
|𝐺 | ,

where 𝑅(𝐺) is the set of representatives for the G-conjugacy classes of elements in the stabiliser D in
G which have prime order. We adopt the notation from [25] and define
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𝑅1(𝐺) := {(𝛼, . . . , 𝛼)𝜋 ∈ 𝑅(𝐺) : 𝜋 is fixed-point-free on [𝑘]},
𝑅2(𝐺) := {(𝛼, . . . , 𝛼)𝜋 ∈ 𝑅(𝐺) : 𝜋 = 1},
𝑅3(𝐺) := {(𝛼, . . . , 𝛼)𝜋 ∈ 𝑅(𝐺) : 𝜋 ≠ 1 and 𝜋 has a fixed point on [𝑘]},

and

𝑟𝑖 (𝐺) :=
∑

𝑥∈𝑅𝑖 (𝐺)

|𝑥𝐺 ∩ 𝐷 |2 |𝐶𝐺 (𝑥) |
|𝐺 | .

It follows that

1 − 𝑟 (𝐺) |𝐺 |
|𝑇 |2𝑘−2 = 1 − P𝑘 (𝑇) � 𝑟1 (𝐺) + 𝑟2 (𝐺) + 𝑟3 (𝐺), (24)

which gives a lower bound on 𝑟 (𝐺). In particular, 𝑏(𝐺) = 2 if 𝑟1 (𝐺) + 𝑟2 (𝐺) + 𝑟3(𝐺) < 1. Thus, we
need to bound each 𝑟𝑖 (𝐺) above.

Lemma 3.12. We have 𝑟1 (𝐺) < (𝑘!)2 |𝑇 |8/3−�𝑘/2� .

Proof. This is established in the proof of Theorem 1.5 in [25]. �

Lemma 3.13. We have 𝑟2 (𝐺) < (|𝑇 |/ℎ(𝑇))4−𝑘 .

Proof. Let 𝑓𝑝 (Aut(𝑇)) be the number of conjugacy classes of elements of prime order in Aut(𝑇). It
follows from the proof of [25, Lemma 4.2] that

𝑟2(𝐺) � |Out(𝑇) | 𝑓𝑝 (Aut(𝑇))
(
ℎ(𝑇)
|𝑇 |

) 𝑘−2
.

Thus, it suffices to show that

|Out(𝑇) | 𝑓𝑝 (Aut(𝑇)) <
(
|𝑇 |
ℎ(𝑇)

)2
. (25)

First, assume 𝑇 = 𝐴𝑛 is an alternating group. Then as discussed in the proof of [25, Lemma 4.2], we
have 𝑓𝑝 (Aut(𝑇)) < 𝑛2

2 . This implies (25) since ℎ(𝑇) = (𝑛 − 2)! by Theorem 2.12.
Next, assume T is a sporadic group. Then 𝑓𝑝 (Aut(𝑇)) can be read off from the character table of

Aut(𝑇) and it is easy to check that (25) holds in every case.
Finally, assume T is a simple group of Lie type over F𝑞 . Let 𝑓 (𝑇) be the number of conjugacy classes

in T. As noted in [28], we have 𝑓𝑝 (Aut(𝑇)) � |Out(𝑇) | 𝑓 (𝑇). Thus, it suffices to show that

|Out(𝑇) |2 𝑓 (𝑇) <
(
|𝑇 |
ℎ(𝑇)

)2
. (26)

We divide the proof into several cases.
Case 1. 𝑇 ≠ L𝜀

𝑛 (𝑞).
In this setting, [29, Theorem 1.2] implies that 𝑓 (𝑇) < |𝑇 |/ℎ(𝑇), so in view of (26), it suffices to

show that

ℎ(𝑇) |Out(𝑇) |2 < |𝑇 |. (27)

First, we assume 𝑇 ≠ PΩ+
8 (𝑞). Here, |Out(𝑇) | � 8 log 𝑞 and by inspecting Table 1, one can see that

|𝑇 |/ℎ(𝑇) � 𝑞3/2. It is straightforward to check that if 𝑞 � 13, then 128(log 𝑞)2 < 𝑞3, which implies that
(27) holds for 𝑞 � 13. Then there are only finitely many exceptional groups of Lie type to consider, and
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in each case we can use the precise value of ℎ(𝑇) in Table 1 to verify (27). Hence, we may assume 𝑞 � 11
and T is a classical group. By our assumption, 𝑇 = PSp𝑛 (𝑞), Ω𝑛 (𝑞), PΩ−

𝑛 (𝑞), or PΩ+
𝑛 (𝑞) with 𝑛 � 10

in the latter case. In each case, we have |𝑇 |/ℎ(𝑇) > 𝑞𝑛−2 by inspecting Table 1, so if 𝑛 � 8 we have

|Out(𝑇) |2 � 64(log 𝑞)2 � 𝑞6 � 𝑞𝑛−2 < |𝑇 |/ℎ(𝑇)

and thus (27) holds. There are finitely many groups remaining and we can check that (27) holds in each
case.

Now, assume 𝑇 = PΩ+
8 (𝑞). Here, |𝑇 |/ℎ(𝑇) > 𝑞6 and |Out(𝑇) | � 24 𝑓 � 24 log 𝑞. This shows that

(27) holds for 𝑞 � 4 since we have 242 (log 𝑞)2 < 𝑞6. If 𝑞 = 2, then |Out(𝑇) |2 = 36 < 120 = |𝑇 |/ℎ(𝑇),
while if 𝑞 = 3, then |Out(𝑇) |2 = 576 < 1080 = |𝑇 |/ℎ(𝑇).
Case 2. 𝑇 = U𝑛 (𝑞), 𝑛 � 3.

In this case, [29, Theorem 1.2] implies that 𝑓 (𝑇) < 1
2 |𝑇 |/ℎ(𝑇), except when (𝑛, 𝑞) = (3, 3) or (4, 3).

In the latter two cases, it is easy to check (26). In other cases, we have |𝑇 |/ℎ(𝑇) > 𝑞𝑛 by inspecting
Table 1, so (26) holds if

|Out(𝑇) |2 < 2𝑞𝑛. (28)

Notice that |Out(𝑇) | � 2(𝑞 + 1) log 𝑞 < 𝑞2 for 𝑞 � 7, and for 𝑞 ∈ {3, 5} we still have |Out(𝑇) | �
2(𝑞 + 1) < 𝑞2. This implies that if 𝑞 ∉ {2, 4} and 𝑛 � 4, then we have

|Out(𝑇) |2 < 𝑞4 � 𝑞𝑛 < 2𝑞𝑛

and so (28) is satisfied. If 𝑞 = 2, then |Out(𝑇) | � 6, so (28) holds if 𝑛 � 5, and if 𝑞 = 4, then
|Out(𝑇) | � 20, and thus (28) holds for 𝑛 � 4. It is straightforward to check (26) when 𝑇 = U4(2), where
we have 𝑓 (𝑇) = 20.

Finally, assume 𝑛 = 3, so |Out(𝑇) | � 6 log 𝑞. Here, (28) is satisfied for all 𝑞 > 4 since (6 log 𝑞)2 <
2𝑞3. By our assumption, the only remaining cases are 𝑇 = U3 (3) with 𝑓 (𝑇) = 14 and 𝑇 = U3 (4) with
𝑓 (𝑇) = 22, so the inequality in (26) holds.
Case 3. 𝑇 = L𝑛 (𝑞).

Here, we assume (𝑛, 𝑞) ≠ (2, 4), (2, 5), (2, 9), (3, 2), (4, 2) as noted in (4). If 𝑛 = 2 and 𝑞 ∈ {7, 11},
then an easy computation using Magma shows that (25) holds, and the result follows.

In each of the remaining cases, we have |𝑇 |/ℎ(𝑇) > 𝑞𝑛−1 by inspecting Table 1. Moreover, [27,
Corollary 1.2] implies that 𝑓𝑝 (Aut(𝑇)) < 100|𝑇 |/ℎ(𝑇), so (25) holds if

100|Out(𝑇) | < 𝑞𝑛−1. (29)

Since |Out(𝑇) | � 2(𝑞 − 1) log 𝑞 < 𝑞2 for all q, (29) holds if 𝑛 � 10. Moreover, if 𝑛 � 4, then (29) holds
if 𝑞 > 100, while for 𝑞 < 100 it is easy to check that (29) still holds in each case, unless 𝑞 = 2 and
𝑛 � 8, or 𝑛 ∈ {5, 6} and 𝑞 � 4, or 𝑛 = 4 and 𝑞 � 9. But in each of these cases, it is straightforward to
check that (25) is satisfied, so to complete the proof we may assume 𝑛 ∈ {2, 3}

Suppose 𝑛 = 3, so |Out(𝑇) | � 6 log 𝑞, and (29) holds if 600 log 𝑞 < 𝑞2. The latter holds if 𝑞 > 59. In
fact, by working with the precise value of |Out(𝑇) | we see that (29) holds if 𝑞 > 25. Finally, if 𝑞 � 25,
then we can check (25) using Magma.

To complete the proof, we may assume 𝑇 = L2(𝑞), so |Out(𝑇) | � 2 log 𝑞 and |𝑇 |/ℎ(𝑇) �
(𝑞 + 1)𝑞1/2/2. Thus, (25) holds if

800 log 𝑞 < (𝑞 + 1)2
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since we have 𝑓𝑝 (Aut(𝑇)) < 100𝑞 by [27, Corollary 1.2]. In this way, we deduce that (25) holds if
𝑞 � 71. And for 𝑞 < 71, we can check that (25) holds with the aid of Magma. �

Lemma 3.14. We have

𝑟3(𝐺) <
(
𝑘

2

) (
1
|𝑇 | +

|Out(𝑇) |ℎ(𝑇)𝑘−3

|𝑇 |𝑘−3

)
+ 𝑘!
|𝑇 | 4

3
+ |𝑇 |−

1
3

(
2
(
𝑘

3

)
+ 1

2

(
𝑘

2

) (
𝑘 − 2

2

))
.

Proof. First, let

𝑅4(𝐺) = {(𝛼, . . . , 𝛼)𝜋 ∈ 𝑅3(𝐺) : 𝜋 = (1, 2)},
𝑅4(𝑇) = {𝛼 ∈ Aut(𝑇) : (𝛼, . . . , 𝛼)𝜋 ∈ 𝑅4 (𝐺)}

as in the proof of [25, Theorem 1.5]. Set 𝑃 = 𝑆𝑘 and

𝑟4(𝐺) := | (1, 2)𝑃 |
∑

𝛼∈𝑅4 (𝑇 )

|𝛼Aut(𝑇 ) |
|𝑇 |

( |𝐶Inn(𝑇 ) (𝛼) |
|𝑇 |

) 𝑘−3
.

Then we have

𝑟4 (𝐺) =
(
𝑘

2

)�� 1
|𝑇 | +

∑
𝛼∈𝑅4 (𝑇 )\{1}

|𝛼Aut(𝑇 ) |
|𝑇 |

( |𝐶Inn(𝑇 ) (𝛼) |
|𝑇 |

) 𝑘−3���
�

(
𝑘

2

) (
1
|𝑇 | + |Out(𝑇) |

(
ℎ(𝑇)
|𝑇 |

) 𝑘−3
)
.

(30)

As noted in the proof of [25, Theorem 1.5], we have

𝑟3 (𝐺) � 𝑟4(𝐺) +
∑

𝜋∈𝑅\{(1,2) }

|𝜋𝑃 |
|𝑇 |𝑘−𝑟𝜋− 5

3
, (31)

where R is a set of representatives for the conjugacy classes of elements of prime order in P and 𝑟𝜋 is
the number of 〈𝜋〉-orbits in [𝑘]. Without loss of generality, we may assume (1, 2) ∈ 𝑅.

Let 𝑥, 𝑦 ∈ 𝑅 be the representatives the P-classes (1, 2, 3)𝑃 and (1, 2) (3, 4)𝑃 , respectively. Note that
𝑟𝑥 = 𝑟𝑦 = 𝑘 − 2 and 𝑟𝑧 � 𝑘 − 3 for all 𝑧 ∈ 𝑅 \ {(1, 2), 𝑥, 𝑦}. Then∑

𝜋∈𝑅\{(1,2) }

|𝜋𝑃 |
|𝑇 |𝑘−𝑟𝜋− 5

3
=

∑
𝜋∈𝑅\{(1,2) ,𝑥,𝑦 }

|𝜋𝑃 |
|𝑇 |𝑘−𝑟𝜋− 5

3
+ |𝑇 |−

1
3

(
2
(
𝑘

3

)
+ 1

2

(
𝑘

2

) (
𝑘 − 2

2

))
<

𝑘!
|𝑇 | 4

3
+ |𝑇 |−

1
3

(
2
(
𝑘

3

)
+ 1

2

(
𝑘

2

) (
𝑘 − 2

2

))
and so the lemma follows by combining (30) and (31). �

Now, we define

𝑄1 (𝐺) := (𝑘!)2 |𝑇 |
8
3−

𝑘
2 −

1
2 𝛿5,𝑘 + 𝑘!

|𝑇 | 4
3
+ 𝑘4

2|𝑇 | 1
3
, (32)

where 𝛿5,𝑘 = 1 if 𝑘 = 5 and 𝛿5,𝑘 = 0 otherwise, and

𝑄2(𝐺) :=
(
|𝑇 |
ℎ(𝑇)

)4−𝑘
+

(
𝑘

2

)
|Out(𝑇) |

(
|𝑇 |
ℎ(𝑇)

)3−𝑘
. (33)
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By Lemmas 3.12, 3.13 and 3.14, we have

𝑟1 (𝐺) + 𝑟2 (𝐺) + 𝑟3 (𝐺) < 𝑄1(𝐺) +𝑄2 (𝐺). (34)

Lemma 3.15. If 𝑄1 (𝐺) +𝑄2(𝐺) < 1/2 and 5 � 𝑘 � 4 log |𝑇 |, then 𝑟 (𝐺) � 2. In particular, 𝑏(𝐺) = 2.

Proof. By (24) and (34), we have

1
2
> 𝑄1 (𝐺) +𝑄2 (𝐺) > 1 − 𝑟 (𝐺) |𝐺 |

|𝑇 |2𝑘−2 = 1 − 𝑟 (𝐺) |Out(𝑇) | · 𝑘!
|𝑇 |𝑘−2 .

It suffices to prove that

2|Out(𝑇) | · 𝑘! � |𝑇 |𝑘−2,

which is clear since 𝑘 � 4 log |𝑇 |. �

4. Proofs of Theorems 1, 2 and 4

In this section, we will establish Theorems 1, 2 and 4. We will consider the following cases in turn:

(a) 𝑃 ∈ {𝐴𝑘 , 𝑆𝑘 } and 𝑘 ∈ {3, 4, |𝑇 | − 4, |𝑇 | − 3};
(b) 𝑃 ∈ {𝐴𝑘 , 𝑆𝑘 } and 𝑘 ∈ {|𝑇 | − 2, |𝑇 | − 1};
(c) 𝑃 = 𝑆𝑘 , 5 � 𝑘 � |𝑇 |/2 and 𝐺 = 𝑊 .

More specifically, we will prove that 𝑟 (𝐺) � 2 for every group in cases (a) and (c), with the exception
of the two special cases arising in the statement of Theorem 2 (in both cases, 𝑏(𝐺) = 2 and 𝑟 (𝐺) = 1).
Then Lemma 2.16 shows that 𝑏(𝐺) = 2 if 𝑃 ∈ {𝐴𝑘 , 𝑆𝑘 } and 3 � 𝑘 � |𝑇 | −3, as in part (ii) of Theorem 1,
which also establishes Theorem 4. In particular, we deduce that 𝑟 (𝐺) � 2 if 𝑃 ∉ {𝐴𝑘 , 𝑆𝑘 } and 𝑘 � 32,
as noted in Remark 2.8.

As explained in Section 2, we will exclude the simple groups listed in (4), due to the existence of
isomorphisms.

4.1. The groups with 𝑘 ∈ {3, 4, |𝑇 | − 4, |𝑇 | − 3}

We start with case (a).

Lemma 4.1. Suppose 𝑘 ∈ {3, 4}, 𝑃 = 𝑆𝑘 and T is a sporadic simple group. Then 𝑟 (𝐺) � 2.

Proof. If 𝑇 ∉ {Ly,Th, J4,B,M}, then we can construct T as a permutation group in Magma using the
function AutomorphismGroupSimpleGroup. Then the result follows by random search (see Remark
2.21(i)). If 𝑇 ∈ {Ly,Th, J4,B,M}, then |Out(𝑇) | = 1. Let M be a maximal subgroup of T with

(𝑇, 𝑀) ∈ {(Ly, 𝐺2 (5)), (Th,AGL2(5)), (J4,M22.2), (B, Fi23), (M,L2 (71))}. (35)

In view of Corollary 2.19, the result follows by random search as in Remark 2.21(ii). �

We define the following set of finite simple groups of Lie type:

C := {2𝐵2(8), 2𝐵2(32), 𝐺2(3), 𝐺2 (4), 2𝐹4 (2)′, 3𝐷4 (2), 𝐹4 (2),L2 (7),L2(8),
L2 (11),L2 (13),L2 (16),L2 (27),L2 (32),L𝜀

3 (3),L
𝜀
3 (4),U3 (5),U3(8),L𝜀

4 (3),
PSp4(3), Sp4(4),L𝜀

5 (2),U6 (2), Sp6(2), PSp4(3), Sp8 (2),Ω𝜀
8 (2), PΩ

+
8 (3)}.

Recall that an element x of a simple group of Lie type T defined over a field of characteristic p is regular
semisimple if and only if |𝐶𝑇 (𝑥) | is indivisible by p.
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Lemma 4.2. Suppose 𝑇 ∉ C is a finite simple group of Lie type. Then T has at least eight regular
semisimple Aut(𝑇)-classes.

Proof. Suppose T is a Lie type group defined over F𝑞 , where 𝑞 = 𝑝 𝑓 for some prime p. We will work
with a quasisimple group Q with 𝑄/𝑍 (𝑄) = 𝑇 . Let m be the number of regular semisimple conjugacy
classes in Q. Then T has at least 𝑚 |𝑇 |/|𝑄 | regular semisimple T-classes, and thus T has at least eight
regular semisimple Aut(𝑇)-classes if

𝑚 |𝑇 | � 8|Out(𝑇) | |𝑄 |. (36)

First, assume Q is a simply connected quasisimple exceptional group. Then m has been computed by
Lübeck [46], and one can see that (36) holds for every 𝑇 ∉ C by inspecting [46].

Next, assume 𝑄 ∈ {SL𝜀
𝑛 (𝑞), Sp𝑛 (𝑞)}, so m is given in [26]. The result now follows by inspecting

[26]. For example, if 𝑄 = SL2(𝑞), then |𝑄 |/|𝑇 | = (2, 𝑞 − 1), |Out(𝑇) | = (2, 𝑞 − 1) 𝑓 and

𝑚 = 𝑞 − 3 + (2, 𝑞)

by [26, Theorem 2.4]. Thus, (36) is valid if

𝑞 − 3 + (2, 𝑞) � 8(2, 𝑞 − 1)2 𝑓 ,

which holds for all 𝑞 > 81. For the cases where 𝑞 � 81 and 𝑇 ∉ C, one can check using Magma that
there are at least eight regular semisimple Aut(𝑇)-classes. We use an entirely similar argument to treat
all the other cases and we omit the details.

To complete the proof, we assume 𝑄 = Ω𝜀
𝑛 (𝑞), so Q has index 2 in SO𝜀

𝑛 (𝑞). First, assume q is even.
Here, 𝑄 = 𝑇 and every semisimple element in SO𝜀

𝑛 (𝑞) has odd order, and so lies in Q. This implies that
m is at least the number of regular semisimple SO𝜀

𝑛 (𝑞)-classes in SO𝜀
𝑛 (𝑞), which is computed in [26,

Theorem 5.12], and the result follows by arguing as above.
Finally, assume 𝑄 = Ω𝜀

𝑛 (𝑞) and q is odd. Write 𝑑 = �𝑛/2� − 1. Let 𝐴 ∈ GL𝑑 (𝑞) be of order 𝑞𝑑 − 1
and let

𝑥 =
��
𝐴

(𝐴−1)𝑇
𝐼𝑛−2𝑑

���
with respect to a standard basis (see [39, Proposition 2.5.3]). Then 𝑥 ∈ SO𝜀

𝑛 (𝑞), so 𝑦 := 𝑥2 ∈ Ω𝜀
𝑛 (𝑞),

noting that

𝑦 =
��
𝐵

(𝐵−1)𝑇
𝐼𝑛−2𝑑

���,
where 𝐵 = 𝐴2. Let 𝜇 be an eigenvalue of B of order (𝑞𝑑 − 1)/2 in the algebraic closure K of F𝑞 . Then
it is easy to show that 𝜇 ≠ 𝜇±𝑞

𝑡 for any 1 � 𝑡 � 𝑑 − 1, and the set of eigenvalues of y is

{𝜇, 𝜇𝑞 , . . . , 𝜇𝑞𝑑−1
, 𝜇−1, 𝜇−𝑞 , . . . , 𝜇−𝑞

𝑑−1
, 1},

where 1 has multiplicity 𝑛 − 2𝑑 ∈ {1, 2} and any other eigenvalue has multiplicity 1. It follows that 𝑦𝑖
is regular semisimple if (𝑖, (𝑞𝑑 − 1)/2) = 1. This gives at least

𝜙
(
(𝑞𝑑 − 1)/2

)
2𝑑
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regular semisimple GO𝜀
𝑛 (𝑞)-classes in Q, where 𝜙 is the Euler’s totient function (note that two elements

are not conjugate in GL𝑛 (𝑞) if they have distinct sets of eigenvalues). By arguing as above, T has at
least eight regular semisimple Aut(𝑇)-classes if

𝜙
(
(𝑞𝑑 − 1)/2

)
� 32𝑑 · |Aut(𝑇) : PGO𝜀

𝑛 (𝑞) |, (37)

noting that |Aut(𝑇) : PGO𝜀
𝑛 (𝑞) | � 𝑓 � log 𝑞 if 𝑑 ≠ 3, while |Aut(𝑇) : PGO𝜀

𝑛 (𝑞) | � 3 𝑓 � 3 log 𝑞 if
𝑑 = 3. It is easy to check that (37) holds unless

(𝑑, 𝑞) ∈ {(6, 3), (5, 3), (4, 3), (4, 5), (4, 7), (3, 3), (3, 5), (3, 7)}.

For these remaining cases, one can use Magma to obtain m and so (36) holds unless 𝑄 ∈
{Ω−

10(3),Ω
+
8 (5),Ω

𝜀
8 (3),Ω7(3)}, where we can directly check that there are at least eight regular semisim-

ple Aut(𝑇)-classes in T with the aid of Magma. �

We remark that PΩ+
8 (3) has exactly eight regular semisimple Aut(𝑇)-classes in T. If 𝑇 ∈ C and

𝑇 ≠ PΩ+
8 (3), then the number of Aut(𝑇)-classes of regular semisimple elements in T is strictly less than

8, which can be checked using Magma. We include PΩ+
8 (3) in C in view of Theorem 2.11, so if 𝑇 ∉ C,

then T is invariably generated by a pair of regular semisimple elements of distinct orders.

Lemma 4.3. Suppose 𝑘 = 3, 𝑃 = 𝑆𝑘 and 𝑇 ∉ C is a simple group of Lie type. Then 𝑟 (𝐺) � 2.

Proof. Let x and y be as described in Theorem 2.11. Let 𝑧1 and 𝑧2 be semisimple elements in T lying
in distinct Aut(𝑇)-classes and

𝑧1, 𝑧2 ∉ 𝑥Aut(𝑇 ) ∪ (𝑥−1)Aut(𝑇 ) ∪ 𝑦Aut(𝑇 ) ∪ (𝑦−1)Aut(𝑇 ) .

Note that the existence of 𝑧1 and 𝑧2 follows from Lemma 4.2. Then by applying [32, Theorem 2], which
asserts that the product of any two regular semisimple T-classes contains all semisimple elements in T,
there exist 𝑔𝑖 and ℎ𝑖 in T such that 𝑧𝑖 = 𝑥𝑔𝑖 𝑦ℎ𝑖 , and without loss of generality we may assume 𝑔𝑖 = 1, so
𝑧𝑖 = 𝑥𝑦ℎ𝑖 . It is easy to see that Hol(𝑇, {1, 𝑥−1, 𝑦ℎ𝑖 }) = 1, and so 𝑏(𝐺) = 2. By Lemma 2.16, it suffices to
show that 𝑆1 = {1, 𝑥−1, 𝑦ℎ1 } and 𝑆2 = {1, 𝑥−1, 𝑦ℎ2 } are in distinct Hol(𝑇)-orbits. Suppose 𝑆

𝑔𝛼
1 = 𝑆2 for

some 𝑔𝛼 ∈ Hol(𝑇), and note that 𝑔 ∈ 𝑆1 by Lemma 2.17. If 𝑔 = 1, then (𝑥−1)𝛼 = 𝑥−1 and (𝑦ℎ1 )𝛼 = 𝑦ℎ2 .
However, this implies that

𝑧𝛼1 = (𝑥𝑦ℎ1 )𝛼 = 𝑥𝑦ℎ2 = 𝑧2,

which is incompatible with our assumption 𝑧Aut(𝑇 )
1 ≠ 𝑧Aut(𝑇 )

2 . If 𝑔 = 𝑥−1, then (𝑦ℎ1 )𝑔 = 𝑥𝑦ℎ1 = 𝑧1,
which is not Aut(𝑇)-conjugate to any element in 𝑆2, a contradiction. Finally, if 𝑔 = 𝑦ℎ1 , then (𝑥−1)𝑔 =
𝑦−ℎ1𝑥−1 = 𝑧−1

1 . With the same reason, this is impossible. Therefore, there is no 𝑔𝛼 ∈ Hol(𝑇) such that
𝑆
𝑔𝛼
1 = 𝑆2, which completes the proof. �

Lemma 4.4. Suppose 𝑘 = 4, 𝑃 = 𝑆𝑘 and 𝑇 ∉ C is a simple group of Lie type. Then 𝑟 (𝐺) � 2.

Proof. Let x and y be as in Theorem 2.11. By [32, Theorem 2], every semisimple element in T lies in
𝑥𝑇 𝑦𝑇 , so we may assume that

𝑥−1𝑦 ∉ 𝑥Aut(𝑇 ) ∪ (𝑥−1)Aut(𝑇 ) ∪ 𝑦Aut(𝑇 ) ∪ (𝑦−1)Aut(𝑇 ) . (38)

Additionally, using Lemma 4.2, let 𝑧0 be a regular semisimple element such that

𝑧0 ∉ 𝑥Aut(𝑇 ) ∪ (𝑥−1)Aut(𝑇 ) ∪ 𝑦Aut(𝑇 ) ∪ (𝑦−1)Aut(𝑇 ) ∪ (𝑥−1𝑦)Aut(𝑇 ) ∪ (𝑦−1𝑥)Aut(𝑇 ) . (39)
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Again, [32, Theorem 2] implies that 𝑥𝑇 𝑧𝑇0 contains all semisimple elements in T. Thus, by Lemma 4.2,
there exists 𝑧 ∈ 𝑧𝑇0 such that

𝑧−1𝑥 ∉ 𝑥Aut(𝑇 ) ∪ (𝑥−1)Aut(𝑇 ) ∪ 𝑦Aut(𝑇 ) ∪ (𝑦−1)Aut(𝑇 ) ∪ (𝑥−1𝑦)Aut(𝑇 ) ∪ (𝑦−1𝑥)Aut(𝑇 ) . (40)

Set 𝑆1 = {1, 𝑥, 𝑦, 𝑧} and suppose 𝑔𝛼 ∈ Hol(𝑇, 𝑆1). If 𝑔 = 1, then 𝛼 ∈ Aut(𝑇, 𝑆1) = 1 as 〈𝑥, 𝑦〉 = 𝑇 and
𝑥, 𝑦, 𝑧 are in distinct Aut(𝑇)-classes. If 𝑔 = 𝑥, then 𝑥−1𝑦 ∈ 𝑥−1𝑆1 = 𝑆𝛼

−1

1 , which is incompatible with
either (38) or (39). The case where 𝑔 = 𝑦 can be eliminated using the same argument. If 𝑔 = 𝑧, then
𝑧−1𝑆1 = 𝑆𝛼

−1

1 , and by using (39) and (40), both 𝑧−1 and 𝑧−1𝑥 are Aut(𝑇)-conjugate to z, which yields
𝑧−1 = 𝑧𝛼 = 𝑧−1𝑥, a contradiction. Thus, we have 𝑏(𝐺) = 2.

Similarly, Lemma 4.2 implies that there exists a regular semisimple element 𝑤 ∈ 𝑇 such that 𝑤 ≠ 𝑧,

𝑤 ∉ 𝑥Aut(𝑇 ) ∪ (𝑥−1)Aut(𝑇 ) ∪ 𝑦Aut(𝑇 ) ∪ (𝑦−1)Aut(𝑇 ) ∪ (𝑥−1𝑦)Aut(𝑇 ) ∪ (𝑦−1𝑥)Aut(𝑇 )

and

𝑤−1𝑥 ∉ 𝑥Aut(𝑇 ) ∪ (𝑥−1)Aut(𝑇 ) ∪ 𝑦Aut(𝑇 ) ∪ (𝑦−1)Aut(𝑇 ) ∪ (𝑥−1𝑦)Aut(𝑇 ) ∪ (𝑦−1𝑥)Aut(𝑇 ) .

Set 𝑆2 = {1, 𝑥, 𝑦, 𝑤}. By arguing as above, we have Hol(𝑇, 𝑆2) = 1 and it suffices to show that 𝑆1 and
𝑆2 are in distinct Hol(𝑇)-orbits. Suppose 𝑆

𝑔𝛼
1 = 𝑆2, and note that 𝑔 ∈ 𝑆1 by Lemma 2.17. If 𝑔 = 1, then

𝑥𝛼 = 𝑥 and 𝑦𝛼 = 𝑦, which implies that 𝛼 = 1. However, this is incompatible with 𝑧 ≠ 𝑤. If 𝑔 = 𝑥, then

1𝑔 = 𝑥−1, 𝑦𝑔 = 𝑥−1𝑦 and 𝑧𝑔 = 𝑥−1𝑧.

Thus, one of the above is Aut(𝑇)-conjugate to w, which has to be 𝑧𝑔 = 𝑥−1𝑧 by our assumption. However,
this gives a contradiction since 𝑦𝑔 = 𝑥−1𝑦 is not Aut(𝑇)-conjugate to x or y by (38). The case where
𝑔 = 𝑦 can be eliminated similarly. Finally, if 𝑔 = 𝑧, then

𝑥𝑔 = 𝑧−1𝑥, 𝑦𝑔 = 𝑧−1𝑦 and 1𝑔 = 𝑧−1.

Once again, the only possibility is 𝑥𝑔𝛼 = 𝑤 by (40). But this leaves (𝑧−1)𝛼 = 1𝑔𝛼 ∈ {𝑥, 𝑦}, which is
incompatible with (39). �

We can now establish Theorems 1 and 2 for 𝑘 ∈ {3, 4, |𝑇 | − 4, |𝑇 | − 3}.

Proposition 4.5. If 𝑘 ∈ {3, 4, |𝑇 | − 4, |𝑇 | − 3}, then 𝑟 (𝐺) � 1, with equality if and only if 𝑇 = 𝐴5,
𝑘 ∈ {3, 57} and 𝐺 = 𝑇 𝑘 .(Out(𝑇) × 𝑆𝑘 ).

Proof. By Proposition 2.7, we may assume 𝑃 ∈ {𝐴𝑘 , 𝑆𝑘 }. First, assume 𝑘 ∈ {3, 4} and 𝑃 = 𝑆𝑘 . The
groups where T is sporadic have been treated in Lemma 4.1. If 𝑇 ∉ C is Lie type, then by Lemmas 4.3
and 4.4, we have 𝑟 (𝐺) � 2 as desired. The cases where 𝑇 ∈ C can be handled by random search (see
Remark 2.21(i)).

Thus, to complete the proof for 𝑘 ∈ {3, 4} and 𝑃 = 𝑆𝑘 we may assume𝑇 = 𝐴𝑛 is an alternating group.
First, assume 𝑘 = 3 and 𝑇 = 𝐴5. One can check using Magma that Hol(𝑇) has a unique regular orbit
on 𝒫𝑘 , so 𝑟 (𝐺) = 1 if 𝐺 = 𝑊 = 𝐴3

5.(2 × 𝑆3). With the aid of Magma, one can show that 𝑟 (𝐺) � 2 if
𝐺 < 𝑊 . Here, we obtain the permutation group G in Magma by accessing the primitive group database,
noting that |Ω| = |𝐴5 |2 = 3600.

Next, assume 𝑃 = 𝑆3 and 𝑇 = 𝐴𝑛 with 𝑛 � 6. The cases where 𝑛 � 8 can be easily handled
using Magma (see Remark 2.21(i)). Now, assume 𝑛 � 9, so by [48], there exist 𝑥1, 𝑦1 ∈ 𝑇 such that
|𝑥1 | = 2, |𝑦1 | = 3 and 〈𝑥1, 𝑦1〉 = 𝑇 . Note that if |𝑥1𝑦1 | = 2 or 3, then 〈𝑥1, 𝑦1〉 = 𝑆3 or 𝐴4 respectively,
so we must have |𝑥1𝑦1 | � 4. Hence, Hol(𝑇, {1, 𝑥1, 𝑦1}) = 1 by Lemma 2.18, and thus 𝑏(𝐺) = 2. Let
𝑥2 = (1, 2, . . . , 𝑛) if n is odd, while 𝑥2 = (1, 2) (3, . . . , 𝑛) if n is even, and let 𝑦2 = (1, 2, 3)𝑥−1

2 . Then
〈𝑥2, 𝑦2〉 = 𝑇 and Lemma 2.18 implies that Hol(𝑇, {1, 𝑥2, 𝑦2}) = 1, so we have 𝑟 (𝐺) � 2 by Lemma 2.20.
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Now, assume 𝑃 = 𝑆4 and 𝑇 = 𝐴𝑛. The cases where 𝑛 � 11 can be handled using Magma as noted in
Remark 2.21(i). Assume 𝑛 � 12, and let 𝑥 = (1, 2) (3, 4). Let 𝐶1 and 𝐶2 be the set of involutions moving
8 and 12 points in [𝑛], respectively. Note that there exist 𝑦1 ∈ 𝐶1 and 𝑦2 ∈ 𝐶2 such that 𝑥𝑦𝑖 ≠ 𝑦𝑖𝑥.
Moreover, by [7, Theorem 1.2], there exist 𝑧1 and 𝑧2 such that

𝑇 = 〈𝑥, 𝑧1〉 = 〈𝑦1, 𝑧1〉 = 〈𝑥, 𝑧2〉 = 〈𝑦2, 𝑧2〉.

In particular, 2 ∉ {|𝑧𝑖 |, |𝑥𝑧𝑖 |, |𝑦𝑖𝑧𝑖 |}. Set 𝑆1 = {1, 𝑥, 𝑦1, 𝑧1} and 𝑆2 = {1, 𝑥, 𝑦2, 𝑧2}. We first prove
that Hol(𝑇, 𝑆𝑖) = 1. Suppose 𝑔𝛼 ∈ Hol(𝑇, 𝑆𝑖). If 𝑔 = 1, then 𝛼 ∈ Aut(𝑇, 𝑆) = 1 since 〈𝑥, 𝑧𝑖〉 = 𝑇
and 𝑥, 𝑦𝑖 , 𝑧𝑖 are in distinct Aut(𝑇)-classes. If 𝑔 = 𝑥, then 2 ∉ {|𝑦𝑔𝑖 |, |𝑧

𝑔
𝑖 |} = {|𝑥𝑦𝑖 |, |𝑥𝑧𝑖 |}, which is

impossible. The cases where 𝑔 ∈ {𝑦𝑖 , 𝑧𝑖} can be eliminated similarly. This implies that 𝑏(𝐺) = 2. By
applying Lemma 2.17, one can show that 𝑆1 and 𝑆2 are in distinct Hol(𝑇)-orbits.

Therefore, we have 𝑟 (𝐺) � 1 if 𝑘 ∈ {3, 4}, with equality if and only if 𝐺 = 𝐴3
5.(2 × 𝑆3). By

Lemma 2.16, it suffices to consider the case where 𝑇 = 𝐴5 and 𝑘 = |𝐴5 | − 3 = 57. Note that 𝑟 (𝐺) = 1 if
𝐺 = 𝑊 = 𝐴57

5 .(2 × 𝑆57), and G has at least |𝑊 : 𝐺 | regular suborbits if 𝐺 < 𝑊 . �

4.2. The groups with 𝑃 ∈ {𝐴𝑘 , 𝑆𝑘 } and 𝑘 ∈ {|𝑇 | − 2, |𝑇 | − 1}

Lemma 4.6. Suppose 𝑚 ∈ {2, 3}. Then there exist 𝑆1, 𝑆2 ⊆ 𝑇# such that |𝑆𝑖 | = 𝑚, Aut(𝑇, 𝑆𝑖) = 1 and
𝑆Aut(𝑇 )

1 ≠ 𝑆Aut(𝑇 )
2 .

Proof. First, observe that if 𝑆1∪{1} and 𝑆2∪{1} are in distinct regular Hol(𝑇)-orbits, then all conditions
in the statement of the lemma are satisfied. Hence, the result follows from Lemma 2.16 and Proposition
4.5, except when 𝑇 = 𝐴5 and 𝑚 = 2. In the latter case, we can verify the lemma using Magma. �

Proposition 4.7. Assume 𝑘 = |𝑇 | − 1 or |𝑇 | − 2.

(i) If G contains 𝑆𝑘 , then 𝑏(𝐺) = 3.
(ii) If G does not contain 𝑆𝑘 , then 𝑟 (𝐺) � 2.

Proof. Recall that 𝑏(𝐺) ∈ {2, 3} by Theorem 2.3(iii). First, assume G contains 𝑆𝑘 . It suffices to show
that 𝑏(𝐺) = 3 if 𝐺 = 𝑇 𝑘 :𝑆𝑘 . Suppose {𝐷, 𝐷 (𝜑𝑡1 , . . . , 𝜑𝑡𝑘 )} is a base for G. If 𝑡𝑖 = 𝑡 𝑗 for some
𝑖 ≠ 𝑗 , then (𝑖, 𝑗) ∈ 𝐺 stabilises D and 𝐷 (𝜑𝑡1 , . . . , 𝜑𝑡𝑘 ) pointwise. Therefore, 𝑡1, . . . , 𝑡𝑘 are distinct.
Let 𝑆 = 𝑇 \ {𝑡1, . . . , 𝑡𝑘 }, so |𝑆 | ∈ {1, 2}. Without loss of generality, we may also assume 1 ∈ 𝑆. Thus,
there exists 1 ≠ 𝑡 ∈ 𝑇 such that 𝑆𝜑𝑡 = 𝑆, and hence 𝜑𝑡 ∈ Hol(𝑇, 𝑇 \ 𝑆), which is incompatible with
Lemma 2.15.

Now, we turn to the case where G does not contain 𝑆𝑘 . Recall that 𝑇 𝑘 :𝐴𝑘 � 𝐺 by Corollary 2.6.
From Lemma 4.6, there are subsets 𝑆1, 𝑆2 ⊆ 𝑇# of size |𝑇 | − 𝑘 +1 lying in distinct regular Aut(𝑇)-orbits.
Write 𝑇# \ 𝑆𝑖 = {𝑡𝑖,1, . . . , 𝑡𝑖,𝑘−2}, and consider Δ 𝑖 = {𝐷, 𝐷 (𝜑𝑡𝑖,1 , . . . , 𝜑𝑡𝑖,𝑘 )}, where 𝑡𝑖,𝑘−1 = 𝑡𝑖,𝑘 = 1.
Suppose 𝑥 = (𝛼, . . . , 𝛼)𝜋 ∈ 𝐺 (Δ𝑖 ) . By Lemma 2.1, 𝑡𝛼𝑖, 𝑗 = 𝑡𝑖, 𝑗 𝜋 for all j. It follows that 𝛼 ∈ Aut(𝑇, 𝑆𝑖)
and thus 𝛼 = 1. Hence, 𝑥 = 𝜋 ∈ 〈(𝑘 − 1, 𝑘)〉, and so 𝑥 = 1 since G does not contain 𝑆𝑘 . This shows that
𝑏(𝐺) = 2. Finally, if Δ1 and Δ2 are in the same 𝐺𝐷-orbit, then

𝐷 (𝜑𝑡1,1 , . . . , 𝜑𝑡1,𝑘 ) (𝛼,...,𝛼) 𝜋 = 𝐷 (𝜑𝑡2,1 , . . . , 𝜑𝑡2,𝑘 )

for some 𝛼 ∈ Aut(𝑇) and 𝜋 ∈ 𝑆𝑘 . This implies that 𝑆𝛼1 = 𝑆2, which is incompatible with our assumption.
Therefore, 𝑟 (𝐺) � 2 and the proof is complete. �

4.3. The groups with 𝑃 = 𝑆𝑘 , 5 � 𝑘 � |𝑇 |/2 and 𝐺 = 𝑊

Finally, let us turn to case (c) mentioned in the beginning of this section. Note that if 𝑟 (𝐺) � 2 in every
case, then the proofs of Theorems 1 and 2 are complete by combining Corollary 2.4 with Propositions
2.7, 4.5 and 4.7. By Proposition 3.7, it suffices to consider the cases where 5 � 𝑘 � 4 log |𝑇 |. Recall
that 𝑟 (𝐺) � 2 if (13) holds or 𝑄1 (𝐺) +𝑄2 (𝐺) < 1/2 (see Lemmas 3.8 and 3.15).
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Proposition 4.8. The conclusions to Theorems 1 and 2 hold when T is a sporadic simple group.

Proof. As noted above, we may assume 5 � 𝑘 � 4 log |𝑇 |. With the aid of Magma, it is easy to check
that (13) holds for all k in this range unless T is one of the following groups:

Suz,Co1,Co2, Fi22, Fi23, Fi′24,B,M.

Assume 𝑇 ∈ {Suz,Co1,Co2, Fi22, Fi23, Fi′24}. Here, we can construct T as a permutation group in
Magma using the function AutomorphismGroupSimpleGroup, and we can then check that (13) holds
for 9 � 𝑘 � 4 log |𝑇 |. The cases where 5 � 𝑘 � 8 can be handled by random search using Magma (see
Remark 2.21(i)).

Finally, if 𝑇 ∈ {B,M}, then (13) holds unless 𝑘 = 5 or (𝑇, 𝑘) = (B, 6). In each case, we can verify
that 𝑟 (𝐺) � 2 by random search as described in Remark 2.21(ii), with the same centreless maximal
subgroup M of T chosen in (35). �

Proposition 4.9. The conclusions to Theorems 1 and 2 hold when 𝑇 = 𝐴𝑛 is an alternating group.

Proof. Once again, we may assume 5 � 𝑘 � 4 log |𝑇 |. The cases where 𝑛 ∈ {5, 6} can be easily handled
using Magma, so we also assume 𝑛 � 7. First, assume 𝑛 � 𝑘 � 4 log |𝑇 |. With the aid of Magma, it is
easy to check (13) holds for all 7 � 𝑛 � 29. Note that ℎ(𝑇) = (𝑛 − 2)! and thus (23) holds. By Lemma
3.11, it suffices to establish the inequality in (22) for 𝑘0 = 𝑛. Thus, we only need to show that(

𝑛(𝑛 − 1)
2𝑒

)𝑛
>

𝑛(𝑛!)2

2
,

which holds for all 𝑛 � 30.
Finally, let us assume 5 � 𝑘 < 𝑛 and define 𝑄1 (𝐺) and 𝑄2 (𝐺) as in (32) and (33), respectively. Then

𝑄1 (𝐺) = (𝑘!)2 |𝑇 |
8
3−

𝑘
2 −

1
2 𝛿5,𝑘 + 𝑘!

|𝑇 | 4
3
+ 𝑘4

2|𝑇 | 1
3
< (6!)2

(
2
𝑛!

) 1
3

+ 2 4
3

(𝑛!) 1
3
+ 2 1

3 𝑛4

2(𝑛!) 1
3

and

𝑄2 (𝐺) =
(
|𝑇 |
ℎ(𝑇)

)4−𝑘
+

(
𝑘

2

)
|Out(𝑇) |

(
|𝑇 |
ℎ(𝑇)

)3−𝑘
<

2
𝑛(𝑛 − 1) + 20

(
2

𝑛(𝑛 − 1)

)2
.

Given these bounds, it is easy to check that 𝑄1(𝐺) + 𝑄2 (𝐺) < 1/2 for all 𝑛 � 21. Finally, for the
cases where 7 � 𝑛 � 20 and 5 � 𝑘 < 𝑛, one can use Magma to check that either (13) holds, or
𝑄1 (𝐺) +𝑄2 (𝐺) < 1/2, or Hol(𝑇) has at least two regular orbits on 𝒫𝑘 (for the latter, we use the random
search approach as in Remark 2.21(i)). �

To complete the proofs of Theorems 1 and 2, we may assume T is a finite simple group of Lie type.
First, we consider some low rank groups, where ℎ(𝑇) is small and Lemma 3.10 can be applied.

Lemma 4.10. Suppose 𝑇 = L2(𝑞) and 5 � 𝑘 � 4 log |𝑇 |. Then 𝑟 (𝐺) � 2.

Proof. If |𝑇 | � 4080, then 𝑞 � 13 and one can check the result using Magma. More precisely, we
first check (13), and if it fails, then we construct the permutation group Hol(𝑇) on T using the function
Holomorph and use random search to find two k-subsets 𝑆1 and 𝑆2 of T lying in distinct regular Hol(𝑇)-
orbits (this is a viable approach since |𝑇 | is small).
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Thus, we may assume 𝑞 � 16. First, assume 𝑘 � 6 and set 𝑘0 = 6. For 𝑞 � 733, one can check (13)
using Magma. Assume 𝑞 > 733, and note that ℎ(𝑇) � 𝑞1/2(𝑞 − 1) by Theorem 2.12, so (19) holds.
Moreover, as |Out(𝑇) | � 2 log 𝑞, we can check that (18) holds if

𝑞2 (𝑞2 − 1)2 > 16(log 𝑞)268𝑒18,

which holds true for all 𝑞 > 733. Now, apply Lemma 3.10.
To complete the proof, we assume 𝑘 = 5. By Lemma 3.9, 𝑟 (𝐺) � 2 if (16) holds for every

𝑢 ∈ {0, 1, 2}. If 𝑢 = 2, then (16) holds if

𝑞1/2(𝑞 + 1) > 54𝑒7 log 𝑞,

which holds for all 𝑞 > 48449. With the same method, one can check that (16) holds for 𝑢 ∈ {0, 1}
if 𝑞 > 48449. With the aid of Magma, we see that (13) holds for all 16 � 𝑞 � 48449, unless
𝑞 ∈ {16, 25, 49, 81}, and the remaining cases can be handled using Magma and random search, utilising
the method in Remark 2.21(i). �

Lemma 4.11. Suppose 𝑇 ∈ {L𝜀
3 (𝑞),

2𝐵2 (𝑞), 2𝐺2(𝑞)} and 5 � 𝑘 � 4 log |𝑇 |. Then 𝑟 (𝐺) � 2.

Proof. Note that |𝑇 | > 4080 and ℎ(𝑇)2 < 5|𝑇 | by Theorem 2.12. Thus, in view of Lemma 3.10, we only
need to prove (18) for 𝑘0 = 5. Assume𝑇 = L𝜀

3 (𝑞), so |𝑇 | � 𝑞3 (𝑞2−1) (𝑞3−1)/3 and |Out(𝑇) | � 6 log 𝑞.
Thus, (18) holds if

𝑞3 (𝑞2 − 1) (𝑞3 − 1) > 3(6 log 𝑞)257𝑒15,

which is true for all 𝑞 > 73. By applying the precise values of ℎ(𝑇) and |Out(𝑇) |, we see that (13) holds
unless 𝜀 = −, 𝑘 = 5 and 𝑞 ∈ {3, 5, 8}, or 𝜀 = + and

(𝑞, 𝑘) ∈ {(3, 5), (3, 6), (4, 5), (13, 5)},

all of which cases can be handled easily by random search as discussed in Remark 2.21(i). We can apply
the same method to the cases where 𝑇 = 2𝐵2(𝑞) or 2𝐺2 (𝑞), where (18) holds if 𝑇 ≠ 2𝐺2(27), 2𝐵2(8),
2𝐵2(32) or 2𝐵2(128) (we are excluding the group 2𝐺2 (3)′ as noted in (4)). In the remaining four cases,
one can check (13) directly. �

Proposition 4.12. The conclusions to Theorems 1 and 2 hold when T is an exceptional group of Lie type.

Proof. Once again, by the previous results, we may assume 5 � 𝑘 � 4 log |𝑇 |. In view of Lemma 4.11,
we may also assume 𝑇 ≠ 2𝐵2 (𝑞) or 2𝐺2(𝑞). Note that

|𝑇 |
ℎ(𝑇) > 10|Out(𝑇) | � 10

and |𝑇 | > 1
6𝑞

𝑑 , where d is as defined in Lemma 2.10.
First, assume 5 � 𝑘 � 8. Then

𝑄2(𝐺) < ℎ(𝑇)
|𝑇 | + 10|Out(𝑇) | · ℎ(𝑇)

2

|𝑇 |2
<

1
10

+ 1
10

=
1
5

and

𝑄1 (𝐺) < (6!)2

|𝑇 | 1
3
+ 8!
|𝑇 | 4

3
+ 84

2|𝑇 | 1
3
<

6 1
3 (6!)2

𝑞
𝑑
3

+ 6 4
3 · 8!
𝑞

4𝑑
3

+ 6 1
3 84

2𝑞 𝑑
3

<
3

10
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unless 𝑇 ∈ {2𝐹4 (2)′, 3𝐷4 (2), 3𝐷4 (3), 3𝐷4(4), 𝐹4 (2)} or 𝑇 = 𝐺2 (𝑞) for 𝑞 � 23. In this cases, one can
check (13) with the aid of Magma unless 𝑇 = 3𝐷4 (𝑞) and 𝑘 = 5, or 𝑇 = 𝐹4 (2) and 𝑘 ∈ {5, 6}. In the
latter cases, we can do random search using Magma as in Remark 2.21(i).

To complete the proof, we assume 9 � 𝑘 � 4 log |𝑇 |. The groups with 𝑞 = 2 can be handled by
verifying (13) directly, so we now assume 𝑞 � 3. We first prove (22) for 𝑘0 = 9. By inspecting Table 1,
we have

29
(
|𝑇 |
ℎ(𝑇)

)9
> |𝑇 |2𝑞22. (41)

For example, if 𝑇 = 𝐸8(𝑞), then

|𝑇 |
ℎ(𝑇) =

(𝑞30 − 1) (𝑞24 − 1) (𝑞20 − 1)
(𝑞10 − 1) (𝑞6 − 1)

>
1
2
𝑞58

and |𝑇 | < 𝑞248 by Lemma 2.10, which implies (41). Since |Out(𝑇) | � 6 log 𝑞, it follows that (22) holds
for 𝑘0 = 9 if

𝑞22 > 48 log 𝑞 · (2𝑒)9

and one can check that this inequality holds for 𝑞 � 3. By Lemma 3.11, it suffices to prove (23). Here,
we only give a proof for the case where 𝑇 = 𝐺2 (𝑞), as all the other cases are very similar. First, note
that |𝑇 | = 𝑞6(𝑞6 − 1) (𝑞2 − 1) < 𝑞14 and ℎ(𝑇) = 𝑞6(𝑞2 − 1) > 1

2𝑞
8. Then (23) holds if

𝑞2 > 562 (log 𝑞)2𝑒,

which holds true for all 𝑞 > 907. One can also check that (23) holds for all 601 < 𝑞 � 907. If 𝑞 � 601,
then we can use the precise values of |𝑇 |, ℎ(𝑇) and |Out(𝑇) | to check (13) for all 9 � 𝑘 � 4 log |𝑇 |.
This completes the proof. �

Lemma 4.13. Suppose 𝑇 = L𝜀
4 (𝑞) and 5 � 𝑘 � 4 log |𝑇 |. Then 𝑟 (𝐺) � 2.

Proof. Recall that ℎ(𝑇) = (2, 𝑞 − 𝜀) |PGSp4 (𝑞) |/(4, 𝑞 − 𝜀) by Theorem 2.12. First, assume that 𝑘 � 7
and set 𝑘0 = 7. For 𝑞 � 89, one can check (13) with the aid of Magma. Now, assume 𝑞 > 89. It is easy
to see that

𝑞5 > max{48(4𝑒)7 log 𝑞, 4𝑒 · 602 (log 𝑞)2},

which implies (22) and (23).
Now, assume 𝑘 ∈ {5, 6}. Note that |𝑇 |/ℎ(𝑇) > 10|Out(𝑇) | � 10, so 𝑄2(𝐺) < 1

5 . Moreover,

𝑄1(𝐺) < (6!)2

|𝑇 | 1
3
+ 6!
|𝑇 | 4

3
+ 64

2|𝑇 | 1
3
,

so we have 𝑄1 (𝐺) < 3
10 if 𝑞 � 19 and thus 𝑄1 (𝐺) +𝑄2 (𝐺) < 1/2. Finally, if 𝑞 � 17, then we can use

Magma (via random search as in Remark 2.21(i)) to check that 𝑟 (𝐺) � 2. �

Lemma 4.14. Suppose 𝑇 = PSp4(𝑞) and 5 � 𝑘 � 4 log |𝑇 |. Then 𝑟 (𝐺) � 2.

Proof. As noted in (4), we assume 𝑞 � 3. First, assume 𝑘 � 6. It can be checked using Magma that
(13) holds for 𝑞 � 607, unless (𝑘, 𝑞) = (6, 3), in which case we can verify the result using Magma
and random search as in Remark 2.21(i). Now, assume 𝑞 > 607. By applying the bounds |𝑇 | < 𝑞10,
ℎ(𝑇) > 𝑞6/2 and 𝑞4/2 < |𝑇 |/ℎ(𝑇) < 2𝑞4, we see that (22) holds for 𝑘0 = 6 if

𝑞4 > 6(2𝑒)6 log 𝑞,
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while (23) holds if

𝑞2 > 402 (log 𝑞)2𝑒.

Note that both inequalities hold for all 𝑞 > 607.
Finally, assume 𝑘 = 5. Once again, we have |𝑇 |/ℎ(𝑇) > 10|Out(𝑇) | � 10 and thus 𝑄2 (𝐺) < 1

5 .
Additionally,

𝑄1(𝐺) = (5!)2

|𝑇 | 1
3
+ 5!
|𝑇 | 4

3
+ 54

2|𝑇 | 1
3
<

3
10

for all 𝑞 � 27. The remaining groups with 𝑞 � 25 can be handled with the aid of Magma via random
search (see Remark 2.21(i)). �

Proposition 4.15. The conclusions to Theorems 1 and 2 hold when T is a classical group.

Proof. Let T be a classical group over F𝑞 , and let n be the dimension of the natural module. Note that
|𝑇 | > 1

8𝑞
𝑛(𝑛−1)/2 by Lemma 2.10. As explained above, we may assume 5 � 𝑘 � 4 log |𝑇 |. In addition,

we may also assume 𝑛 � 5 by Lemmas 4.10, 4.11, 4.13 and 4.14. Then

|𝑇 |
ℎ(𝑇) > 10|Out(𝑇) | � 10

by inspecting Table 1, and thus

𝑄2 (𝐺) < ℎ(𝑇)
|𝑇 | + 10|Out(𝑇) | · ℎ(𝑇)

2

|𝑇 |2
<

1
10

+ 1
10

=
1
5
.

First, assume 5 � 𝑘 � 𝑛 + 3. Then

𝑄1 (𝐺) < (6!)2

|𝑇 | 1
3
+ (𝑛 + 3)!

|𝑇 | 4
3

+ (𝑛 + 3)4

2|𝑇 | 1
3

<
8 1

3 (6!)2

𝑞
𝑛(𝑛−1)

6

+ 8 4
3 (𝑛 + 3)!

𝑞
2𝑛(𝑛−1)

3

+ 8 1
3 (𝑛 + 3)4

2𝑞
𝑛(𝑛−1)

6

=: 𝑄(𝑛, 𝑞).

Evidently, 𝑄(𝑛, 𝑞) is a decreasing function of q. In addition, if q is fixed, then each summand is a
decreasing function of n. Thus, 𝑄(𝑛, 𝑞) is also decreasing of n. Note that 𝑄(𝑛, 𝑞) < 3

10 if

(𝑛, 𝑞) ∈ {(12, 2), (10, 3), (9, 4), (8, 7), (7, 9), (6, 23), (5, 97)} =: B.

Hence, we only need to consider the cases where 𝑛 < 𝑛0 or 𝑞 < 𝑞0 for some (𝑛0, 𝑞0) ∈ B. For these
groups, we can show that 𝑟 (𝐺) � 2 either by checking 𝑄1(𝐺) + 𝑄2 (𝐺) < 1/2 or (13), or by random
search as explained in Remark 2.21(i). This shows that 𝑟 (𝐺) � 2 if 5 � 𝑘 � 𝑛 + 3.

To complete the proof, assume 𝑛 + 4 � 𝑘 � 4 log |𝑇 | and let 𝑘0 = 𝑛 + 4. We first consider the case
where 𝑇 = L𝜀

𝑛 (𝑞). Note that |𝑇 | < 𝑞𝑛
2−1 and

|𝑇 |
ℎ(𝑇) �

|PGL𝜀
𝑛 (𝑞) |

|GU𝑛−1(𝑞) |
>

1
2
𝑞2𝑛−2

by Lemma 2.10 and Theorem 2.12. Hence, (22) holds if

𝑞6𝑛−8 > 2(𝑛 + 4) (2𝑒)𝑛+4

https://doi.org/10.1017/fms.2023.121 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.121


Forum of Mathematics, Sigma 33

since |Out(𝑇) | � 2(𝑞 + 1) log 𝑞 < 2𝑞2. This inequality holds if 𝑞 � 3 or 𝑛 � 7, while we can check (22)
directly when (𝑛, 𝑞) = (5, 2) or (6, 2). Thus, we have (22) for all 𝑛 � 5 and 𝑞 � 2. By Lemma 3.11, it
suffices to prove (23). To do this, first note that

ℎ(𝑇) � 𝑞2𝑛−3 |PGL𝜀
𝑛−2 (𝑞) | >

1
2
𝑞2𝑛−3𝑞 (𝑛−2)2−1 =

1
2
𝑞𝑛

2−2𝑛

by Lemma 2.10 and Theorem 2.12, so (23) holds if

𝑞𝑛
2−4𝑛−1 > 32𝑒(𝑛2 − 1)2

since log 𝑞 < 𝑞. One can easily check that the above inequality holds for all 𝑛 � 5 and 𝑞 � 2, unless
𝑛 = 5 and 𝑞 � 13, or (𝑛, 𝑞) = (6, 2), in which cases we can verify (23) directly. This completes the
proof for linear and unitary groups.

Next, assume 𝑇 = PSp𝑛 (𝑞) with 𝑛 � 6. Here |𝑇 | < 𝑞𝑛(𝑛+1)/2 by Lemma 2.10 and

|𝑇 |
ℎ(𝑇) =

𝑞𝑛 − 1
(2, 𝑞 − 1) > 𝑞𝑛−1.

Since |Out(𝑇) | � 2 log 𝑞, we see that (22) holds if

𝑞2𝑛−4 > 2 log 𝑞 · (𝑛 + 4)𝑒𝑛+4

and one checks that this inequality is valid unless 𝑞 = 2 and 𝑛 � 28, 𝑛 = 6 and 𝑞 � 5, or (𝑛, 𝑞) ∈
{(8, 3), (10, 3)}. In these remaining cases, one can also check (22) by applying the precise values of |𝑇 |,
ℎ(𝑇) and |Out(𝑇) |, so as above, it just remains to verify (23). To do this, first note that

ℎ(𝑇) = 𝑞𝑛−1 |Sp𝑛−2 (𝑞) | >
1
2
𝑞𝑛(𝑛−1)/2,

so it suffices to show that

𝑞𝑛(𝑛−3)/2 > 8𝑒𝑛2 (𝑛 + 1)2(log 𝑞)2.

The latter holds unless (𝑛, 𝑞) = (6, 2) or (6, 3), in which cases one can directly verify (23). The result
now follows from Lemma 3.11.

Finally, assume 𝑇 = PΩ𝜀
𝑛 (𝑞) is an orthogonal group, so 𝑛 � 7, and q is odd if n is odd. In this setting,

|𝑇 | < 𝑞𝑛(𝑛−1)/2 and

|𝑇 |
ℎ(𝑇) >

1
2
𝑞𝑛−1

by Lemma 2.10 and Theorem 2.12. In addition, (22) holds if

𝑞4𝑛−4 > 24 log 𝑞 · (𝑛 + 4) (2𝑒)𝑛+4

since |Out(𝑇) | � 24 log 𝑞, which is valid unless 𝑞 = 2 and 𝑛 � 14. In the remaining cases, (22) can be
checked directly. Finally, to prove (23), note that

ℎ(𝑇) > 1
4
𝑞 (𝑛−1) (𝑛−2)/2

by Lemma 2.10 and Theorem 2.12, so we only need to show that

𝑞 (𝑛−1) (𝑛−4)/2 > 32𝑒𝑛2 (𝑛 − 1)2(log 𝑞)2.
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This holds unless (𝑛, 𝑞) = (7, 3) or (8, 2), and in these special cases we can verify (23) directly. We
now complete the proof by applying Lemma 3.11. �

We conclude that the proofs of Theorems 1 and 2 are complete by combining Propositions 4.8, 4.9,
4.12 and 4.15. As noted in the beginning of this section, the proof of Theorem 4 is also complete.

5. Proof of Theorem 3

In this section, we prove Theorem 3, which is our main result. By Theorems 1, 2.3, and Proposition 4.7,
we only need to consider the cases where 𝑘 = 2, or 𝑘 > |𝑇 | and 𝑃 ∈ {𝐴𝑘 , 𝑆𝑘 }.

5.1. The groups with 𝑘 = 2

We first consider the case where 𝑘 = 2. As recorded in Theorem 2.3(ii), we have 𝑏(𝐺) = 3 if 𝑃 = 1, and
𝑏(𝐺) ∈ {3, 4} if 𝑃 = 𝑆2.

Lemma 5.1. Suppose 𝑊 = 𝑇2.(Out(𝑇) × 𝑆2) and 𝑠, 𝑡 ∈ 𝑇 . Then {𝐷, 𝐷 (1, 𝜑𝑠), 𝐷 (1, 𝜑𝑡 )} is a base for
W if and only if:

(i) 𝐶Aut(𝑇 ) (𝑠) ∩ 𝐶Aut(𝑇 ) (𝑡) = 1;
(ii) there is no 𝛼 ∈ Aut(𝑇) such that 𝑠𝛼 = 𝑠−1 and 𝑡𝛼 = 𝑡−1.

Proof. This can be deduced from [47, Lemma 3.5]. �

The following is [41, Theorem 1.1].

Theorem 5.2. Suppose T is not 𝐴7, L2 (𝑞) or L𝜀
3 (𝑞) for some prime power q. Then there exists a

generating pair (𝑠, 𝑡) of T such that |𝑠 | = 2 and there is no 𝛼 ∈ Aut(𝑇) with 𝑠𝛼 = 𝑠−1 and 𝑡𝛼 = 𝑡−1.

It has been proved recently that each of the excluded groups 𝐴7, L2 (𝑞) and L𝜀
3 (𝑞) does not have a

generating pair described as in Theorem 5.2 (see [37, Theorem 1.3]).

Proposition 5.3. The conclusion to Theorem 3 holds for 𝑘 = 2.

Proof. Recall that 𝑏(𝐺) = 3 if 𝑃 = 1 by Theorem 2.3(ii). Thus, we may assume 𝑃 = 𝑆2. By Lemma 5.1
and Theorem 5.2, we have 𝑏(𝐺) = 3 if 𝑇 ∉ {𝐴7,L2 (𝑞),L𝜀

3 (𝑞)}. The case where 𝑇 = 𝐴7 can be easily
handled using Magma and we deduce that 𝑏(𝑊) = 3.

Assume 𝑇 = L2 (𝑞), so Aut(𝑇) = PΓL2(𝑞). If 𝑞 ∈ {4, 5, 9}, then T is isomorphic to 𝐴5 or 𝐴6 and we
can prove the proposition with the aid of Magma, noting that 𝑏(𝑊) = 4 and 𝑏(𝐺) = 3 if 𝐺 < 𝑊 . Now,
we consider the cases where 𝑞 ∉ {4, 5, 9}. Let s be an element in T of order (𝑞 − 1)/(2, 𝑞 − 1). Then we
have 𝑁PGL2 (𝑞) (〈𝑠〉) � 𝐷2(𝑞−1) and

𝐶PΓL2 (𝑞) (𝑠) = 𝐶PGL2 (𝑞) (𝑠) � 𝐶𝑞−1.

One can show that PGL2(𝑞) is base-two on [PGL2 (𝑞) : 𝑁PGL2 (𝑞) (〈𝑠〉)] (see, for example, [8, Lemma
4.7]), which implies that there exists 𝑔 ∈ PGL2 (𝑞) such that

𝑁PGL2 (𝑞) (〈𝑠〉) ∩ 𝑁PGL2 (𝑞) (〈𝑠𝑔〉) = 1.

We claim that the pair (𝑠, 𝑠𝑔) satisfies the conditions (i) and (ii) in Lemma 5.1. Indeed, (i) is clear
since 𝐶PΓL2 (𝑞) (𝑠) = 𝐶PGL2 (𝑞) (𝑠) and so it suffices to check (ii). To do this, first note that there exists
an element 𝛽 ∈ PGL2 (𝑞) such that 𝑠𝛽 = 𝑠−1. Therefore, if 𝛼 ∈ PΓL2(𝑞) and 𝑠𝛼 = 𝑠−1, then 𝛼 is
contained in the coset 𝐶PΓL2 (𝑞) (𝑠)𝛽. In particular, 𝛼 ∈ PGL2(𝑞) as 𝐶PΓL2 (𝑞) (𝑠) � PGL2(𝑞). It follows
that 𝛼 ∈ 𝑁PGL2 (𝑞) (〈𝑠〉). Similarly, if (𝑠𝑔)𝛼 = (𝑠𝑔)−1, then 𝛼 ∈ 𝑁PGL2 (𝑞) (〈𝑠𝑔〉), which yields 𝛼 = 1.
This leads to a contradiction as s is not an involution. Thus, 𝑏(𝐺) = 3 by Lemma 5.1.
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Finally, let us turn to the case where 𝑇 = L𝜀
3 (𝑞). One can easily check the proposition for 𝑞 = 3

using Magma, and we will assume 𝑞 ≠ 2 as L3 (2) � L2 (7) has been handled above, and U3(2) is not
simple. Let N be a subgroup of Aut(𝑇) of type GL𝜀

1 (𝑞3). Then N is a maximal subgroup of Aut(𝑇), and
𝑁 ∩𝑇 � 〈𝑠〉:𝐶3, where |𝑠 | = (𝑞3−𝜀)/𝑑 (𝑞−𝜀) and 𝑑 = (3, 𝑞−𝜀) (see [39, Proposition 4.3.6]). Note that
𝑁 = 𝑁Aut(𝑇 ) (〈𝑠〉). By [8, Lemma 6.4], Aut(𝑇) is base-two on [Aut(𝑇) : 𝑁], so there exists 𝑔 ∈ Aut(𝑇)
such that 𝑁Aut(𝑇 ) (〈𝑠〉) ∩ 𝑁Aut(𝑇 ) (〈𝑠𝑔〉) = 1. By repeating the above argument, we deduce that the
conditions (i) and (ii) in Lemma 5.1 are satisfied if we take 𝑡 = 𝑠𝑔, which completes the proof. �

The following corollary will be useful in Section 5.3.

Corollary 5.4. Suppose 𝑇 ∉ {𝐴5, 𝐴6}. Then there exist 𝑥, 𝑦 ∈ 𝑇 such that 𝐶Aut(𝑇 ) (𝑥) ∩ 𝐶Aut(𝑇 ) (𝑦) = 1
and there is no 𝛼 ∈ Aut(𝑇) with (𝑥, 𝑦)𝛼 = (𝑥−1, 𝑦−1).

Proof. Proposition 5.3 implies that the group 𝑊 = 𝑇2.(Out(𝑇) × 𝑆2) has a base of size 3. Now, apply
Lemma 5.1. �

5.2. The groups with |𝑇 |ℓ−1 < 𝑘 � |𝑇 |ℓ − 3

Next, we assume 𝑃 ∈ {𝐴𝑘 , 𝑆𝑘 } and |𝑇 |ℓ−1 < 𝑘 � |𝑇 |ℓ −3 for some integer ℓ � 1. The groups with ℓ = 1
have been handled in Theorem 1 and Proposition 5.3, so we may assume ℓ � 2. In this setting, Theorem
2.3(iii) implies that 𝑏(𝐺) ∈ {ℓ + 1, ℓ + 2}, and we will show that 𝑏(𝐺) = ℓ + 1 by constructing a base
for G of size ℓ + 1. We may assume 𝐺 = 𝑇 𝑘 .(Out(𝑇) × 𝑆𝑘 ) throughout.

For any partition P of [𝑘] into |𝑇 | parts, where some parts are allowed to be empty, we may write
P = {P𝑡 : 𝑡 ∈ 𝑇}. Recall that Hol(𝑇, 𝑆) is the setwise stabiliser of 𝑆 ⊆ 𝑇 in Hol(𝑇).

Lemma 5.5. If ℓ � 2 and |𝑇 |ℓ−1 < 𝑘 � |𝑇 |ℓ − 3, then there exists a partition P = {P𝑡 : 𝑡 ∈ 𝑇} of [𝑘]
satisfying the following properties:

(P1) |P𝑡 | � |𝑇 |ℓ−1 for all 𝑡 ∈ 𝑇 .
(P2) |P1 | ≠ 0 and Hol(𝑇, 𝑆) = 1, where

𝑆 = {𝑡 ∈ 𝑇 : |P𝑡 | = |P1 |}.

(P3) There exists 𝑥 ∈ 𝑇# such that |P𝑥 | ∈ {1, |𝑇 |ℓ−1 − 1}.

Proof. First, assume |𝑇 |ℓ − 2|𝑇 |ℓ−1 < 𝑘 � |𝑇 |ℓ − 3. In view of Theorem 4, let S be a subset of
T containing 1 with |𝑆 | = |𝑇 | − 3 and Hol(𝑇, 𝑆) = 1, and let {𝑥1, 𝑥2, 𝑥3} = 𝑇 \ 𝑆. Now, define
P = {P𝑡 : 𝑡 ∈ 𝑇}, where |P𝑡 | = |𝑇 |ℓ−1 if 𝑡 ∈ 𝑆, and |P𝑥𝑖 | � |𝑇 |ℓ−1 − 1 with |P𝑥1 | = |𝑇 |ℓ−1 − 1 and
|P𝑥2 | + |P𝑥3 | = 𝑘 − (|𝑇 | − 2) |𝑇 |ℓ−1 + 1. Note that such a partition exists since

2 � 𝑘 − (|𝑇 | − 2) |𝑇 |ℓ−1 + 1 � 2|𝑇 |ℓ−1 − 2.

It is then easy to check that P satisfies the conditions (P1)–(P3).
Now, assume 3|𝑇 |ℓ−1 < 𝑘 � |𝑇 |ℓ − 2|𝑇 |ℓ−1. Then there exists an integer m such that 3 � 𝑚 � |𝑇 | − 3

and 𝑚 |𝑇 |ℓ−1 < 𝑘 � (𝑚 + 1) |𝑇 |ℓ−1. By Theorem 4, there exists a subset 𝑆 ⊆ 𝑇 containing 1 with |𝑆 | = 𝑚
and Hol(𝑇, 𝑆) = 1. Let 𝑥1, 𝑥2 ∈ 𝑇 \𝑆, and defineP = {P𝑡 : 𝑡 ∈ 𝑇}, where |P𝑡 | = |𝑇 |ℓ−1 if 𝑡 ∈ 𝑆, |P𝑥1 | = 1
and |P𝑥2 | = 𝑘 −𝑚 |𝑇 |ℓ−1 − 1, noting that 0 � 𝑘 −𝑚 |𝑇 |ℓ−1 − 1 < |𝑇 |ℓ−1. One can check (P1)–(P3) easily.

To complete the proof, we assume |𝑇 |ℓ−1 < 𝑘 � 3|𝑇 |ℓ−1 and let 𝑆 = {𝑡1, 𝑡2, 𝑡3} ⊆ 𝑇 be such that
𝑡1 = 1 and Hol(𝑇, 𝑆) = 1. In this setting, let 𝑥1, 𝑥2, 𝑥3 ∈ 𝑇 \ 𝑆 and define P = {P𝑡 : 𝑡 ∈ 𝑇}, where
|P𝑡𝑖 | = 1, and |P𝑥𝑖 | � |𝑇 |ℓ−1 with |P𝑥𝑖 | ≠ 1 and |P𝑥1 | + |P𝑥2 | + |P𝑥3 | = 𝑘 − 3. We conclude the proof
by noting that P satisfies the conditions (P1)–(P3). �

For the remainder of this subsection, P = {P𝑡 : 𝑡 ∈ 𝑇} is a partition of [𝑘] satisfying the conditions
in Lemma 5.5, where 𝑆 ⊆ 𝑇 and 𝑥 ∈ 𝑇# are as described in (P2) and (P3), respectively. Define
a0 = (𝜑𝑡0,1 , . . . , 𝜑𝑡0,𝑘 ) ∈ Inn(𝑇)𝑘 by 𝑡0, 𝑗 = 𝑡 if 𝑗 ∈ P𝑡 .
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Lemma 5.6. Suppose (𝛼, . . . , 𝛼)𝜋 ∈ 𝐺𝐷a0 . Then 𝛼 = 1 and 𝜋 ∈ 𝑃(P) .

Proof. First, note that there exists a unique 𝑔 ∈ 𝑇 such that 𝑡𝛼0, 𝑗 = 𝑔𝑡0, 𝑗 𝜋 for all 𝑗 ∈ [𝑘], and we have
𝜋 ∈ 𝑃{P } by Lemma 2.2(i). This implies that 𝜋 fixes the set {P𝑡 : 𝑡 ∈ 𝑆}, and thus 𝑔−1𝑡𝛼 ∈ 𝑆 if 𝑡 ∈ 𝑆,
whence 𝑔𝛼

−1
𝛼 ∈ Hol(𝑇, 𝑆) = 1. It follows that 𝑔 = 1 and 𝛼 = 1, so 𝑡0, 𝑗 = 𝑡0, 𝑗 𝜋 for all 𝑗 ∈ [𝑘], which

concludes the proof. �

Write 𝑇ℓ−1 = {b1, . . . , b |𝑇 |ℓ−1 }, where bℎ = (𝑎1,ℎ , . . . , 𝑎ℓ−1,ℎ). If |P𝑥 | = 1, then we may assume
b1 = (1, . . . , 1), and if |P𝑥 | = |𝑇 |ℓ−1 − 1, we assume b |𝑇 |ℓ−1 = (1, . . . , 1). Let 1 � 𝑖 � ℓ − 1, and
define a𝑖 = (𝜑𝑡𝑖,1 , . . . , 𝜑𝑡𝑖,𝑘 ) ∈ Inn(𝑇)𝑘 , where 𝑡𝑖, 𝑗 = 𝑎𝑖,ℎ if j is the h-th smallest number in P𝑡 . Define
𝑋𝑖,𝑡 := { 𝑗 ∈ P𝑥 : 𝑡𝑖, 𝑗 = 𝑡}.

Lemma 5.7. For any 𝑡 ∈ 𝑇# and 𝑖 ∈ {1, . . . , ℓ − 1}, we have |𝑋𝑖,𝑡 | ≠ |𝑋𝑖,1 |.

Proof. If |P𝑥 | = 1, then b1 = (1, . . . , 1), so |𝑋𝑖,1 | = 1 and |𝑋𝑖,𝑡 | = 0 for all 𝑡 ∈ 𝑇#. And if |P𝑥 | = |𝑇 |ℓ−1,
then b |𝑇 |ℓ−1 = (1, . . . , 1), which implies that |𝑋𝑖,1 | = |𝑇 |ℓ−1 − 1 and |𝑋𝑖,𝑡 | = |𝑇 |ℓ−1 for all 𝑡 ∈ 𝑇#. �

Proposition 5.8. If ℓ � 2, 𝑃 ∈ {𝐴𝑘 , 𝑆𝑘 } and |𝑇 |ℓ−1 < 𝑘 � |𝑇 |ℓ − 3, then 𝑏(𝐺) = ℓ + 1.

Proof. As noted above, it suffices to show that Δ = {𝐷, 𝐷a0, 𝐷a1 . . . , 𝐷aℓ−1} is a base for
𝐺 = 𝑇 𝑘 .(Out(𝑇) × 𝑆𝑘 ). Suppose (𝛼, . . . , 𝛼)𝜋 ∈ 𝐺 (Δ) . By Lemma 5.6, we have 𝛼 = 1 and 𝜋 ∈ 𝑃(P) .
Note that for any 𝑖 ∈ {1, . . . , ℓ − 1}, there exists a unique 𝑔𝑖 ∈ 𝑇 such that 𝑡𝑖, 𝑗 = 𝑔𝑖𝑡𝑖, 𝑗 𝜋 for any 𝑗 ∈ [𝑘].
Now, 𝑗 ∈ 𝑋𝑖,1 if and only if 𝑗 𝜋 ∈ 𝑋𝑖,𝑔−1

𝑖
. This implies that 𝑔𝑖 = 1 by Lemma 5.7, and hence 𝑡𝑖, 𝑗 = 𝑡𝑖, 𝑗 𝜋

for all 𝑖 ∈ {1, . . . , ℓ − 1} and 𝑗 ∈ [𝑘].
From the definition of a𝑖 , we see that if 𝑗 , 𝑗 ′ ∈ P𝑡 and 𝑗 ≠ 𝑗 ′, then there exists 𝑖 ∈ {1, . . . , ℓ − 1}

such that 𝑡𝑖, 𝑗 ≠ 𝑡𝑖, 𝑗′ . This yields 𝑗 𝜋 ≠ 𝑗 ′, so 𝑗 𝜋 = 𝑗 since 𝜋 ∈ 𝑃{P𝑡 }. That is, 𝜋 ∈ 𝑃(P𝑡 ) for all 𝑡 ∈ 𝑇 ,
whence 𝜋 = 1. �

5.3. The groups with |𝑇 |ℓ − 2 � 𝑘 � |𝑇 |ℓ

To complete the proof of Theorem 3, we turn to the cases where 𝑃 ∈ {𝐴𝑘 , 𝑆𝑘 } and 𝑘 ∈ {|𝑇 |ℓ − 2, |𝑇 |ℓ −
1, |𝑇 |ℓ } for some integer ℓ � 1. The groups with ℓ = 1 have been treated previously, and we record the
result as follows.

Proposition 5.9. If 𝑘 ∈ {|𝑇 | − 2, |𝑇 | − 1, |𝑇 |} and 𝑃 ∈ {𝐴𝑘 , 𝑆𝑘 }, then

𝑏(𝐺) =
{

2 if 𝑘 ∈ {|𝑇 | − 2, |𝑇 | − 1} and 𝑆𝑘 � 𝐺;
3 otherwise.

Proof. Combine Theorem 2.3(iii) and Proposition 4.7. �

From now on, we assume ℓ � 2. We start with the groups with 𝑆𝑘 � 𝐺.

Lemma 5.10. Suppose 𝑘 ∈ {|𝑇 |ℓ − 2, |𝑇 |ℓ − 1, |𝑇 |ℓ } with ℓ � 2, 𝑃 ∈ {𝐴𝑘 , 𝑆𝑘 } and 𝑆𝑘 � 𝐺. Then
𝑏(𝐺) = ℓ + 1.

Proof. In view of Theorem 2.3(iii), it suffices to construct a base for G of size ℓ + 1. Note that 𝐴𝑘 � 𝐺
by Corollary 2.6, so G does not contain any transposition in 𝑆𝑘 .

By Corollary 5, there exist 𝑥, 𝑦 ∈ 𝑇# such that Aut(𝑇, {𝑥, 𝑦}) = 1. Let P = {P𝑡 : 𝑡 ∈ 𝑇} be a partition
of [𝑘] with |P1 | = |𝑇 |ℓ−1+1, |P𝑥 | = |𝑇 |ℓ−1−1 and |P𝑡 | = |𝑇 |ℓ−1 if 𝑡 ∉ {1, 𝑥, 𝑦}. Thus, |P𝑦 | = |𝑇 |ℓ−1−𝑚
if 𝑘 = |𝑇 |ℓ − 𝑚, where 𝑚 ∈ {0, 1, 2}. Now, define a0 = (𝜑𝑡0,1 , . . . , 𝜑𝑡0,𝑘 ) ∈ Inn(𝑇)𝑘 by setting 𝑡0, 𝑗 = 𝑡
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if 𝑗 ∈ P𝑡 . We also write 𝑇ℓ−1 = {b1, . . . , b |𝑇 |ℓ−1 }, where bℎ = (𝑎1,ℎ , . . . , 𝑎ℓ−1,ℎ), and we may assume
b |𝑇 |ℓ−1 = (𝑦, . . . , 𝑦). Define a𝑖 = (𝜑𝑡𝑖,1 , . . . , 𝜑𝑡𝑖,𝑘 ) ∈ Inn(𝑇)𝑘 for 𝑖 ∈ {1, . . . , ℓ − 1}, where

𝑡𝑖, 𝑗 =

{
𝑎𝑖,ℎ if 𝑗 is the ℎ-th smallest number in P𝑡 ;
1 if 𝑗 is the largest number in P1.

We claim that Δ = {𝐷, 𝐷a0, 𝐷a1, . . . , 𝐷aℓ−1} is a base for G.
Suppose (𝛼, . . . , 𝛼)𝜋 ∈ 𝐺 (Δ) . By Lemma 2.2, we have 𝜋 ∈ 𝑃{P } and 𝑡𝛼0, 𝑗 = 𝑡0, 𝑗 𝜋 for all 𝑗 ∈ [𝑘].

We first prove that 𝛼 = 1. To see this, note that if 𝑘 ∈ {|𝑇 |ℓ − 2, |𝑇 |ℓ − 1}, then 𝜋 ∈ 𝑃{P𝑥∪P𝑦 }, which
implies that 𝛼 ∈ Aut(𝑇, {𝑥, 𝑦}), and thus 𝛼 = 1 since Aut(𝑇, {𝑥, 𝑦}) = 1. Now, assume 𝑘 = |𝑇 |ℓ . Then
𝜋 ∈ 𝑃{P𝑥 } and thus 𝛼 ∈ 𝐶Aut(𝑇 ) (𝑥). Note that for each 𝑖 ∈ {1, . . . , ℓ − 1}, 1 appears exactly |𝑇 |ℓ−1 + 1
times in the entries of a𝑖 , while 𝜑𝑦 appears exactly |𝑇 |ℓ−1 − 1 times and every other element appears
exactly |𝑇 |ℓ−1 times. By arguing as above, we have 𝑡𝛼𝑖, 𝑗 = 𝑡𝑖, 𝑗 𝜋 for all 𝑖 ∈ {1, . . . , ℓ − 1}, which implies
that 𝛼 ∈ 𝐶Aut(𝑇 ) (𝑦), and so 𝛼 = 1 since Aut(𝑇, {𝑥, 𝑦}) = 1.

Finally, observe that there exists a unique pair { 𝑗1, 𝑗2} of elements in [𝑘] such that 𝑗1 ≠ 𝑗2 and
𝑡𝑖, 𝑗1 = 𝑡𝑖, 𝑗2 for all 𝑖 ∈ {0, . . . , ℓ − 1}, where we have 𝑡𝑖, 𝑗1 = 𝑡𝑖, 𝑗2 = 1. For each i, there exists a unique
element 𝑔𝑖 ∈ 𝑇 such that 𝑡𝑖, 𝑗 = 𝑔𝑖𝑡𝑖, 𝑗 𝜋 for all 𝑗 ∈ [𝑘], so 𝑡𝑖, 𝑗 𝜋1 = 𝑡𝑖, 𝑗 𝜋2 = 𝑔−1

𝑖 . Since 𝜋 ∈ 𝑃{P1 }, it follows
that 𝑔𝑖 = 1 and so 𝑡𝑖, 𝑗 = 𝑡𝑖, 𝑗 𝜋 for all 𝑗 ∈ [𝑘]. It is then easy to see that 𝜋 ∈ 〈( 𝑗1, 𝑗2)〉, and thus 𝜋 = 1 as
G does not contain any transposition in 𝑆𝑘 . �

Proposition 5.11. If ℓ � 2, 𝑃 ∈ {𝐴𝑘 , 𝑆𝑘 } and 𝑘 ∈ {|𝑇 |ℓ − 1, |𝑇 |ℓ }, then

𝑏(𝐺) =
{
ℓ + 1 if 𝑆𝑘 � 𝐺;
ℓ + 2 if 𝑆𝑘 � 𝐺.

Proof. See Theorem 2.3(iii) for the groups with 𝑆𝑘 � 𝐺 and Lemma 5.10 for 𝑆𝑘 � 𝐺. �

Finally, we turn to the groups with 𝑘 = |𝑇 |ℓ − 2 and 𝑆𝑘 � 𝐺. The case where ℓ = 2 requires special
attention.

Lemma 5.12. Suppose 𝑘 = |𝑇 |2 − 2, 𝑇 ∈ {𝐴5, 𝐴6} and 𝐺 = 𝑇 𝑘 .(Out(𝑇) × 𝑆𝑘 ). Then 𝑏(𝐺) = 4.

Proof. By Theorem 2.3(iii), we have 𝑏(𝐺) ∈ {3, 4}, so it suffices to show that there is no base for G of
size 3.

We argue by contradiction and suppose Δ = {𝐷, 𝐷a0, 𝐷a1} is a base for G, where
a𝑖 = (𝜑𝑡𝑖,1 , . . . , 𝜑𝑡𝑖,𝑘 ) ∈ Inn(𝑇)𝑘 . If 𝜑𝑡 appears at least |𝑇 | + 1 times in the entries of a0 for some t,
then there exist 𝑗 , 𝑗 ′ ∈ [𝑘] such that 𝑗 ≠ 𝑗 ′, 𝑡0, 𝑗 = 𝑡0, 𝑗′ = 𝑡 and 𝑡1, 𝑗 = 𝑡1, 𝑗′ , which implies that 𝐺 (Δ)
contains the transposition ( 𝑗 , 𝑗 ′). Thus, we may assume that each 𝜑𝑡 appears at most |𝑇 | times in the
entries of a0. The same argument holds for a1. It follows that the set

𝑆𝑖 = {𝑡 ∈ 𝑇 : 𝜑𝑡 appears exactly |𝑇 | times in the entries of a𝑖}

has size at least |𝑇 | − 2, so |𝑆𝑖 | ∈ {|𝑇 | − 2, |𝑇 | − 1}.
First, assume either |𝑆0 | or |𝑆1 | is equal to |𝑇 | −1, say |𝑆0 | = |𝑇 | −1 and 1 ∉ 𝑆0. For the same reason as

above, for any 𝑗 , 𝑗 ′ such that 𝑗 ≠ 𝑗 ′ and 𝑡0, 𝑗 = 𝑡0, 𝑗′ , we have 𝑡1, 𝑗 ≠ 𝑡1, 𝑗′ , otherwise ( 𝑗 , 𝑗 ′) ∈ 𝐺 (Δ) . This
implies that |𝑆1 | = |𝑇 | − 2, and we may assume 𝑇 \ 𝑆1 = {1, 𝑥} for some 𝑥 ≠ 1. Write c 𝑗 = (𝑡0, 𝑗 , 𝑡1, 𝑗 )
for 𝑗 ∈ [𝑘], noting that

{c 𝑗 : 𝑗 ∈ [𝑘]} = 𝑇2 \ {(1, 1), (1, 𝑥)}.
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That is, {c 𝑗 : 𝑗 ∈ [𝑘]} is fixed by 𝜑𝑥 setwise, with the componentwise action. This induces a permutation
𝜋 ∈ 𝑆𝑘 , where

𝑗 𝜋 = 𝑚 if c𝜑𝑥

𝑗 = c𝑚.

In particular, 𝑡𝜑𝑥

𝑖, 𝑗 = 𝑡𝑖, 𝑗 𝜋 for each 𝑖 ∈ {0, 1}. Then

𝐷a(𝜑𝑥 ,...,𝜑𝑥 ) 𝜋
𝑖 = 𝐷 (𝜑𝑡𝜑𝑥

𝑖,1𝜋−1
, . . . , 𝜑𝑡𝜑𝑥

𝑖,𝑘 𝜋
−1
) = 𝐷 (𝜑𝑡𝑖,1 , . . . , 𝜑𝑡𝑖,𝑘 ) = 𝐷a𝑖

for each 𝑖 ∈ {0, 1}, and so (𝜑𝑥 , . . . , 𝜑𝑥)𝜋 ∈ 𝐺 (Δ) .
To complete the proof, we may assume |𝑆0 | = |𝑆1 | = |𝑇 | − 2, say 𝑇 \ 𝑆0 = {1, 𝑥} and 𝑇 \ 𝑆1 = {1, 𝑦}.

Write c 𝑗 = (𝑡0, 𝑗 , 𝑡1, 𝑗 ) for 𝑗 ∈ [𝑘] as above, and observe that

𝑇2 \ {c 𝑗 : 𝑗 ∈ [𝑘]} = {(1, 1), (𝑥, 𝑦)} or {(1, 𝑦), (𝑥, 1)}.

It is easy to check with the aid of Magma that there exists an automorphism 𝛼 ∈ Aut(𝑇) such that
1 ≠ 𝛼 ∈ 𝐶Aut(𝑇 ) (𝑥) ∩ 𝐶Aut(𝑇 ) (𝑦), or (𝑥, 𝑦)𝛼 = (𝑥−1, 𝑦−1).

Assume 𝛼 ≠ 1 and (𝑥, 𝑦)𝛼 = (𝑥, 𝑦). Then {c 𝑗 : 𝑗 ∈ [𝑘]} is fixed by 𝛼 setwise, with the component-
wise action. Once again, 𝛼 induces a permutation 𝜋 ∈ 𝑆𝑘 , where

𝑗 𝜋 = 𝑚 if c𝛼𝑗 = c𝑚.

Then by arguing as above, we deduce that (𝛼, . . . , 𝛼)𝜋 ∈ 𝐺 (Δ) .
Finally, assume (𝑥, 𝑦)𝛼 = (𝑥−1, 𝑦−1) and note that

{c 𝑗 : 𝑗 ∈ [𝑘]}𝛼 = {(𝑥−1, 𝑦−1)c 𝑗 : 𝑗 ∈ [𝑘]}.

Here, 𝛼 also induces a permutation 𝜋 ∈ 𝑆𝑘 , where

𝑗 𝜋 = 𝑚 if c𝛼𝑗 = (𝑥−1, 𝑦−1)c𝑚,

and thus 𝑡𝛼0, 𝑗 = 𝑥−1𝑡0, 𝑗 𝜋 and 𝑡𝛼1, 𝑗 = 𝑦−1𝑡1, 𝑗 𝜋 for all 𝑗 ∈ [𝑘], noting that 𝜋 ≠ 1 if 𝛼 = 1. Now, we have

𝐷a(𝛼,...,𝛼) 𝜋
0 = 𝐷 (𝜑𝑡𝛼

𝑖,1𝜋−1
, . . . , 𝜑𝑡𝛼

𝑖,𝑘 𝜋
−1
) = 𝐷 (𝜑𝑥−1𝜑𝑡𝑖,1 , . . . , 𝜑𝑥−1𝜑𝑡𝑖,𝑘 ) = 𝐷a0

and similarly, 𝐷a(𝛼,...,𝛼) 𝜋
1 = 𝐷a1. This completes the proof. �

Proposition 5.13. If 𝑃 ∈ {𝐴𝑘 , 𝑆𝑘 } and 𝑘 = |𝑇 |2 − 2, then

𝑏(𝐺) =
{

4 if 𝑇 ∈ {𝐴5, 𝐴6} and 𝐺 = 𝑇 𝑘 .(Out(𝑇) × 𝑆𝑘 );
3 otherwise.

Proof. By Lemmas 5.10 and 5.12, we may assume that 𝑆𝑘 � 𝐺, and G is not 𝑇 𝑘 .(Out(𝑇) × 𝑆𝑘 ) if
𝑇 ∈ {𝐴5, 𝐴6}. That is, 𝐺 = 𝑇 𝑘 .(𝑂 × 𝑆𝑘 ) for some 𝑂 � Out(𝑇), with 𝑂 ≠ Out(𝑇) if 𝑇 ∈ {𝐴5, 𝐴6}. We
will prove that 𝑏(𝐺) = 3 by constructing a base of size 3.

Write 𝐾 = Inn(𝑇).𝑂 � Aut(𝑇). Note that there exist 𝑥, 𝑦 ∈ 𝑇 such that 𝐶𝐾 (𝑥) ∩𝐶𝐾 (𝑦) = 1 and there
is no 𝛼 ∈ 𝐾 with (𝑥, 𝑦)𝛼 = (𝑥−1, 𝑦−1). This can be obtained by Corollary 5.4 when 𝑇 ∉ {𝐴5, 𝐴6}, and
the cases where 𝑇 ∈ {𝐴5, 𝐴6} can be checked using Magma (note that 𝐾 < Aut(𝑇) if 𝑇 ∈ {𝐴5, 𝐴6}).
Now, let P = {P𝑡 : 𝑡 ∈ 𝑇} be a partition of [𝑘] with |P1 | = |P𝑥 | = |𝑇 | − 1, and |P𝑡 | = |𝑇 | if
𝑡 ∉ {1, 𝑥}. And we label the elements in T by 𝑇 = {𝑔1, . . . , 𝑔 |𝑇 | }, where 𝑔1 = 1 and 𝑔 |𝑇 | = 𝑦. Define
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a0 = (𝜑𝑡0,1 , . . . , 𝜑𝑡0,𝑘 ) ∈ Inn(𝑇)𝑘 , where 𝑡0, 𝑗 = 𝑡 if 𝑗 ∈ P𝑡 , and define a1 = (𝜑𝑡1,1 , . . . , 𝜑𝑡1,𝑘 ) ∈ Inn(𝑇)𝑘
by setting

𝑡1, 𝑗 =

{
𝑔ℎ if 𝑡 ≠ 1 and 𝑗 is the ℎ-th smallest number in P𝑡 ;
𝑔ℎ+1 if 𝑗 is the ℎ-th smallest number in P1.

Now, we claim that Δ = {𝐷, 𝐷a0, 𝐷a1} is a base for G.
Suppose (𝛼, . . . , 𝛼)𝜋 ∈ 𝐺 (Δ) , noting that 𝛼 ∈ 𝐾 . By Lemma 2.2(i), we have 𝜋 ∈ 𝑃{P }, so either

𝜋 ∈ 𝑃{P1 } ∩ 𝑃{P𝑥 }, or P 𝜋
1 = P𝑥 , hence there are two cases to consider.

First, assume that P 𝜋
1 = P𝑥 . There exists a unique 𝑔 ∈ 𝑇 such that 𝑡𝛼0, 𝑗 = 𝑔𝑡0, 𝑗 𝜋 for all 𝑗 ∈ [𝑘], and

by taking 𝑗 ∈ P1 we have 𝑔 = 𝑥−1. This implies that 𝑥𝛼 = 𝑥−1 by taking 𝑗 ∈ P𝑥 . Let Q = {Q𝑡 : 𝑡 ∈ 𝑇}
be the partition of [𝑘] defined by setting 𝑗 ∈ Q𝑡 if 𝑡1, 𝑗 = 𝑡. Then |Q1 | = |Q𝑦 | = |𝑇 | − 1, and |Q𝑡 | = |𝑇 |
if 𝑡 ∉ {1, 𝑦}. By arguing as above, either 𝜋 ∈ 𝑃{Q1 } ∩ 𝑃{Q𝑦 } or Q𝜋

1 = Q𝑦 . If the former holds, then

(P1 ∩Q1) 𝜋 = P𝑥 ∩Q1.

However, as can be seen from the definitions of a0 and a1, we have |P1 ∩Q1 | = 0, while |P𝑥 ∩Q1 | = 1.
This implies that Q𝜋

1 = Q𝑦 , so 𝑦𝛼 = 𝑦−1 as above. By our assumptions on x and y, there is no 𝛼 ∈ 𝐾

with (𝑥, 𝑦)𝛼 = (𝑥−1, 𝑦−1), which gives a contradiction.
Finally, suppose that 𝜋 ∈ 𝑃{P1 } ∩ 𝑃{P𝑥 }. First, note that 𝑡𝛼0, 𝑗 = 𝑡0, 𝑗 𝜋 for all 𝑗 ∈ [𝑘], so 𝑥𝛼 = 𝑥.

Similarly, we have 𝜋 ∈ 𝑃{Q1 } ∩ 𝑃{Q𝑦 } and 𝑦𝛼 = 𝑦. This implies that 𝛼 ∈ 𝐶𝐾 (𝑥) ∩𝐶𝐾 (𝑦) = 1, and thus
𝑡𝑖, 𝑗 = 𝑡𝑖, 𝑗 𝜋 for all 𝑖 ∈ {0, 1} and 𝑗 ∈ [𝑘], which yields 𝜋 = 1 and completes the proof. �

Proposition 5.14. If ℓ � 3, 𝑘 = |𝑇 |ℓ − 2 and 𝑃 ∈ {𝐴𝑘 , 𝑆𝑘 }, then 𝑏(𝐺) = ℓ + 1.

Proof. In view of Theorem 2.3(iii), it suffices to construct a base for G of size ℓ + 1. First note that there
exist 𝑥, 𝑦, 𝑧 ∈ 𝑇 such that

𝐶Aut(𝑇 ) (𝑥) ∩ 𝐶Aut(𝑇 ) (𝑦) ∩ 𝐶Aut(𝑇 ) (𝑧) = 1

and there is no 𝛼 ∈ Aut(𝑇) with

(𝑥, 𝑦, 𝑧)𝛼 = (𝑥−1, 𝑦−1, 𝑧−1).

To see this, if 𝑇 ∉ {𝐴5, 𝐴6}, then we apply Corollary 5.4, and if 𝑇 ∈ {𝐴5, 𝐴6}, then it can be checked
using Magma. Let P = {P𝑡 : 𝑡 ∈ 𝑇} be a partition of [𝑘] with |P1 | = |P𝑥 | = |𝑇 |ℓ−1−1 and |P𝑡 | = |𝑇 |ℓ−1

if 𝑡 ∉ {1, 𝑥}. Write 𝑇ℓ−1 = {b1, . . . , b |𝑇 |ℓ−1 }, where bℎ = (𝑎1,ℎ , . . . , 𝑎ℓ−1,ℎ), and we may assume
b1 = (1, . . . , 1) and b |𝑇 |ℓ−1 = (𝑦, 𝑧, . . . , 𝑧). Now, define a𝑖 = (𝜑𝑡𝑖,1 , . . . , 𝜑𝑡𝑖,𝑘 ) for 𝑖 ∈ {0, . . . , ℓ − 1},
where 𝑡0, 𝑗 = 𝑡 if 𝑗 ∈ P𝑡 , and if 𝑖 � 1,

𝑡𝑖, 𝑗 =

{
𝑎𝑖,ℎ if 𝑡 ≠ 1 and 𝑗 is the ℎ-th smallest number in P𝑡 ;
𝑎𝑖,ℎ+1 if 𝑗 is the ℎ-th smallest number in P1.

We claim that Δ = {𝐷, 𝐷a0, 𝐷a1, . . . , 𝐷aℓ−1} is a base for G.
We argue as in the proof of Proposition 5.13. Suppose (𝛼, . . . , 𝛼)𝜋 ∈ 𝐺 (Δ) , noting that 𝜋 ∈ 𝑃{P } by

Lemma 2.2(i). It follows that either 𝜋 ∈ 𝑃{P1 } ∩ 𝑃{P𝑥 } or P 𝜋
1 = P𝑥 .

First, assume that P 𝜋
1 = P𝑥 . Note that there exists a unique 𝑔 ∈ 𝑇 such that 𝑡𝛼0, 𝑗 = 𝑔𝑡0, 𝑗 𝜋 for all

𝑗 ∈ [𝑘]. Now, 𝑔 = 𝑥−1 by taking 𝑗 ∈ P1, and thus 𝑥𝛼 = 𝑥−1 by taking 𝑗 ∈ P𝑥 . Let Q = {Q𝑡 : 𝑡 ∈ 𝑇}
be the partition of [𝑘] defined by setting 𝑗 ∈ Q𝑡 if 𝑡1, 𝑗 = 𝑡. Then |Q1 | = |Q𝑦 | = |𝑇 |ℓ−1 − 1, and
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|Q𝑡 | = |𝑇 |ℓ−1 if 𝑡 ∉ {1, 𝑦}. By applying Lemma 2.2(i) again, we have either 𝜋 ∈ 𝑃{Q1 } ∩ 𝑃{Q𝑦 } or
Q𝜋

1 = Q𝑦 . If 𝜋 ∈ 𝑃{Q1 } ∩ 𝑃{Q𝑦 }, then

(P1 ∩Q1) 𝜋 = P𝑥 ∩Q1,

which is impossible since |P1 ∩Q1 | = |𝑇 |ℓ−2 − 1, while |P𝑥 ∩Q1 | = |𝑇 |ℓ−2. Hence, we have Q𝜋
1 = Q𝑦 ,

and thus 𝑦𝛼 = 𝑦−1 with the same argument as above. Now, suppose 𝑖 � 2 and letR = {R𝑡 : 𝑡 ∈ 𝑇} be the
partition of [𝑘] defined by setting 𝑗 ∈ R𝑡 if 𝑡𝑖, 𝑗 = 𝑡. Then |R1 | = |R𝑧 | = |𝑇 |ℓ−1 − 1, and |R𝑡 | = |𝑇 |ℓ−1

if 𝑡 ∉ {1, 𝑧}. By arguing as above, we have 𝑧𝛼 = 𝑧−1. However, by our assumptions on x, y and z, there
is no automorphism of T simultaneously inverting all three elements, which gives a contradiction.

It follows that 𝜋 ∈ 𝑃{P1 } ∩ 𝑃{P𝑥 }, and with the same reason, we have 𝜋 ∈ 𝑃{Q1 } and 𝜋 ∈ 𝑃{R1 }.
Hence, 𝑡𝛼𝑖, 𝑗 = 𝑡𝑖, 𝑗 𝜋 for all 𝑖 ∈ {0, . . . , ℓ − 1} and 𝑗 ∈ [𝑘]. This implies that

𝛼 ∈ 𝐶Aut(𝑇 ) (𝑥) ∩ 𝐶Aut(𝑇 ) (𝑦) ∩ 𝐶Aut(𝑇 ) (𝑧),

so 𝛼 = 1. Moreover, note that if 𝑗 , 𝑗 ′ ∈ P𝑡 for some 𝑡 ∈ 𝑇 and 𝑗 ≠ 𝑗 ′, then there exists 𝑖 ∈ {1, . . . , ℓ− 1}
such that 𝑡𝑖, 𝑗 ≠ 𝑡𝑖, 𝑗′ . Hence, 𝜋 = 1 and so Δ is a base for G. �

We conclude that the proof of Theorem 3 is complete by combining Theorem 1 with Propositions 5.3,
5.8, 5.9, 5.11, 5.13 and 5.14.

6. Proofs of Theorems 6 and 7

In this final section, we will prove Theorems 6 and 7. As introduced in Section 1, let Q𝑘 (𝑇) be the
probability that a random k-element subset of 𝑇# has a nontrivial setwise stabiliser in Aut(𝑇). That is,

Q𝑘 (𝑇) :=
|{𝑅 ∈ 𝒮𝑘 (𝑇) : Aut(𝑇, 𝑅) ≠ 1}|

|𝒮𝑘 (𝑇) |
,

where 𝒮𝑘 (𝑇) is the set of k-subsets of 𝑇# (we will simply write 𝒮𝑘 if T is clear from the context).
Consider the diagonal type group 𝐺 = 𝑇 𝑘 .(Out(𝑇) × 𝑆𝑘 ) � Sym(Ω), and recall that

P𝑘 (𝑇) :=
|{(𝑡1, . . . , 𝑡𝑘−1) ∈ 𝑇 𝑘−1 : {𝐷, 𝐷 (𝜑𝑡1 , . . . , 𝜑𝑡𝑘−1 , 1)} is a base for 𝐺}|

|𝑇 |𝑘−1 ,

which is the probability that a random element in Ω is in a regular orbit of 𝐺𝐷 = 𝐷.
The following is [25, Theorem 1.5].

Theorem 6.1. Let 𝑘 � 5, and let (𝑇𝑛) be a sequence of nonabelian finite simple groups such that
|𝑇𝑛 | → ∞ as 𝑛 → ∞. Then P𝑘 (𝑇𝑛) → 1 as 𝑛 → ∞.

Lemma 6.2. For any 𝑘 � 4, we have Q𝑘 (𝑇) � 1 − P𝑘+1(𝑇).

Proof. First, by Lemma 2.15, we have {𝐷, 𝐷 (𝜑𝑡1 , . . . , 𝜑𝑡𝑘 , 1)} is a base for G if and only if 𝑡1, . . . , 𝑡𝑘 ∈ 𝑇#

are distinct and Hol(𝑇, {𝑡1, . . . , 𝑡𝑘 , 1}) = 1. The latter condition implies that Aut(𝑇, {𝑡1, . . . , 𝑡𝑘 }) = 1, so

P𝑘+1(𝑇) �
|{(𝑡1, . . . , 𝑡𝑘 ) ∈ (𝑇#)𝑘 : 𝑡1, . . . , 𝑡𝑘 are distinct and Aut(𝑇, {𝑡1, . . . , 𝑡𝑘 }) = 1}|

|𝑇 |𝑘
.

Note that the numerator of the expression on the right-hand side is

𝑘! · |{𝑅 ∈ 𝒮𝑘 : Aut(𝑇, 𝑅) = 1}|.
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Thus, we have

P𝑘+1(𝑇) �
𝑘! · |{𝑅 ∈ 𝒮𝑘 : Aut(𝑇, 𝑅) = 1}|

|𝑇 |𝑘

and it suffices to show that

|𝑇 |𝑘 � 𝑘! · |𝒮𝑘 |.

This is clear, as |𝒮𝑘 | =
( |𝑇 |−1

𝑘

)
. �

Theorem 6 now follows by combining Theorem 6.1 and Lemma 6.2. Finally, we establish Theorem 7.
Recall that 𝒫𝑘 is the set of k-subsets of T, and

fix(𝜎,𝒫𝑘 ) = {𝑆 ∈ 𝒫𝑘 : 𝜎 ∈ Hol(𝑇, 𝑆)}

is the set of fixed points of 𝜎 ∈ Hol(𝑇) on 𝒫𝑘 .

Proposition 6.3. Let 𝑚 > 0 be a real number. Then Q𝑘 (𝑇) < 1/𝑚 if(
|𝑇 |
𝑘

)
> 𝑚

∑
𝜎∈R

|fix(𝜎,𝒫𝑘 ) |, (42)

where R is the set of elements of prime order in Hol(𝑇).

Proof. As noted in Section 3.1, we have

|{𝑆 ∈ 𝒫𝑘 : Hol(𝑇, 𝑆) ≠ 1}| �
∑
𝜎∈R

|fix(𝜎,𝒫𝑘 ) |,

which implies that Hol(𝑇) has

𝑟 >
𝑚 − 1

𝑚 |Hol(𝑇) |

(
|𝑇 |
𝑘

)
regular orbits on 𝒫𝑘 . Then

|{𝑅 ∈ 𝒮𝑘 : Hol(𝑇, 𝑅) = 1}| = 𝑟 (|𝑇 | − 𝑘) |Aut(𝑇) | > (𝑚 − 1) (|𝑇 | − 𝑘)
𝑚 |𝑇 |

(
|𝑇 |
𝑘

)
and thus

Q𝑘 (𝑇) =
|{𝑅 ∈ 𝒮𝑘 : Aut(𝑇, 𝑅) ≠ 1}|

|𝒮𝑘 |
< 1 − (𝑚 − 1) (|𝑇 | − 𝑘)

𝑚 |𝑇 | ·
( |𝑇 |
𝑘

)( |𝑇 |−1
𝑘

) =
1
𝑚
,

as desired. �

Proof of Theorem 7. Note that if 𝑇 = 𝐴5, then 5 log |𝑇 | < 𝑘 < |𝑇 | − 5 log |𝑇 | implies that 𝑘 = 30, in
which case we can check the theorem using Magma. Now, assume |𝑇 | � 168, so 5 log |𝑇 | < |𝑇 |/4. It
suffices to show that (42) holds for 𝑚 = |𝑇 | and 5 log |𝑇 | < 𝑘 � |𝑇 |/2, and we can do this by arguing as
in the proof of Proposition 3.7. More precisely, if |𝑇 |/4 � 𝑘 � |𝑇 |/2, then (42) holds for 𝑚 = |𝑇 | if

2𝑡 |𝑇 |
0 >

√
30𝑒

1
8 |𝑇 |

10
3 ,
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where

𝑡0 = 4 · 3−
3
4 · 2−

1
2−

1
10 = 1.1577....

This inequality is valid for all |𝑇 | � 168. And if 𝑘 < |𝑇 |/4, then (42) holds for𝑚 = |𝑇 | if (5/3)𝑘 > |𝑇 |10/3,
which holds true for all 𝑘 > 5 log |𝑇 |. �

Remark 6.4. By Proposition 6.3, we have Q𝑘 (𝑇) < 1/2 if (8) holds. We refer the reader to the proofs in
Section 4 for a wider range of k satisfying (8) for each class of simple groups. For example, the proof of
Proposition 4.9 shows that if 𝑇 = 𝐴𝑛 and 𝑛 � 7, then (8) holds for all 𝑛 � 𝑘 � 4 log |𝑇 |, which implies
that Q𝑘 (𝑇) < 1/2 for all 𝑛 � 𝑘 � |𝑇 | − 𝑛.
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