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THE LINEARISATIONS OF
CYCLIC PERMUTATIONS HAVE RATIONAL ZETA FUNCTIONS

Bau-SEN DU

Let n > 2 be an integer. Let P be the set of all integers in [1,n + 1] and let o be
a cyclic permutation on P. Assume that f is the linearisation of o on P. Then
we show that f has rational Artin-Mazur zeta function which is closely related to
the characteristic polynomial of some n x n matrix with entries either zero or one.
Some examples of non-conjugate maps with the same Artin-Mazur zeta function
are also given.

Let [a,b] be a nondegenerate compact interval on the real line and let f be a
continuous map from [a,b] into itself. For every positive integer k, let f¥, the kth
iterate of f, be defined by: f! = f and f* = fo f*"1 if k > 1. For zo € [a,}],
we call zo a periodic point of f if f™(zg) = zo for some positive integer m and
call the smallest such positive integer m the least period of zo (under f). We call
the set {f*(zo) | k is any nonnegative integer} the periodic orbit of zo (under f).
It is easy to see that, if f™(zg) = zo for some positive integer m, then the least
period of zo must divide m. We shall need this fact later. A periodic point of
least period 1 is also called a fixed point. In discrete dynamical systems theory,
one problem related to the numbers of periodic points is: For every positive inte-
ger k, let Pp = {z € [a,b] | f*(z) = z}. Let N(f*) be the number of points in
{z € P | z is isolated in Py, for some positive integer m dividing k}. Assume that,
for every positive integer k, the number N(f*) is finite. (Note that this definition
of N(f*) is a slight generalisation of that of Artin and Mazur [1].) Find the reduced

Artin-Mazur zeta function (5] C;(z) = 3 N(f*)z* of f or find the Artin-Mazur zeta
k=1

(e

function [1, 5] ¢f(2) = exp( 3 (N (f%)/ k) z") of f, where z is the complex variable.
k=1

When we actually compute [2, 3] the reduced Artin-Mazur zeta functions of some spe-

cial types of continuous piecewise linear maps f on [a,b], we find some n X n matrices

Ay (depending on f) such that N(f*) =tr (A’})  the trace of A%, for every positive

integer k (see also [6]) and the reduced Artin-Mazur zeta functions of f are closely
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related to the characteristic polynomials of the matrices Ay. In this note, we extend
this result to a class called the linearisations of cyclic permutations. To this end, we
shall need the following result from matrix theory.

THEOREM 1. Let A be an n x n complex matrix and let det (zE,, — A) = z" +
n—l . - - . . .
>~ Bjx? be the characteristic polynomial of A, where E,, is the n x n identity matrix.
7=0
Then

d n .
el o]
dz (1 + ng bn-i% )

n
1+ Z :Bn--jzJ
i=1

L I J—

b~ = .
k=1 1+ Z ﬁn_jzj
ji=1

oo
Z tr (Ak)z'c =—z
k=1

n—1 . n
ProOF: Write 2™ + 3 B;z = [] (z— A;). Then, by replacing z by 1/z and
i=0 i=1

n . n

simplifying, we obtain that 1+ > Bn_;27 = ] (1 - )\;2). Since A is similar to an
j=1 i=1

upper triangular matrix with main diagonal entries the eigenvalues of A, we easily

n
obtain that tr (A¥) = 3 A* for all positive integers k. This fact will also be used
i=1

later. So,
k\ _k __ k k _ _ ¥
Su(at =3 (8)# = (S wa*) - X 2
k=1 k=1 ‘j=1 i=1 k=1 j=1
d n d n
d 1= el N
dz ,Ile( AJZ)) dz (1 + ngﬂ 3 )
==z n =-z n
ITQ-A2) 1+ Y Bn_jzd
j=1 j=1

Or, by formal integration,

exp(i EF(—I‘:llizk) =

k=1

-

0

We now return to the discrete dynamical systems theory on the interval. Let n > 2
be an integer. Let P be the set of all integers in [1,n + 1] and let & be a map from
P into itself. For every integer 1 € k < n, let Jx = [k, k+ 1]. Assume that f is
the continuous map from [1,n + 1] into itself such that f(¢) = o(i) for every integer
1<i<n+1 and f is linear on Ji (and so, the absolute value of the slope of f on Ji
is > 1) for every integer 1 £ k¥ £ n. This continuous map f is called the linearisation

-y .
1+ z ﬁ,,_jzf
j=1
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of 0 on P. Let Ay = (ay;) be the n X n matrix defined by a;; = 1 if f(J;) D J;
and oy; = 0 otherwise. This matrix Ay is called the Markov matrix of f. Note that,
for every positive integer k, since f is piecewise linear, so is f* and the slope of every
linear piece of f* is the product of the slopes of & linear pieces of f. Now, for every
positive integer k, if @i i,Qiyiz - iy, 1S nonzero (in this case, this product is 1)
for some integers 41,42, -+ ,ik41 in [1,n], then, by definition of Ay, f(Ji,) D Ji,,
for every integer 1 < s € k. If I and J are closed subintervals of [1,n + 1] such
that f(I) D J, then it is well-known that there is a closed interval L C I such that
f(L) = J. So, since f(Ji,) D Ji,,, there is a closed interval L; C J;, such that
f(Ly) = Jiy,,. Since L C Jy C f(Ji,_,), there is a closed interval Ly C J;,_,
such that f(La) = Li. Inductively, there are closed intervals Li,Ls,---,Lg such
that Ls C J;,,,_, and f(Lg) = L.y for every integer 1 € s < k, where we define
Lo = Ji,, - Consequently, f* is linear on Ly C J;; and f¥(Ly) = J;,,, - Note that,
since f* is linear on Ly and f¥(Lx) = J;,,,, the slope of f* on Ly is nonzero.
Conversely, let k& be a fixed positive integer and let T; be a maximum closed
interval on which f* is linear with nonzero slope. Since the y-coordinates of the turning
points and the boundary points, (1, f(1)) and (n+ 1, f(n+1)), of f are contained
in P, f¥(Tyx) is a compact interval whose endpoints are distinct and contained in P.
So, for some integers 1 < ux < vx < 7, f’“(Tk) = U Ji. Let ix4q be any integer
i=uy
such that uy € ix41 < vk. Then f*(Ty) D Jix,, and there is a closed subinterval
Ly of Ty such that f*¥(Ly) = J;,,,. Since f* is linear on Lg, f is linear on the
interval f°(Ly) for every integer 0 € s < k — 1. In particular, f is linear on the
interval f¥=1(Ly) and since the interior of f(f*~!(Lyx)) = J;,,, contains no point of
P, neither does the interior of f*=!(Ly). This implies that f*~1(Ly) C J;, for some
integer 1 € ix < n. Similarly, since f is linear on the interval f*¥~2(L;) and the
interior of f(f*~2(Lk)) = f¥~Y(Lk) C Ji, contains no point of P, neither does the
interior of f¥=2(Ly). Therefore, f*=2(Ly) C J;,_, for some integer 1 < ix—; < n.
Similar arguments imply that there are integers ik, ix_1,- - - , 43,42, in [1,n] such that
fH(Lx) C Ji,,, for every integer 0 < ¢t < k—1 and f*(Li) = J;,,, . Note that, when
t =0, Ly C Ji;. Thus, f°(Lx) C f(Ji,) for every integer 1 £ s < k. Consequently,
fo(Lk) C Jiyyy N f(Js,) for every integer 1 < s < k—1. So, f(J;,) contains some
interior points of J;,, for every integer 1 < s < k— 1. Since both endpoints of
f(Ji,)(D f3(Ly)) are distinct points in P, this implies that f(J;,) D J;,,,, and so,
Qiyi,,, = 1 for every integer 1 < s < k—1. Furthermore, since J;, D f¥~1(Ly), we have
f(J,'k) ) f(fk—l(Lk)) = J"I:+1 . Thus, Qipipyy = 1. Hence Qi igQigig ** " Qipiy ) = 1.
Therefore, for every positive integer k, there is a one-to-one correspondence between
the collection of nonzero products o,i,®iyiy - - @iy, and the collection of closed
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intervals Ly C J;; such that f* is linearon Ly and f*(Ly) = J;, ., . Consequently, if

Ak = (ag-“)) ; then every entry af;-‘)

with disjoint interiors such that f* is linear on Ly and f¥(Lx) = J;. In the following,

k+1
represents the number of closed intervals Ly C J;

n

we shall show how to relate this number 3 a_s.';) to the number N(f*). We have two
i=1

cases to consider:

C'ASE 1. Assume that, for some positive integer ¢, the absolute value of the slope of
every linear piece of f* is > 1. Then, it is easy to see that, for every integer j > ¢,
the absolute value of the slope of every linear piece of f7 is > 1. So, for any integers
1<i<n, k>1 (wedo not require k > t) and any closed interval L C J;, if f*
is linear on L and f*(L) = J; D L, then the slope of f* on L cannot be equal to 1
and hence the equation f*¥(z) = z has exactly one solution in L. So, we can associate
this unique solution to the interval L. This implies that, for every positive integer k,

n n
N(f9) =% ay;-) = tr (A’;) =3 )\;‘, where A1, Ag,-- -, A, are the eigenvalues of the
ij=1 =1
Markov matrix Af of f.

CASE 2. Assume that the absolute value of the slope of some linear piece of f™ is 1.
Let T,, be a maximum closed interval on which f" is linear and the absolute value of
the slope of f™ on T, is 1. As was just shown above, there exist integers 21,42, ,in41
in [1,n] and a closed interval L, C T, such that J;,,, C f*(Ty), f*(Ln) = Ji,,,, and
f*(Ln) C Ji,,, for every integer 0 < s < n — 1. Since the absolute value of the slope
of f* on L, (which is 1) equals the product of the absolute values of the slopes of
f on f°(L,) (which are > 1) for all integers 0 < s < n — 1, the absolute value of
the slope of f on f*(L,) must be 1 for every integer 0 £ s < n — 1. So, the length
of f*(Ly) is equal to that of f*+!(L,) for every integer 0 < s < n — 1. Since the
length of f™(Ly)(= Ji,,,) is 1, we obtain that the length of f*(L,)(C J;,,,) is also
1 for every integer 0 < s < n — 1. This, together with the fact that f*(L,) = J;,,,
implies that f*(L,) = J;,,, for every integer 0 < s < n. Note that, when s = 0,
L, =J;, . Thus, f(J;,) = f(f"l(L,,)) = f*(Ln) = Ji,,, for every integer 1 < s < n.
Since there are n + 1 closed intervals J;, (= f“(Ln)), 0 € s € n, taken from the n
distinct J;’s, some interval J;, appears at least twice. Without loss of generality, we
im41 IOT some integer 1 < m < n and the Jj,’s are distinct
for all integers 1 < s < m. Since f(J;,) =J;,,,
1 £ s € m, we obtain that, for every integer 1 < s < m, f™(J;,) = Ji, and f™ is
linear on J;,, and hence, we have either f™(z) = z for all z € J;, and all integers
1< s<mor f™(x) = —z+a,+b,, where J;, = [a,, b,], for all z € J;, and all integers
1 € s £ m. In the following, we assume, for simplicity, that o is a cyclic permutation
on P. If, for some integer 1 < j < m, f™(z) =z forall z € J.-j, then, in particular,

may assume that J;, =
and f is linear on J;, for all integers
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f™(a;) = a;. Since a; is a periodic point of f with least period n 4+ 1, we must
have n+1 < m which contradicts the assumption that 1 € m < n. This contradiction
implies that f™(z) = —z+a,+bs and hence f?™(z) = z for all z € J;, and all integers
1 < s €< m. In particular, f>™(a,) = a, for all integers 1 < s < m. Since the least
period of a; is n+1, n+1 divides 2m. Thus, 2m = r(n + 1) for some positive integer
7. But, since 1 € m € n, we must have r =1, and so, n+1 = 2m. Furthermore, since
f™ maps every endpoint of J;, to the other for every integer 1 < s < m, the m closed
intervals J;, 's are pairwise disjoint. Since there are exactly n =2m —-1=m+ ( -1)
distinct closed intervals J;’s, we obtain that {J;, | 1 < s <m} = {J2;_1 |1 < j<m}.
Consequently, f™(z) = ~z +4s—1 and f>™(z) =z for all z € Jo,_; and all mtegers
1 € s £ m. This also implies that T, = Jy;_; for some integer 1 < j < m and the
absolute value of the slope of every linear piece of f™ (and hence of f* for every integer
k = n) on any closed interval contained in Jy; for any integer 1 i< m—1is > 1.
Thus, for any positive integer k (we do not require k > n), any integer 1 < 1 -1
and any closed interval L C Jy;, if f* is linear on L and f"(L) Lo D L then
the slope of f*¥ on L cannot be equal to 1 and hence the equation f*(z) = z has
a unique solution in L. So, we can associate this unique solution to the interval L.
Furthermore, since f permutes cyclically the intervals Jaj_1, 1 < j € m, and since f™
maps every endpoint of any Jaj_1,1 < j < m, to the other, we obtain that there exists
a cyclic permutation p on the set of all integers in [1,m] such that 07 (1) € {2p7(1) -
2p7(1)} and {o7(1), o™+ (1)} = {2p7(1) — 1, 2p¥(1)} for all integers 1 < j < m. On
the other hand, since f permutes cyclically the intervals Jy;_1, 1 £ j € m, and since
f™z)=-z+4j—1 and f?>"(z) =z for all T € Jo;_; and all integers 1 < j < m, we
see that, for any positive integer k, (i) if k is not a multiple of m, then the equation
f¥(z) = z has no solution in Jpj_; for any integer 1 < j < m; (ii) if k¥ is an odd
multiple of m, then each midpoint of Jy;_, is the unique (and isolated) solution of the
equation f¥(z) = z in Jyj_; for every integer 1 < j € m; and (iii) if k¥ is an even
multiple of m, then, for every integer 1 < j < m, every point of Jy;_; is a (non-
isolated) solution of the equation f*(z) = z, but, the midpoint of J;_; is an isolated
solution of the equation f™(z) = z. Therefore, we can associate, for every integer
1 £ j € m, the midpoint of Jy;_; to the interval Jy;_, when k is an (odd or even)
multiple of m and nothing otherwise. This implies that, for every positive integer k,

n
N(fk) = Z a(k) = tr (A") =Y /\;?, where A1, A2, -+, A, are the eigenvalues of the
j=1

Markov matrlx Aj of f. Consequently, by Theorem 1, we have proved the following
two results:

THEOREM 2. Letn > 2 be an integer. Let P be the set of all integers in [1,n+1]
and let ¢ be a map from P into itself. Assume that f is the linearisation of o on P
such that, for some positive integer t, the absolute value of the slope of every linear
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piece of ft is > 1. Then the following hold:
n .
(a) For every positive integer k, N(f¥) = tr (A’;) = 3 AF, where Ay, Mg, - -,
=1
An are the eigenvalues of the Markov matrix Ay of f.

(b) The Artin-Mazur zeta function (f(z) of f is (s(z) = 1/ (1+ > Bp-kz* )
n-1
where "+ Y Biz* is the characteristic polynomial of the Markov matrix

k=0
of f.

THEOREM 3. Let n > 2 be an integer. Let P be the set of all integers in [1,n+1]
and let ¢ be a map from P into itself. For every integer 1 < k < n, let J, = [k, k+1].
Assume that f is the linearisation of o on P such that the absolute value of the slope
of some linear piece of f™ is 1. Then there exist an integer 1 < m < n and m distinct
integers 11,12, -+ ,im in [1,n] such that f is linear on J;, and f(Ji,) = J;,,, for
every integer 1 € s < m, where we define 1,41 = iy. Furthermore, if o is a cyclic
permutation on P, then the following also hold:

(a) n+1=2m.

(b) f™z)=—-z+4k—1 and f*™(z) =z for all z € Jax—, and all integers
1 < k < m. In particular, f has periodic points of least period (n +1)/2.

(c) There exists a cyclic permutation p on the set of all integers in {1, m] such
that o7(1) € {2p7(1) — 1, 2p7(1)} and {07(1), o™+ (1)} = {2p7(1) -
1, 2p°(1)} for all integers 1< j < m.

n
(d) For every positive integer k, N(f*) = tr (A’}) = 3 Ak, where Ay, g, -+,
i=1
An are the eigenvalues of the Markov matrix Ay of f.

(e) The Artin-Mazur zeta function {s(z) of f is (f(2) = 1/<1+ Y Bn-kz )

n—1 k=1

where ™+ 5 Brx* is the characteristic polynomial of the Markov matrix
k=0

of f.

REMARK. We require o to be a cyclic permutation on P in Theorem 3 while not in
Theorem 2. This is because the requirement on the slope of f in Theorem 3 is weaker
than that in Theorem 2. If we do not make the stronger requirement on ¢ in Theorem
3, there would be many trivial examples whose linearisations have well-defined Markov
matrices while their Artin-Mazur zeta functions are not defined.

The following partial converse of Theorem 3 is easy to prove.

THEOREM 4. Let m and n be positive integers such that n+1 = 2m. Let p bea
cyclic permutation on the set of all integers in [1,m] and let o be a cyclic permutation
on the set P of all integers in [1,n+1). For every integer 1 < i < n, let J; = [i,i+1].
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Assume that f is the linearisation of ¢ on P and o7(1) € {2p7(1) — 1, 2p7(1)} and

{o7(1), e™*i(1)} = {267(1) — 1, 2p7(1)} for all integers 1 < j < m. Then, for

every positive integer k, the absolute value of the slope of f* on Joj_1 is 1 for all

integers 1 < j < m. Consequently, the Artin-Mazur zeta function (f(z) of f is
n n—1

¢r(z) =1 / (1 + Y ﬂn_kz") , where ™ + Y Brz* is the characteristic polynomial of
k=1

k=0
the Markov matrix of f.

REMARK. If o is a cyclic permutation on the set P of all integers in [1,n + 1] and f
is the linearisation of o on P, then Theorems 2, 3, & 4 give a complete solution of the
Artin-Mazur zeta function of f. In particular, the Artin-Mazur zeta function of f is
rational with poles at the values 1/A; where A1, A, -+, A, are the eigenvalues of the
Markov matrix of f.

Let f and g be two continuous maps from [a,b] into itself. If they are (topolog-
ically) conjugate to each other, then it is clear that they have the same (if defined)
Artin-Mazur zeta function. However, if they are not conjugate to each other, they may
still have the same Artin-Mazur zeta function. For example, assume that both f and g
satisfy the conditions in Theorem 2 above. If their respective Markov matrices are sim-
ilar to each other, then, since similar matrices have the same characteristic polynomial
[4], they have, by Theorem 2, the same Artin-Mazur zeta function. In the following,
we present some such examples. The following result is taken from [2].

THEOREM 5. For every integer n > 3, let f.(x) be the continuous map from
(1.n] onto itself defined by

fn(x) =

~-(n—Dz+n?-n+1, for n—

z+1, for 1<z<n—-1,
1€z n

We also define sequences (bi ) as follows:

2k 1, for 1<kg<n—-1,

bk = n—1
™ 3 bk—in, for n<k.
i=1

Then, for any integers k 2 1 and n 2 3, by is the number of distinct fixed points
of the map f¥(z) in [1,n]. Moreover, the Artin-Mazur zeta function (y,(z) of fn, for

n—1
every integer n 2 3, is (s,(z) = 1/(1 -3 z") .
k=1

THEOREM 6. For every odd integer m > 3, let g,,(z) and h,,(z) be the contin-
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uous maps from [1,m] onto itself defined by

' 1
[ —z+m+1, for lsxsi(m—l),
1 1 . 1 1
—§(m+1)x+z(m+l) +1, for -2-(m—1)<x<-2—(m+1),
gm(®) =1 4 1 1 1
—2-(m—1)z—z(m2—1)+1, for 5(m+1)$z<§(m+l)+1,
1
L—x+m+2, for §(m+l)+1<x$m
and
1 1
z+§(m—1), for lszsi(m+1),
1 1
hm(z) = —(m -1z + §(m2+2m—1), for %(m+l)<x<§(m+1)+l,
1
z—§(m+1), for %(m+1)+1<z<m.

Then, for any odd integer m > 3, both g.,(z) and h,,(z) have the same Artin-Mazur
zeta function as f;,(z), where f(z) is defined as in Theorem 5 above.

PRrOOF: Let m > 3 be an odd integer. It suffices to show that the Markov ma-
trices of fm,gm, and h,, are similar to one another. Indeed, let P be the set of all
integers in [1,m] and let o be a cyclic permutation on P. Let ¢ be the linearisa-
tion of ¢ on P and let V,,_; be the vector space over the field of real numbers with
the set Q3 = {J1,J2,- - ,Jm—1} as a basis, where, for every integer 1 < k < m — 1,
Jr = [k,k +1]. Then, ¢ determines a linear transformation (which we call %) on

m—1 m—1
V1 defined by ¢( > rka) = Y rxp(Jx), where r’s are real numbers and
k=1

Ik Jk
o(Jk) = X Js if o(Jk) = U Js for some integers 1 € i < jx < m — 1. Fur-
s:ik s=ik
thermore, with respect to the basis @i, the linear transformation ¥ is also deter-
mined (4] by the (m —1) x (m —1) matrix B, = (B;) in such a way that, for
m—1 Jk
every integer 1 < k < m — 1, B(J) = Y BijJ; (= 3 Js) which happens
ij=1 s=iy
to be the same as the Markov matrix of the map ¢ on [1,m]. Now, if we take
(m+1)/2
Q2 = {JlaJm—l,J2aJm—2a"' yJis Jm—is s Jm=3)/2: Jm43)72: I(m—1)/2» 1:2 Jk}
=1
as a new basis for V,,_;, then it is easy to see that g, acts on Q; like f, on
Q.- Similarly, if we take Q3 = {J(m-1)/2) Im—1, Jm—3)/2: Jm-2, J(m—5)/2: Jm—3, - - -»
J3,J(m—l)/2+3’J2;"(m—1)/2+2,']ly'](m—l)/2+l} as a new basis for V,,,_;, then h,, acts
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on Q3 like f,, on Q;. Therefore, the matrices of the linear transformations f,,,3,,,
and h,, on the respective bases Q;,Q2, and Q3 are the same. So, the matrices of
Fmr s and hy, on the basis Q, are similar to one another [4]. Consequently, the
Markov matrices of the maps fm,, gm, and h,, on the interval [1,m] are similar to one
another and hence, by Theorem 2, f,,,gm, and h,, have the same Artin-Mazur zeta
function. 0
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