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THE LINEARISATIONS OF
CYCLIC PERMUTATIONS HAVE RATIONAL ZETA FUNCTIONS

BAU-SEN D U

Let n ^ 2 be an integer. Let P be the set of all integers in [1, n + 1] and let a be
a cyclic permutation on P. Assume that / is the linearisation of a on P. Then
we show that / has rational Artin-Mazur zeta function which is closely related to
the characteristic polynomial of some nxn matrix with entries either zero or one.
Some examples of non-conjugate maps with the same Artin-Mazur zeta function
are also given.

Let [a, b] be a nondegenerate compact interval on the real line and let / be a
continuous map from [a, b] into itself. For every positive integer k, let fk, the kth

iterate of / , be denned by: f1 = f and fk = / o f*-1 if k > 1. For x0 e [a,b],
we call xo a periodic point of / if fm(xo) — xo for some positive integer m and
call the smallest such positive integer m the least period of xo (under / ) . We call
the set {/fc(x0) | k is any nonnegative integer} the periodic orbit of x0 (under / ) .
It is easy to see that, if /m(xo) = x0 for some positive integer m, then the least
period of x0 must divide m. We shall need this fact later. A periodic point of
least period 1 is also called a fixed point. In discrete dynamical systems theory,
one problem related to the numbers of periodic points is: For every positive inte-
ger fc, let Pk = {x € [a,b] | fk{x) - x } . Let N(fk) be the number of points in
{x 6 Pfc | x is isolated in Pm for some positive integer m dividing k}. Assume that,
for every positive integer k, the number N(fk) is finite. (Note that this definition
of N[fk) is a slight generalisation of that of Artin and Mazur [1].) Find the reduced

Artin-Mazur zeta function [5] (t(z) = 53 N(fk)zk of / or find the Artin-Mazur zeta
fc=i

function [1, 5] Q(z) — expl £) \N[fk)/k\zk j of / , where z is the complex variable.

When we actually compute [2, 3] the reduced Artin-Mazur zeta functions of some spe-

cial types of continuous piecewise linear maps / on [a, b], we find some nxn matrices

Af (depending on / ) such that N(fk) — tr (Ak J , the trace of Ak
f, for every positive

integer k (see also [6]) and the reduced Artin-Mazur zeta functions of / are closely
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related to the characteristic polynomials of the matrices Af. In this note, we extend
this result to a class called the linearisations of cyclic permutations. To this end, we
shall need the following result from matrix theory.

THEOREM 1 . Let A be an n x n complex matrix and let det (xEn - A) = xn +
n - l
£ fijxi be the characteristic polynomial of A , where En is the nxn identity matrix.
j=0
Then

or
£ Pn-jzi

A 1
zfc = -

J 1 + £ 0n_j

n—l n
PROOF: Write zn + Yl Pjz' = Fl (z ~ ^j)- Then, by replacing z by 1/z and

j=0 j=l
n n

simplifying, we obtain that 1 + £ Pn-j*' = Tl (1 — ^jz)- Since A is similar to an
j=l j=\

upper triangular matrix with main diagonal entries the eigenvalues of A. we easily
n

obtain that tr (Afc) = £] A* for all positive integers k. This fact will also be used

later. So,
oo , n s n / oo \ n \

= ~z

El (1 - V) 1 + £ Pn-jZi
j = \ j=\

Or, by formal integration,

vfc=i + £ < ^ D
We now return to the discrete dynamical systems theory on the interval. Let n ^ 2

be an integer. Let P be the set of all integers in [l,n + 1] and let a be a map from
P into itself. For every integer 1 < k < n, let Jk — [k,k + 1]. Assume that / is
the continuous map from [l,n + 1] into itself such that /(i) = cr(i) for every integer
1 ^ i ^ n + 1 and / is linear on Jk (and so, the absolute value of the slope of / on Jk
is ^ 1) for every integer 1 ^ k ^ n. This continuous map / is called the linearisation
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of a on P. Let Af = (o:^) be the n x n matrix defined by a^ = 1 if f(Ji) 3 Jj
and a>ij = 0 otherwise. This matrix Af is called the Markov matrix of / . Note that,
for every positive integer k, since / is piecewise linear, so is fk and the slope of every
linear piece of /* is the product of the slopes of k linear pieces of / . Now, for every
positive integer k, if on^a^ij '''&tkik+1 is nonzero (in this case, this product is 1)
for some integers *i, *25 • • • ,ifc+i in [ l ,n ] , then, by definition of Af, f(Jis) D Jis+i
for every integer 1 ^ s ^ k. If 7 and J are closed subintervals of [ l ,n + 1] such
that / ( / ) D J, then it is well-known that there is a closed interval L C I such that
f(L) — J. So, since f(Jik) D Jik+\i there is a closed interval L\ C Jik such that
f(Li) = Jik+1- Since L\ C Jik C f(Jik_1), there is a closed interval L2 C Jik_1

such that f(L2) = L\. Inductively, there are closed intervals Li,L2,-- ,Lk such

that Ls C Jik+1_3
 a n d f(Ls) = 7-s_i for every integer 1 ^ s ^ k, where we define

LQ = Jik+1 • Consequently, fk is linear on Lk C J^ and fk(Lk) = Jik+l • Note that,
since fk is linear on Lk and fk(Lk) — Jik+l, the slope of fk on Lk is nonzero.

Conversely, let k be a fixed positive integer and let Tk be a maximum closed
interval on which fk is linear with nonzero slope. Since the y -coordinates of the turning
points and the boundary points, (l , / ( I ) ) and (n + 1, f(n + 1)) , of / are contained
in P, fk(Tk) is a compact interval whose endpoints are distinct and contained in P.

So, for some integers 1 ^ uk ^ vk ^ n, j (Tk) = [J Ji- Let ik+i be any integer
i=uk

such that uk ^ ik+i ^ vk. Then fk(Tk) D Jtk+1 and there is a closed subinterval
Lk of Tjt such that fk(Lk) — Jik+1- Since /* is linear on Lk, f is linear on the
interval f(Lk) for every integer 0 ^ s ^ k — 1. In particular, / is linear on the
interval fk~1(Lk) and since the interior of f(fk~1(Lk)) = Jik+1 contains no point of
P , neither does the interior of fk~1(Lk). This implies that Jk~l{Lk) C J{k for some
integer 1 ^ ik ^ n. Similarly, since / is linear on the interval fk~2(Lk) and the
interior of f(fk~2{Lk)) = fk~1(Lk) c Jik contains no point of P , neither does the
interior of fk~2(Lk). Therefore, fk~2(Lk) C Jik_x for some integer 1 ^ ik-i ^ n .
Similar arguments imply that there are integers ik,ik-i, • • • ,ia,i2,M in [1,n] such that
Sl{Lk) c Jit+1 for every integer 0 ^ t ^ k - 1 and fk(Lk) = Jik+l. Note that, when
t = 0, Lk c J i j . Thus, fs(Lk) c f(Jia) for every integer 1 ^ s ^ fc. Consequently,
r{Lk) C Ji3 + 1 n f(Ji3) for every integer 1 ^ s ^ fc - 1. So, f{Jis) contains some
interior points of Ji3+1 for every integer 1 ^ s ^ k — 1. Since both endpoints of
f{Jia)(D fs(Lk)) are distinct points in P , this implies that f{Jis) D «7»s+1 , and so,
a«s»j+i = * f°r e v e r v integer 1 ^ s ^ A;-l. Furthermore, since Jik D fk~l{Lk), we have
/ ( J u ) D f{fk~liLk)) = Jik+1- Thus, aijfciifc+1 = 1. Hence o>ili2ai2i3 • • • aikik+1 = 1.
Therefore, for every positive integer k, there is a one-to-one correspondence between
the collection of nonzero products aili2ai2i3 • • -aikik+1 and the collection of closed
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intervals Lk C Jjx such that fk is linear on Lk and fk(Lk) = Jik+1 • Consequently, if

Ak = ( a i j ) ; t n e n every entry a^- represents the number of closed intervals Lk C J<

with disjoint interiors such that fk is linear on Lk and fk{Lk) = Jj- In the following,

we shall show how to relate this number ^2 ajj to the number iV(/fc). We have two
3 = 1

cases to consider:

CASE 1. Assume that, for some positive integer t, the absolute value of the slope of
every linear piece of /* is > 1. Then, it is easy to see that, for every integer j > t,
the absolute value of the slope of every linear piece of P is > 1. So, for any integers
l ^ i ^ n , f c ^ l (we do not require k ^ t) and any closed interval L C Ji, if fk

is linear on L and fk(L) = Ji D L, then the slope of / * on L cannot be equal to 1
and hence the equation fk (x) = x has exactly one solution in L. So, we can associate
this unique solution to the interval L. This implies that, for every positive integer k,

N(fk) = J2 ajj = t r l-^/J = S rf> where Ai,A2,- • • , An are the eigenvalues of the
j=i v y j=i

Markov matrix Af of / .

CASE 2. Assume that the absolute value of the slope of some linear piece of fn is 1.
Let Tn be a maximum closed interval on which / " is linear and the absolute value of
the slope of / " on Tn is 1. As was just shown above, there exist integers ix, i2, • • • , in+\
in [l,n] and a closed interval Ln C Tn such that J j n + 1 C fn(Tn),f

n(Ln) = Jin+l and
f(Ln) C Jis+1 for every integer 0 < s ^ ra — 1. Since the absolute value of the slope
of fn on Ln (which is 1) equals the product of the absolute values of the slopes of
/ on fs{Ln) (which are ^ 1) for all integers 0 ^ s ^ n - 1, the absolute value of
the slope of / on fs(Ln) must be 1 for every integer 0 < s < n — 1. So, the length
of fs(Ln) is equal to that of fs+1(Ln) for every integer 0 ^ s < n - 1. Since the
length of / " (£„) (= Jin+1) is 1, we obtain that the length of fs{Ln)(c Jis+1) is also
1 for every integer 0 ^ s ^ n - 1. This, together with the fact that fn(Ln) = Jin+1,
implies that fs{Ln) = Jis+1 for every integer 0 < s ^ n. Note that, when s = 0,
Ln = Jtl. Thus, f(Ji3) = / ( / ' " ' ( I n ) ) = f(Ln) = Jia+1 for every integer 1 ^ s ^ n.
Since there are n+ 1 closed intervals Jis+1(= fs(Ln)), 0 ^ s ^ n, taken from the n
distinct Ji's, some interval Ji3 appears at least twice. Without loss of generality, we
may assume that Ji1 — Jim+1 for some integer 1 ^ m ^ n and the Jjs 's are distinct
for all integers 1 ^ s ^ m. Since f(Ji,) = J j3 + 1 and / is linear on Jis for all integers
1 ^ s ^ m, we obtain that, for every integer 1 ^ s ^ m, fm{Ji,) = Ji, and fm is
linear on Jia, and hence, we have either fm(x) — x for all x e Jj, and all integers
1 ^ s ^ m or fm(x) = — x + a3 +bs, where Jis = [as, bs], for all x 6 Ji, and all integers
1 ^ s ^ m. In the following, we assume, for simplicity, that a is a cyclic permutation
on P. If, for some integer 1 ^ j < m, /m(z) = x for all i € Ji-, then, in particular,
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fm{a.j) = a,j. Since a,j is a periodic point of / with least period n+ 1, we must
have n +1 ^ m which contradicts the assumption that 1 ^ m ^ n . This contradiction
implies that fm(x) = — x+as+bs and hence f2m(x) = x for all i € Ji3 and all integers
1 ^ s ^ m. In particular, / 2 m ( o s ) = a, for all integers 1 ^ s ^ m. Since the least
period of as is n+ 1, n + 1 divides 2m. Thus, 2m = r (n + 1) for some positive integer
r . But, since 1 ^ m ^ n , we must have r = 1, and so, n + 1 = 2m. Furthermore, since
fm maps every endpoint of J j s to the other for every integer 1 ^ s ^ m, the m closed
intervals Jj3 's are pairwise disjoint. Since there are exactly n = 2m — 1 = m + (m - 1)
distinct closed intervals Ji's, we obtain that {Jis | 1 ^ s ^ m} = {J2J-1 I 1 ^ j ^ m}-
Consequently, fm(x) = - x + 4s - 1 and f2m{x) — x for all x € J2S-1 and all integers
1 ^ s ^ m. This also implies that Tn = J2.7-1 for some integer 1 ^ j' $C m and the
absolute value of the slope of every linear piece of fn (and hence of fk for every integer
A; ̂  n) on any closed interval contained in J<n for any integer l ^ i ^ m — 1 is > 1.
Thus, for any positive integer k (we do not require k ^ n ) , any integer 1 ^ i ^ m — 1
and any closed interval L C hi, if /fc is linear on L and fk{L) = Z/2t 3 £ , then
the slope of /* on L cannot be equal to 1 and hence the equation fk(x) — x has
a unique solution in L. So, we can associate this unique solution to the interval L.
Furthermore, since / permutes cyclically the intervals J2J-1, 1 ^ j ^ m, and since fm

maps every endpoint of any J2J-1,1 < j ^ m, to the other, we obtain that there exists
a cyclic permutation p on the set of all integers in [1, m] such that <rJ(l) S {2/^(1) — 1,
2^ (1 )} and {aj(l), am+j(l)} = {2pi(l) - 1, 2p>(l)} for all integers 1 < j s$ m. On
the other hand, since / permutes cyclically the intervals J2J-1, 1 ^ j ' ^ fn, and since
fm(x) = -x + 4j — 1 and f2m(x) = x for all z € J2J-1 and all integers 1 ^ j < m, we
see that, for any positive integer k, (i) if k is not a multiple of m, then the equation
fk(x) — x has no solution in J2J-1 for any integer 1 ^ j ' ^ m; (ii) if k is an odd
multiple of m, then each midpoint of J2J-1 is the unique (and isolated) solution of the
equation fk(x) — x in J2J-1 for every integer 1 < j ^ ro; and (iii) if fc is an even
multiple of m, then, for every integer 1 ^ j $C m , every point of J2.J--1 is a (non-
isolated) solution of the equation fk(x) — x, but, the midpoint of J2j-\ is an isolated
solution of the equation fm(x) = x. Therefore, we can associate, for every integer
1 ^ j• ^ m, the midpoint of J23-1 to the interval J2J-1 when fc is an (odd or even)
multiple of m and nothing otherwise. This implies that, for every positive integer fc,

N(fk) = f; af) = tr (A)) = JZXk, where AXi A2, • • • , An are the eigenvalues of the

Markov matrix Af of / . Consequently, by Theorem 1, we have proved the following
two results:

THEOREM 2 . Let n ^ 2 be an integer. Let P be the set of all integers in [l,n+1]
and let a be a map from P into itself. Assume that f is the linearisation of a on P
such that, for some positive integer t, the absolute value of the slope of every linear
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piece of / ' is > 1. Then the following hold:

Ak
f) = Y, Xj , where X\, A2, • • • ,

Xn are the eigenvalues of the Markov matrix Af of f.

(b) The Artin-Mazur zeta function Q(z) off is C,;{z) = l / ( 1 + £ Pn-kZk),
n-l ' \ *=1 /

where xn + 52 A3-* JS ^ e characteristic poJynomiai of the Markov matrix
fc=O

of/.

THEOREM 3 . Let n ^ 2 be an integer. Let P be the set of aJJ integers in [1, n+1]
and Jet a be a map from P into itself. For every integer I ^ k ^ n, let Jk = [k, k + 1].
Assume that f is the linearisation of a on P such that the absolute value of the slope
of some linear piece of fn is 1 • Then there exist an integer 1 ^ m ^ n and m distinct
integers ii, 12, • • • ,*m in [l,n] such that f is linear on Jis and f{Ji3) = Ji3+1 for
every integer 1 ^ s ^ m, where we define im+i = ii. Furthermore, if a is a cyclic
permutation on P, then the following also hold:

(a) n+l = 2m.

(b) fm(x) = -x + Ak-1 and J2m(x) = x for all x e J2fc-i and all integers
1 $J k ^ m. In particular, f has periodic points of least period (n + l ) /2.

(c) There exists a cyclic permutation p on the set of all integers in [1, m] such
that <7>'(1) € {2/^(1) - 1, 2^(1)} and {^(l), <rm+j{l)} = {2p»(l) -
1, 2/o3(l)} for ali integers 1 ̂  j ^ m.

( \ n

A*J = Yl ^j > where Ax, A2l- • • ,
An are the eigenvalues of the Markov matrix Af of f.

/ / n \
(e) The Artin-Mazur zeta function C/(z) off is Q{z) = 1 / I 1+ ^ /3n_fcz

fc ,
n - l ' \ fc=l /

where xn+ J2 PkXk is the characteristic polynomial of the Markov matrix
fc=0

off.

REMARK. We require cr to be a cyclic permutation on P in Theorem 3 while not in
Theorem 2. This is because the requirement on the slope of / in Theorem 3 is weaker
than that in Theorem 2. If we do not make the stronger requirement on a in Theorem
3, there would be many trivial examples whose linearisations have well-defined Markov
matrices while their Artin-Mazur zeta functions are not defined.

The following partial converse of Theorem 3 is easy to prove.

THEOREM 4 . Let m and n be positive integers such that n+1 = 2m. Let p be a
cyclic permutation on the set of all integers in [1, m] and let a be a cyclic permutation
on the set P of all integers in [1, n + 1]. For every integer 1 ̂  i ^ n, Jet Ji = [i, i +1].
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Assume that f is the linearisation of a on P and a J ( l ) € {2p>(\) — 1, 2/^(1)} and
{aJ(l) , <rm+j{l)} = {2^(1) - 1, 2/^(1)} for all integers 1 ^ j < m. Then, for
every positive integer k, the absolute value of the slope of fk on J-^j-x is 1 for all

integers 1 ^ j ^ rn. Consequently, the Artin-Mazur zeta function C/(z) of / 1S

, / n \ n-i

C,f(z) = 1 / I 1 + 5Z fin-kzk I > where xn + Yl Pk%k is the characteristic polynomial of
' \ k=i I fc=o

the Markov matrix of f.

REMARK. If <j is a cyclic permutation on the set P of all integers in [l ,n + 1] and /
is the linearisation of a on P , then Theorems 2, 3, & 4 give a complete solution of the
Artin-Mazur zeta function of / . In particular, the Artin-Mazur zeta function of / is
rational with poles at the values 1/Xj where Ai, A2, • • • , An are the eigenvalues of the
Markov matrix of / .

Let / and g be two continuous maps from [a, b] into itself. If they are (topolog-
ically) conjugate to each other, then it is clear that they have the same (if defined)
Artin-Mazur zeta function. However, if they are not conjugate to each other, they may
still have the same Artin-Mazur zeta function. For example, assume that both / and g
satisfy the conditions in Theorem 2 above. If their respective Markov matrices are sim-
ilar to each other, then, since similar matrices have the same characteristic polynomial
[4], they have, by Theorem 2, the same Artin-Mazur zeta function. In the following,
we present some such examples. The following result is taken from [2].

THEOREM 5 . For every integer n ^ 3, let /„(#) be the continuous map from
[l.n] onto itself defined by

n - 1,

- ( n — \)x + n2 - n + 1, for n — 1 ^ x ^ n.

We also define sequences (bk,n) as follows:

( 2k - 1, for 1 ^ Jb ^ n - 1,

bkn = { " - 1

-i,n, for n^k.
i=X

Then, for any integers k ^ 1 and n ^ 3, bk,n is the number of distinct fixed points
of the map /*(#) in [l,n]. Moreover, the Artin-Mazur zeta function Cfn(z) of fn,for

every integer n ^ 3, is Cfn(
z) = 1/[1 ~ T, zkJ-

THEOREM 6 . For every odd integer m ^ 3 , let gm(x) and hm(x) be the contin-
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uous maps from [l,m] onto itself defined by

9m(x) =

-x + m + 1,

A(m + l)x + \(m+l)2

-x + m + 2,

for 1 x - ( m — 1),

for ~{m - 1)

for ^(m + 1)

for -(m + 1) + 1

^(m+1),

|("»+1)H

m.

and

for -(ro + 1),

- ( m - l ) x + - ( m 2

x - -(m + 1),

2m - l ) , for -(m+1)

for i(m + l)

-(m+l) + l,

Then, for any odd integer m ̂  3, both </m(2;) and /im(x) have the same Artin-Mazur
zeta function as /m(x) , where /m(x) is defined as in Theorem 5 above.

PROOF: Let m ̂  3 be an odd integer. It suffices to show that the Markov ma-
trices of fm,gm, and hm are similar to one another. Indeed, let P be the set of all
integers in [l,m] and let a be a cyclic permutation on P . Let tp be the linearisa-
tion of a on P and let Vm-i be the vector space over the field of real numbers with
the set Qi = {Ji, J2, • • • , J m - i } as a basis, where, for every integer 1 ̂  fc < m - 1,
•Jfc = [fe, fc + 1]. Then, <p determines a linear transformation (which we call Jp) on

/m-l \ m-l
Vm-i defined by ^1 J2 rkJk I = 5Z Tk<p{Jk), where rfc's are real numbers and

\fc=i / fc=i
Ok

U
Ok

J3 if <?(>7fc) = U Js for some integers 1 m - 1. Fur-
s=ik

thermore, with respect to the basis Q\, the linear transformation Tp is also deter-
mined [4] by the (m — 1) x (m — 1) matrix Bv = (Pij) m such a way that, for

_ m-i / ik \
eve ry i n t ege r l ^ f c ^ m — 1 , <p(Jk) = X) 0kjJj[= Yl Js) wh ich h a p p e n s

J = l V S=tfc /
to be the same as the Markov matrix of the map tp on [l,m]. Now, if we take

= { J\,Jm-\,Jl,Jm-2, • • • ,Ji,Jm-i, • " >
fc=l

on_
as a new basis for Vm-i, then it is easy to see that gm acts on Q2 like f
Qi. Similarly, if we take Q3 = {J(m-i)/2,Jm-i,J{m-3)/2,Jm-2,J(m-s)/2,Jm-3,---,
J3, ^(m-i)/2+3. h, J(m-i)/2+2i J\, ^(m-i)/2+i} as a new basis for V^-i, then hm acts
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on Q3 like fm on Q\. Therefore, the matrices of the linear transformations fm,gm,
and hm on the respective bases Qi,Q2, and Q3 are the same. So, the matrices of
fm,gm, and hm on the basis Qi are similar to one another [4]. Consequently, the
Markov matrices of the maps fm,gm, and hm on the interval [l ,m] are similar to one
another and hence, by Theorem 2, / m , p m , and hm have the same Artin-Mazur zeta
function. D
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