## Appendix A

## An Aside on $O(4)$

$O(4)$ is the group defined by the multiplication properties of the set of orthogonal matrices which keep the quadratic form

$$
\begin{equation*}
\sum_{i=1}^{4} x_{i}^{2} \tag{A.1}
\end{equation*}
$$

invariant. If

$$
\begin{equation*}
\vec{x}^{\prime}=\mathcal{O} \vec{x} \tag{А.2}
\end{equation*}
$$

then

$$
\begin{align*}
\vec{x}^{\prime} \cdot \vec{x}^{\prime} & =\vec{x} \cdot \mathcal{O}^{\mathrm{T}} \mathcal{O} \cdot \vec{x}=\vec{x} \cdot \vec{x} \\
& \Rightarrow \mathcal{O}^{\mathrm{T}} \mathcal{O}=1 \tag{A.3}
\end{align*}
$$

where $\vec{x}$ is a four-dimensional vector. Looking in the neighbourhood of the identity, we find, with $\mathcal{O}=1+\delta$, then

$$
\begin{align*}
\mathcal{O}^{\mathrm{T}} \mathcal{O} & =\left(1+\delta^{\mathrm{T}}\right)(1+\delta)=1+\delta+\delta^{\mathrm{T}}+o\left(\delta^{2}\right)=1 \\
& \Rightarrow \delta+\delta^{\mathrm{T}}=0 \tag{A.4}
\end{align*}
$$

This means that $\delta$ must be an anti-symmetric, $4 \times 4$ matrix. This defines the Lie algebra of $O(4)$. The complete set of anti-symmetric $4 \times 4$ matrices is given by

$$
\begin{align*}
\left(M_{\mu \nu}\right)_{\sigma \tau} & =\delta_{\mu \sigma} \delta_{\nu \tau}-\delta_{\mu \tau} \delta_{\nu \sigma} \\
& =\frac{1}{2} \epsilon_{\mu \nu \lambda \rho} \epsilon_{\lambda \rho \sigma \tau} \tag{A.5}
\end{align*}
$$

It is easy to calculate

$$
\begin{equation*}
\left[M_{\mu \nu}, M_{\sigma \tau}\right]=\frac{1}{4}\left(\epsilon_{\mu \nu \lambda \rho} \epsilon_{\lambda \rho \gamma \delta} \epsilon_{\sigma \tau \delta \beta} \epsilon_{\sigma \tau \alpha \beta}-\epsilon_{\alpha \beta \sigma \tau} \epsilon_{\sigma \tau \gamma \delta} \epsilon_{\mu \nu \lambda \rho} \epsilon_{\lambda \rho \delta \omega}\right) \tag{A.6}
\end{equation*}
$$

We can expand this further; it is easy to do some of the sums over dummy indices, but it is more illuminating to define

$$
\begin{equation*}
J_{i}=\frac{1}{2} \epsilon_{i j k}\left(M_{j k}\right)_{l m}=\frac{1}{2} \epsilon_{i j k}\left(\delta_{j l} \delta_{k m}-\delta_{j m} \delta_{k l}\right)=\epsilon_{i l m} \tag{A.7}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{i}=\left(M_{0 i}\right)_{l m} \tag{A.8}
\end{equation*}
$$

Then the commutators

$$
\begin{align*}
{\left[J_{i}, J_{j}\right] } & =\epsilon_{i j k} J_{k} \\
{\left[J_{i}, K_{j}\right] } & =\epsilon_{i j k} K_{k} \tag{A.9}
\end{align*}
$$

follow directly, with $J_{1}=M_{23}, J_{2}=M_{31}$ and $J_{3}=M_{12}$. To calculate [ $K_{i}, K_{j}$ ] we consider the generators

$$
\begin{equation*}
\tilde{J}_{1}=M_{12}, \quad \tilde{J}_{2}=M_{20}, \quad \tilde{J}_{3}=M_{01}, \tag{A.10}
\end{equation*}
$$

which generate the subgroup that leaves the form $x_{0}^{2}+x_{1}^{2}+x_{2}^{2}$ invariant. Then because of rotational symmetry we must have

$$
\begin{equation*}
\left[\tilde{J}_{i}, \tilde{J}_{j}\right]=\epsilon_{i j k} \tilde{J}_{k} \tag{A.11}
\end{equation*}
$$

(We can check this, for example, with $\left[\tilde{J}_{1}, \tilde{J}_{2}\right]=\left[M_{12}, M_{20}\right]=\left[M_{12}, M_{20}\right]=$ $\left.\left[J_{3},-K_{2}\right]=-\epsilon_{321} K_{1}=K_{1}=M_{01}=\tilde{J}_{3}.\right)$ Thus

$$
\begin{equation*}
\left[\tilde{J}_{2}, \tilde{J}_{3}\right]=\left[M_{20}, M_{01}\right]=\left[-K_{2}, K_{1}\right]=\tilde{J}_{1}=M_{12}=J_{3} \tag{A.12}
\end{equation*}
$$

thus

$$
\begin{equation*}
\left[K_{1}, K_{2}\right]=J_{3} \tag{A.13}
\end{equation*}
$$

hence rotational covariance dictates the general relation

$$
\begin{equation*}
\left[K_{i}, K_{j}\right]=\epsilon_{i j k} J_{k} \tag{A.14}
\end{equation*}
$$

The combinations

$$
\begin{equation*}
M_{i}^{ \pm}=\frac{1}{2}\left(J_{i} \pm K_{i}\right) \tag{A.15}
\end{equation*}
$$

satisfy the commutators

$$
\begin{equation*}
\left[M_{i}^{ \pm}, M_{j}^{ \pm}\right]=\epsilon_{i j k} M_{k}^{ \pm} \tag{A.16}
\end{equation*}
$$

while

$$
\begin{equation*}
\left[M_{i}^{+}, M_{j}^{-}\right]=0 . \tag{A.17}
\end{equation*}
$$

