Vol. 40 (1989) [397-405]

WEIGHTED CONVOLUTIONS OF CERTAIN POLYNOMIALS

Massoud Jahangiri

For $\alpha \geqslant 0$ and $\beta \geqslant 0$, let $K(\alpha, \beta)$ consist of those functions $f(z)$, analytic and non-zero in $|z|<1$, such that for $\theta_{1}<\theta_{2}<\theta_{1}+2 \pi$ and $0<r<1,-\alpha \pi \leqslant \arg f\left(r e^{i \theta_{2}}\right)-$ $\arg f\left(r e^{i \theta_{1}}\right)+1 / 2(\alpha-\beta)\left(\theta_{1}-\theta_{2}\right) \leqslant \beta \pi$. It is conjectured that for $1 \leqslant \alpha \leqslant \beta$ and α an integer, the weighted convolution of polynomials having their zeros on $|z|=1$ and belonging to $K(\alpha, \beta)$, also belong to $K(\alpha, \beta)$. This conjecture is known to be true for the case $\alpha=1$, which leads to an alternative proof for the generalised Polya-Schoenberg conjecture. The case $\alpha=2$ is also known to be true for cubic polynomials. We prove the conjecture for certain quartic polynomials when $2 \leqslant \alpha \leqslant 4$.

1. Introduction

1.1. For $\alpha \geqslant 0$ and $\beta \geqslant 0$, let the Kaplan class $K(\alpha, \beta)$, be the class of functions $f(z)$, analytic and non-zero in $|z|<1$ such that for $\theta_{1}<\theta_{2}<\theta_{1}+2 \pi$, and $0<r<1$,

$$
-\alpha \pi \leqslant \arg f\left(r e^{i \theta_{2}}\right)-\arg f\left(r e^{i \theta_{1}}\right)+\frac{1}{2}(\alpha-\beta)\left(\theta_{1}-\theta_{2}\right) \leqslant \beta \pi
$$

For $\alpha \geqslant 1$ and $\beta \geqslant 1$ where α is an integer, define

$$
Q_{n}(z ; \theta)=(1+z)^{\alpha-1} \prod_{j=1}^{n+1-\alpha}\left(1+z e^{i(2 j+\alpha-n-2) \theta}\right)
$$

where $\theta=\pi /(n+\beta-\alpha)$ and $1 \leqslant \alpha \leqslant n$.
Recall that the Hadamard product or convolution of two power series

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \text { and } g(z)=\sum_{n=0}^{\infty} b_{n} z^{n} \text { is }(f * g)(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n} .
$$

Define $Q_{n}^{(-1)}(z ; \theta)$ so that $Q_{n}^{(-1)}(z ; \theta)_{+} Q_{n}(z ; \theta)=1 /(1-z)$. The following is a. special case of a conjecture given in [1].

Received 29 November 1988

This work was begun while the author was visiting the Universityof Kentucky at Lexington, where he enjoyed many valuable discussions with Professor Ted J. Suffridge.

[^0]1.2. Conjecture. Let $1 \leqslant \alpha \leqslant n$ and $\alpha \leqslant \beta$ where α and n are integers. Assume that the polynomials
$$
p_{n}(z)=\prod_{k=1}^{n}\left(1+z e^{i \phi_{k}}\right) \text { and } q_{n}(z)=\prod_{k=1}^{n}\left(1+z e^{i \psi_{k}}\right)
$$
belong to $K(\alpha, \beta)$. Then the polynomial
$$
R_{n}(z)=\left(p_{n} * q_{n}\right)(z) * Q_{n}^{(-1)}(z ; \theta)
$$
also belongs to $K(\alpha, \beta)$.
This conjecture is proved for the case $\alpha=n-1=2$ in ($[1$, Theorem 4]) and for the case $1=\alpha \leqslant \beta$ by Suffridge ($[10$, Theorem 5]).

Since starlike functions of order $\gamma ; \gamma \leqslant 1$, can be characterised as the class of limits of sequences of polynomials in $K(\alpha, \alpha+2-2 \gamma) ; \alpha \geqslant 1$ (see [1, Theorem 2] and [10, Theorem 1]), the above conjecture for $\alpha=1$, leads to an alternative proof for the generalised Polya-Schoenberg conjecture [3]. The special cases $\gamma=0$ and $1 / 2$ were first proved by Ruscheweyh and Sheil-Small [6] while the general case $\gamma \leqslant 1$ was obtained by Suffridge [10], and later by Lewis [2] and Ruscheweyh [4]. The truth of our conjecture for other values of α, that is $\alpha \neq 1$, may throw new light on a variety of old problems, because $K(\alpha, \beta)$ is closely related to several well-knnown classes of analytic and univalent functions. (For more details see [5-9]). In this note we prove the following

Theorem 1.3. Let $2 \leqslant \alpha \leqslant 4$ and $\alpha \leqslant \beta$ where α is an integer. Assume that the polynomials

$$
p_{4}(z)=\prod_{k=1}^{4}\left(1+z e^{i \phi_{k}}\right) \text { and } q_{4}(z)=\prod_{k=1}^{4}\left(1+z e^{i \psi_{k}}\right)
$$

belong to $K(\alpha, \beta)$ where $\phi_{k}=-\phi_{5-k}$ and $\psi_{k}=-\psi_{5-k}$. Then $R_{4}(z)=\left(p_{4} * q_{4}\right)(z) *$ $Q_{4}^{(-1)}(z ; \theta)$ also belongs to $K(\alpha, \beta)$.

Note that Theorem 1.3 is true for $\alpha=1$ by Suffridge ([10, Theorem 5]).

2. Some key lemmas

To prove our theorem we shall need the following lemmas, the first of which is a special case of Theorem 1 in [1].

Lemma 2.1. Let $0 \leqslant \phi_{1} \leqslant \phi_{2} \leqslant \pi$. Then for $2 \leqslant \alpha \leqslant 4$ and $\alpha \leqslant \beta$, the polynomial

$$
p_{4}(z)=\left(1+z e^{i \phi_{1}}\right)\left(1+z e^{i \phi_{2}}\right)\left(1+z e^{i\left(2 \pi-\phi_{2}\right)}\right)\left(1+z e^{i\left(2 \pi-\phi_{1}\right)}\right)
$$

belongs to $K(\alpha, \beta)$ if and only if $0 \leqslant \phi_{1} \leqslant(\beta \pi) /(4+\beta-\alpha)$ and $((4-\alpha) \pi) /(4+\beta-\alpha) \leqslant \phi_{2} \leqslant \pi$.

Lemma 2.2. Let $0<c<1,-c \leqslant x \leqslant 1,-c \leqslant u \leqslant 1,-1 \leqslant y \leqslant c,-1 \leqslant v \leqslant c$, $y \leqslant x$ and $v \leqslant u$. Then

$$
F(x, y, u, v)=2+\frac{(x+y)^{2}(u+v)^{2}}{(1+c)^{2}}-\frac{2(1+2 x y)(1+2 u v)}{1+2 c} \geqslant 0 .
$$

Proof: The minimum of F occurs either at a critical point or on the boundary. By setting $\partial F / \partial x=\partial F / \partial y=0$ we obtain either $1+2 u v=0$ or $\left((1+c)^{2}(1+2 u v)\right) /\left((1+2 c)(u+v)^{2}\right)=1$. By setting $\partial F / \partial u=\partial F / \partial v=0$ we obtain either $1+2 x y=0$ or $\left((1+c)^{2}(1+2 x y)\right) /\left((1+2 c)(x+y)^{2}\right)=1$. If $1+2 u v=0$, then $F(x, y, u, v)=$ $2+\left((x+y)^{2}(u+v)^{2}\right) /\left((1+c)^{2}\right)>0$.

If $\left((1+c)^{2}(1+2 u v)\right) /\left((1+2 c)(u+v)^{2}\right)=1$, then $x=y$ and so $F(x, y, u, v)=$ $2\left\{1-(u+v)^{2} /(1+c)^{2}\right\} \geqslant 0$.

Similarly, $F(x, y, u, v) \geqslant 0$ when $1+2 x y=0$ or $(1+c)^{2}(1+2 x y)=(1+2 c)(x+y)^{2}$.
Now we check the values of $F(x, y, u, v)$ on the boundary. Since $F(x, y, u, v)$ is symmetric in (x, y) and (u, v), it would be enough to show that $F(x, y, u, v) \geqslant 0$ on the boundary involving x and y. Let $y=-1$. Then

$$
\begin{aligned}
F(x,-1, u, v)= & \frac{(u+v)^{2}}{(1+c)^{2}} x^{2}+2\left\{\frac{2(1+2 u v)}{1+2 c}-\frac{(u+v)^{2}}{(1+c)^{2}}\right\} x+2 \\
& +\frac{(u+v)^{2}}{(1+c)^{2}}-\frac{2(1+2 u v)}{1+2 c} .
\end{aligned}
$$

Setting $d F(x,-1, u, v) / d x=0$ we obtain $x_{0}=1-2(1+c)^{2}(1+2 u v) /(1+2 c)(u+v)^{2}$. But $F\left(x_{0},-1, u, v\right)=2\left\{1+(1+2 u v) /(1+2 c) x_{0}\right\} \geqslant 0$ because we must have $-c \leqslant$ $x_{0} \leqslant 1$. Also observe that $F(-c,-1, u, v)=(u-v)^{2} \geqslant 0$ and $F(1,-1, u, v)=2\{1+$ $(1+2 u v) /(1+2 c)\} \geqslant 0$. Then $F(x, y, u, v) \geqslant 0$ when $y=-1$. If $x=1$. then $F(1, y, u, v)=F(-y,-1, u, v) \geqslant 0$. Let $y=c$. Then

$$
\begin{aligned}
F(x, c, u, v)= & \frac{(u+v)^{2}}{(1+c)^{2}} x^{2}+2 c\left\{\frac{(u+v)^{2}}{(1+c)^{2}}-\frac{2(1+2 u v)}{1+2 c}\right\} x+2 \\
& +\frac{c^{2}(u+v)^{2}}{(1+c)^{2}}-\frac{2(1+2 u v)}{1+2 c}
\end{aligned}
$$

Letting $d F^{\prime}(x, c, u, v) / d x=0$ we obtain $x_{1}=c\left\{\left(2(1+c)^{2}(1+2 u v)\right) /\left((1+2 c)(u+v)^{2}\right)\right.$ $-1\}$.

Observe that $F\left(x_{1}, c, u, v\right) \geqslant 0$ because we must have $y=c \leqslant x_{1} \leqslant 1$. If $x=-c$, then by setting $d F(-c, y, u, v) / d y=0$ we obtain $y_{1}=-x_{1}$, and so $F\left(-c, y_{1}, u, v\right)=$ $F\left(x_{1}, c, u, v\right) \geqslant 0$. If $x=y$, then it is easy to see that

$$
F(x, x, u, v)=2\left\{2\left[\frac{(u+v)^{2}}{(1+c)^{2}}-\frac{1+2 u v}{1+2 c}\right] x^{2}+1-\frac{1+2 u v}{1+2 c}\right\} \geqslant 0
$$

Therefore $F(x, y, u, v)$ is never negative for the given x, y, u, v and c.
The following Lemma can also be proved using a similar argument and so we omit its proof.

Lemma 2.3. Let $0<c<1,-c \leqslant x \leqslant 1,-c \leqslant u \leqslant 1,-1 \leqslant y \leqslant c,-1 \leqslant v \leqslant c$, $y \leqslant x$ and $v \leqslant u$. Then

$$
F(x, y, u, v)=1+\frac{(1+2 x y)(1+2 u v)}{1+2 c}-\frac{2(x+y)(u+v)}{1+c} \geqslant 0 .
$$

Lemma 2.4. Let $0<c<1,-c \leqslant x \leqslant 1,-c \leqslant u \leqslant 1,-1 \leqslant y \leqslant c, 1 \leqslant v \leqslant c$, $y \leqslant x$ and $v \leqslant u$. Furthermore, let

$$
\begin{equation*}
-(1+c) \leqslant \frac{(x+y)(u+v)}{1+c}<-2 c \tag{2.4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
1+2 c^{2}<\frac{(1+2 x y)(1+2 u v)}{1+2 c} \leqslant 1+2 c . \tag{2.4.2}
\end{equation*}
$$

Then

$$
F(x, y, u, v)=\frac{(1+2 x y)(1+2 u v)}{1+2 c}+\frac{2 c(x+y)(u+v)}{1+c}+2 c^{2}-1 \leqslant 0 .
$$

Proof: Since $\left(\partial^{2} F / \partial x^{2}\right)\left(\partial^{2} F / \partial y^{2}\right)-\left(\partial^{2} F / \partial x \partial y\right)^{2}=-\left(\partial^{2} F / \partial x \partial y\right)^{2}<0$, the maximum of $F(x, y, u, v)$ occurs on the boundary. Note that $\partial^{2} F / \partial x \partial y$ cannot be equal to zero, because that contradicts (2.4.2). Observe that $F(x, y, u, v)$ is symmetric in (x, y) and (u, v). Therefore it would be enough to show that $F(x, y, u, v) \leqslant 0$ for the boundary values involving x and y. Since $(x+y)(u+v)<0$, without loss of generality we assume that $x+y<0$ and $u+v>0$.
(i) If $x=-c$, then

$$
\begin{gathered}
F(-c, y, u, v)=2 c\left\{\frac{u+v}{1+c}-\frac{1+2 u v}{1+2 c}\right\} y+\frac{1+2 u v}{1+2 c}-\frac{2 c^{2}(u+v)}{1+c}+2 c^{2}-1, \\
\text { where, by }(2.4 .1),-1 \leqslant y \leqslant-c .
\end{gathered}
$$

Now we check $F(-c, y, u, v)$ for $y=-c$ and $y=-1$.
(i)(1) Let $y=-c$. Then

$$
F(-c,-c, u, v)=\frac{-4 c^{2}(u+v)}{1+c}+\frac{\left(1+2 c^{2}\right)(1+2 u v)}{1+2 c}+2 c^{2}-1 \leqslant 0
$$

because $1+2 u v \leqslant 1+2 c$ and for $x=y=-c,-2 c(u+v)<-2 c(1+c)$, by (2.4.1).
(i)(2) Let $y=-1$. Then

$$
F(-c,-1, u, v)=-2 c(u+v)+\frac{2 c(1+2 u v)}{1+2 c}+2 c^{2}-1
$$

For $x=-c$ and $y=-1$ we obtain from (2.4.1) and (2.4.2) that $2 c<u+v$ and $1+2 u v \leqslant 1+2 c$. Substituting these in $F(-c,-1, u, v)$, it follows that

$$
F(-c,-1, u, v) \leqslant-2 c^{2}+2 c-1 \leqslant 0
$$

(ii) If $x=1$, then (by (2.4.1)), $y=-1$ and $c=0$. Therefore

$$
F(1,-1, u, v)=-2-2 u v<0 .
$$

(iii) If $y=-1$, then

$$
F(x,-1, u, v)=2\left\{\frac{c(u+v)}{1+c}-\frac{1+2 u v}{1+2 c}\right\} x+\frac{1+2 u v}{1+2 c}-\frac{2 c(u+v)}{1+c}+2 c^{2}-1 .
$$

We check $F(x,-1, u, v)$ for $x=-c$ and $x=1$. By (i)(2), $F(-c,-1, u, v) \leqslant 0$ and by (ii), $F(1,-1, u, v) \leqslant 0$.
(iv) If $y=+c$, then (by (2.4.1)), $x=-c=0$ and $u=v=0$. Therefore

$$
F(-c, c, u, v) \leqslant 0 \text { when } c=0
$$

Thus $F(x, y, u, v)$ is never positive.

Lemma 2.5. If we change x to $-y$ and y to $-x$ or change u to $-v$ and v to $-u$ in Lemma 2.4, we obtain

$$
\frac{(1+2 x y)(1+2 u v)}{1+2 c}-\frac{2 c(x+y)(u+v)}{1+c}+2 c^{2}-1 \leqslant 0 .
$$

Lemma 2.6. The polynomial $R_{4}(z)$ in Theorem 1.3, has all its zeros on $|z|=1$.
Proof: Using trigonometric identities we can write

$$
Q_{4}(z ; \theta)=1+2(1+\cos \phi) z+2(1+2 \cos \phi) z^{2}+2(1+\cos \phi) z^{3}+z^{4}
$$

where $\phi=(4-\alpha) \theta=[(4-\alpha) \pi] /(4+\beta-\alpha)$. Now

$$
\begin{equation*}
R_{4}(z)=1+2 A z+B z^{2}+2 A z^{3}+z^{4} \tag{2.6.1}
\end{equation*}
$$

where $A=(x+y)(u+v) /(1+c), B=2(1+2 x y)(1+2 u v) /(1+2 c), 0<c=\cos \phi<$ $1,-c \leqslant x=\cos \phi_{1} \leqslant 1,-c \leqslant u=\cos \psi_{1} \leqslant 1,-1 \leqslant y=\cos \phi_{2} \leqslant c,-1 \leqslant v=$ $\cos \psi_{2} \leqslant c, y \leqslant x$ and $v \leqslant u$.

If $R_{4}(z)$ has zero in $|z|<1$, it must have a zero in $|z|>1$, and vice-versa. Therefore, to prove that $R_{4}(z)$ has all its zeros on $|z|=1$, it is sufficient to show that $R_{4}(z) \neq 0$ in $|z|<1$. Write $R_{4}(z)=\left(z^{2}+\alpha_{1} z+1\right)\left(z^{2}+\alpha_{2} z+1\right)=p(z) q(z)$ where $\alpha_{1}=A-\sqrt{A^{2}+2-B}$ and $\alpha_{2}=A+\sqrt{A^{2}+2-B}$. By Lemma 2.2., $A^{2}+2-B \geqslant 0$, so α_{1} and α_{2} are real. Now we need to show that $p(z) \neq 0$ and $q(z) \neq 0$ in $|z|<1$. For this, it is sufficient to show that $-2 \leqslant \alpha_{1}$ and $\alpha_{2} \leqslant 2$ since $\alpha_{1} \leqslant \alpha_{2}$.

For the first case, we observe that $-2 \leqslant \alpha_{1}$ because $-2 \leqslant A-\sqrt{A^{2}+2-B}$ if and only if $2+B+4 A \geqslant 0$, which is true by Lemma 2.3. For the second case, we observe that $\alpha_{2} \leqslant 2$ because $2+B-4 A \geqslant 0$ by Lemma 2.3. This completes the proof.

3. Proof of Theorem 1.3

3.1. By Lemma 2.6, $R_{4}(z)$ has all its zeros on $|z|=1$ and can be written as $R_{4}(z)=$ $1+2 A z+B z^{2}+2 A z^{3}+z^{4}$ where A and B are as in (2.6.1). Then there exist θ_{1} and θ_{2} with $0 \leqslant \theta_{1} \leqslant \theta_{2} \leqslant \pi$ such that

$$
R_{4}(z)=1+2\left(\cos \theta_{1}+\cos \theta_{2}\right) z+2\left(1+2 \cos \theta_{1} \cos \theta_{2}\right) z^{2}+2\left(\cos \theta_{1}+\cos \theta_{2}\right) z^{3}+z^{4}
$$

where

$$
\begin{equation*}
A=\cos \theta_{1}+\cos \theta_{2} \text { and } B=2\left(1+2 \cos \theta_{1} \cos \theta_{2}\right) . \tag{3.1.1}
\end{equation*}
$$

Because $p_{4}(z)$ and $q_{4}(z)$ are in $K(\alpha, \beta)$, then (by Lemma 2.1),

$$
\begin{equation*}
-(1+c) \leqslant x+y, u+v \leqslant 1+c \text { and }-1 \leqslant 1+2 x y, 1+2 u v \leqslant 1+2 c . \tag{3.1.2}
\end{equation*}
$$

So, by (2.6.1) and (3.1.1),

$$
\begin{equation*}
-(1+c) \leqslant \cos \theta_{1}+\cos \theta_{2} \leqslant 1+c \text { and }-1 \leqslant 1+2 \cos \theta_{1} \cos \theta_{2} \leqslant 1+2 c . \tag{3.1.3}
\end{equation*}
$$

To show that $R_{4}(z)$ belongs to $K(\alpha, \beta)$, it is sufficient (by Lemma 2.1.), to show that θ_{1} is never greater than $\beta \pi /(4+\beta-\alpha)$ and θ_{2} is never less than $[(4-\alpha) \pi] /(4+\beta-\alpha)$.
3.2. First we show that θ_{1} is always between 0 and $\beta \pi /(4+\beta-\alpha)$. Assume that $\theta_{1}=\{\beta \pi /(4+\beta-\alpha)\}+\varepsilon$ where $\varepsilon>0$. Then

$$
\begin{equation*}
-1 \leqslant \cos \theta_{2} \leqslant \cos \theta_{1}<-c . \tag{3.2.1}
\end{equation*}
$$

From (3.1.3) and (3.2.1) it follows that

$$
-(1+c) \leqslant \cos \theta_{1}+\cos \theta_{2}<-2 c \text { and } 1+2 c^{2}<1+2 \cos \theta_{1} \cos \theta_{2} \leqslant 1+2 c .
$$

Therefore, by (2.6.1) and (3.1.2),

$$
-(1+c)^{2} \leqslant(x+y)(u+v)<-2 c(1+c),
$$

and

$$
(1+2 c)\left(1+2 c^{2}\right)<(1+2 x y)(1+2 u v) \leqslant(1+2 c)^{2} .
$$

Note that the above two inequalities are the conditions (2.4.1) and (2.4.2).
Solving the first equation of (3.1.1) for $\cos \theta_{2}$ and substituting this into the second equation, we obtain $\cos ^{2} \theta_{1}-A \cos \theta_{1}+1 / 4 B-1 / 2=0$. Then

$$
\begin{equation*}
\cos \theta_{1}=\frac{1}{2}\left\{A \pm \sqrt{A^{2}+2-B}\right\} \tag{3.2.2}
\end{equation*}
$$

Now from (3.2.1) and (3.2.2) it follows that

$$
\begin{equation*}
-2 \leqslant 2 \cos \theta_{1}=A \pm \sqrt{A^{2}+2-B}<-2 c . \tag{3.2.3}
\end{equation*}
$$

We will show that (3.2.3) is never true. If $A+\sqrt{A^{2}+2-B}<-2 c$, then $4 A c+B-$ $2+4 c^{2}>0$ which is not true (by Lemma 2.4.). If $\cos \theta_{1}=1 / 2\left(A-\sqrt{A^{2}+2-B}\right)<-c$, then by (3.1.1), $\cos \theta_{2}=A-\cos \theta_{1}=1 / 2\left(A+\sqrt{A^{2}+2-B}\right)$. Since $\cos \theta_{2}<-c$ (by (3.2.1)), $A+\sqrt{A^{2}+2-B}<-2 c$. But by Lemma 2.4, this cannot be true. Therefore we conclude that θ_{1} is never greater than $\beta \pi /(4+\beta-\alpha)$.
3.3. Finally, we show that θ_{2} is never less than $[(4-\alpha) \pi] /(4+\beta-\alpha)$. Suppose that $\theta_{2}=\{(4-\alpha) \pi /(4+\beta-\alpha)\}-\delta$ where $\delta>0$. Then

$$
\begin{equation*}
c<\cos \theta_{2} \leqslant \cos \theta_{1} \leqslant 1 \tag{3.3.1}
\end{equation*}
$$

From (3.1.1)-(3.1.3) and (3.3.1) we obtain

$$
\begin{gathered}
2 c(1+c)<(x+y)(u+v) \leqslant(1+c)^{2} \text { and } \\
(1+2 c)\left(1+2 c^{2}\right)<(1+2 x y)(1+2 u v) \leqslant(1+2 c)^{2} .
\end{gathered}
$$

These are the conditions (2.4.1) and (2.4.2) if we change x to $-y$ and y to $-x$, or change u to $-v$ and v to $-u$.

Solving the first equation of (3.1.1) for $\cos \theta_{1}$ and substituting in the second one we obtain

$$
\begin{equation*}
\cos \theta_{2}=\frac{1}{2}\left\{A \pm \sqrt{A^{2}+2-B}\right\} \tag{3.3.2}
\end{equation*}
$$

From (3.3.1) and (3.3.2) it follows that

$$
\begin{equation*}
2 c<2 \cos \theta_{2}=A \pm \sqrt{A^{2}+2-B} \leqslant 2 \tag{3.3.3}
\end{equation*}
$$

We will show that (3.3.3) is never true. If $2 c<A-\sqrt{A^{2}+2-B}$, then $B-4 A c+$ $4 c^{2}-2>0$. But this is impossible by Lemma 2.5 .

If $2 c<2 \cos \theta_{2}=A+\sqrt{A^{2}+2-B}$, then by (3.1.1) and (3.3.1),

$$
c<\cos \theta_{1}=A-\cos \theta_{2}=\frac{1}{2}\left\{A-\sqrt{A^{2}+2-B}\right\}
$$

By Lemma 2.5, this is not possible. Therefore we conclude that θ_{2} is never less than $(4-\alpha) \pi /(4+\beta-\alpha)$. This completes the proof of Theorem 1.3.

4. Conclusion

Our intuition is that if n is a sufficiently small positive integer, then for given polynomials $p_{n}(z)$ and $q_{n}(z)$ of the form

$$
p_{2 m}(z)=\prod_{k=1}^{2 m}\left(1+z e^{i \theta_{k}}\right) \text { or } p_{2 m+1}(z)=(1+z) p_{2 m}(z)
$$

where $\theta_{k}=-\theta_{2 m+1-k}$, an argument similar to that used to prove Theorem 1.3 can be used to show that if $p_{n}(z)$ and $q_{n}(z)$ belong to $K(\alpha, \beta)$ where $1 \leqslant \alpha \leqslant n$ and $\alpha \leqslant \beta$, then $R_{n}(z)=\left(p_{n} * q_{n}\right)(z) * Q_{n}^{(-1)}(z ; \theta)$ also belong to $K(\alpha, \beta)$. For example, when $n=5$, we obtain (from Theorem 1 of $[1]$) that $p_{5}(z)$ is in $K(2, \beta)$ if and only if $\pi /(3+\beta) \leqslant \theta_{1} \leqslant(1+\beta) /(3+\beta)$ and $3 \pi /(3+\beta) \leqslant \theta_{2} \leqslant \pi$. Now (analogous to Lemma 2.6) we may show that $R_{5}(z)$ has all its zeros on $|z|=1$. This means that $R_{5}(z)$ can be written in the form $p_{2 m+1}(z)$. Next (analogous to the proof of Theorem 1.3), we show that the zeros of $R_{5}(z)$ are located so that $R_{5}(z)$ belongs to $K(2, \beta)$.

For polynomials of large degree, the above method turns out to be lengthy and rather involved. lerhaps one can come up with a better technique which works for polynomials of any degree. A reader interested in pursuing this problem may find the studies in [5-10] and specially [1] (Section 4, p.56) of some use.

References

[1] M. Jahangiri, 'A gap condition for the zeros of certain polynomials in Kaplan classes $K(\alpha, \beta)$ ', Mathematika 34 (1987), 53-63.
[2] J.L. Lewis, 'Convolutions of Starlike functions', Indiana Univ. Math. J. 27 (1978), 671-688.
[3] G. Polya and I.J. Schoenberg, 'Remarks on de la Vallee Poussin Means and convex conformal maps of the circle', Pacific J. Math. 8 (1958), 295-334.
[4] St. Ruscheweyh, 'Linear operators between classes of prestarlike functions', Comment. Math. Helv. 52 (1977), 497-509.
[5] St. Ruscheweyh, Convolutions in geometric function theory: Sém. Math. Sup. (L Presses, De L'Universite De Montréal, Montreal, Que., 1982).
[B] St. Ruscheweyh and T.B. Sheil-Small, 'Hadamard products of Schlicht functions and the Polya-Schoenberg conjecture', Comment. Math. Helv. 48 (1973), 119-135.
[7] T.B. Sheil-Small, 'The Hadamard product and linear transofrmations of classes of analytic functions', J. Analyse Math. 34 (1978), 204-239.
[8] T.B. Sheil-Small, 'Coefficients and integral means of some classes of analytic functions', Proc. Amer. Math. Soc. 88 (1983), 275-282.
[日] T.B. Sheil-Small, 'Some remarks on Bazilevic functions', J. Analyse Math. 43 (1983/84), 1-11.
[10] T.J. Suffridge, 'Starlike functions as limits of polynomials': Advances in Complex Function Theory. : Lecture Notes in Math 505 (Springer-Verlag, New York). pp. 164-203.

Department of Mathematica
University of California
Davis CA 95616
United States of America

[^0]: Copyright Clearance Centre, Inc. Serial-Fee code: 0004-9729/89 $\$$ A2.00 +0.00 .

