COMPACT OPERATORS IN REDUCTIVE ALGEBRAS

EDWARD A. AZOFF

Let \mathscr{H} be a Hilbert space and denote the collection of (bounded, linear) operators on \mathscr{H} by $\mathscr{L}(\mathscr{H})$. Throughout this paper, the term 'algebra' will refer to a subalgebra of $\mathscr{L}(\mathscr{H})$; unless otherwise stated, it will not be assumed to contain I or to be closed in any topology.

An algebra is said to be *transitive* if it has no non-trivial invariant subspaces. The following lemma has revolutionized the study of transitive algebras. For a proof and a general discussion of its implications, the reader is referred to [5].

LEMMA 1 (Lomonosov). Suppose \mathfrak{A} is a transitive algebra and K is a non-zero compact operator. Then there exists an $A \in \mathfrak{A}$ such that the operator AK has 1 as an eigenvalue.

COROLLARY 2 [5]. Let \mathfrak{A} be a transitive algebra containing a non-zero compact operator. Suppose moreover that \mathfrak{A} is weakly closed and contains I. Then $\mathfrak{A} = \mathscr{L}(\mathcal{H})$.

The purpose of this paper is to prove a generalization of this corollary. To describe it, we first need two definitions.

Definition [6]. An algebra \mathfrak{A} is called reductive if it is weakly closed and every invariant subspace for \mathfrak{A} reduces \mathfrak{A} .

Definition. Let \mathfrak{A} be a reductive algebra and denote by \mathscr{B} , the von Nuemann algebra generated by \mathfrak{A} . Then for $A \in \mathfrak{A}$, we define the *central support* of A to be the smallest (self-adjoint) projection P in the center of \mathscr{B} such that AP = A.

THEOREM 3. Let \mathfrak{A} be a reductive algebra containing a compact operator K. Then the central support P of K belongs to \mathfrak{A} and $P\mathfrak{A}P$ is self-adjoint.

Before embarking on the proof of the Theorem, it seems appropriate to make several observations. First, note that Theorem 3 contains Corollary 2 as a special case. Indeed, in a transitive algebra, every non-zero operator has central support I, and the von Neumann double-commutant theorem assures us that $\mathcal{L}(\mathcal{H})$ is the only transitive von Neumann algebra.

In fact, Theorem 3 is, in a sense, the best result one could hope for. This is because $(I - P)\mathfrak{A}(I - P)$ is a reductive algebra about which we know nothing (i.e., it could be any reductive algebra).

Finally, we single out two corollaries of Theorem 3. Corollary 5 was pointed out to the author by Frank Gilfeather.

Received July 27, 1973.

COROLLARY 4 [7]. Suppose \mathfrak{A} is a reductive algebra containing an injective compact operator K. Then \mathfrak{A} is self-adjoint.

Proof. The central support of an injective operator is *I*.

COROLLARY 5. Let \mathfrak{A} be a reductive algebra and suppose the supremum of the central supports of the compact operators in \mathfrak{A} is I. Then \mathfrak{A} is self-adjoint.

Proof. Let \mathscr{B} be the von Neumann algebra generated by \mathfrak{A} . Applying Zorn's lemma, we find a maximal orthogonal family \mathscr{P} of central projections in \mathscr{B} such that $\mathscr{B}P \subseteq \mathfrak{A}$ for each $P \in \mathscr{P}$. Let $P_0 = \sum \mathscr{P}$. Then the weak closure of \mathfrak{A} shows that $\mathscr{B}P_0 \subseteq \mathfrak{A}$. Note that if $I \neq P_0$, then $\mathfrak{A}(I - P_0)$ would contain a non-zero compact operator. In view of the theorem, this contradicts the maximality of \mathscr{P} . Thus $I = P_0$ and the proof is complete.

In proving Theorem 3, it will be convenient to isolate two lemmas. Lemma 6 is a slight variation of Corollary 2 and its proof uses several arguments found in [5].

LEMMA 6. Let \mathfrak{A} be a transitive algebra and \mathscr{I} a norm closed, two-sided ideal in \mathfrak{A} . Suppose \mathscr{I} contains a non-zero compact operator. Then \mathscr{I} contains all compact operators.

Proof. Let K be a non-zero compact operator in \mathscr{I} . By Lomonosov's lemma, there exists an $A \in \mathfrak{A}$ such that AK belongs to \mathscr{I} and has a fixed point. Note that the span of \mathscr{I} and I is a Banach algebra. Thus by applying an appropriate analytic function to AK, we find a non-zero finite rank idempotent J in the span of \mathscr{I} and I. In fact, there is a sequence of polynomials $\{p_n\}$ for which $p_n(AK) \to J$. Since the distance from I to the compacts is 1, we conclude that $p_n(0) \to 0$ and hence that J actually belongs to \mathscr{I} .

Note that $J\mathscr{I}_{|\operatorname{Ran} J} = J \mathfrak{A} J|_{\operatorname{Ran} J}$ is a subalgebra of $\mathscr{L}(\operatorname{Ran} J)$. Since $J\mathfrak{A} J$ acts transitively on $\operatorname{Ran} J$ we conclude that $J\mathscr{I} J|_{\operatorname{Ran} J} = \mathscr{L}(\operatorname{Ran} J)$ (Burnside's theorem). In particular $J\mathscr{I} J$ (and hence \mathscr{I}) contains a rank one operator. The lemma now follows by the transitivity of \mathfrak{A} .

LEMMA 7. Let \mathfrak{A} be a reductive algebra and suppose J is a finite rank idempotent in \mathfrak{A} . Then $J\mathfrak{A} J|_{\text{Ran } J}$ is self-adjoint.

Proof. Suppose M is invariant under $\mathfrak{I}\mathfrak{A}J|_{\operatorname{Ran} J}$. Then $(\mathfrak{A}M)^{-}$ is invariant under \mathfrak{A} and $J(\mathfrak{A}M)^{-} = M$. The algebra \mathfrak{A} being reductive, we see that $(\mathfrak{A}M)^{\perp}$ is also invariant under \mathfrak{A} . Since $J \in \mathfrak{A}$, it follows that $J(\mathfrak{A}M)^{\perp}$ is contained in $(\mathfrak{A}M)^{\perp}$ and hence $J(\mathfrak{A}M)^{\perp} \subseteq M^{\perp}$. Thus Ran J is the orthogonal direct sum of M and $J(\mathfrak{A}M)^{\perp}$. Since $J(\mathfrak{A}M)^{\perp}$ is invariant under $\mathfrak{I}\mathfrak{A}J|_{\operatorname{Ran} J}$, we see that $\mathfrak{I}\mathfrak{A}J|_{\operatorname{Ran} J}$ is reductive.

This completes the proof since it is known ([1, p. 127, Theorem 4] or [6, Theorem 2]) that a reductive algebra acting on a finite-dimensional space must be self-adjoint.

Proof of Theorem 3. Let \mathscr{V} be the von Neumann algebra generated by \mathfrak{A} . We are going to show there is a non-zero self-adjoint projection $Q \leq P$ in the center of \mathscr{V} such that $\mathscr{V}Q \subseteq \mathfrak{A}$. This will complete the proof since a standard maximality argument then gives $\mathscr{V}P \subset \mathfrak{A}$, i.e., $P \in \mathfrak{A}$ and $P\mathfrak{A}P = \mathscr{V}P$.

Consider the von Neumann algebra $\mathscr{B} = \mathscr{V}|_{\operatorname{Ran} P}$. Note that the central support of $K|_{\operatorname{Ran} P}$ in \mathscr{B} is *I*. Applying [4, Proposition 1], we conclude that the center of \mathscr{B} is atomic. Let Q be a minimal central projection in \mathscr{B} . Since $K|_{\operatorname{Ran} Q}$ is non-zero, it follows that $\mathscr{B}|_{\operatorname{Ran} Q}$ is a type 1 factor.

We now apply [2, Corollary 3, p. 124] to $\mathscr{B}|_{\operatorname{Ran} Q}$. Thus we find Hilbert spaces \mathscr{M} and \mathscr{N} such that $\mathscr{B}|_{\operatorname{Ran} Q}$ is unitarily equivalent to $\mathscr{L}(\mathscr{M}) \otimes C_{\mathscr{N}}$. The compactness of $K|_{\operatorname{Ran} Q}$ shows that \mathscr{N} must be finite-dimensional. In the sequel, we will identify \mathscr{M} and \mathscr{N} with subspaces of $\operatorname{Ran} Q$.

Note that \mathfrak{A} and \mathscr{V} have the same invariant subspaces. Since \mathscr{M} reduces \mathscr{V} , the same is true of $\mathfrak{A}|_{\mathscr{M}}$ and $\mathscr{V}|_{\mathscr{M}}$. Thus $\mathfrak{A}|_{\mathscr{M}}$ is a transitive subalgebra of $\mathscr{L}(\mathscr{M})$ containing the non-zero compact operator $K|_{\mathscr{M}}$. By Lomonosov, there exists an $A \in \mathfrak{A}$ such that $A|_{\mathscr{M}}K|_{\mathscr{M}}$ has a fixed point. Taking an appropriate analytic function of AK, we find a finite rank idempotent J in \mathfrak{A} for which $J|_{\mathscr{M}} \neq 0$.

The restricted algebras $J\mathfrak{A} J|_{\operatorname{Ran} J}$ and $J\mathscr{V} J|_{\operatorname{Ran} J}$ have the same invariant subspaces. Moreover, by Lemma 7, they are both self-adjoint. Thus by the double-commutant theorem, they coincide. In particular, QJ is a non-zero, finite-rank operator in $J\mathfrak{A} J$ (and hence in \mathfrak{A}) supported on Ran Q.

Denote by \mathscr{C} the collection $\{A \in \mathfrak{A} | A \text{ is supported on Ran } Q\}$ and set $\mathscr{I} = \mathscr{C}|_{\mathscr{M}}$. Then \mathscr{I} , considered as a two-sided ideal over $\mathfrak{A}|_{\mathscr{M}}$ satisfies the hypothesis of Lemma 6. Thus $\mathscr{I} = \mathscr{L}(\mathscr{M})$ (\mathscr{I} is weakly closed) and hence $\mathscr{C} = \mathscr{V}Q$. This shows $\mathscr{V}Q \subseteq \mathfrak{A}$ and completes the proof of the Theorem.

References

- 1. F. S. Cater, *Lectures on real and complex vector spaces* (W. B. Saunders Co., Philadelphia, 1966).
- 2. J. Dixmier, Les algebres d'operateurs dans l'espace Hilbertien, 2nd edition (Gauthier-Villars, Paris, 1969).
- 3. T. Gamelin, Uniform algebras (Prentice Hall, Englewood, N.J., 1969).
- F. Gilfeather, On the Suzuki structure theory for non self-adjoint operators on Hilbert space, Acta Sci. Math. (Szeged) 32 (1971), 239-249.
- C. Pearcy and A. Shields, A survey of the Lomonosov technique in the theory of invariant subspaces, Topics in Operator Theory, Math. Surveys, No. 13 (Amer. Math. Soc., Providence, 1974).
- H. Radjavi and P. Rosenthal, A sufficient condition that an operator algebra be self-adjoint, Can. J. Math., 23 (1971), 588-597.
- 7. P. Rosenthal, On reductive algebras containing compact operators (to appear in Proc. Amer. Math. Soc.).

University of Georgia, Athens, Georgia