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Abstract

We give explicit formulas for the Hilbert series of residual intersections of a scheme in
terms of the Hilbert series of its conormal modules. In a previous paper, we proved that
such formulas should exist. We give applications to the number of equations defining
projective varieties and to the dimension of secant varieties of surfaces and three-folds.

Introduction

Let M =
⊕

i∈ZMi be a finitely generated graded module over a Noetherian standard graded
algebra R over a field k. The Hilbert series (sometimes called the Hilbert–Poincaré series) of M ,
which we will denote by [[M ]], is the Laurent series

[[M ]] =
∑

(dimkMi) t
i.

If Z ⊂ Pn := Pnk is a scheme, then the Hilbert series of Z is by definition the Hilbert series of the
homogeneous coordinate ring of Z. Of course, this Hilbert series contains the data of the Hilbert
polynomial of Z as well.

Sometimes interesting geometric information (such as the dimension of a secant variety) can
be described in terms of residual intersections in the sense of Artin and Nagata [AN72], and the
purpose of this paper is to compute the Hilbert series of such schemes. Here is the definition:
let X ⊂ Y ⊂ Pn be closed subschemes of Pn, let R be the homogeneous coordinate ring of Y ,
and let IX ⊂ R be the ideal of X in Y . A scheme Z ⊂ Y is called an s-residual intersection of
X in Y if Z is defined by a (not necessarily saturated) ideal of the form (f1, . . . , fs) :R IX , with
f1, . . . , fs homogeneous elements in IX , and Z is of codimension at least s in Y .

We wish to derive formulas for the Hilbert series of Z in terms of information about X
and the degrees of the polynomials fi. In our previous paper [CEU01], we showed that this is
sometimes possible in principle: under certain hypotheses the Hilbert series of Z does not vary
if we change the polynomials fi, keeping their degrees fixed. In the present paper we make this
more precise by giving formulas, under somewhat stronger hypotheses, for the Hilbert series of
Z in terms of the degrees of the fi and the Hilbert series of finitely many modules of the form
ωR/I

j
XωR, where ωR denotes the graded canonical module of R.

For example, suppose that Y = Pn and that X has codimension g and is locally a complete
intersection (for instance, smooth). If f1, . . . , fs are homogeneous elements of degree d of I := IX
such that R := (f1, . . . , fs) : I has codimension >s, then the Hilbert series of the homogeneous
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coordinate ring of the scheme Z defined by R differs from that of a complete intersection defined
by s forms of degree d by

s∑
j=g

(−1)n+j
(
s

j

)
tjd−n−1[[R/Ij−g+1]](t−1) + a polynomial.

The polynomial remainder term is present because we have made assumptions only on the
scheme, and not on the homogeneous coordinate ring. Here the expression [[R/Ij−g+1]](t−1)
denotes the Laurent series obtained by writing [[R/Ij−g+1]] as a rational function in t, substituting
t−1 for t, and rewriting the result as a Laurent series. The formula above is a special case of
Theorem 1.4(b), where the assumptions on Y and X are relaxed considerably and the forms
f1, . . . , fs are allowed to have different degrees.

In applications, one sometimes only needs to know whether the s-residual intersection Z has
codimension exactly s in Y . For example, we will use such information to say something about the
number of equations defining projective varieties, and to determine when the secant varieties of
certain (possibly singular) surfaces and smooth three-folds have dimension less than the expected
one. For this purpose it suffices to know just one coefficient of the Hilbert polynomial of Z, that
corresponding to the degree of the codimension s component of Z. More generally, we show how
to use partial information about X to compute the first few coefficients of the Hilbert polynomial
of Z.

Consider the case where Y is equidimensional and locally Gorenstein and X has codimension
g in Y . Further, suppose that locally in codimension i < s, the subscheme X ⊂ Y can be defined
by i equations and that, for every closed point p of X and every j 6 s− g,

depth IjX,p/I
j+1
X,p > dimX − j.

If Z is any s-residual intersection of X in Y , then the Hilbert polynomial of Z can be written
in terms of the degrees of the fi, the Hilbert polynomial of Y , and the Hilbert polynomials of
ωY /IjXωY for j 6 s − g + 1 (the explicit formula is given in Theorem 1.9(b)). Moreover, if X
satisfies our hypotheses only up to some codimension r in Y , then the formula gives the first
r − s+ 1 coefficients of the Hilbert polynomial of Z.

Our formulas are derived in § 1, which is the technical heart of the paper. To prove them, we
need to adapt the arguments of Ulrich [Ulr94]. The delicate point is the use in that paper of the
fact that ωR is free of rank one if R is Gorenstein. Since our rings are not necessarily Gorenstein,
the canonical module ωR must be brought into play and the modules ωR/I

j
XωR need to be

considered. For other work along these lines, see Cumming [Cum07]. Further complications arise
from the fact that we cannot assume R to be Cohen–Macaulay, in order to allow for applications
to secant varieties, for instance.

In case Y is arithmetically Gorenstein, the sheaves IjX/I
j+1
X themselves play the crucial role

in our formulas. If X were locally a complete intersection scheme, then IX/I2X would be a vector

bundle and IjX/I
j+1
X would be its jth symmetric power, so it is reasonable to hope that for

‘nice’ ideals I the Hilbert series of the first few conormal modules should determine the rest.
We prove a general theorem of this kind in § 2, and carry out the reduction in some particular
cases. For instance, if s = codimYX, then the degree of an s-residual intersection scheme Z in
Y = Pn can be calculated immediately from Bézout’s theorem: degZ = (

∏
i deg fi)−degX. This

was extended to a formula in the case s = codimYX + 1 by Stückrad [Stü92] and to the case
s = codimYX + 2 by Huneke and Martin [HM95]. Our formula gives an answer in general, and
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we work this out explicitly for the case s = codimYX + 3. These types of results also lead to
criteria for when the subscheme X ⊂ Pn can be defined by s equations.

In § 3, we apply our results to the study of secant loci. Our general theorems about smooth
three-folds give conditions for the degeneracy of the secant locus in terms of Chern classes and
in terms of certain Hilbert coefficients. We also recover the analogous criteria for surfaces with
mild singularities, a case treated earlier with different methods by Dale [Dal85] and others.

1. Formulas for the Hilbert series of residual intersections

Without imposing global assumptions, one can only expect partial information about the Hilbert
series and the Hilbert polynomial of a residual intersection. In this context, the following question
arises: which kind of relationship between two modules guarantees that a certain number of their
first Hilbert coefficients coincide? For the leading coefficient, the degree of the modules, it suffices
to require that the two modules are isomorphic locally at every prime ideal of maximal dimension
in their support, but for other coefficients a more stringent notion of equivalence is needed. To
introduce such a notion for rings that are not necessarily equidimensional, we define the true
codimension of a prime ideal p in a ring R to be dimR− dimR/p.

Definition 1.1. Let R be a graded ring of finite Krull dimension, M and N finitely generated
graded R-modules, and r an integer. We say that M and N are equivalent up to true codimension
r, and writeM ∼=

r
N , if there exist finitely generated gradedR-modulesW1, . . . ,Wn withW1 =M ,

Wn = N and homogeneous linear maps Wi → Wi+1 or Wi+1 → Wi, for 1 6 i 6 n− 1, that are
isomorphisms locally at every prime ideal of true codimension 6r. A homogeneous linear map
that is an isomorphism locally up to true codimension r will be denoted by

∼−→
r

.

Saying that M ∼=
r
N is of course much stronger than saying that M and N are isomorphic

locally at each prime ideal of true codimension 6r. For example, any two modules M and N
that represent line bundles on a projective variety of dimension r satisfy the latter condition,
but M ∼=

r
N implies that they represent isomorphic line bundles. The need to provide explicit

maps that are isomorphisms locally in some true codimension between modules that are not in
fact isomorphic is what makes the work in this section delicate.

If R is a Noetherian standard graded algebra over a field and M a finitely generated graded
R-module, we will denote the Hilbert series of M by [[M ]]. Recall that [[M ]] is an element of the
ring Z[t, t−1, (1− t)−1] ⊂ Z[[t]][t−1]. If M ∼=

r
N , then [[M ]]− [[N ]], considered as a rational function,

has a pole of order less than dimR − r at 1; in this case we write [[M ]] ≡
r

[[N ]] and say that the

two series are r-equivalent. Thus, if r = dimR− 1 =: d, then [[M ]] ≡
r

[[N ]] means that the Hilbert

polynomials of M and N agree, and in general if r < dimR, then [[M ]] ≡
r

[[N ]] means that the

Hilbert polynomials of M and N , written in the form

ad

(
t+ d

d

)
+ ad−1

(
t+ d− 1

d− 1

)
+ · · · ,

have the same coefficients ai for i > d− r.
We extend the notation ≡

r
to arbitrary series in Z[t, t−1, (1− t)−1], by the same requirement,

as soon as dimR is clear from the context.
In the sequel, we will often use the notation [[M ]](t−1), which makes sense because the

substitution t 7→ t−1 is a well-defined automorphism of the ring Z[t, t−1, (1 − t)−1] since
(1− t−1)−1 = −t(1− t)−1 ∈ Z[t, t−1, (1− t)−1].
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Lemma 1.2. Let R be an equidimensional Noetherian standard graded algebra over a field, ωR
its graded canonical module, and M a finitely generated graded R-module. If for each prime
ideal p ∈ SuppR(M) with dimRp 6 r the ring Rp is Cohen–Macaulay and the module Mp is
Cohen–Macaulay of codimension i, then

[[ExtiR(M,ωR)]](t) ≡
r

(−1)dimM [[M ]](t−1).

Proof. We map a standard graded polynomial ring S homogeneously onto R and write c :=
codimSR. One has ExtjS(R,ωS)p = 0 for j 6= c whenever p ∈ SuppR(M) with dimRp 6 r,
because Rp is Cohen–Macaulay and R is equidimensional. Therefore,

ExtiR(M,ωR) ' ExtiR(M,ExtcS(R,ωS)) ∼=
r

Extc+iS (M,ωS),

as can be seen from a spectral sequence argument or, more directly, by considering a homogeneous
resolution of ωS by graded-injective S-modules.

To compute the Hilbert series of the module Extc+iS (M,ωS) up to r-equivalence, dualize a
minimal homogeneous free S-resolution of M into ωS and observe that by the Cohen–Macaulay
assumption on M , all the cohomology modules other than Extc+iS (M,ωS) are supported in
codimension >r in R. �

We next adapt some results from [CEU01] and [Ulr94] to our context.

Lemma 1.3. Let R be a Noetherian positively graded algebra over a factor ring of a local
Gorenstein ring, with graded canonical module ω := ωR. Assume that R is equidimensional.
Let I be a homogeneous ideal of height g, let f1, . . . , fs be forms contained in I of degrees
d1, . . . , ds, and write Ai := (f1, . . . , fi) and Ri := Ai : I. Assume that htRi > i for 1 6 i 6 s and
ht I + Ri > i+ 1 for 0 6 i 6 s− 1. For a fixed integer r 6 dimR and every homogeneous prime
ideal p with dimRp = r, suppose the following.

• If p /∈ V (I), then the elements f1, . . . , fs form a weak regular sequence on Rp and on ωp.

• If p ∈ V (I), then Rp is Gorenstein and depthRp/I
j
p > dimRp/Ip − j + 1 for 1 6 j 6 s− g.

The following statements hold.

(a) (R/Ri−1)(−di)
∼−→
r

Ai/Ai−1 via multiplication by fi for 1 6 i 6 s.

(b) 0→ (ωIj/ωAi−1I
j−1)(−di)

·fi−→ ωIj+1/ωAi−1I
j −→ ωIj+1/ωAiI

j
→ 0 is a complex that

is exact locally in codimension r in R for 1 6 i 6 s and min{1, i− g} 6 j 6 s− g.

(c) ExtiR(R/Ri, ω)∼=
r

(ωIi−g+1/ωAiI
i−g)(d1+· · ·+di) for 06 i6 s, if also depthRp/I

s−g+1
p >

dimRp/Ip − s+ g for every homogeneous p ∈ V (I) with dimRp = r.

Before proving Lemma 1.3, we wish to discuss its hypotheses, since they will be used
throughout this section. If s > g and R 6= R, then the ideal R is indeed an s-residual intersection.
Quite generally, let I be an ideal of height g in a Noetherian ring and s > g an integer; a proper
ideal R is called an s-residual intersection of I if R = A : I for some s-generated ideal A ⊂ I
and htR > s.

If the integers d1, . . . , ds are at least as big as the largest generator degrees of I, then general
forms f1, . . . , fs of degrees d1, . . . , ds in I satisfy the assumptions of the lemma on the heights of
Ri and I + Ri, provided the residue field of R is infinite and the ideal I satisfies Gs (see [Ulr94,
1.6(a)] or [HM95, 2.8]). The condition Gs means that Ip can be generated by dimRp elements for
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every p ∈ V (I) with dimRp < s; obviously, it suffices to check this condition for homogeneous
prime ideals p. The assumption in the lemma on the heights of I+Ri implies that I satisfies Gs.

A weak regular sequence on a module is defined like a regular sequence, except that the ideal
generated by the elements of the sequence is allowed to act as the unit ideal on the module. A
sequence of elements f1, . . . , fs in I that is a weak regular sequence on R and ω locally outside
V (I) is also called a filter regular sequence with respect to I on R and ω. Again, if d1, . . . , ds
are at least as big as the largest generator degrees of I and the residue field of R is infinite,
then general forms f1, . . . , fs are filter regular on R and ω with respect to I. Moreover, the
assumptions of the lemma on the heights of the ideals Ri already imply that f1, . . . , fs are a
filter regular sequence on R and ω locally in codimension r in case R is Cohen–Macaulay locally
in codimension r outside V (I).

The depth requirements on the ideals Ijp in the second itemized assumption and in part
(c) of the lemma are more subtle. Assuming that Rp is Gorenstein, they are clearly satisfied
whenever Ip is a complete intersection. But they also hold if, more generally, Ip satisfies Gs and
is strongly Cohen–Macaulay, which means that the Koszul homology modules of a generating
set of the ideal are Cohen–Macaulay [HSV83, the proof of 5.1]. The latter condition holds for
any Cohen–Macaulay ideal of deviation 2 [AH80, p. 259]. It is also satisfied if the ideal is licci,
meaning in the linkage class of a complete intersection [Hun82, 1.11]. Standard examples of licci
ideals include perfect ideals of height two (see [Apé45] and [Gae52]) and perfect Gorenstein ideals
of height three [Wat73].

Finally, we notice that the two itemized assumptions in the lemma and the hypothesis of part
(c) pass to not necessarily homogeneous prime ideals p with dimRp 6 r. For the first itemized
assumption this is clear and for the other hypotheses it follows because the difference between
dimension and depth cannot increase upon localization and remains constant when passing from
a prime ideal p to a suitable homogeneous prime ideal contained in p.

Proof of Lemma 1.3. Adjoining a variable to R, I, A, and localizing, we may suppose that
grade I > 0. Notice that the ideal I satisfies Gs. Write Ri := R/Ri. Whenever p ∈ V (I) with
dimRp 6 r, then Rip is Cohen–Macaulay for 0 6 i 6 s−1 and, in the setting of part (c), also for
i = s; see [Ulr94, 2.9(a)]. In addition, for 0 6 i 6 s, the Rp-module Rip is zero or has codimension
i by [Ulr94, 1.7(a)], whereas, for 1 6 i 6 s, the element fi is a non-zerodivisor on Ri−1p by
[Ulr94, 1.7(f)], fiRi−1p :Ri−1p

I = RiRi−1p by the same reference, and Ai−1p :Rp fi = Ri−1p
by [Ulr94, 1.7(g)].

Part (a) holds along V (I) by the above equality from [Ulr94, 1.7(g)], and off V (I) because
there f1, . . . , fi form a weak regular sequence on R locally in codimension r. Moreover, the
sequence of (b) is obviously a complex. That it is exact locally in codimension r holds for primes
in V (I) by [Ulr94, 2.7(a)] and for primes outside V (I) because there f1, . . . , fi form a weak
regular sequence on ω locally in codimension r.

For the proof of (c), we induct on i. For i = 0, our assertion is clear since grade I > 0 and
therefore R/R0 = R. Assuming that the assertion holds for Ri for some i, 0 6 i 6 s− 1, we are
going to prove it for Ri+1. To this end, we may suppose that r > i+ 1.

We first wish to prove that

Exti+1
R (Ri/(fi+1Ri :Ri I), ω) ∼=

r
[I ExtiR(Ri, ω)/fi+1ExtiR(Ri, ω)](di+1). (1)

Using the exact sequence

0 −→ Ri/(0 :Ri fi+1)(−di+1)
·fi+1−→ Ri −→ Ri/fi+1Ri −→ 0,
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we obtain a long exact sequence

· · ·ExtiR(Ri, ω)
·fi+1−→ ExtiR(Ri/(0 :Ri fi+1), ω)(di+1)→ Exti+1

R (Ri/fi+1Ri, ω)→ Exti+1
R (Ri, ω) · · · .

The support in R of 0 :Ri fi+1 has codimension >r + 1 > i; this holds along V (I) by the
explanation at the beginning of this proof [Ulr94, 1.7(f)] and outside V (I) because there f1, . . . ,
fi+1 form a weak regular sequence on R locally in codimension r. Thus, ExtiR(Ri/(0 :Ri fi+1), ω)
∼−→
r

ExtiR(Ri, ω) via the natural map. Furthermore, Exti+1
R (Ri, ω) ∼=

r
0; indeed, locally up to

codimension r in R along V (I), R is Cohen–Macaulay and Ri is zero or Cohen–Macaulay of
codimension i, whereas locally up to codimension r off V (I), Ri is defined by the weak regular
sequence f1, . . . , fi and hence has projective dimension at most i. We conclude that

[ExtiR(Ri, ω)/fi+1ExtiR(Ri, ω)](di+1) ∼=
r

Exti+1
R (Ri/fi+1Ri, ω).

Therefore, to prove (1), it suffices to show that

I Exti+1
R (Ri/fi+1Ri, ω) ∼=

r
Exti+1

R (Ri/(fi+1Ri :Ri I), ω).

The natural projection Ri/fi+1Ri −→ Ri/(fi+1Ri :Ri I) induces a map

φ : Exti+1
R (Ri/(fi+1Ri :Ri I), ω) −→ E := Exti+1

R (Ri/fi+1Ri, ω).

We prove that locally in codimension r in R, the map φ is injective, and its image coincides with
IE , which gives

imφ
∼−→
r

imφ+ IE
∼
←−
r

IE .

This is trivial locally off V (I) because on this locus I = R and fi+1Ri :Ri I = fi+1Ri. Therefore,
we may localize to assume, temporarily, that R is a local ring of dimension at most r and I 6= R.
Of course, we may suppose that Ri 6= 0. In this case R is Cohen–Macaulay, Ri is Cohen–Macaulay
of codimension i, and fi+1 is regular on Ri, as explained at the beginning of this proof. Write
S := Ri/fi+1Ri.

The natural equivalence of functors Exti+1
R (—, ω) ' HomS(—, ωS) together with the exact

sequence
0 −→ 0 :S I −→ S −→ S/(0 :S I) −→ 0

yields a commutative diagram with an exact row

Exti+1
R (Ri/(fi+1Ri :Ri I), ω)

φ //

'
��

E

'

��
0 // HomS(S/(0 :S I), ωS)

ψ // ωS // HomS(0 :S I, ωS) // 0

The last map is surjective because, as explained at the beginning of this proof, S/(0 :S I) =
Ri+1 [Ulr94, 1.7(f)] and Ri+1 is zero or a maximal Cohen–Macaulay S-module. From the diagram,
we see that φ is injective and that the desired equality imφ = I E follows once we have shown
that im ψ = IωS . For this, it suffices to prove that

coker ψ ' ωS/IωS ; (2)

indeed, (2) implies that IωS ⊂ imψ and therefore gives the natural epimorphism of isomorphic
modules ωS/IωS → coker ψ, which is necessarily an isomorphism.
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We first argue that ωS/IωS is a maximal Cohen–Macaulay S-module. From [Ulr94, 2.7(c)],
we obtain Ri ∩ Ii−g+2 = AiI

i−g+1, which implies that

AiI
i−g ∩ Ii−g+2 = AiI

i−g+1. (3)

Hence, by our induction hypothesis,

IωRi ' Ii−g+2/(AiI
i−g ∩ Ii−g+2) = Ii−g+2/AiI

i−g+1.

But the latter is a maximal Cohen–Macaulay Ri-module according to [Ulr94, 2.7(b)]; hence,
ωS/IωS ' ωRi/IωRi is indeed a maximal Cohen–Macaulay S-module.

Therefore,

ωS/IωS ' HomS(HomS(ωS/IωS , ωS), ωS) ' HomS(HomS(S/IS, S), ωS) ' HomS(0 :S I, ωS).

Since the last module is isomorphic to cokerψ, this completes the proof of (2) and hence of (1).
Now

I ExtiR(Ri, ω)/fi+1ExtiR(Ri, ω) ∼=
r

[ωIi−g+2/((ωAiI
i−g ∩ ωIi−g+2) + ωfi+1I

i−g+1)](d1 + · · ·+ di)

by our induction hypothesis and, using (3), one sees that

I ExtiR(Ri, ω)/fi+1ExtiR(Ri, ω) ∼=
r

(ωIi−g+2/ωAi+1I
i−g+1)(d1 + · · ·+ di). (4)

On the other hand, Ri+1
∼−→
r
Ri/(fi+1Ri :Ri I) as explained at the beginning of this proof [Ulr94,

1.7(f)] and hence
Exti+1

R (Ri+1, ω) ∼=
r

Exti+1
R (Ri/(fi+1Ri :Ri I), ω). (5)

Now combining (5), (1), and (4) concludes the proof of part (c). �

We are now ready to prove our main result about Hilbert series of residual intersections. By
σm(t1, . . . , ts) we denote the mth elementary symmetric function in t1, . . . , ts.

Theorem 1.4. Let R be an equidimensional Noetherian standard graded algebra over a field.
Write n := dimR and ω := ωR, and let I be a homogeneous ideal of height g satisfying Gs for
some s > g. Let f1, . . . , fs be forms contained in I of degrees d1, . . . , ds, write ∆i :=

∏i
k=1(1−tdk),

Ai := (f1, . . . , fi), Ri := Ai : I and R := Rs, and assume that htR > s. For a fixed integer r
with s 6 r 6 n and every homogeneous p ∈ Spec(R) with dimRp = r, suppose the following.

• If p /∈ V (I), then the elements f1, . . . , fs form a weak regular sequence on Rp and on ωp.

• If p ∈ V (I), then Rp is Gorenstein and depthRp/I
j
p > dimRp/Ip − j + 1 for 1 6 j 6 s− g.

The following statements hold.

(a) If Rp is Cohen–Macaulay for every homogeneous p ∈ V (Rg) with dimRp = r, then

[[R/A]](t) ≡
r

∆s[[R]](t)− (−1)n−g
s−g∑
j=1

(−1)jσg+j(t
d1 , . . . , tds)[[ω/Ijω]](t−1).

(b) If depthRp/I
s−g+1
p > dimRp/Ip−s+g for every homogeneous p ∈ V (I) with dimRp = r

and Rp is Cohen–Macaulay for every homogeneous p ∈ V (R) with dimRp = r, then

[[R/R]](t) ≡
r

∆s[[R]](t)− (−1)n−g
s−g+1∑
j=1

(−1)j−1σg+j−1(t
d1 , . . . , tds)[[ω/Ijω]](t−1).
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Proof. For every homogeneous p ∈ Spec(R) with dimRp = r, since Rp is already Cohen–Macaulay
if p ∈ V (I), it follows that Rp is Cohen–Macaulay if p ∈ V (Ag) in part (a) and if p ∈ V (A) in part
(b), where A := As. Moreover, in part (b), the ring Rp is Cohen–Macaulay for every homogeneous
p ∈ Spec(R) with dimRp = r−s; this is implied by the Cohen–Macaulay assumption along V (A)
because R is equidimensional and A is generated by s forms. As before, these properties extend
to not necessarily homogeneous prime ideals of possibly smaller height.

We may assume that the ground field is infinite. We reorder the generators of A so that
d1 > · · · > ds. By the assumption in part (a), there exist g forms fi1 , . . . , fig in A of degrees
di1 , . . . , dig so that V ((fi1 , . . . , fig)) intersects the non-Cohen–Macaulay locus ofR in codimension
at least r+1. Multiplication with general forms in R produces g elements in A of degrees d1, . . . , dg
that have the same property, and therefore g general forms in A of degrees d1, . . . , dg have this
property. Thus, we do not change the assumption on V (Ag) in part (a) if we replace f1, . . . , fs
by general forms in A of degrees d1 > · · · > ds. Such forms are still a filter regular sequence with
respect to I on R and ω locally in codimension r. But they have the additional property that
htRi > i and ht I + Ri > i + 1 for 0 6 i 6 s − 1 (see [Ulr94, 1.6(a)], [HM95, 2.8] or [CEU01,
2.5(a) and (a′)]).

We first prove (b). Using Lemma 1.3(b) and induction on i, we see that

[[ωAiI
j ]](t) ≡

r

i∑
`=1

(−1)`+1σ`(t
d1 , . . . , tdi)[[ωIj−`+1]](t)

for 0 6 i 6 s and i− g 6 j 6 s− g. Now Lemma 1.3(c) gives

[[ExtsR(R/R, ω)]](t)≡
r
t−(d1+···+ds)([[ωIs−g+1]]− [[ωAIs−g]])(t)

≡
r
t−(d1+···+ds)

s∑
`=0

(−1)`σ`(t
d1 , . . . , tds)[[ωIs−g−`+1]](t). (1)

For every p ∈ V (R) with dimRp 6 r, the ring Rp is Cohen–Macaulay and the module Rp/Rp is
Cohen–Macaulay of codimension s according to [Ulr94, 2.9 and 1.7(a)]. Hence, Lemma 1.2 shows
that

[[ExtsR(R/R, ω)]](t) ≡
r

(−1)n−s[[R/R]](t−1).

Now Formula (1) yields

[[R/R]](t)≡
r

(−1)n−s[[ExtsR(R/R, ω)]](t−1)

≡
r

(−1)n−std1+···+ds
s∑
`=0

(−1)`σ`(t
−d1 , . . . , t−ds)[[ωIs−g−`+1]](t−1)

= (−1)n−s
s∑
`=0

(−1)`σs−`(t
d1 , . . . , tds)[[ωIs−g−`+1]](t−1).

Changing the index of summation, one obtains

[[R/R]](t) ≡
r

(−1)n−g
s−g+1∑
j=−g+1

(−1)j−1σg+j−1(t
d1 , . . . , tds)[[ωIj ]](t−1). (2)

Since R is Cohen–Macaulay locally in codimension r − s, Lemma 1.2 gives [[R]](t) ≡
r−s

(−1)n[[ω]](t−1). Therefore,
∆s[[R]](t) ≡

r
∆s(−1)n[[ω]](t−1)
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because ∆s is divisible by (1− t)s. We obtain

∆s[[R]](t) ≡
r

∆s(−1)n[[ω]](t−1) = (−1)n−s
s∑
`=0

(−1)`σs−`(t
d1 , . . . , tds)[[ω]](t−1)

= (−1)n−g
s−g+1∑
j=−g+1

(−1)j−1σg+j−1(t
d1 , . . . , tds)[[ω]](t−1). (3)

Combining (2) and (3) concludes the proof of part (b).
To prove part (a), notice that [[R/Ag]](t) ≡

r
∆g[[R]](t) because f1, . . . , fg are an R-regular

sequence along V (Ag) locally in codimension r. Furthermore, by Lemma 1.3(a),

[[R/Ai]](t) = [[R/Ai−1]](t)− tdi [[R/Ri−1]](t)

for g+1 6 i 6 s. Since Rp is Cohen–Macaulay for every homogeneous p ∈ V (Ri−1) with dimRp =
r, we may apply part (b) with i − 1 in place of s to express [[R/Ri−1]](t). Now induction on i,
with g 6 i 6 s, yields

[[R/Ai]](t) ≡
r

∆i[[R]](t)− (−1)n−g
i−g∑
j=1

(−1)jσg+j(t
d1 , . . . , tdi)[[ω/Ijω]](t−1). �

Remark 1.5. If in Theorem 1.4, R is a polynomial ring in n variables, then the formulas of that
theorem take the following form:

[[R/A]](t)≡
r

∆s[[R]](t)− (−t)−n
s−g∑
j=1

(−1)g+jσg+j(t
d1 , . . . , tds)[[R/Ij ]](t−1);

[[R/R]](t)≡
r

∆s[[R]](t)− (−t)−n
s−g+1∑
j=1

(−1)g+j−1σg+j−1(t
d1 , . . . , tds)[[R/Ij ]](t−1).

The next goal is to turn our formulas for Hilbert series of residual intersections into
information about Hilbert polynomials or some coefficients thereof. For this, several observations
of a numerical nature are needed.

Lemma 1.6. Write ∆s = (1− t)s
∑

k>0 ck(d1, . . . , ds)(1− t)k. Then

ck(d1, . . . , ds) = (−1)k
∑

i1>1,...,is>1
i1+···+is=k+s

s∏
j=1

(
dj
ij

)
.

Proof. Write Pj(t) :=
∑dj−1

`=0 t` and notice that ∆s = (1− t)s
∏s
j=1 Pj(t). Taking derivatives, one

obtains P
(m)
j (1) =

∑dj−1
`=0 m!

(
`
m

)
= m!

( dj
m+1

)
. Hence,( s∏

j=1

Pj

)(k)

(1) =
∑

m1>0,...,ms>0
m1+···+ms=k

k!

m1! · · ·ms!

s∏
j=1

P
(mj)
j (1)

= k!
∑

m1>0,...,ms>0
m1+···+ms=k

s∏
j=1

(
dj

mj + 1

)
.

This yields the asserted formula because ck(d1, . . . , ds) = ((−1)k/k!)(
∏s
j=1 Pj)

(k)(1). �
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Lemma 1.7. Let P be a numerical polynomial written in the form P (t) =
∑m

i=0(−1)iei
(
t+m−i
m−i

)
.

For an integer d, define the polynomial Q(t) := P (−t+d) and write Q(t) =
∑m

i=0(−1)ihi
(
t+m−i
m−i

)
.

Then

hi = (−1)m
i∑

k=0

(−1)k
(
d+m+ 1− k

i− k

)
ek.

Proof. We first notice that for integers r and n > 0, one has the following identities of numerical
polynomials: (

−t+ n

n

)
= (−1)n

(
t− 1

n

)
, (1)

(
t+ r + n

n

)
=

n∑
`=0

(
r − 1 + `

`

)(
t+ n− `
n− `

)
, (2)

where the first equality is obvious and the second one can be easily proved by induction on n.
Now

Q(t) =
m∑
k=0

(−1)kek

(
−t+ d+m− k

m− k

)

= (−1)m
m∑
k=0

ek

(
t− d− 1

m− k

)
by (1)

= (−1)m
m∑
k=0

ek

(
t+ (−d− 1−m+ k) + (m− k)

m− k

)

= (−1)m
m∑
k=0

ek

m−k∑
`=0

(
−d− 1−m+ k − 1 + `

`

)(
t+m− k − `
m− k − `

)
by (2)

= (−1)m
m∑
i=0

( i∑
k=0

(
−d−m− 2 + i

i− k

)
ek

)(
t+m− i
m− i

)
,

where
(−d−m−2+i

i−k
)

= (−1)i+k
(
d+m+1−k

i−k
)

by (1). �

The Hilbert series [[M ]] of a finitely generated graded module M over a Noetherian standard
graded algebra over a field is an element of the ring Z[t, t−1, (1 − t)−1] ⊂ Z[[t]][t−1]. In general,
any S(t) ∈ Z[t, t−1, (1− t)−1] can be written in the form

S(t) =

D−1∑
i=0

(−1)iei
1

(1− t)D−i
+ F,

with D ∈ Z, ei ∈ Z, F ∈ Z[t, t−1], and this expression is unique once D is fixed. The coefficients
ei can be computed as ei(M) = (1/i!)(diQ/dti)(1), where Q(t) := S(t)(1− t)D. We call

P (t) =
D−1∑
i=0

(−1)iei

(
t+D − 1− i
D − 1− i

)
∈ Q[t]

the polynomial associated to S(t). Its significance is that if we write S(t) =
∑

n∈Z cnt
n, then

cn = P (n) for n� 0.
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Remark 1.8. Let S(t) ∈ Z[t, t−1, (1− t)−1] and let P (t) be the polynomial associated to S(t). If
d is any integer, then −P (−t+ d) is the polynomial associated to tdS(t−1).

Proof. One uses Lemma 1.7. �

In the case where S(t) = [[M ]](t), we can take D to be any integer >dimM , and we define
eDi (M) := ei. If D = dimM , we simply write ei(M) := eDi (M). The coefficient e0(M) gives the
multiplicity (or degree) of M provided that dimM > 0, whereas, for a zero-dimensional module,
length(M) = e0(M [x]) with x a new variable of degree one. The polynomial associated to [[M ]](t)
is the Hilbert polynomial of M , which we denote by [M ](t). Here is our main result about the
coefficients of the Hilbert polynomial of a residual intersection.

Theorem 1.9. For any ` ∈ Z, write e`(d1, . . . , ds) :=
∑

i1>1,...,is>1
i1+···+is=`+s

∏s
j=1

(dj
ij

)
.

(a) If the assumptions of Theorem 1.4(a) are satisfied, then, for 0 6 i 6 min{r−s, n−s−1},

en−si (I/A) =

i∑
k=0

ei−k(d1, . . . , ds) ek(R)− (−1)s−gei+s−g(R/I)

− (−1)s−g
s−g∑
j=1

i+s−g∑
k=0

(−1)j+k
∑

16i1<···<ig+j6s

(
di1 + · · ·+ dig+j + n− g − k

i+ s− g − k

)
ek(ω/I

jω).

(b) If the assumptions of Theorem 1.4(b) are satisfied, then, for 0 6 i 6 min{r−s, n−s−1},

en−si (R/R) =
i∑

k=0

ei−k(d1, . . . , ds) ek(R)

+ (−1)s−g
s−g+1∑
j=1

i+s−g∑
k=0

(−1)j+k
∑

16i1<···<ig+j−16s

(
di1 + · · ·+ dig+j−1 + n− g − k

i+ s− g − k

)
ek(ω/I

jω).

Proof. We only prove part (a). We write the numerical polynomial

(−1)n−g
s−g∑
j=1

(−1)j
∑

16i1<···<ig+j6s

−[ω/Ijω](−t+ di1 + · · ·+ dig+j )

in the form
∑n−g−1

`=0 (−1)`h`
(
t+n−g−1−`
n−g−1−`

)
. Lemma 1.7 gives

hi+s−g =

s−g∑
j=1

(−1)j
∑

16i1<···<ig+j6s

i+s−g∑
k=0

(
di1 + · · ·+ dig+j + n− g − k

i+ s− g − k

)
(−1)kek(ω/I

jω).

Now our assertion follows from Theorem 1.4(a) together with Lemma 1.6 and Remark 1.8.
One proves part (b) is a similar way, using Theorem 1.4(b) in place of Theorem 1.4(a). �

Remark 1.10. If in Theorem 1.9, R is a polynomial ring in n variables, then the formulas in that
theorem take the following form:

en−si (I/A) = ei(d1, . . . , ds)− (−1)s−gei+s−g(R/I)

− (−1)s−g
s−g∑
j=1

i+s−g∑
k=0

(−1)j+k
∑

16i1<···<ig+j6s

(
di1 + · · ·+ dig+j − g − k

i+ s− g − k

)
ek(R/I

j)
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for 0 6 i 6 min{r − s, n− s− 1};

en−si (R/R) = ei(d1, . . . , ds)

+ (−1)s−g
s−g+1∑
j=1

i+s−g∑
k=0

(−1)j+k
∑

16i1<···<ig+j−16s

(
di1 + · · ·+ dig+j−1 − g − k

i+ s− g − k

)
ek(R/I

j)

for 0 6 i 6 min{r − s, n− s− 1}.

Proof. Notice that ω/Ijω ' (R/Ij)(−n). Now one proceeds as in the proof of Theorem 1.9.
Alternatively, one can rewrite the formulas of Theorem 1.9 by successively using the two identities
ek((R/I

j)[−`− 1]) = ek((R/I
j)[−`]) + ek−1((R/I

j)[−`]) and

m∑
k=0

(−1)k
(
N + 1

m− k

)
(ek + ek−1) =

m∑
k=0

(−1)k
(

N

m− k

)
ek,

where ek are any integers with e−1 = 0. �

Our first application of Theorem 1.9 deals with the height of residual intersections.

Corollary 1.11. Let R be an equidimensional Noetherian standard graded algebra over a field,
with graded canonical module ω := ωR, and assume that R is Gorenstein locally in codimension
r for some r 6 n =: dimR. Let I be a homogeneous ideal of height g satisfying Gs for some
s with g 6 s 6 min{r, n − 1}. Suppose that Extg+jR (R/Ij , R) has codimension >r + 1 in R for

16 j 6 s−g, and that depthRp/I
j
p > dimRp/Ip−j for 16 j 6 s−g−1 and for every homogeneous

p ∈ V (I) with dimRp = s. Let f1, . . . , fs be forms contained in I of degrees d1, . . . , ds and write
R = (f1, . . . , fs) : I.

Then htR > r + 1 if and only if htR > s and

(−1)s−ge0(R)
s∏
j=1

dj = es−g(R/I)

+

s−g∑
j=1

s−g∑
k=0

(−1)j+k
∑

16i1<···<ig+j6s

(
di1 + · · ·+ dig+j + n− g − k

s− g − k

)
ek(ω/I

jω).

Proof. Assume that htR > s. Our hypothesis on the Ext-modules implies that the minimal
primes of I have height g or >s+1. Hence, for every homogeneous p ∈ V (I) with dimRp = s, one
has ht Ip = g. Therefore, local duality, our assumption on the Ext-modules, and the hypothesis

about local depths imply the stronger inequalities depthRp/I
j
p > dimRp/Ip− j + 1 in the range

1 6 j 6 s−g. It follows that the hypotheses of Theorem 1.9(a) are satisfied locally in codimension
s. The theorem shows that the above equality involving Hilbert coefficients is equivalent to
htR> s+1. On the other hand, our assumptions, most notably the condition on the Ext-modules,
guarantee that locally in codimension r the ideal I is ‘(s−1)-residually S2’, which in turn implies
that it cannot have a proper s-residual intersection of height >s+1; see [CEU01, 4.2 and 3.4(a)].
Therefore, htR > r + 1. �

An immediate consequence of the corollary above is a criterion for when a projective variety
of codimension g can be defined by s equations of given degrees. Earlier applications along these
lines can be found in [Stü92, Theorem 1] and [HM95, 4.20], where the cases s = g + 1 and
s = g+ 2 were treated. (The authors of the second paper agreed with us that an assumption on
R/I2 should be added in their result.)
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Corollary 1.12. Let X ⊂ PNk be a subscheme of codimension g. Write R for the polynomial

ring in N + 1 variables over k and I ⊂ R for the saturated ideal defining X. Let s be an integer

with g 6 s 6 N . Assume that I satisfies Gs, that the modules Extg+jR (R/Ij , R) have finite length

for 1 6 j 6 s − g, and that depthRp/I
j
p > dimRp/Ip − j for 1 6 j 6 s − g − 1 and for every

homogeneous p ∈ V (I) with dimRp = s.
Then X can be defined scheme-theoretically by s forms of degrees d1, . . . , ds if and only if

there are forms f1, . . . , fs of degrees d1, . . . , ds in I with ht((f1, . . . , fs) : I) > s, and furthermore

(−1)s−g
s∏
j=1

dj = es−g(R/I)

+

s−g∑
j=1

s−g∑
k=0

(−1)j+k
∑

16i1<···<ig+j6s

(
di1 + · · ·+ dig+j − g − k

s− g − k

)
ek(R/I

j).

Proof. One applies Corollary 1.11 with r := n − 1 = N and uses the fact that ω/Ijω '
(R/Ij)(−n). �

2. Hilbert series of powers of ideals and degrees of residual intersections

2.1 Computing Hilbert series of powers

The main results of the previous section all require information about the Hilbert series of the

powers of an ideal. This leads to the following question, which we are going to address now: to

what extent do the Hilbert series of the first powers of an ideal determine the Hilbert series of

all its powers?

Lemma 2.1. Let R be a standard graded Cohen–Macaulay algebra over an infinite field k, let

I be a homogeneous ideal, generated by forms of degrees at most d, and let r be an integer

with 0 6 r 6 dimR. Assume that I satisfies Gr+1 and I is strongly Cohen–Macaulay locally in

codimension r in R.

Given di > d for 1 6 i 6 r+1, there exists a Zariski dense open subset U of the affine k-space

Id1 × · · · × Idr+1 such that for every (f1, . . . , fr+1) ∈ U , the following conditions hold.

(a) The ideal (f1, . . . , fr+1) coincides with I locally in codimension r in R.

(b) f1, . . . , fr+1 is a d-sequence locally in codimension r in R.

Proof. For part (a), we refer to [Ulr94, 1.6(a)] or [HM95, 2.8], whereas (b) follows from [Hun83,

3.1] and [CEU01, 3.6(b)]. �

We choose degrees d1, . . . , dr+1 and forms f1, . . . , fr+1 as in Lemma 2.1. We consider one of

the approximation complexes, theM-complex, associated to these forms and its graded strands

Mp : 0 −→ Hp ⊗ S0→ Hp−1 ⊗ S1 −→ · · · −→ H0 ⊗ Sp −→ 0.

Here p > 0 is an integer, Hq stands for the qth homology of the Koszul complex K(f1, . . . ,

fr+1;R), and Sq denotes the qth symmetric power of the free module R(−d1)⊕ · · · ⊕R(−dr+1).

These graded strands are complexes of graded R-modules with homogeneous maps of degree zero,

they are acyclic locally in codimension r in R, and their zeroth homology satisfies H0(Mp)
∼−→
r

Ip/Ip+1; see [HSV83] for all these facts.
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We conclude that

[[Ip/Ip+1]](t) ≡
r

p∑
i=0

(−1)isp−i(t
d1 , . . . , tdr+1)[[Hi]](t), (1)p

where sm stands for the sum of all monomials of degree m in r + 1 variables (the complete
symmetric function). These equalities express, up to r-equivalence, the Hilbert series of the
modules R/I, . . . , Ip/Ip+1 in terms of the ones of H0, . . . ,Hp and vice versa.

If I has height g, then Hq = 0 for q > r+1−g. Hence, we see that the Hilbert series of all the
modules Ip/Ip+1 are determined, up to r-equivalence, by knowing the Hilbert series of Ip/Ip+1,
up to r-equivalence, for 0 6 p 6 r + 1− g.

We now assume that, in addition to the hypotheses of Lemma 2.1, R is Gorenstein with
a-invariant a := a(R) and I has pure codimension g. In this case we can use the self-duality of
the homology of the Koszul complex to see that only half of the information about the Koszul
homology is needed. Indeed, the structure of graded alternating algebra on the homology of the
Koszul complex gives a homogeneous map

Hp −→ HomR/I(Hr+1−g−p, Hr+1−g),

and this map is an isomorphism locally in codimension r in R because of the strong Cohen–
Macaulayness assumption; see [Her74, 2.4.1].

On the other hand, one has

HomR/I(Hr+1−g−p, Hr+1−g)' HomR/I(Hr+1−g−p,ExtgR(R/I,R)[−d1 − · · · − dr+1])

' HomR/I(Hr+1−g−p, ωR/I)[−a− d1 − · · · − dr+1].

Notice that R/I is equidimensional and that locally in codimension r in R, either Hr+1−g−p
is zero or else R/I and Hr+1−g−p are both Cohen–Macaulay of the same dimension. Hence,
Lemma 1.2 shows that

[[Hp]](t) ≡
r
ta+d1+···+dr+1(−1)dimR/I [[Hr+1−g−p]](t

−1). (2)p

Moreover, the Euler characteristic of the homology of the Koszul complex depends only upon
the degrees d1, . . . , dr+1, namely

r+1−g∑
p=0

(−1)p[[Hp]](t) = ∆r+1[[R]](t) ≡
r

0, (3)

where the asserted r-equivalence holds because ∆r+1 :=
∏r+1
k=1(1− tdk) is divisible by (1− t)r+1.

We now have all the formulas needed to effectively compute the Hilbert series of the higher
conormal modules Ip/Ip+1 up to r-equivalence.

Notice that the result of the computation does not depend on the choice of d1, . . . , dr+1.
Thus, we may choose di = 0 for all i. The intermediate steps have no meaning (for instance,
[[Hp]] may have negative coefficients), but the information we extract from the computation is
the same. Thus, the above formulas take the following simpler form:

[[Ip/Ip+1]](t) ≡
r

p∑
i=0

(−1)i
(
r + p− i

r

)
[[Hi]](t), (1)p

[[Hp]](t) ≡
r
ta(−1)dimR/I [[Hr+1−g−p]](t

−1), (2)p

r+1−g∑
p=0

(−1)p[[Hp]](t) ≡
r

0. (3)
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Theorem 2.2. Let R be a standard graded Gorenstein algebra over a field, with a-invariant a,

let I be a homogeneous ideal of pure codimension g, and let r be an integer with g 6 r 6 dimR.

Assume that I satisfies Gr+1 and that I is strongly Cohen–Macaulay locally in codimension r in

R. Given the Hilbert series of Ip/Ip+1 for 0 6 p 6 b(r − g)/2c up to r-equivalence, the Hilbert

series of Ip/Ip+1 can be computed for all p, up to r-equivalence, by the formulas (1)p, (2)p, and

(3) above.

Proof. Write q = r+ 1− g. First, using (1)p for 0 6 p 6 b(q − 1)/2c, we obtain the Hilbert series

of Hp, for p in the same range, up to r-equivalence. Then, from (2)p, we get the Hilbert series of

Hq, . . . ,Hq−b(q−1)/2c up to r-equivalence. Therefore, we know the Hilbert series of all Hp up to

r-equivalence if q is odd; and of all but one, namely Hq/2, if q is even. In case q is even, we obtain

the Hilbert series of Hq/2 up to r-equivalence by using (3).

Thus, we know the Hilbert series of all the modules Hp up to r-equivalence, and we can use

(1)p to obtain the ones of Ip/Ip+1 for any p. �

The above theorem also shows that for any integer s with g 6 s 6 r, the Hilbert series of

Ip/Ip+1 for 0 6 p 6 b(s− g)/2c up to s-equivalence determine the Hilbert series of Ip/Ip+1

for all p up to s-equivalence; in others words, the s − g + 1 highest coefficients of the Hilbert

polynomials of Ip/Ip+1 for 0 6 p 6 b(s− g)/2c yield the s − g + 1 highest coefficients of the

Hilbert polynomials of all higher conormal modules. Thus, one has the following schematic

depiction for the determination of the r − g + 1 highest Hilbert coefficients ei, 0 6 i 6 r − g, of

the conormal modules of an ideal satisfying the hypotheses of Theorem 2.2.

Hilb. coeff. 0 · · · · r − g · ·
R/I � � � � � � ? ? · · ·
I/I2 � � � � � � ? ? · · ·
I2/I3 � � � � � � ? ? · · ·
I3/I4 � � � � � � ? ? · · ·
I4/I5 � � � � � � ? ? · · ·

...
...

...
...

...
...

...
...

...

� : needed as input

� : may be computed from the others

? : not concerned

Corollary 2.3. If X ⊂ PNk is an equidimensional local complete intersection subscheme and

IX denotes the corresponding ideal sheaf, then the Hilbert polynomials of the sheaves IpX/I
p+1
X

for all p are determined by the ones for 0 6 p 6 bdimX/2c.

Proof. One applies Theorem 2.2 with r := N and g := N − dimX. �

Example 2.4. If X ⊂ PNk is an equidimensional local complete intersection three-fold and

IX the corresponding ideal sheaf, then the Hilbert polynomials of the sheaves IpX/I
p+1
X are

determined by the Hilbert polynomials of X and of the conormal bundle IX/I2X . Moreover, the

two highest coefficients of the Hilbert polynomial of the conormal bundle are determined by

the two highest coefficients of the Hilbert polynomial of X.
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2.2 Hilbert polynomials of powers of an ideal

We have seen in Example 2.4 that the Hilbert coefficients of IpX/I
p+1
X are determined by only six

of these coefficients, in the case of a local complete intersection three-fold. We are now going to
elaborate on this fact by giving explicit formulas for the remaining coefficients. We consider, more
generally, an equidimensional subscheme X ⊂ PNk of codimension g. Write R for the ambient
polynomial ring and I := IX . Using Theorem 2.2 and a computer algebra system, one derives
the following identities, where the formula for each ith Hilbert coefficient requires that X is a
complete intersection locally in codimension g + i in PNk .

Formulas 2.5. Set ei := ei(R/I) and fi := ei(I/I
2). Applying the formulas (1)1, 3, (2)2 above

with r := g + 1 and using Lemma 1.7 and Remark 1.8, one sees that

f0 = e0(I/I
2) = ge0, f1 = e1(I/I

2) = ge0 + (g + 2)e1

and, similarly,

e0(I
p/Ip+1) =

(
g + p− 1

g − 1

)
e0, e1(I

p/Ip+1) =

(
g + p− 1

g

)
ge0 +

g + 2p

g + p

(
g + p

g

)
e1.

One uses the last two equalities, formulas (1)2, (1)1, (2)2 for r := g + 1, and formulas (1)2, (1)1,
(3), (2)3, (2)4 for r := g + 3, together with Lemma 1.7 and Remark 1.8 to see that

e0(I
2/I3) =

g(g + 1)

2
e0,

e1(I
2/I3) = g(g + 1)e0 +

(g + 1)(g + 4)

2
e1,

e2(I
2/I3) =

g(g + 1)

2
e0 + (g + 1)e1 −

g(g + 3)

2
e2 + (g + 2)f2,

e3(I
2/I3) =−(g + 1)(g + 2)

2
e1 − (g + 2)(g + 3)e2 −

(g + 3)(g + 4)

2
e3 + (g + 2)f2 + (g + 4)f3.

As a first guess, one may hope that, at least with some strong hypotheses on X, the Hilbert
polynomials of the conormal sheaves are determined by the Hilbert polynomial of X. This is not
even true for complete intersections, as the following computation shows.

Suppose that X ⊂ PNk is a global complete intersection of codimension g and dimension at
least three, let ei be the ith Hilbert coefficient of X, and denote by σ1, . . . , σg the elementary
symmetric functions in the degrees of the defining equations of X. Setting

α1 = σ1 − g, α2 = σ21 − 2σ2 − g, α3 = σ31 − 3σ1σ2 + 3σ3 − g,

one obtains

e0 = σg,

e1 =
σg
2
α1,

e2 =
σg
24

(3α2
1 − 6α1 + α2),

e3 =
σg
48

(α3
1 − 6α2

1 + 8α1 + α1α2 − 2α2).

Notice that these formulas imply that e3 is a rational function of the other three coefficients.

1678

https://doi.org/10.1112/S0010437X15007289 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007289


Hilbert series of residual intersections

Remark 2.6. If ei denotes the ith Hilbert coefficient of a global complete intersection X ⊂ PNk
of dimension at least three, then

e3 = −e2 +
e1e2
e0
− e1

6
+

e21
2e0
− e31

3e20
.

Now, using the expansion

td1 + · · ·+ tdg = g + (g + α1)(t− 1) + (α2 − α1)
(t− 1)2

2
+ (α3 − 3α2 + 2α1)

(t− 1)3

6
+ · · · ,

one can compute the coefficients ei(I/I
2) for 0 6 i 6 3. The only place where α3 appears is in

e3(I/I
2) = (σg/6)α3 + · · · .

If one chooses two collections of degrees such that the first, second, and fourth elementary

symmetric functions are equal but the third one differs, one gets an example of two complete

intersections of dimension three in P7
k having the same Hilbert polynomial (but distinct Hilbert

functions!) such that the constant terms of the Hilbert polynomials of their conormal bundles

are distinct. Such examples were given to us by Benjamin de Weger; the two ‘smallest’ ones

are (1,6,7,22)–(2,2,11,21) and (2,6,7,15)–(3,3,10,14). He also gave an infinite collection of them,

and Noam Elkies gave a rational parametrization of all the solutions (after a linear change of

coordinates, the solutions are parametrized by a quadric in P5
C).

2.3 Degrees of residual intersections

Let X ⊂ PNk be an equidimensional subscheme of dimension D − 1 and codimension g that is a

complete intersection locally in codimension s in PNk . We are now going to give formulas for the

degree of the codimension s part of an s-residual intersection of X that require less input data

than the formulas of § 1. We restrict ourselves to the case where δ := s− g is at most three. As

before, R denotes the ambient polynomial ring, R := (f1, . . . , fs) : I is an s-residual intersection

of I := IX given by s homogeneous polynomials f1, . . . , fs of degrees d1, . . . , ds, and σm stands

for the mth elementary symmetric function in d1, . . . , ds. By combining Theorem 1.9(b), in the

version of Remark 1.10, with Formulas 2.5, we obtain the following.

• If δ = 0, eD0 (R/R) = σs − e0(R/I), by Bézout’s theorem.

• If δ = 1, eD−10 (R/R) = σs − (σ1 − g)e0(R/I) + 2e1(R/I); see also [Stü92, Theorem 5].

• If δ = 2,

eD−20 (R/R) = σs−
[
σ2−gσ1+

(
g + 1

2

)]
e0(R/I)+(2σ1−(g+1))e1(R/I)+ge2(R/I)−e2(I/I2);

see also [HM95, 4.11].

• If δ = 3,

eD−30 (R/R) = σs −
[
σ3 − gσ2 +

(
g + 1

2

)
σ1 −

(
g + 2

3

)]
e0(R/I)

+ (2σ2 − (g + 1)σ1)e1(R/I) + (gσ1 − (g + 2)2)e2(R/I)

− 2(g + 2)e3(R/I)− (σ1 − g − 2)e2(I/I
2) + 2e3(I/I

2).
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3. Applications to secant varieties

We now apply the results of § 1 to say something about the dimension of secant varieties and
to derive relations among certain Hilbert coefficients in the case of surfaces and three-folds. For
the next result, we recall that a local algebra essentially of finite type over a field k is said to be
licci if it is isomorphic to S/B, where S is a regular local ring essentially of finite type over k
and B is an S-ideal in the linkage class of a complete intersection.

Theorem 3.1. Let k be a perfect field, X ⊂ PNk an equidimensional subscheme of dimension two
with at most isolated licci Gorenstein singularities, A its homogeneous coordinate ring, ω := ωA
the graded canonical module, and Ω := ΩA/k the module of differentials.

(a) One has

e0(A)2 + 14e0(A)− 16e1(A) + 4e2(A) > e2(ω ⊗A ω) + e2(Ω).

(b) In case the singularities of X have embedding codimension at most two, then equality
holds in (a) if and only if the secant variety of X is deficient, i.e.

dim Sec(X) < 5.

Proof. We may assume that k is infinite. We define a ring R and an R-ideal I via the exact
sequence

0 −→ I −→ R := A⊗k A
mult−→ A −→ 0.

Recall that Ω ' I/I2. The ring R is an equidimensional standard graded k-algebra of dimension
six with ωR = ω ⊗k ω. The ideal I has height three and is generated by linear forms. Moreover,
I satisfies G5 and, in the setting of (b), even G6. Indeed, for any p ∈ V (I), one has µ(Ip) =
µ(Ωp) 6 ecodim(Ap) + dimA 6 dimRp if dimRp 6 4 or, in the setting of (b), dimRp 6 5; here
µ denotes minimal number of generators and ecodim(Ap) := edim(Ap) − dimAp stands for the
embedding codimension of Ap. Now let A be an R-ideal generated by five general linear forms in
I. By [Ulr94, 1.6(a)] or [HM95, 2.8], one has ht(A : I) > 5 as I satisfies G5, and ht(I+(A : I)) > 6
in (b) as I is G6. Thus, in the setting of (b), the ideal A : I has height at least six if and only if the
analytic spread `(I) of I is at most five; indeed, `(I) 6 5 if and only if I is integral over A, an ideal
generated by five general linear forms in I; the latter implies that

√
A =

√
I, and hence

√
A : I

equals
√
I + (A : I), which has height at least six; the reverse implication follows from [Ulr92,

Proposition 3]. On the other hand, dim Sec(X) = `(I) − 1 because k[A1] is the homogeneous
coordinate ring of Sec(X); see [SU00, § 1]. Thus, we have shown that dimR/(A : I) < 1 if and
only if dim Sec(X) < 5. In other words, e10(I/A) = 0 if and only if dim Sec(X) < 5.

To compute e10(I/A), we apply Theorem 1.9(a) with r = s = 5 and g = 3. We first argue
that the hypotheses of Theorem 1.9(a) are satisfied. Notice that the five general linear forms in
I that generate A are a filter regular sequence with respect to I on R and on ωR. Moreover, for
every homogeneous p ∈ V (I) with dimRp 6 5, the ring Ap is Gorenstein and depth (I/I2)p =
depth Ωp > dimAp − 1. To see the latter, we write Ap ' S/B with S a regular local k-algebra
essentially of finite type and B an ideal in the linkage class of a complete intersection. Since Ap

is moreover Gorenstein, [Buc81, 6.2.11 and 6.2.12] implies that B/B2 is Cohen–Macaulay. Thus,
the natural complex

0 −→ B/B2 −→ ΩS/k ⊗S Ap ' ⊕Ap −→ ΩAp/k ' Ωp −→ 0

is exact and shows that indeed depth Ωp > dim Ap − 1. Next, the non-Gorenstein locus of
R = A⊗kA is contained in V (m⊗km), where m stands for the maximal homogeneous ideal of A.
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Since the standard graded k-algebra R/(m⊗km) has dimension three and R/(m⊗km+I) ∼= A/m2

has dimension zero, it follows that three general linear forms of I generate a zero-dimensional
ideal in the ring R/(m⊗km). Therefore, Rp is Gorenstein whenever p ∈ Spec(R) is homogeneous
with dimRp 6 5 and p contains A3, an R-ideal generated by three general linear forms in I. In
particular, Rp is Gorenstein for every homogeneous p ∈ V (I) with dimRp 6 5. Thus, we have
shown that Theorem 1.9(a) applies.

The theorem gives

e10(I/A) = e0(R)− e2(A)−
2∑
j=1

2∑
k=0

(−1)j+k
(

5

j + 3

)(
6 + j − k

2− k

)
ek(ωR/I

jωR). (1)

Since e10(I/A) > 0 and equality holds if and only if dim Sec(X) < 5, the present theorem will
follow once we have shown that the right-hand side of (1) equals

e0(A)2 + 14e0(A)− 16e1(A) + 4e2(A)− e2(ω ⊗A ω)− e2(Ω). (2)

There are isomorphisms of R-modules

ωR/IωR ∼= ωR ⊗R R/I ∼= (ω ⊗k ω)⊗A⊗kA A
∼= ω ⊗A (ω ⊗A A) ∼= ω ⊗A ω,

where the next to last isomorphism holds according to [CE56, IX 2.1]. Likewise, since locally in
codimension five the ring R is Gorenstein along V (I),

IωR/I
2ωR ∼=

5
ωR ⊗R I/I2 ∼= (ω ⊗k ω)⊗A⊗kA Ω ∼= ω ⊗A (ω ⊗A Ω) ∼= (ω ⊗A ω)⊗A Ω.

Therefore, the right-hand side of (1) becomes

e0(A)2 − 7e0(A)− e2(A)− 23e1(ω
⊗2) + 4e2(ω

⊗2) + 7e1(ω
⊗2 ⊗ Ω)− e2(ω⊗2 ⊗ Ω). (3)

Here and in what follows tensor products are taken over the ring A.
We are now going to express the Hilbert coefficients e1(ω

⊗2), e1(ω
⊗2⊗Ω), and e2(ω

⊗2⊗Ω) in
terms of ei(A), e2(ω

⊗2), and e2(Ω). First, notice that for any finitely generated graded A-module
M ,

ei(M(−1)) = ei(M) + ei−1(M). (4)

Moreover, by Lemma 1.2, Remark 1.8, and Lemma 1.7,

e1(ω) = 3e0(A)− e1(A) and e2(ω) = 3e0(A)− 2e1(A) + e2(A). (5)

Since ω is free of rank one locally in codimension one in A, there is a complex of graded
A-modules

0 −→ Z −→ A(−a)2 −→ ω −→ 0 (6)

for some a� 0 that is exact locally in codimension one. It induces complexes

0 −→ Z ⊗A(−ja+ a)j −→ A(−ja)j+1 −→ Symj(ω) ∼=
1
ω⊗j −→ 0 (7)

that are likewise exact locally in codimension one. Now (6) yields e1(Z) = 2e1(A(−a)) − e1(ω)
and then (4), (5), and (7) show that for every j > 0,

e1(ω
⊗j) = 3je0(A)− (2j − 1)e1(A). (8)

1681

https://doi.org/10.1112/S0010437X15007289 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007289


M. Chardin, D. Eisenbud and B. Ulrich

Next, we treat the first Hilbert coefficient of ω⊗2 ⊗ Ω. As Ω is free of rank three locally in
codimension one and is generated in degree one, there is an exact sequence of graded A-modules

0 −→ A(−1)2 −→ Ω −→ C −→ 0,

where C is free of rank one locally in codimension one; see [EE73, p. 282, Theorem A and
Remark]. Also recall the fundamental class, a natural map ∧3Ω→ ω that is an isomorphism off
the singular locus of A; see for instance [KW88, § 5]. We obtain

C ⊗
2∧

(A(−1)2)
∼−→
1

3∧
Ω

∼−→
1

ω,

which gives a complex

0 −→ A(−1)2 −→ Ω −→ ω(2) −→ 0

that is exact in codimension one. Tensoring with ω⊗2 yields

0 −→ ω⊗2(−1)2 −→ ω⊗2 ⊗ Ω −→ ω⊗3(2) −→ 0.

Since this complex is exact in codimension one, (4) and (8) imply that

e1(ω
⊗2 ⊗ Ω) = 21e0(A)− 11e1(A). (9)

We now turn to the second Hilbert coefficient of ω⊗2 ⊗ Ω. Write –∗ := HomA(–, A). Recall
that A is Gorenstein locally in codimension two. Since ω is free of rank one locally in codimension
two, we have ω∗

∼−→
2

HomA(ω⊗2, ω), which, by Lemma 1.2, Remark 1.8, and Lemma 1.7, gives

e1(ω
∗) = 3e0(ω

⊗2)− e1(ω⊗2) and e2(ω
∗) = 3e0(ω

⊗2)− 2e1(ω
⊗2) + e2(ω

⊗2). (10)

Furthermore,

ω⊗2 ⊗ ω∗ ∼−→
2

HomA(ω, ω⊗2)
∼
←−
2

ω. (11)

Let e := N − 2. Increasing N if needed, we may assume that e > 2. We define a graded
A-module E via the exact sequence

0 −→ E −→ A(−1)e+3 −→ Ω −→ 0, (12)

which is split-exact locally in codimension one. Notice that E has rank e, is free locally in
codimension one, and is Cohen–Macaulay locally in codimension two by the discussion at the
beginning of this proof. Furthermore, (12) and the fundamental class give( e∧

E

)∗∗
∼−→
2

( 3∧
Ω

)∗
(−e− 3)

∼
←−
2

ω∗(−e− 3); (13)

these natural maps of reflexive modules are isomorphisms locally in codimension two, because
they are isomorphisms locally in codimension one and A is Cohen–Macaulay locally in
codimension two.

As E∗ is free locally in codimension one and rkE∗ − 1 > 1, there exists a homogeneous
element f ∈ E∗ of degree c� 0 whose order ideal (E∗)∗(f) has height at least two; see [EE73,
p. 282, Theorem A and Remark]. However, the ideals E∗∗(f) and J := f(E) coincide locally in
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codimension one, since E is reflexive locally in codimension one. Hence, ht J > 2. The map f
induces an exact sequence of graded A-modules

0 −→ Ee−1 −→ Ee := E −→ Je(ce) := J(c) −→ 0.

Repeating this procedure, if needed, we obtain a filtration

E1 ⊂ E2 ⊂ · · · ⊂ Ee with Ei/Ei−1 ∼= Ji(ci), (14)

where Ji are homogeneous A-ideals of height at least two. Thus, Ei has rank i, is free in
codimension one and Cohen–Macaulay in codimension two, and(i−1∧

Ei−1

)∗∗
(ci)

∼
←−
2

((i−1∧
Ei−1

)
⊗ Ji(ci)

)∗∗
∼−→
2

( i∧
Ei

)∗∗
.

Again, these natural maps of reflexive modules are isomorphisms locally in codimension two,
because they are isomorphisms locally in codimension one and A is Cohen–Macaulay locally in
codimension two.

Since E1 is reflexive locally in codimension two, it follows that

E1
∼−→
2

E∗∗1
∼=
2

( e∧
E

)∗∗(
−

e∑
i=2

ci

)
,

which, together with (13), implies that

E1
∼=
2
ω∗
(
−e− 3−

e∑
i=2

ci

)
. (15)

On the other hand, the exact sequence

0 −→ Ji(ci) −→ A(ci) −→ (A/Ji)(ci) −→ 0

yields a complex

0 −→ ω⊗2 ⊗ Ji(ci) −→ ω⊗2(ci) −→ (ω⊗2/ω⊗2Ji)(ci) −→ 0

that is exact in codimension two. Since ht Ji > 2 and ω⊗2 is free of rank one locally in codimension
two, it follows that e10((A/Ji)(ci)) = e10((ω

⊗2/ω⊗2Ji)(ci)). We conclude that

e2(Ji(ci))− e2(ω⊗2 ⊗ Ji(ci)) = e2(A(ci))− e2(ω⊗2(ci)). (16)

Tensoring (12) and (14) with ω⊗2 and using (16) and (15), we obtain

e2(ω
⊗2 ⊗ Ω)− e2(Ω) = e2(ω

⊗2(−1)e+3)− e2(A(−1)e+3) +

e∑
i=2

(e2(A(ci))− e2(ω⊗2(ci)))

+ e2

(
ω∗
(
−e− 3−

e∑
i=2

ci

))
− e2

(
ω⊗2 ⊗ ω∗

(
−e− 3−

e∑
i=2

ci

))
. (17)

We now combine (17) with (4), (8), (10), (11), and (5) to deduce that

e2(ω
⊗2 ⊗ Ω) = −12e0(A) + 8e1(A)− 5e2(A) + 5e2(ω

⊗2) + e2(Ω). (18)

Substituting (8), (9), and (18) into (3), we conclude that (3) and (2) coincide. �
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Remark 3.2. The inequality in Theorem 3.1 can be replaced by

e0(A)2 + 5e0(A)− 10e1(A) + 4e2(A) > e2(ω
∗) + e2(Ω).

Proof. One uses the equalities (10) and (8) in the proof of Theorem 3.1. �

Corollary 3.3. Let k be a perfect field, X ⊂ P4
k an equidimensional subscheme of dimension

two with at most isolated Gorenstein singularities, A its homogeneous coordinate ring, ω := ωA
the canonical module, and Ω := ΩA/k the module of differentials. One has

e0(A)2 + 14e0(A)− 16e1(A) + 4e2(A) = e2(ω ⊗A ω) + e2(Ω).

Corollary 3.4. Let k be a field, X ⊂ PNk an equidimensional smooth subscheme of dimension
two, H the class of the hyperplane section, K the canonical divisor, and c2 the second Chern
class of the cotangent bundle of X. One has

(H2)2 > 10H2 + 5HK +K2 − c2,

and equality holds if and only if dim Sec(X) < 5.

Proof. We may assume that k is algebraically closed. The Riemannn–Roch theorem in dimension
two gives

χ(X,E) = 1
2(c1(E)2 − 2c2(E)− c1(E)KX) + (rkE)χ(X,OX).

If D is a divisor, this equality specializes to

χ(D + nH) =
1

2
H2n2 +

(
DH − 1

2
KH

)
n+

1

2
(D2 −KD) + χ(X,OX)

= H2

(
n+ 2

2

)
− 1

2
(3H2 +KH − 2DH)

(
n+ 1

1

)
+

1

2
(H2 +KH − 2DH −KD +D2) + χ(X,OX).

For a rank two vector bundle E, the formula reads

χ(E + nH) = H2n2 + (c1(E)H −KH)n+
1

2
(c1(E)2 −Kc1(E))− c2(E) + 2χ(X,OX)

= 2H2

(
n+ 2

2

)
− (3H2 +KH − c1(E)H)

(
n+ 1

1

)
+H2 +KH − c1(E)H − 1

2
Kc1(E) +

1

2
c1(E)2 − c2(E) + 2χ(X,OX).

Taking D = 0, we obtain

e0(OX) = H2,

e1(OX) = 3
2H

2 + 1
2KH,

e2(OX) = 1
2H

2 + 1
2KH + χ(X,OX)

and, for D = 2K,

e2(ω
⊗2
X ) = 1

2H
2 − 3

2KH +K2 + χ(X,OX).
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Finally, taking E = ΩX , the cotangent sheaf of X, and using the fact that c1(ΩX) = K, we
deduce that

e2(ΩX) = H2 − c2(ΩX) + 2χ(X,OX).

Now the assertion of the corollary follows from Theorem 3.1 since ei(A) = ei(OX), ei(ω
⊗2) =

ei(ω
⊗2
X ), and ei(Ω) = ei(ΩX) + ei(OX). �

We now turn to smooth three-folds.

Theorem 3.5. Let k be a field, X ⊂ PNk an equidimensional smooth subscheme of dimension
three, H the class of the hyperplane section, K the canonical divisor, and c2 and c3 the second
and third Chern classes of the cotangent bundle of X. One has

(H3)2 > 35H3 − 11KH2 − 9K2H + c2H −K3 − 1
12Kc2 + 1

2c3,

and equality holds if and only if dim Sec(X) < 7.

Proof. We use the notation introduced in the proof of Theorem 3.1, with A an ideal generated
by seven general linear forms in the ideal I of the diagonal. Again, we see that dimR/(A : I) < 1
if and only if dim Sec(X) < 7.

We will apply Theorem 1.9(a) with r = s = 7 and g = 4. Since X is smooth, one sees as in
the proof of Theorem 3.1 that

ωR/I ωR ∼= ω⊗2,

IωR/I
2ωR ∼=

7
ω⊗2 ⊗ Ω,

I2ωR/I
3ωR ∼=

7
ω⊗2 ⊗ S2Ω,

where S2Ω := Sym2(Ω).
Again, since X is smooth, we can apply the Riemann–Roch theorem as in the proof of

Corollary 3.4 to derive the following formulas, which express the relevant Hilbert coefficients in
terms of the invariants that appear in the statement of the present theorem:

e0(A) = H3,

e1(A) = 2H3 − 3
2KH

2,

e2(A) = 1
12(14H3 + 9KH2 +K2H + c2H),

e3(A) = 1
24(4H3 + 6KH2 + 2K2H + 2c2H +Kc2),

e0(Ω) = 4H3,

e1(Ω) = 8H3 +KH2,

e2(Ω) = 1
6(28H3 + 9KH2 + 2K2H − 4c2H),

e3(Ω) = 1
12(8H3 + 6KH2 + 4K2H − 8c2H +Kc2 − 6c3),

e0(ω
⊗2) = H3,

e1(ω
⊗2) = 2H3 − 3

2KH
2,

e2(ω
⊗2) = 1

12(14H3 − 27KH2 + 13K2H + c2H),

e3(ω
⊗2) = 1

24(4H3 − 18KH2 + 26K2H + 2c2H − 12K3 − 3Kc2),

1685

https://doi.org/10.1112/S0010437X15007289 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X15007289


M. Chardin, D. Eisenbud and B. Ulrich

e0(ω
⊗2 ⊗ Ω) = 4H3,

e1(ω
⊗2 ⊗ Ω) = 8H3 − 7KH2,

e2(ω
⊗2 ⊗ Ω) = 1

6(28H3 − 63KH2 + 38K2H − 4c2H),

e3(ω
⊗2 ⊗ Ω) = 1

12(8H3 − 42KH2 + 76K2H − 8c2H − 48K3 + 17Kc2 − 6c3),

e0(ω
⊗2 ⊗ S2Ω) = 10H3,

e1(ω
⊗2 ⊗ S2Ω) = 20H3 − 19KH2,

e2(ω
⊗2 ⊗ S2Ω) = 1

6(70H3 − 171KH2 + 119K2H − 25c2H),

e3(ω
⊗2 ⊗ S2Ω) = 1

12(20H3 − 114KH2 + 238K2H − 50c2H − 186K3 + 125Kc2 − 42c3). �

Remark 3.6. Assume that k is infinite and let D := H3 denote the degree of X. The inequality
in Theorem 3.5 is equivalent to

D2 > 7(5D + 3KH2 +K2H − c2H)− 2Kc2 +K3 + c3.

In other words, if S and C are a surface and a curve obtained from X by general hyperplane
sections, the formula reads

D2 > 7(5D + 3χC + 12χ(OS)− 2χS)− 48χ(OX) +K3 + χX .

Theorem 3.5 can be converted into a statement about Hilbert coefficients that is analogous
to Theorem 3.1.

Corollary 3.7. Let k be a field, X ⊂ PNk an equidimensional smooth subscheme of dimension
three, A its homogeneous coordinate ring, ω := ωA the canonical module, and Ω := ΩA/k the
module of differentials. One has

e0(A)2 + 391e0(A)− 246e1(A) + 66e2(A) + 50e3(A) > 18e2(ω ⊗A ω)− 2e3(ω ⊗A ω)− 2e3(Ω),

and equality holds if and only if dim Sec(X) < 7.

Proof. One uses the formulas in the proof of Theorem 3.5 to express the relevant Hilbert
coefficients in terms of the invariants appearing in the statement of the theorem. �
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