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of rotating turbulence
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Turbulence is widely considered one of the most important and most difficult unsolved
problems in classical physics. It is also the area of fluid mechanics where the greatest
effort is exerted, the most papers published and, some would argue, the least progress
made. Although direct numerical simulation is becoming an increasingly valuable
tool, there remains a need for high-quality experiments to underpin our theoretical
and numerical progress. Such statements apply equally to the ‘classical’ problem of
homogeneous isotropic turbulence and to turbulence in its many other guises. Of
particular interest is turbulence in a rotating system, where it is well known that
the influence of rotation leads to the development of anisotropy and the elongation
of scales parallel to the rotation axis. Moisy et al. (J. Fluid Mech., 2010, this issue,
vol. 666, pp. 5–35) present new experiments in the free decay of grid-generated
turbulence in a rotating system. They investigate the emergence of anisotropy from
essentially isotropic initial conditions. While it is well known that rotation suppresses
velocity gradients parallel to the rotation axis, Moisy et al. (2010) uncover some
startling and previously overlooked implications.
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1. Introduction

Much of our progress in understanding turbulence has been made through study
of the artificial problem of homogeneous, isotropic turbulence. Even this ‘simple’
case defies much beyond the well-known and often abused Kolmogorov k−5/3 energy
spectrum for the inertial range. (Here k is the wavenumber.) Add in rotation (assumed
here to be about a vertical axis) and things change. Whereas decaying grid-generated
turbulence in a non-rotating system remains approximately isotropic (figure 1a),
the vertical length scale increases dramatically in the rotating case (figure 1b). This
anisotropy is not due to choosing a different reference frame, but rather due to
changing the state to which the turbulence decays from one of rest to one of solid-
body rotation in an inertial frame.

For a turbulent flow, the relative importance of inertia and the Coriolis force, due to
rotation with angular velocity Ω , can be described by the turbulent Rossby number,

Ro =
u′

2ΩL
. (1.1)
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(a)

(b)

Figure 1. The emergence of anisotropy. Pearlescence images of decaying turbulence behind a
downward propagating grid in non-rotating (a) and rotating (b) experiments. Images shown at
Ut/M ≈ 10, 20, 40, 80 (Ωt/2π ≈ 1/2, 1, 2, 4) after the grid left the bottom of the field of view.
(Images courtesy P. J. Staplehurst.)

If initially Ro � 1, then rotation plays little role, but inevitably the decay of the
turbulence intensity u′ and increase in the integral length scale L will reduce the
Rossby number to the point where both inertia and rotation are important and
anisotropy emerges from isotropic initial conditions. As Ro continues to decrease, the
motion becomes dominated by inertial waves of ever reducing frequencies, with the
flow becoming increasingly two-dimensional as vertical velocity gradients decrease.

Our understanding of rotating turbulence has progressed alongside but lagged a
little behind its non-rotating counterpart, with experiments playing a defining role.
Although they were not the first to perform rotating experiments, Ibbetson & Tritton
(1975) were the first to provide hard data. Their turbulence was generated in air
by two perforated plates moving apart in a direction parallel to the rotation axis in
a rotating annular geometry, and measured by ‘flying’ hot-wire probes around the
annulus on a streamlined rotating arm. Their measurements not only confirmed the
expected development of anisotropy with an increase in the vertical length scales,
but also suggested that the relative strength of the horizontal and vertical velocity
fluctuations did not change dramatically. This second point is now of great interest.
Ibbetson and Tritton also observed that the decay rate increased with the rotation
rate, a feature they were suspicious of and attributed to the low aspect ratio of their
domain: it is now widely accepted (e.g. Jacquin et al. 1990) that rotation actually
decreases the decay rate through the removal of the vortex stretching mechanism that
helps take energy to smaller scales.

2. Overview

Skipping over many insightful contributions presented in the intervening 35 years,
we turn to the study by Moisy et al. (2010). Technology has moved on, allowing much
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more detailed measurements. Strapping a high-resolution particle image velocimetry
system to a rotating table is now relatively easy, but the manner in which the results
are used remains as challenging as ever. While this very careful study is a development
of earlier work, it is much more than just the next paper in a series. Even the scale of
the experiments, using the 14 m diameter Coriolis rotating table in Grenoble, places
this study of grid-generated turbulence in a league of its own.

How does the anisotropy emerge? With the initial Rossby number high enough
for the rotation not to be important, the initial decay sees the velocity fluctuations
decrease as u′2 ∼ t−6/5 and the integral length scale increases as L ∼ t2/5. Remarkably,
combining these into the turbulent Rossby number shows that Ro ∼ (Ωt)−1, where
the prefactor is independent of the grid velocity or mesh size. The experiments show
that anisotropy emerges quite suddenly as Ro decreases through 0.25 and that this
occurs around 0.4 of a rotation period after passage of the grid.

The change in behaviour for Ro < 0.25 can be seen in a number of ways. The decay
rate of both horizontal and vertical velocity fluctuations decreases from u′2 ∼ t−6/5

to something consistent with t−3/5, while the integral length scale (constructed from
horizontal velocities separated in the horizontal direction) continues to follow the
same L ∼ t2/5 scaling seen initially. The vertical correlation of horizontal velocities,
however, increases rapidly, reflecting the suppression of ∂u/∂z and ∂v/∂z, leaving
behind a dominance of cyclones over anticyclones.

Despite this two-dimensionalisation of the flow, the ratio of the vertical to horizontal
velocity fluctuations remains approximately constant, in line with the observations of
Ibbetson & Tritton (1975). More surprisingly, the vertical correlation of the vertical
velocity only grows a little faster than the horizontal correlation of the horizontal
velocity, despite the suppression of ∂w/∂z. What Moisy et al. (2010) suggest happens
to the vertical velocity fluctuations is one of the major surprises.

To understand this better, it helps to think about the limit of two-dimensional
turbulence. In this limit, there is no vortex stretching and vertical vorticity (normal to
the plane of the motion) obeys the advection–diffusion equation as though it were a
passive scalar. The spectral relationship Φ(k) = k2E(k) between energy density E(k)
and enstrophy (mean square vorticity) density means that since neither E(k) nor Φ(k)
can increase due to diffusion, any spectral transfer of energy to higher wavenumbers
must be balanced by a greater transfer of energy to lower wavenumbers to avoid Φ(k)
increasing. This so-called anticascade of energy, whereby most of the energy moves to
increasingly larger scales as the flow decays, occurs alongside a cascade of enstrophy
to smaller scales.

In decaying rotating turbulence, the flow becomes quasi-two-dimensional at large
scales as the Rossby number decreases, allowing an anticascade of energy and cascade
of enstrophy to develop. The vertical velocity, which is organised in vertical sheets
and does not play an active role in the equations in the low Ro quasi-two-dimensional
limit, obeys the same advection–diffusion equation as the vertical vorticity. Like the
enstrophy, the vertical velocity fluctuations are cascaded towards smaller horizontal
scales. Moisy et al. suggest that vertical velocity w present before the anisotropy
develops continues to decay gradually due to molecular diffusion, but the horizontal
gradients ∂w/∂x and ∂w/∂y can increase due to the cascade. Unlike a passive scalar,
this increase in gradient leads at later time to shear instabilities between sheets of
fluid moving vertically. Whereas the large-scale flow may be quasi-two-dimensional,
these shear instabilities are not, providing a re-injection of three-dimensional motion
(and small-scale vertical vorticity of both signs) at later time.
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3. Future

High-quality data like these will help fuel the current resurgence of interest in
rotating turbulence. However, we must always be aware of the truth in the adage
that everyone believes experimental results except the experimentalist. There are
imperfections despite the considerable care and skill of the authors. The channel
used had a depth of only seven times the mesh spacing, which raises questions
about the influence of confinement. Confinement also plays a role in the systematic
flow generated by the passage of the grid (Dalziel 1992) and how this couples
with the turbulence in a non-trivial way. While Moisy et al. have made a Reynolds
decomposition to remove the leading-order effect from their analysis, the validity of
this approach at later times is unknown. It may yet prove necessary to explicitly
include this component in a numerical model in order to match all details of the
evolution, or to wait for the next generation of experiments where the imperfections
are reduced, or at least different.

The experiments explore the transition through Ro = O(1), where both nonlinear
and linear effects must be important. However, while the drive towards anisotropy
is clear and the form taken has been characterised, details of the manner in which
this is achieved remain unclear, as is the importance of an initial value of Ro that
is itself only of O(1). Moisy et al. (2010) steer clear of current debate between the
dominance of nonlinear triadic interactions (e.g. Cambon, Mansour & Godeferd
1997 and Smith & Waleffe 1999) and the possible role of linear wave propagation
(e.g. Staplehurst, Davidson & Dalziel 2008 and Kolvin et al. 2009), yet their results
will feed into the discussion.

While theoreticians will use these data to inspire new approaches and numerical
modellers will try to replicate the results, experimentalists will dream up new ways of
providing even better data. These results are based on two-dimensional measurements
of the velocity field in two planes – one horizontal and the other vertical in separate
experiments – yet three-dimensional technologies are available. However, it may take
some time before the benchmark set here is superseded, particularly with the Coriolis
table having to be moved to make way for a new roadway.
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