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We simulated the motions and interactions of circular squirmers under gravity in a
two-dimensional channel at finite fluid inertia, aiming to provide a comprehensive analysis
of the dynamic features of swimming microorganisms or engineered microswimmers. In
addition to a squirmer-type factor (β), another control parameter (α) was introduced,
representing ratio of the self-propelling strength to the sedimentation strength of
squirmers. Simulations were performed at 0.4 ≤α ≤ 1.2 and −5 ≤ β ≤ 5. We first
considered the sedimentation of a single squirmer. Five patterns were revealed, depending
on both α and β: steady downward falling, steady inclined falling or rising and small-scale
or large-scale oscillating. Compared with a pusher (β < 0, gaining thrust from rear), a
puller (β > 0, gaining thrust from front) is more likely to break down its symmetrical
structure and subsequently lose stability, owing to the high-pressure regions on its lateral
sides. Typically, a pusher settles faster than a puller, whereas a neutral squirmer (β = 0)
settles in between. This is related to the ‘trailing negative flow’ behind a pusher and
‘leading negative flow’ before a puller. We then placed two squirmers in line with the
gravity direction to study their interactions. Results show pullers attract each other and
come into contact as a result of the low-pressure regions between them, whereas the
opposite is observed for pushers. The interactions between two pullers are illustrated
by their respective patterns. In contrast, pushers never come into contact and maintain
distance from each other with increasing separation. We finally examined how a puller
interacts with a pusher.
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1. Introduction

Swimming microorganisms or artificial microswimmers, driven by various self-propelling
mechanisms, display rich and complex dynamic features relative to passive particles
when immersed in a Newtonian fluid. For instance, the alga Chlamydomonas reinhardtii,
swimming forward through its two flagella, undergoes an unusual ‘run-and-tumble’
motion in the dark, owing to its flagellar switching between synchronous and asynchronous
beating (Polin et al. 2009). The bacteria Bacillus subtilis exhibits striking collective
behaviours associated with hydrodynamic interactions when oxygen is available. They
can power submillimetre gears with their asymmetric teeth to rotate in the direction of
the teeth’s slanted edges (Sokolov et al. 2009). The same active organisms were also
found to self-organize into a single vortex and form a steady unidirectional circulation in
a cylindrical chamber, with unexpected observations of the resultant fluid flows moving in
the opposite direction (Lushi, Wioland & Goldstein 2014; Wioland, Lushi & Goldstein
2016). The self-assembly behaviours of motile Escherichia coli were observed and
successfully adopted to generate a unidirectional rotation of nanofabricated objects (also
termed bacterial ratchet motors in Di Leonardo et al. (2010)). The same microorganisms
(E. coli) were also found to exhibit circular trajectories adjacent to surfaces and be
able to sense the surface slip on the nanoscale (Hu et al. 2015). More interestingly,
Drescher et al. (2009) reported a ‘dancing’ behaviour pattern for two algal Volvox colonies
swimming close to a wall. The two Volvox colonies initially attracted each other, and then
performed a ‘waltz’ or ‘minuet’ around one another (Drescher et al. 2009). The unusual
behaviour exhibited by microorganisms swimming in viscous environments raises several
issues associated with fluid dynamics. Concerning this, a series of review papers (Pedley
& Kessler 1992; Lauga & Powers 2009; Koch & Subramanian 2011; Elgeti, Winkler
& Gompper 2015; Saintillan 2018) focusing on different aspects of microorganisms or
engineering microswimmers swimming in fluids is recommended.

Classical squirmer models (Lighthill 1952; Blake 1971a,b) have been widely adopted to
describe representative microorganisms (e.g. B. subtilis, C. reinhardtii, E. coli and Volvox)
in numerical and theoretical studies. A prescribed tangential slip velocity is usually applied
to the surface of a squirmer (Lighthill 1952; Blake 1971a,b). Accordingly, squirmers
gaining thrust from the front or rear are termed pullers or pushers, respectively. These
two types of self-propelling mechanisms may cause significant differences in the structure
of the flows surrounding different squirmers, and give rise to distinct dynamic features
for pullers and pushers. Chisholm et al. (2016) numerically studied the flows around a
squirmer for Reynolds numbers (Re) ranging between 0.01 and 1000, and showed that an
axisymmetric flow remains stable for a pusher at Re values of at least up to 1000; moreover,
the swimming velocity always increases with Re. In contrast, flow instability may occur for
a puller at a large Re, leading to a drop in its swimming velocity (Chisholm et al. 2016).
This is qualitatively consistent with the observations of Li, Ostace & Ardekani (2016).
Generally, gravity has significant influences on the swimming motions of microorganisms.
When microorganisms are immersed in a liquid, they usually respond to gravitational
acceleration with behaviours known as gravitaxis or geotaxis. For example, gravitaxis
causes many organisms (e.g. phototactic algae) to swim vertically upward on average
in still water (Pedley & Kessler 1992). To shed light on this issue, numerical studies
have been conducted using squirmer models. Rühle et al. (2018) used a method based on
multi-particle collision dynamics (MPCD) to simulate the settling of a spherical squirmer
under gravity between two flat walls at low Reynolds numbers. They summarized two
states for the squirmer: a cruising state in a squirmer propulsion-dominated regime, and a
residing state in a gravity-dominated regime (Rühle et al. 2018). This study also revealed
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that, when a squirmer resides in the proximity of a bottom wall, it exhibits different motion
patterns strongly dependent on the squirmer type. This is consistent with the observations
of Fadda, Molina & Yamamoto (2020), who resolved the flow surrounding a spherical
squirmer settling toward a wall under gravity through three-dimensional simulations. In
particular, Fadda et al. (2020) considered the effects of the chirality of the squirmer to
better model real microorganisms, such as E. coli. The squirmer was shown to undergo a
circular motion in the presence of chirality instead of a straight motion (Fadda et al. 2020).
Recently, Ouyang & Lin (2022) presented a two-dimensional analysis of the settling of a
squirmer in a narrow channel. Four types of motion resulting from the hydrodynamic
interactions and collisions between the squirmer and channel walls were summarized:
vertical, attracted, oscillatory and upward modes. The oscillatory mode only occurs for
pushers or neutral squirmers, whereas the vertical mode is not observed for pushers
(Ouyang & Lin 2022). In particular, their work showed that a puller swims faster than
a pusher at small squirmer-to-fluid density ratios, whereas the opposite is true at large
squirmer-to-fluid density ratios (Ouyang & Lin 2022).

Moreover, significant efforts have been devoted to studying the hydrodynamic
interactions between squirmers, similar to the case with passive particles. Studies have
shown that these hydrodynamic interactions play key roles in the collective behaviours
of swimming microorganisms, such as bioconvection (Hill & Pedley 2005; Hwang &
Pedley 2014), self-organization (Lushi et al. 2014; Wioland et al. 2016), phase separation
(Matas-Navarro et al. 2014; Theers et al. 2018; Lin & Gao 2019) and ordering and
aggregation (Li & Ardekani 2014; Kyoya et al. 2015). In addition, the hydrodynamic
interactions are also primarily responsible for the novel properties of a suspension of
bacteria, for example, reductions in viscosity, increases in diffusivity and the extraction
of useful energy (Sokolov & Aranson 2012). Ishikawa, Simmonds & Pedley (2006)
presented a pioneering study on the interactions between two spherical squirmers at low
Reynolds numbers. In this work, analytical expressions were approximately derived for
the limits of small and large separations on the basis of lubrication theory, and agreed
well with their numerical results (Ishikawa et al. 2006). Based on an analysis, Ishikawa
et al. (2006) provided a database for calculating the forces exerted on either of two
interacting squirmers at a given relative position and orientation. In general, their work
showed that a pair of squirmers first attract each other, and come into close contact.
The squirmers then change their orientation dramatically and eventually separate from
each other (Ishikawa et al. 2006). This significantly differs from the interactions between
passive particles. Papavassiliou & Alexander (2017) used the Lorentz reciprocal theorem
for a Stokes flow to develop analytical solutions for a squirmer swimming close to a
planar or spherical wall, as well as for the interactions between two squirmers. Their
solutions could account for any type of squirmer motion at the Stokes flow limit, and
were valid at any separation (Papavassiliou & Alexander 2017). Accordingly, Ishikawa
et al. (2007) simulated the interactions between two swimming bacteria in an infinite fluid
at the Stokes flow limit. Each bacterium was modelled as a spherical squirmer with a
single helical flagellum. Similar to Ishikawa et al. (2006), their study showed that the
two bacteria always avoid each other, i.e. by considerably changing their orientations as
they come close to each other. This avoidance and escape behaviour was also reported for
two swimming Paramecia caudatum between two flat plates in an experimental study
(Ishikawa & Hota 2006). As indicated by Pooley, Alexander & Yeomans (2012), the
interactions between two squirmers at low Reynolds numbers consist of two parts: a
passive term unrelated to the motion of the second squirmer, and an active term caused
by the simultaneous swimming actions of both squirmers. Consequently, the motion of
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squirmers can be attractive, repulsive or oscillatory (Pooley et al. 2012). This is consistent
with the numerical study by Mirzakhanloo, Jalali & Alam (2018), who simulated the
interactions of two artificial microswimmers (Quadroar). Using the MPCD, Theers et al.
(2016) investigated the interactions of a pair of spheroidal squirmers in a narrow slit and
found two pullers will form a wedge-like structure with a small constant angle. Similarly,
Qi et al. (2022) studied the collective motion of squirmers in a narrow slit and revealed
that at high concentrations clusters of pushers may exhibit swarming behaviour and active
turbulence resulting from the hydrodynamic interactions. Qi et al. (2022) also proposed
some criteria to classify the active turbulence.

Fluid inertia may result in a significant difference between interacting squirmers. By
using beat patterns for the bull spermatozoa (Friedrich et al. 2010) and for the E. coli
(Geyer et al. 2013), Klindt & Friedrich (2015) computed the time-dependent fluid flow
around a Chlamydomonas cell swimming in water by solving nonlinear Navier–Stokes
equations. Their work indicated that the oscillatory flows induced by the flagellated green
algae were screened by fluid inertia beyond a typical distance from this swimmer. The
inertial effects could not be neglected when considering the hydrodynamic interactions
between swimmers or between swimmers and boundaries. Li et al. (2016) numerically
studied the hydrodynamic interactions of squirmers at Re ∼ O(0.1–100) in an unbounded
fluid. They revealed that the contact time of two pushers is reduced as the fluid inertia
becomes strong, whereas a pair of pullers remain close to each other for a long time.
This finding is useful for exploring predator–prey interactions and sexual reproduction
in the natural world. Lin & Gao (2019) examined the inertial effects on the collective
behaviours of squirmers through a direct-forcing fictitious domain method, and found
that fluid inertia suppresses the collective dynamics of both pushers and pullers. This
action, however, is helpful for enhancing the biogenic mixing of microorganisms (Wang
& Ardekani 2012, 2015). Recently, the interactions between two squirmers at a finite and
intermediate inertia in a stratified fluid have been numerically examined (More & Ardekani
2021). They reported that stratification eliminates the closed-loop trajectories observed for
two pullers at an intermediate fluid inertia, and makes two pushers come to a complete
stop and stick to each other (More & Ardekani 2021).

Despite the significant progress made in the past, studies on swimming microorganisms
in the presence of an external force (i.e. a gravitational, magnetic or chemical gradient
force) remain limited. This is particularly true when the significance of gravity is
considered. Under the influence of gravity, a suspension of phototactic algae slightly
denser than water has an average motion of swimming upward in still water. This may lead
to bioconvection when the upper regions of the suspension become denser than the lower
regions (Hill & Pedley 2005). The mechanism for algae swimming upward is associated
with gravity; that is, they are bottom-heavy, and therefore experience gravitational
torque when they are not vertical (Pedley & Kessler 1992). Several rational continuum
models have been developed to describe bioconvection exhibited by different species of
microorganisms. However, significant challenges remain when it comes to swimming
bacteria, and there is a need for an appropriate macroscopic model for the unique pattern
formations (whorls and jets) that also considers the cell–cell interactions (Hill & Pedley
2005). In this context, gravity plays a key role in determining the swimming behaviours
of certain organisms that are usually immersed in water and have a gravity-sensing-like
function. For instance, Loxodes have an internal weighted lever whose position (along with
the local oxygen concentration) controls the swimming direction (Fenchel & Finlay 1986).
For phototactic flagellates such as Euglena gracilis, gravity considerably contributes to
their vertical motion in water, enabling them to adjust their amount of exposure to solar
radiation (Ntefidou et al. 2003). Understanding how these species interact with each other

960 A31-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

15
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.155


Two-dimensional study on the motion and interactions

in the presence of gravity and how they respond to an external gravitational field provides
insights into the design of artificial or engineered microswimmers with gravity-sensing
devices. Another relevant issue concerns the gravity-dependent orientations of certain
aquatic microorganisms, as these show interesting alignments in different media. For
example, Mogami, Ishii & Baba (2001) showed that immobilized Paramecium caudatum
and gastrula larvae swim upward while falling in a hypodensity medium, and swim
downward while rising in a hyperdense medium. Immobilized pluteus larvae swim upward
regardless of the density of the medium (Mogami et al. 2001). The underlying mechanism
for this biased behaviour remains under discussion, and a universal rational model has
yet to be developed (Roberts 2010; Wolff, Hahn & Stark 2013; ten Hagen et al. 2014).
More strikingly, Sengupta, Carrara & Stocker (2017) showed that some phytoplankton
species (e.g. Heterosigma akashiwo) which usually undertake vertical migrations to
gain access to nutrient-rich deep water using gravitaxis can actively modulate the cell’s
fore–aft asymmetry and diversify their direction of migration in response to damaging
turbulent conditions. However, their experiments (Sengupta et al. 2017) indicate that
other phytoplankton species may response to turbulence differently, which yet requires
an overall understanding of the dynamic features of microorganisms in complex flow
environments. In view of this, we aimed to provide a comprehensive analysis of the
motion behaviours and interactions of microorganisms under gravity. To achieve this, we
adopted the two-dimensional squirmer model proposed by Blake (1971b) for simplicity,
and performed extensive simulations of the sedimentation of a single squirmer and two
interacting squirmers in a vertical channel at a finite fluid inertia. The two-dimensional
squirmer model has been widely adopted in previous studies (Matas-Navarro et al. 2014;
Ouyang, Lin & Ku 2018; Ahana & Thampi 2019; Ouyang & Lin 2022). We hope our
fully resolved hydrodynamics will provide a general understanding of the dynamic features
of swimming squirmers under the influence of gravity, as well as helping to explain the
characteristics of the fluid flows created by the squirmers.

The remainder of this paper is organized as follows. In § 2, we briefly introduce the
lattice Boltzmann method (LBM) and our treatments of the boundary conditions. The
two-dimensional squirmer model and collision strategy used are also discussed in this
section. The physical model and control parameters are presented in § 3. In § 4, we
provide two benchmark tests to ensure that the LBM method, along with our settings,
can accurately solve the motions of squirmer settings under gravity. The numerical results,
including the motion of a single squirmer and interactions between two pullers, as well as
those between two pushers, are provided and discussed in § 5. In particular, we show how
a puller interacts with a pusher. Concluding remarks are provided in § 6.

2. Numerical method

2.1. Lattice Boltzmann method
In this study, the motion of the fluid was solved through a single-relaxation-time LBM
(Qian 1992). The discrete lattice Boltzmann equations are as follows:

fi(x + ei�t, t + �t) − fi(x, t) = −1
τ

[ fi(x, t) − f (eq)
i (x, t)]. (2.1)

In the above, fi (x, t) is the density distribution function along the direction ei at (x, t),
and f (eq)

i (x, t) denotes the corresponding equilibrium distribution function; �t is the time
step of the simulation, and τ is a relaxation time related to the fluid viscosity ν. The fluid
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density ρ and velocity u are determined as follows:

ρ =
∑

i

fi, ρu =
∑

i

fiei. (2.2a,b)

The popular D2Q9 (i.e. nine discrete velocities in two dimensions) lattice model was
adopted (Qian 1992). Accordingly, the discrete velocity vectors on a square lattice are
given as follows:

ei =

⎧⎪⎨
⎪⎩

(0, 0), for i = 0
(±1, 0)c, (0, ±1)c, for i = 1 to 4
(±1, ±1)c, for i = 5 to 8

. (2.3)

In the above, �x is the lattice grid, and c =�x/�t represents the lattice speed. Following
Qian (1992), we choose the equilibrium distribution functions as follows:

f (eq)
i (x, t) = wiρ

[
1 + 3ei · u

c2 + 9(ei · u)2

2c4 − 3u2

2c2

]
. (2.4)

Here, wi are the weights; w0 = 4/9, w1–4 = 1/9 and w5–8 = 1/36. Notably, in the D2Q9
model, the speed of sound has a relationship of cs = c/

√
3.

By performing a Chapman–Enskog expansion, the macroscopic mass and momentum
equations at the low Mach number limit can be recovered as follows:

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.5)

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇p + ρν∇2u. (2.6)

The kinematic viscosity of the fluid is determined using the equation ν =
c2

s (τ − 0.5)�t. For simplicity, both the lattice grid and time step are fixed at 1 in this
work, that is, �x =�t = 1, as commonly observed in lattice Boltzmann simulations.

2.2. Squirmer model
The squirmer model as proposed by Blake (1971b) was adopted to simulate the motions
of self-propelled particles. According to Blake (1971b), the prescribed slip velocity at a
squirmer’s surface can be expressed as an infinite series expansion of the radial and polar
components, as follows:

uS(r) =
∞∑

n=0

An cos(nθ)r̂ +
∞∑

n=1

Bn sin(nθ)θ̂ . (2.7)

Here, r̂ and θ̂ refer to the radial and polar unit vectors for a given point on a
squirmer’s surface, respectively, as shown in figure 1, and An and Bn are the corresponding
time-dependent amplitudes. For simplicity, the radial component is usually ignored in
problems associated with the locomotion of squirmers (Blake 1971a,b). Based on the same
assumption, we considered the simplified squirmer model represented by the second-order
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us

Us

rθ

Figure 1. Schematic diagram of a circular squirmer heading downward.

truncated tangential velocity, as follows:

uS(θ) = (B1 sin θ + B2 sin θ cos θ)θ̂ . (2.8)

In the above, the coefficient B1 contributes to the propulsion of the squirmer, thereby
determining the steady-state swimming velocity Us = B1/2 at the Stokes flow limit.
In contrast, the coefficient B2 determines the vorticity intensity around the squirmer.
Accordingly, a key parameter, defined as β = B2/B1, is usually introduced to represent the
three types of squirmers: pushers (β < 0), pullers (β > 0) and neutral squirmers (β = 0).
As indicated by the type names, pushers (e.g. bacteria such as E. coli and B. subtilis)
gain thrust from their rear ends. In contrast, pullers (e.g. algae, such as C. reinhardti)
gain thrust from their front ends (Koch & Subramanian 2011). Neutral squirmers (e.g.
Volvox) are associated with symmetric flow without vorticity (Fadda et al. 2020). The
streamline structures may provide a direct view of the propulsion mechanism for each
type of squirmer, as described in § 4.2.

2.3. Boundary conditions
The improved bounce-back scheme proposed by Lallemand & Luo (2003) was used to
impose no-slip boundary conditions on the surfaces of the squirmers. In their study, it was
demonstrated that, based on an interpolation method, the improved bounce-back scheme
shows second-order accuracy in lattice Boltzmann simulations compared with the classical
bounce-back scheme with first-order accuracy (Lallemand & Luo 2003). The same scheme
was used in our previous studies (Nie & Lin 2019, 2020; Nie, Guan & Lin 2021).

A schematic diagram for briefly introducing the scheme is shown in figure 2. As
shown in the figure, the solid squares represent solid nodes located inside the solid
boundary, whereas the solid circles represent the fluid nodes. The open circle denotes
the boundary node where the bounce back occurs. As indicated by Lallemand & Luo
(2003), a propagation action is applied to all fluid and solid nodes after the collision
step. Accordingly, the distribution functions advected from solid nodes to fluid nodes
must be updated depending on the exact locations of the boundary nodes; this approach
differs from that of the classical scheme. To provide a better description, we consider
node A as an example. As shown in figure 2, f 8 of node A is advected from a solid node
(i.e. node B) during the propagation process. To update f 8, both the nearest and second
nearest-neighbouring nodes along the boundary link (i.e. e8) are considered, that is, nodes
B, C and D. Correspondingly, a parameter q, defined as q = |AE|/|AB|, is introduced to
determine the location of the boundary node E. Then, an interpolation method can be
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f8

B

D

f1

f5f2

f6

f3

f7 f4

A

CSolid node

Fluid node

Boundary node

Solid boundary

E

Figure 2. Schematic diagram of the improved bounce-back scheme used in this work (Lallemand & Luo
2003). Solid squares, solid nodes; solid circles, fluid nodes; open circles, boundary nodes.

employed to recompute f 8 according to the value of q

f8(A) =

⎧⎪⎪⎨
⎪⎪⎩

q(1+2q)f6(B)+(1 − 4q2)f6(A) − q(1 − 2q)f6(C) + 2w8ρ
e8 · uE

c2
s

q <
1
2

1
q(2q+1)

f6(B)+ 2q − 1
q

f8(C) − 2q − 1
2q + 1

f8(D) + 2w8ρ

q(2q + 1)

e8 · uE

c2
s

q ≥1
2

.

(2.9)

In the above, uE is the velocity of the moving surface at boundary node E, as illustrated
in figure 2. Notably, the classical bounce-back boundary is realized by (2.9) if we set
q = 0.5. Further details on this scheme can be found in Lallemand & Luo (2003).

To account for the self-propelled motion of a squirmer, the velocity of the boundary
node (e.g. node E) is updated by adding the slip velocity indicated in (2.8) before the
interpolations, as follows:

uE = ub + us = U + Ω × R + uS. (2.10)

Here, U and � denote the translational and rotational speeds of the squirmer,
respectively, and R is the position vector from the squirmer mass centre to node E. It
is inferred that the self-propelled swimming of a squirmer can only be accurately resolved
if there are enough boundary nodes, suggesting that squirmers with a sufficiently large
diameter are needed in the simulations.

By scanning every fluid–solid boundary link, the force and torque exerted on a squirmer
can be computed using a momentum exchange scheme (Mei et al. 2002; Lallemand &
Luo 2003). In addition, to account for the effects of covered or uncovered fluid nodes as
a squirmer moves in a fluid, the method proposed by Aidun, Lu & Ding (1998) can be
used to calculate the added force and torque. Accordingly, the motion of a squirmer is
determined by solving Newton’s equations using the net force and torque.
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2.4. Repulsive force model
When two squirmers come close to each other, a collision may occur. To address this
issue, the popular repulsive model proposed by Glowinski et al. (2001) was introduced, as
follows:

F p
ij =

⎧⎪⎨
⎪⎩

0 if Sij > Ri + Rj + ξ

cij

εp

(
Ri + Rj + ξ − Sij

ξ

)2 (X i − X j)

Sij
if Sij ≤ Ri + Rj + ξ

. (2.11a)

Here, Ri and Rj denote the radii of the two squirmers with mass centres at positions X i
and X j, respectively, Sij is the distance between the mass centres, i.e. Sij = |X i − X j|, and
ξ represents the cutoff distance below which the repulsive force takes effect, which was
set to be 1.5�x, where εp is a given positive stiffness parameter chosen to separate the two
squirmers. As noted by Glowinski et al. (2001), cij serves as a force scaling factor, and is
defined as the difference between the gravitational and buoyancy forces of the squirmer in
the simulations. A squirmer–wall collision is treated in a similar manner, as follows:

F w
ij =

⎧⎪⎪⎨
⎪⎪⎩

0 if S′
ij > Ri + Rj + ξ

cij

εw

(
Ri + Rj + ξ − S′

ij

ξ

)2
(X i − X ′

j)

S′
ij

if S′
ij ≤ Ri + Rj + ξ

. (2.11b)

In the above, X ′
j is the position of the nearest imaginary squirmer’s mass centre

located on a wall, and accordingly, S′
ij = |X i − X ′

j|; εw is similar to εp, and is used
for squirmer–wall collisions. In this study, both εp and εw were fixed at 10−3 in the
simulations. This choice had little influence on the motions of the squirmers, as discussed
in § 5.2.

To check the influence of collision strategy, another repulsive force model (Ishikawa
et al. 2007; Ishikawa, Locsei & Pedley 2008) was also introduced, which is in exponential
form as follows:

F p
ij =

⎧⎨
⎩

0 if Sij > Ri + Rj + ξ

α1
α2 exp[−α2(Sij − Ri − Rj)/Ri]

1 − exp[−α2(Sij − Ri − Rj)/Ri]
(X i − X j)

Sij
if Sij ≤ Ri + Rj + ξ

, (2.12)

where α1 is a dimensional coefficient and α2 is a dimensionless coefficient.

3. Problem

As illustrated in figure 3, we simulated the motion and interactions of the two squirmers
under gravity in a vertical channel of a width L filled with a fluid with a density ρ

and viscosity ν. The density and diameter of the squirmers are denoted by ρs and
d, respectively. We use X and Y to characterize the horizontal and vertical positions,
respectively. The orientation (or swimming direction) of the squirmer is denoted by φ.
Moreover, the subscripts indexed by ‘1’ and ‘2’ are used to represent the lower (squirmer 1)
and upper (squirmer 2) squirmers in the initial arrangement shown in figure 3, respectively.
A moving computational domain was used to simulate an infinite channel. Doing this shifts
the fluid field and squirmer positions up by one lattice spacing once the lower squirmer
falls below a height of Hu from the bottom boundary. This ensures that the top boundary is
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Hd

x

S

y

(X2, Y2)

(X1, Y1)

G
ra

v
it

y

Hu

L

Squirmer 2: ρs, d

Squirmer 1: ρs, d

Fluid: ρ, v

φ1

φ2

Figure 3. Schematic diagram of the problem and some notations used herein. The initial settings are as follows
unless otherwise stated: X1(0) = X2(0) = 0, Y1(0) = 10d, Y2(0) = 12d, φ1(0) =φ2(0) = 0. The channel width is
L = 5d, and the lower squirmer (squirmer 1) is initially located at a height away from the bottom boundary
Hu = 10d and from the top boundary Hd = 30d. This results in a 5d × 40d computational domain.

always Hd away from the lower squirmer, leading to H = Hu + Hd. The normal derivative
of the velocity is zero at the top boundary, and the velocity at the bottom boundary is zero.

For most of the cases studied in this work, the squirmers were initially placed at the
channel centreline with a centre-to-centre distance of S (0) = 2d, as indicated in figure 3.
Although the symmetrical in-line arrangement is simple, it rules out other factors to the
greatest extent, suggesting that we can directly check the interactions (e.g. attraction or
repulsion) between different types of squirmers. The influence of the initial arrangement
is examined in § 5.2.

To account for the self-propelling strength of the squirmers in a gravitational field, a key
control parameter is introduced as follows:

α = Us

Ug
. (3.1)

In the above, Us = B1/2, and Ug represents the sedimentation velocity of a
non-squirmer particle settling under gravity in a channel. Notably, a Stokes-like
sedimentation velocity is usually achieved for a three-dimensional study at low Reynolds
numbers, based on the assumption that the gravitational and buoyancy forces are balanced
by the Stokes drag for a spherical particle settling in an unbounded medium. However,
there is no Stokes solution for a two-dimensional analysis. To address this issue, we
adopted the analytical formula established by Happel & Brenner (1965) to determine the
sedimentation velocity Ug. The formula accounts for the drag of a circular cylinder of
diameter d settling in a two-dimensional channel of width L at low Reynolds numbers, as
follows:

Fd = 4πKμUg. (3.2)
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Two-dimensional study on the motion and interactions

Here, μ = ρν, and K is a coefficient associated with the inverse of the blockage ratio
(i.e. γ = L/d); K is defined as follows (Happel & Brenner 1965):

K = 1
ln γ − 0.9157 + 1.7244/γ 2 − 1.7302/γ 4 + 2.4056/γ 6 − 4.5913/γ 8 . (3.3)

When the drag is balanced by the gravitational and buoyancy forces, the sedimentation
velocity of a circular cylinder can be expressed as follows:

Ug = d2

16Kμ
(ρs − ρ)g. (3.4)

Accordingly, we can vary the value of α to adjust the strength of the self-propulsion
with respect to the effect of gravity. Meanwhile, based on Ug or Us, the corresponding
Reynolds number can be defined as follows:

Reg = ρUgd
μ

, (3.5a)

Res = ρUsd
μ

. (3.5b)

Certain parameters in the simulations were fixed as follows, unless otherwise specified:
L = 5d (corresponding to γ = 5), Hu = 10d, Hd = 30d (resulting in H = 40d), ρ = 1,
ρs = 1.01, d = 40 and Reg = 0.5. The initial positions of the squirmers were set as
follows: X1(0) = X2(0) = 0, Y1(0) = 10d and Y2(0) = 12d. The swimming directions of
both squirmers were initially downward, i.e. φ1(0) = φ2(0) = 0.

4. Validation

The present LBM was previously validated in our two-dimensional (Nie & Lin 2019;
Nie et al. 2021) and three-dimensional (Nie & Lin 2020) studies. To add credibility, the
relationship for the drag of a circular cylinder (3.2) is confirmed in § 4.1. We provide a
validation for the squirmer model (Blake 1971b) in § 4.2.

4.1. Sedimentation of a non-squirmer particle in a vertical channel
Figure 4 shows the terminal velocity of a (circular) non-squirmer particle settling under
gravity in a 5d channel as a function of Reg. The terminal velocity is normalized by the
theoretical velocity indicated by (3.4), i.e. |U∗

T | = |UT |/Ug. Equation (3.4) accurately
predicts the sedimentation velocity of a non-squirmer particle in a channel with a
negligible fluid inertia (i.e. Reg < 1), validating the effectiveness of (3.2). Figure 4 also
shows that, as Reg increases, (3.4) begins to overpredict the terminal velocity, i.e. |U∗

T | <

1. The reason for this is that the linear relationship between the drag of a particle and its
velocity, as indicated by (3.2), no longer holds when the fluid inertia becomes significant.

4.2. Free-swimming motion of a single squirmer in an unconfined domain
To validate the squirmer model used in this study (2.8), we simulated the free-swimming
motion of a single squirmer in a 20d × 20d square domain with periodic boundary
conditions in all directions. Two sets of Reynolds numbers were considered: Res = 0.01
and Res = 0.5. The swimming velocity of the squirmer was normalized to Us, as shown in
figure 5. As shown, the pusher is represented by β = −5, whereas the puller is represented
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L = 5d

Gravity

d

Reg

|U
T∗ |

10–1 100 101
0.75

0.80

0.85

0.90

0.95

1.00

1.05 Reg = 1: |UT | ≈ 0.99Ug

Figure 4. Normalized terminal velocity of a non-squirmer particle (i.e. |U∗
T | = |UT |/Ug) settling under

gravity in a 5d channel as a function of Reg. Note that |U∗
T | ≈ 0.99 at Reg = 1.
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β = 0 (neutral)
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–1.0
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–0.4

–0.2

–1.6

–1.4

–1.2

0

β = –5 (pusher)

β = 5 (puller)

(b)(a)

Figure 5. Time history of the normalized terminal velocities (UT /Us) of free-swimming squirmers in
a 20d × 20d square domain with periodic boundary conditions in all directions for (a) Res = 0.01
and (b) Res = 0.5, respectively. The width of the square domain is 20d.

by β = 5. It is clearly seen that the theoretical swimming velocity is achieved for each
type of squirmer at Res = 0.01 (figure 5a). In addition, there is no visible difference in
the time evolution of UT for all of the studied squirmers. Figure 6 (top row) shows the
streamline structures around each squirmer for the same Reynolds number. The upward
streamlines behind the pusher are generated by the ‘push’ action of the pusher from its
rear end, as shown in figure 6 (a, top row). Accordingly, the downward swimming motion
of the pusher generates downward streamlines ahead. The opposite behaviour is observed
for the puller, as shown in figure 6 (c, top row). In contrast, figure 6 (b, top row) shows
the streamlined structure around a neutral squirmer; it is similar to that of a non-squirmer
particle. Our results agree well with those of previous studies (Ouyang et al. 2018; Shen,
Würger & Lintuvuori 2018), confirming that the present computation method combined
with the choice of d = 40 can accurately resolve the swimming motions of squirmers.

The situation is different at low but finite fluid inertia (e.g. Res = 0.5), as shown in
figure 5(b). The pusher obtains a swimming velocity larger than Us(UT ≈ 1.5Us), whereas
the puller obtains a smaller swimming velocity (UT ≈ 0.7Us). In contrast, the neutral
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(b)(a) (c)

Figure 6. Streamlines around the squirmer at Res = 0.01 (top row) and Res = 0.5 (bottom row), respectively,
for: (a) β =−5 (a pusher), (b) β = 0 (a neutral squirmer) and (c) β = 5 (a puller). Note that the arrow on each
squirmer denotes its squirming axis or swimming direction (the same as below).

squirmer still swims at the theoretical speed at this Reynolds number. One possible
mechanism for these results is discussed in § 5.1. Note that the observations shown in
figure 5(b) are qualitatively consistent with those from previous numerical studies (Lin &
Gao 2019) and theoretical predictions (Khair & Chisholm 2014) for a spherical squirmer
freely swimming at low but finite Reynolds numbers. The corresponding streamlines are
shown in figure 6 (bottom row). It can be seen that, for both the pusher and puller, the
recirculation regions upstream are suppressed whereas those downstream are stretched
(owing to the higher swimming speed). However, no visible difference in the streamline
structures is observed for the neutral squirmer when Res = 0.5.

5. Results

The simulation results and discussion are provided in this section. To better illustrate the
interactions between two squirmers in a channel, an overview of the motion of a single
squirmer settling in a channel is presented in § 5.1. The interactions between the pullers
or pushers in the channel are examined in §§ 5.2 and 5.3, respectively. In particular, we
describe how a puller interacts with a pusher with different initial arrangements in § 5.4.
For all studied cases, the self-propelling strength factor ranges between 0.4 and 1.2, i.e.
0.4 ≤α ≤ 1.2, and the squirmer-type factor falls within [−5, 5], i.e. −5 ≤ β ≤ 5. The
results for small but non-zero α (e.g. 0 <α < 0.4) are not included in this study, because
gravity nearly dominates the motions of squirmers when α is small. This is beyond our
concern. However, the special case of α = 0, corresponding to the case of non-squirmer
particles, is included for the purpose of comparison.
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ReT ≈ 0.5 ReT ≈ 1.08 ReT ≈ 1.14 ReT ≈ 1.21

(b)(a) (c) (d )

Figure 7. Instantaneous streamlines around a non-squirmer particle or squirmer settling in the channel,
showing states of SDF for all cases: (a) α = 0 (non-squirmer), (b) β =−1 (α = 1.2), (c) β =−3 (α = 1.2)
and (d) β =−5 (α = 1.2). Each result was obtained when the particle/squirmer reaches its steady state. Also
shown in each panel is the terminal Reynolds number (ReT ), which is based on the terminal velocity of the
particle or squirmer. Note that the ‘trailing negative flow’ is seen behind the pusher, as shown in (b–d).

5.1. Overview of the sedimentation of a single squirmer in a channel
Figure 7 shows the instantaneous streamlines around a pusher (β =−1, −3 or −5) at a
steady state at α = 1.2. The results for a non-squirmer particle are shown in figure 7(a).
All cases in figure 7 exhibit a similar pattern, referred to as the ‘steady downward falling’
(SDF) pattern in this work. The most significant feature characterizing the flow around
a pusher may be the ‘trailing negative flow’ behind it, as seen in figure 7(b–d). The
‘trailing negative flow’ exhibits an opposite direction as the pusher moves downward,
becoming stronger and getting closer to the pusher with increasing |β|. The terminal
Reynolds number (ReT ) based on the terminal velocity UT is also indicated for each case
in figure 8. It is clear that the UT of the pushers is more than twice that of the non-squirmer
particle. In addition, the UT is larger for a pusher with a larger |β| when the self-propelling
strength factor remains the same (i.e. α = 1.2); this is associated with the ‘trailing negative
flow’. The stronger the ‘trailing negative flow’, the larger the reversed thrust the pusher
experiences.

For the settling of a single puller (β > 0), the situation is quite different. Figures 8 and
9 show the instantaneous streamlines around a puller (β = 1, 3 and 5) at α = 0.6 and 1.2,
respectively. The case of a neutral squirmer is also included for comparison (figures 8a
and 9a). The puller exhibits a steady state of falling downward at β = 5 for both values
of α (figures 8d and 9d), similar to the behaviour of a pusher (figure 7). However, in this
case, the ‘negative flow’ leads the puller. The puller gains a reversed thrust owing to the
‘leading negative flow’, resulting in a decrease in its terminal velocity (as demonstrated by
the terminal Reynolds numbers indicated in figures 8a and 8d or 9a and 9d). No ‘negative
flow’ is observed for the neutral squirmer (figures 8a and 9a). This also explains why
the puller and pusher reach different swimming velocities at a higher Res, as shown in
figure 5(b).
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Steady Steady Oscillating Steady

ReT ≈ 0.78 ReT ≈ 0.23 ReT ≈ 1.06 ReT ≈ 0.73

(b)(a) (c) (d )

Figure 8. Instantaneous streamlines around a squirmer settling in the channel at α = 0.6 for (a) β = 0 (SDF),
(b) β = 1 (SIF), (c) β = 3 (LSO) and (d) β = 5 (SDF). For β = 3, the result when the puller reaches its rightmost
position was chosen. Note that the ‘leading negative flow’ is seen ahead of the puller for β = 5, as shown
in (d).

ReT ≈ 1.05 ReT ≈ 0.0075 ReT ≈ 1.04 ReT ≈ 0.95

Steady Steady Oscillating Steady
(b)(a) (c) (d )

Figure 9. Instantaneous streamlines around a squirmer at α = 1.2 for (a) β = 0 (SDF), (b) β = 1 (SIR),
(c) β = 3 (SSO) and (d) β = 5 (SDF). For β = 3, the result when the puller reaches its leftmost position was
chosen. Note that the upward arrow in (b) indicates that the squirmer eventually rises (the same as below). The
‘leading negative flow’ is seen ahead of the puller for β = 5, as shown in (d).

In contrast, at β = 1, the puller ultimately reaches a steady state of inclined falling
(α = 0.6, figure 8b) or inclined rising (α = 1.2, figure 9b), with its orientation upward.
These patterns are referred to as ‘steady inclined falling’ (SIF) and ‘steady inclined rising’
(SIR), respectively. One possible reason for these inclined patterns is provided below. In
particular, no steady state is achieved at β = 3 for the puller, which instead undergoes
a periodic motion in the channel with a large scale (α = 0.6, figure 8c) or that with
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Figure 10. Time history of the horizontal position as well as the orientation of a puller (β = 3) at (a) α = 0.6
and (b) α = 1.2, illustrating the LSO and SSO patterns, respectively. Note that the horizontal position and
orientation of squirmers are normalized through X* = X/d and φ * =φ/π (the same as below).

small scale (α = 1.2, figure 9c), designated here as ‘large-scale oscillating’ (LSO) and
‘small-scale oscillating’ (SSO) patterns, respectively. The SSO pattern was reported and
referred to as the ‘attracted oscillatory mode’ in a previous study (Ouyang & Lin 2022).

To better illustrate the LSO and SSO patterns, figure 10 shows the time series of the
puller’s horizontal position (X* = X/d) and orientation (φ * =φ/π) at β = 3 for α = 0.6
and α = 1.2, respectively. It is observed that for α = 0.6, the puller moves from one channel
wall (X* = −2) to the other (X* = 2), with its orientation varying approximately from
−π/2 to π/2 (figure 10a). Therefore, the pattern of the LSO is characterized by a large
variation in its displacement, as well as a large variation in its orientation. In contrast,
figure 10(b) shows the SSO pattern with a puller oscillating around a line close to a channel
wall (i.e. X* =−2), with small amplitudes in both its displacement and orientation.

It seems that pullers (β > 0) are more likely to lose their stability than pushers (β < 0)
or neutral squirmers (β = 0) under the same conditions (see figures 7–9). Regarding the
issue, we show the pressure contours around squirmers of different types (β =−5, 0, and
5) at α = 1.2 in figure 11. For these cases, the same state (SDF) is ultimately realized.
As shown in figure 11(b), the pressure distribution of the neutral squirmer is similar to
that of a non-squirmer particle (not shown here), with high-pressure and low-pressure
regions observed before and behind it, respectively. For the pusher, however, significant
high-pressure regions are seen both before and behind it, whereas low-pressure regions
are located at both lateral sides of the pusher (figure 11a). Accordingly, the pressure
distribution around the puller exhibits the opposite trend (figure 11c). Therefore, a puller
may experience large repulsive forces exerted on its lateral sides as it settles downward
in a channel, resulting in an unstable situation. Once the symmetrical configuration of
a puller is broken, it may change into a state of SIF (figure 8b), SIR (figure 9b), LSO
(figure 8c) or SSO (figure 9c). This usually occurs at a small or intermediate β value for
the puller. However, at a large value of β, the wall-repulsive effects become strong, owing
to the significant high-pressure regions. This suppresses the puller from deviating from the
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Figure 11. Instantaneous pressure distribution around a squirmer showing the SDF pattern at α = 1.2:
(a) β =−5, (b) β = 0 and (c) β = 5. Note that the pressure is normalized through p∗ = ( p − p∞)/(ρU2

T ),
where p∞ represents the pressure of the undisturbed flow.

βc3 = 3.67α–0.5

0.4 0.6 0.8

α

1.0 1.2

1

2

3β

4

5

βc2 = 1.26α–1 + 1.1

βc1 = –0.03α–4.5 + 4.5

Figure 12. Summarization of the patterns of motion for a puller settling in the channel in the parametric space
(α, β). Each pattern of motion is characterized by one symbol (the same as below). Circle, SDF; plus, LSO;
square, SSO; filled gradient, SIF; open gradient, SIR. Note that the boundaries between regions of different
patterns (i.e. βc1, βc2 and βc3) were obtained through the least-square scheme.

channel centreline in the presence of a flow disturbance (figures 8d and 9d). In addition,
we can predict from figure 11 that two pushers attract each other when in a side-by-side
arrangement, whereas two pullers repel each other. This is consistent with the findings of
Götze & Gompper (2010), who simulated the motion of a pair of squirmers using MPCD.
To address the motion of a single puller more clearly, we conducted extensive simulations
and summarized the patterns in the parametric space (α, β), as shown in figure 12.

As shown in figure 12, five patterns are revealed according to both self-propelling
strength (α) and squirmer type factor (β): SDF, LSO, SSO, SIF and SIR. Three boundary
limits (indicated by βc1, βc2 and βc3) were obtained through the least-squares scheme
based on the boundary data between regions of different patterns. For β ≥βc1, the puller
maintains its initial symmetrical configuration, and exhibits the SDF pattern of regardless
of α. On the opposite side, it is widely observed that the puller loses its stability at
the channel centreline before it regains it somewhere close to the channel walls when
undergoing the SIF or SIR pattern, depending on both α and β.
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0.5
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Figure 13. Dimensionless oscillating frequencies (Strouhal number, i.e. St = f ∗d/Ug where f is the frequency)
of a puller undergoing an LSO or SSO motion. The symbols (plus, LSO; square, SSO) are identical to those
used in figure 13.

Moreover, figure 12 shows the SSO pattern for the puller at intermediate values of β

(βc2 < β < βc3). In particular, it is rare to find the LSO pattern for a puller, which occurs
in a very narrow range of β approximately centred at βc2, as shown in figure 12. Notably,
no LSO-like pattern was reported for a puller in a 2d channel (Ouyang & Lin 2022).
In addition, the two oscillating patterns differ not only in their amplitudes but also in
their frequencies, as shown in figure 13. This provides a comparison of the dimensionless
frequency (Strouhal number, St) for the SSO and LSO patterns. It can be observed that St
is much smaller for the LSO pattern than for the SSO pattern. Furthermore, the oscillating
frequency exhibits opposite trends with increasing β for the two patterns (figure 13).

As stated above, the pusher (β < 0) maintains its initial symmetrical configuration and
exhibits the SDF pattern for all values of α and β studied here in the initial downward
orientation, i.e. φ*(0) = 0. To provide references for the study of the interactions between
squirmers, we conducted extra simulations for a pusher at another initial orientation, i.e.
φ*(0) = 0.1. The patterns are summarized in figure 14. Five similar patterns are revealed
for the pushers, which are represented by the same symbols used in figure 12. Figure 14
indicates that the SDF pattern only exists at a large |β| for the pusher, similar to the case of
a puller. In contrast, for almost every β falling within [−4, −2], the pusher undergoes LSO
or SSO motions, depending primarily on β. However, the inclined patterns (SIF and SIR)
are only observed at β = −1. Notably, the present LSO is similar to the ‘oscillatory mode’
for pushers reported by Ouyang & Lin (2022). Ahana & Thampi (2019) also revealed
that weak pushers (small |β|) confined in a channel may undergo an oscillatory trajectory
spanning the channel width. This type of swimming pattern can potentially be used to
enhance the mixing of suspensions in microfluidic channels at low Reynolds numbers
(Najafi, Raad & Yousefi 2013; Jalali, Khoshnood & Alam 2015).

As shown in figure 14, a pusher may also form a stable inclined structure adjacent to its
nearby wall, corresponding to the SIF or SIR patterns. However, a significant difference
is observed between the pusher and puller, as shown in figure 15. The former has an
outward orientation, whereas the latter has an inward orientation. This difference is also
visible in the SSO pattern for both squirmers. To address this point, we mark all the forces
experienced by each squirmer in figure 15. For the pusher, to achieve a stable structure,
a self-propelling force is needed to balance the attractive force owing to the significant
low-pressure regions on its left side. This requires the pusher to swim outward (figure 15a).
Note that Berke et al. (2008) experimentally studied the distribution of swimming bacteria
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0.4 0.6 0.8
α

1.0 1.2

–5

–4

–3β

–2

–1

Figure 14. Summary of the pattern of a pusher’s motion in the parametric space (α, β) for φ*(0) = 0.1. The
same symbols as those in figure 13 are used, i.e. circle, SDF; plus, LSO; square, SSO; filled gradient, SIF; open
gradient, SIR.

–40 20 80

Gravity

Buoyancy

Self-propelling

Pressure

p∗:

Pressure
Buoyancy

Gravity

Self-propelling

Pressure

Pressure

(b)(a)

Figure 15. Instantaneous contours of normalized pressure at steady state (SIF) at α = 0.6 for (a) a pusher
(β =−1) and (b) a puller (β = 1). To illustrate the orientations of the squirmers, schematic diagrams of the
forces experienced by each squirmer are also shown.

(E. coli) between two glass plates and found significant attraction of the bacteria by
the surfaces. From a theoretical perspective, Berke et al. (2008) proposed that it is the
hydrodynamic interactions with the walls that lead to the reorientation of the bacteria in
the direction parallel to the walls and the attraction. This is qualitatively consistent with
figure 15(a) when we consider the difference between the shapes of our pushers (circular)
and the actual bacteria E. coli (spheroidal with lengths of approximately 2–3 μm and
diameters of approximately 1 μm, as indicated by Koch & Subramanian 2011).

In contrast to the pusher, the puller needs to swim inward to ensure that its
self-propelling force balances the repulsive force resulting from the high-pressure regions
on its left side (figure 15b). For the swimming cells such as algae Chlamydomonas which
are pullers, Berke et al. (2008) predicted the attraction mechanism as well: they will simply
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β = 5 (puller)

β = 0 (neutral)

|U ∗
T |

0.4 0.6 0.8 1.0 1.2

1.0

1.5

2.0

2.5

β = –5 (pusher)

α = 0

α

|U ∗
T | = 1.22α + 0.95

|U ∗
T | = 0.73α + 1.02

|U ∗
T | = 0.92α + 1

(18a)

(18b)

2 4

γ

6 8
1.5

2.0

2.5

Puller

Neutral

Pusher

(18c)

(b)(a)

Figure 16. Terminal velocity of a squirmer (|U∗
T | = |UT |/Ug, the same as below) settling in the channel as a

function of (a) α (when γ is fixed at 5) and (b) the channel width (when α is fixed at 1.2). All of the fitting
curves indicated in the figure were obtained through the least-square scheme.

crash into the walls. This is consistent with our observation for pullers. The low-pressure
regions are located at the top and bottom of a puller (see figure 12c), so it may be attracted
by nearby wall as it is reoriented in the direction perpendicular to the wall when the
gravity-driven settling is not taken into account. This looks like that the puller crashes
into its nearby wall.

Finally, we show the terminal velocities of squirmers of different types (β =−5, 0 and
5) as a function of α (when γ is fixed at 5) and the channel width (when α is fixed at 1.2) in
figure 16. Notably, for all cases in the figure, the squirmer ultimately reaches the SDF state,
except for β = 5 at γ = 8, for which the puller is seen to be steadily settling in the channel
for a long time before changing to the SSO motion. To make a reasonable comparison,
we adopted the steady velocity of the puller before the onset of the SSO for this case.
It is clearly seen that the terminal velocity increases linearly with α (0.4 ≤ α ≤ 1.2) for
all types of squirmers, with a larger growth rate for pushers and smaller rate for pullers,
as shown in figure 16(a). Note that the terminal velocity of the squirmers is normalized
by Ug, that is, |U∗

T | = |UT |/Ug. It should be stated here that for all cases considered the
Reynolds numbers are so small (ReT < 2) that the flow is dominated by viscous effects.
This gives rise to a linear relationship between the squirmer velocity and the driving force
of squirmer. For a larger α, both the ‘trailing negative flow’ and the ‘leading negative flow’
become stronger, resulting in a larger difference in the |UT | values between a puller and
pusher (figure 16a).

In contrast, the terminal velocity shows distinct trends upon varying the channel width
(5 ≤ γ ≤ 8) for different squirmers, as shown in figure 16(b). This suggests different wall
effects on the motions of different types of squirmers. For the pusher, |UT | monotonically
increases with γ ; however, for the puller, it shows a slow decreasing trend when γ > 4.
In particular, it appears that the terminal velocity remains constant when γ > 4 for a
neutral squirmer. This indicates that among all types of squirmers, the pullers are the
most sensitive to walls when the other conditions remain the same. Similar rational
formulations, i.e. (5.1a)–(5.1c), were found to fit our simulation results excellently for all

960 A31-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

15
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.155


Two-dimensional study on the motion and interactions

–10 0 10p∗:

(e)(b)(a) (c) (d )

Figure 17. Instantaneous streamlines and pressure contours around two settling pullers at different times at
β = 2.3 for α = 1: (a) t* ≈ 0.5, (b) t* ≈ 1, (c) t* ≈ 5, (d) t* ≈ 8 and (e) t* ≈ 11.

squirmers (figure 16b)

|U∗
T | = (2.48γ 2 + 8.63γ + 21.66)/(γ 2 + 3.16γ + 17.92), (5.1a)

|U∗
T | = (1.85γ 2 − 1.47γ + 11.27)/(γ 2 − 1.4γ + 8.04), (5.1b)

|U∗
T | = (1.49γ 2 − 2.14γ + 17.42)/(γ 2 − 2.46γ + 12.36). (5.1c)

5.2. When a puller (β > 0) meets another puller (β > 0)
In this section, we examine the interactions between two identical pullers settling under
gravity in a 5d channel. Figure 17 shows the instantaneous streamlines and pressure
distributions around the two settling pullers (β = 2.3) at different times for α = 1.

It can be seen that the pullers attract each other in the initial stage, owing to the
low-pressure region between them (figures 17a and 17b). After the collision, the upper
puller (referred to as ‘squirmer 2’ in figure 3) turns its orientation upward, and is driven
to move toward the right wall. The lower puller (referred to as ‘squirmer 1’ in figure 3),
however, remains in its downward orientation, and moves toward the other wall instead
(figures 17c and 17d). Owing to their opposite orientations, the pullers quickly separate
from each other (figure 17d). Our results show that the upper puller ultimately achieves
the SIR state, whereas the lower puller undergoes LSO motion.

The different behaviours of the two pullers (figure 17) are not sensitive to the collision
strategy ((2.11) or (2.12)). To verify this point, we performed additional simulations for
the same values of α and β while choosing different stiffness parameters, i.e. εp and εw.
The trajectories of the upper puller are shown in figure 18(a). There are small differences
between the present computations using εp = εw = 10−3 and those obtained using 10−5
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εp = εw = 10–7

Ishikawa et al. (2007): α1 = 0.1, α2 = 100

Ishikawa et al. (2007): α1 = 1, α2 = 100
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X ∗
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(b)(a)

Figure 18. Effects of (a) collision parameter and (b) initial arrangement on the trajectory of the upper puller
(i.e. squirmer 2 shown in figure 3). The repulsive force model (2.12) which is in exponential form was also
checked in (a). The same α and β as those in figure 17 were chosen. The small circles represent the initial
positions of the upper puller. Note that the initial position of the lower puller (referred to as ‘squirmer 1’ in
figure 3) remains unchanged for all cases studied.

or 10−7. However, the collision parameters do not change the patterns of the squirmers,
as demonstrated in our previous studies (Nie & Lin 2019, 2020; Nie et al. 2021). This is
also true when the other repulsive force model (2.12) was taken into account. Note that
the model (Ishikawa et al. 2007, 2008) is in exponential form, completely different from
the algebraic one we adopted here (Glowinski et al. 2001). In addition, we checked the
influence of the initial arrangements by varying the initial position of the upper puller
while keeping that of the lower one unchanged. Selected results are shown in figure 18(b),
and show the same solution (SIR) as that obtained from the initial arrangement indicated in
figure 3 or its symmetrical counterpart, despite the fact that the upper puller was released
from various positions. Correspondingly, the lower puller undergoes an LSO motion for all
settings, as indicated in figure 18(b). Therefore, the patterns revealed here are applicable
to various initial configurations.

Our results indicate that both pullers are likely to gain a stable structure adjacent to
their nearby channel walls (i.e. SIF or SIR) after they interact or collide with each other,
especially at a large α. Figure 19 shows the instantaneous streamlines around two settling
squirmers at steady states at different values of β for α = 1, i.e. the same α as in figure 17.
β = 0 corresponds to neutral squirmers. Both figures 17 and 19 suggest that the pullers
may change their orientations noticeably when they come to contact, qualitatively in
accord with previous studies (Ishikawa et al. 2006, 2007). The SIF pattern is seen for
both squirmers at small values of β (figures 19a and 19b), whereas the SIR is seen at
large values of β (figures 19c and 19d). In addition, squirmers are more inclined with
respect to the channel walls at larger values of β. The reason is explained as follows. The
larger the value of β , the more significant the high-pressure regions on the lateral sides
of a puller (see figure 11c). As a result, the pullers need to be more inclined to attain
a larger horizontal component of the self-propelling force to achieve a stable structure
(see figure 15b). In particular, neutral squirmers showed no visible inclination when they
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(a) (b) (c) (d )

Figure 19. Instantaneous streamlines around two settling squirmers at steady state for α = 1: (a) β = 0
(neutral), (b) β = 1, (c) β = 3 and (d) β = 5.

reach a steady state in the channel (figure 19a). This is reasonable, because there are no
significant low-pressure or high-pressure regions on the lateral sides of a neutral squirmer,
unlike in the case of a puller or pusher (see figure 11). As a result, there is no need
for a neutral squirmer to incline its swimming direction to attain a stable configuration.
Figure 19 also indicates that the squirmers come closer to their nearby walls at a larger β.
The primary reason for this is provided below. For a puller, low-pressure regions can be
seen at its front (figure 11c); these turn into an attractive force when the puller is inclined
to its nearby wall (see also figure 15b). The attractive force becomes stronger at a larger β,
causing the puller to move closer to the wall.

To provide greater insight into the interactions between squirmers (β ≥ 0), we performed
a large number of simulations. The patterns of the lower and upper squirmers are
summarized in figures 20(a) and 20(b), respectively. The same symbols as those used
in figure 12 are adopted except for the symbol of the cross (X), a new symbol used to
represent a new pattern for which the squirmers interact with each other all the time and
oscillate in the channel. Note that the oscillations are non-periodic. This new pattern is
beyond the scope of this paper. It is clearly seen from figure 20 that the squirmers (β ≥ 0)
settle separately in the channel while exhibiting the same or different patterns for all α

and β values considered, except for those indicated by X (small β at 0.4 ≤ α ≤ 0.9). This
is significantly different from the situation in which two non-squirmer particles settle
under gravity in a channel at similar Reynolds numbers. Previous studies (Feng, Hu &
Joseph 1994; Nie & Lin 2019) have indicated that non-squirmer particles may form a
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Figure 20. Summary of the patterns of two interacting squirmers (β ≥ 0) in the channel in the parametric
space (α, β): (a) lower squirmer (squirmer 1) and (b) upper squirmer (squirmer 2). Note that all the symbols
(plus, LSO; square, SSO; filled gradient, SIF; open gradient, SIR) are identical to those in figure 12 except for
a new one, i.e. the symbol of the cross ‘X’, which was used here to represent a pattern of squirmers oscillating.

stable staggered configuration in which they rotate in the same direction at Re ∼ O(1).
Further increasing the Reynolds number may lead to a periodic motion of particles or
drafting–kissing–tumbling (DKT) interactions between the particles (Feng et al. 1994).
Notably, no DKT motions are observed for any of the cases considered here.

The interactions between pullers have significant influences on the motion of both
pullers as compared with figure 12 (showing the patterns of a single one). Interestingly,
there is no SDF pattern for either puller (figure 20). This is primarily because the pullers
always attract each other once they are released and eventually collide with each other
(see also figure 17). Then, both pullers, which are initially moving downward, change
their orientations, leading to patterns other than SDF. The close contact of the pullers
changes their respective orientations in different manners, with the upper one always
facing upward, whereas the lower one may remain downward or face upward depending
on β at a certain α (figure 20). Consequently, the upper puller is always attracted by its
nearby wall and reaches a steady inclined state (SIF or SIR), as shown in figure 20(b). The
boundary between the SIF and SIR regions can be approximately formulated by a linear
function related to a critical β, i.e. βc4(α), as indicated in figure 20(b) (with its value
decreasing with α). In contrast, it is the lower puller exhibits the LSO pattern for a narrow
range of β; this can still be accounted for by the same formulation βc2(α), as indicated in
figure 12. However, the SSO pattern only exists at β values slightly larger than βc2, which
differs from figure 12, suggesting that the pullers are highly likely to lose stability and give
rise to oscillating motions at intermediate values of β. In general, an inclined state (SIF
or SIR) is largely observed for the lower puller, owing to its interactions with the upper
puller.

5.3. When a pusher (β < 0) meets another pusher (β < 0)
Compared with the case for pullers, the interactions between two pushers are much
simpler, and are in accordance with the observation of a single squirmer as discussed
in § 5.1. In general, only the SDF pattern is observed for the pushers. Figure 21 shows the
instantaneous streamlines and pressure contours around two pushers (β = −3) at different
times for α = 1.2. The pushers repel each other once they are released in the channel owing
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–20 0 20p∗:

(a) (b) (c) (d )

Figure 21. Instantaneous streamlines and pressure distributions around two settling pushers (β =−3) for
α = 1.2 at different times: (a) t* ≈ 1, (b) t* ≈ 10, (c) t* ≈ 40 and (d) t* ≈ 100.

to the high-pressure regions between them (figure 21a,b), which is contrary to the case
with the pullers (figure 17). As the upper pusher moves farther away, the ‘trailing negative
flow’ behind the lower pusher becomes more significant (figure 21c,d), further driving
the pushers apart from each other. Figure 22 shows the instantaneous streamlines around
two pushers with different β values at t* ≈ 100. Figure 22(a,b) suggests that the ‘trailing
negative flow’ is not the basic reason for the repulsion of the pushers. At small values
of |β|, no visible ‘negative flow’ is seen behind the lower pusher; it becomes visible at
larger values of |β| and helps to accelerate the separation of the pushers, as indicated in
figure 22(c,d).

Our simulations show that the pushers move farther away from each other over time. In
other words, the pushers will never come close to each other, owing to the high-pressure
regions between them (figure 21). To address this point, we present the time history of
the distances between the pushers at different values of β for both α = 0.6 and 1.2 in
figure 23. The distance is normalized by d, i.e. S* = S/d. It is clearly seen that S* increases
monotonically with time for all cases considered. In particular, a similar slope is obtained
at t* > 10 at a large |β| (e.g. |β| ≥ 3) for either α.

5.4. When a puller (β > 0) meets a pusher (β < 0)
In this section, we examine the interactions between the puller and pusher. We only
consider two situations: a pusher initially placed above a puller, and its opposite. For
simplicity, the squirmers are assumed to have the same value of |β|. Figure 16 indicates
that a pusher always moves faster in a channel than a puller if it has the same value of
|β|. Accordingly, for the former situation, it is commonly observed that the pusher (say
β = −5) approaches the puller (say β = 5) once they are released from rest, and ultimately,
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(b)(a) (c) (d )

Figure 22. Instantaneous streamlines around settling pushers at t* ≈ 100 for α = 1.2: (a) β = −1, (b) β =−2,
(c) β =−4 and (d) β =−5.
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Figure 23. Time history of the normalized distances (S* = S/d) between pushers at different β for (a) α = 0.6
and (b) α = 1.2.

a stable doublet is formed, as shown in figure 24. For comparison, the case of non-squirmer
particles is also shown in figure 24(a).

Our results also indicate that the doublets remain stable for a very long time (t* > 500)
before the computations are terminated. They may collapse at the end, but this was not
observed. In addition, the doublet formed by squirmers moves much faster than one formed
by non-squirmer particles. For instance, the terminal velocity of the doublet for α = 0.8 is
more than twice that for α = 0 (non-squirmer particle).

Another significant feature in the flow around a doublet concerns the absence of the
‘leading negative flow’ before the puller (figure 24b–e). The ‘trailing negative flow’,
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ReT ≈ 0.7 ReT ≈ 1.07 ReT ≈ 1.26 ReT ≈ 1.46 ReT ≈ 1.65

(b)(a) (c) (d ) (e)

Figure 24. Instantaneous streamlines around settling doublets at steady state: (a) α = 0 (non-squirmer),
(b) α = 0.4, (c) α = 0.6, (d) α = 0.8 and (e) α = 1. Note that the doublet consists of a pusher (β =−5, upper)
and a puller (β = 5, lower) for α > 0 (the same as below).

however, is visible behind the doublet for all values of α (α > 0). To address this issue, we
show the instantaneous streamlines and contours of the vertical fluid velocity (normalized
by Ug, i.e. v∗ = v/Ug) during the initial stage at α = 1.2 in figure 25. In fact, the ‘leading
negative flow’ is visible before the doublet at t* ≤ 0.2, whose intensity decays quickly,
as reflected by the magnitude of the vertical fluid velocity (figure 25a–c). At t* ≈ 0.3, the
‘leading negative flow’ completely disappears as the doublet is finally formed (figure 25d).
The reason is simple. The settling velocity of the puller increases as the pusher comes
closer to it, driving the ‘leading negative flow’ farther away from the puller, as shown in
figure 25(a–c). As the doublet is formed, the puller attains a much larger velocity than
that of itself without the presence of a pusher (see figures 8d and 24c). In addition, the
resulting accelerated doublet also drives the ‘trailing negative flow’ farther behind, whose
intensity is significantly reduced (figure 25d).

When a puller is initially above a pusher (corresponding to the second situation), the
squirmers are always observed to separate from each other at the initial stage, because a
pusher moves faster than a puller at the same |β|. It was shown in § 5.1 that a pusher always
achieves a steady state (i.e. SDF) at the channel centreline if it is initially facing downward.
However, this may not be the case if a puller is trailing. As shown in figure 12, a puller is
very likely to lose its initial symmetrical configuration and subsequently exhibit different
patterns; this may alter the steady state of a pusher below, owing to their interactions. To
provide a quantitative analysis, we summarized the patterns of interacting squirmers for
the second situation, and show them separately in figure 26. It can be seen that the pusher
achieves the SDF pattern only at large values of |β| (figure 26a), because the puller above
settles steadily along the channel centreline at the same |β| (figure 26b). Except for the
SDF pattern, the pusher is largely seen to undergo an oscillating motion (LSO or SSO)
at intermediate |β| values, or to reach an inclined state (SIF or SIR) at small |β| values
(figure 26a). These results are very similar to those of figure 14, which shows the patterns
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–0.5 0.5v
∗
:

(b)(a) (c) (d )

Figure 25. Instantaneous streamlines around two settling squirmers (upper pusher: β =−5, lower puller:
β = 5) and contours of the vertical fluid velocity during the initial stage for α = 1.2: (a) t* ≈ 0.03, (b) t* ≈ 0.08,
(c) t* ≈ 0.2 and (d) t* ≈ 0.3. Note that the vertical velocity of fluid is normalized through v∗ = v/Ug.

of a pusher with non-zero initial orientations. In contrast, the puller always exhibits an SIF
or SIR pattern at these values of |β| (figure 26b). In particular, the effects of interactions on
the motion of the puller are clearly indicated by the results marked with a grey background
in figure 26(b); these are designated as the LSO or the SSO in figure 12, which summarizes
the patterns of a single puller in the same channel. However, the interactions between
the squirmers show no influence on the motion of the pusher, in contrast to figure 14.
For additional details, we present the results for interacting squirmers (a puller with β = 3
and pusher with β =−3) at α = 0.8 in figures 27 and 28.

Figure 27 shows the time histories of the horizontal and vertical positions of
the squirmers at t* ≤ 180. The instantaneous streamlines around the squirmers at the
representative times are illustrated in figure 28. It is clear that the pusher loses its stability
at t* ≈ 30, the same time at which the puller departs from the channel centreline, as
indicated by their horizontal positions in figure 27(a). Subsequently, the puller quickly
changes to an oscillating motion (SSO) near the left wall (figure 28b). In contrast, it takes
a much longer time (t* > 115) for the pusher to finally realize a LSO motion (figure 27a).
Figure 28(c) shows the corresponding streamlines. Before t* = 115, the distance between
the squirmers increases with time as the pusher attains a larger settling velocity, as
indicated in figure 27(b).

The onset of the LSO motion leads to a significant drop in the settling velocity of the
pusher, leading to the fact that the puller settles faster than the pusher. This is confirmed
by figure 27(b), which shows a decreasing trend in the distance between the squirmers
at t* > 115. The puller finally approaches the pusher at t* ≈ 150 (figures 27b and 28d).
After contact, the puller turns its orientation upward and ultimately reaches a steady state
(SIR) near the right wall (i.e. X* = 2) instead of oscillating. In contrast, the pusher retains
its oscillating motion (LSO) in the channel (figures 27a and 28e). Because the puller has

960 A31-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

15
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.155


Two-dimensional study on the motion and interactions

+

+

+

++

+

+

+

+

+

+

+

+

–5

0.4 0.6 0.8

α

β

α
1.0 1.2 0.4 0.6 0.8 1.0 1.2

–4

–3

–2

–1

1

2

3

4

5

(b)(a)

Figure 26. Summary of the patterns of interacting squirmers in the parametric space (α, β) for the situation
where a puller is initially placed above a pusher: (a) the pusher and (b) the puller. As a reminder, each pattern
represented by one symbol is reiterated as follows. Circle, SDF; square, SSO; plus, LSO; filled gradient, SIF;
open gradient, SIR.

an upward orientation while the pusher remains downward, the two squirmers begin to
separate once again (t* > 150), as indicated by figure 27(b).

6. Summary

We conducted a numerical study on the motions and interactions of squirmers in a
vertical channel using two-dimensional lattice Boltzmann simulations. In addition to the
squirmer-type factor (β), another control parameter, namely the self-propelling strength
factor, was introduced as α = Us/Ug. In this calculation, Us denotes the steady swimming
velocity of a squirmer, and Ug represents the gravity-driven settling velocity of a
non-squirmer particle with the same diameter in a channel in the Stokes flow regime.
To better understand the interactions of the squirmers, we first considered the motion of
a single squirmer under gravity in a 5d (d is the diameter of the squirmers) channel at
0.4 ≤ α ≤ 1.2 and −5 ≤ β ≤ 5. Based on this, the interactions between two pullers (β > 0)
and two pushers (β < 0) in the same channel were successively investigated. Finally, we
considered the interactions between the pusher and puller. The summary of this study is
provided below.

(i) Results show that a single puller reaches a steady state (SDF) along the channel
centreline at a large β (β ≥βc1 where βc1 is a critical β). At β <βc1, the puller
is likely to lose its stability and symmetrical structure, owing to the high-pressure
regions on both lateral sides. Accordingly, an LSO motion is eventually achieved for
the puller when β is close to another critical value, that is, β ≈ βc2. In contrast, it
is observed that the puller undergoes an SSO motion at βc2 <β ≤ βc3, where βc3
denotes the third critical value of β. Otherwise, the puller achieves an inclined state
adjacent to its nearby wall, that is, the SIF or SIR pattern, depending on both α and
β. Notably, all of these critical β values (βc1, βc2 and βc3) are dependent on α.
In particular, an LSO motion rarely occurs for a puller, which differs from an SSO
motion in terms of the amplitudes in both the position and orientation of the puller.

The situation is much simpler for a pusher or neutral squirmer, which always
reaches a steady state (SDF) when initially facing downward (i.e. at zero initial
orientation). A pusher may undergo an oscillating motion (LSO or SSO) or achieve
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Figure 27. Time history of the positions of the pusher (β = −3) and the puller (β = 3) at α = 0.8:
(a) horizontal component and (b) vertical component.

an inclined state (SIF or SIR) at non-zero initial orientations. However, for the
inclined patterns, a distinct difference is found between different squirmers, with a
puller facing toward its nearby wall and a pusher facing outward from its nearby wall.
This is primarily caused by the different pressure distributions around the different
squirmers.

For the SDF pattern, the terminal velocity of a single squirmer increases linearly
with α for all types of squirmers. For a fixed α, the pusher always moves faster
than the puller, whereas the neutral squirmer is in between. The primary reason is
associated with the ‘leading negative flow’ before a puller and ‘trailing negative
flow’ behind a pusher, which become more significant at larger values of β. A puller
experiences a reversed thrust from the ‘leading negative flow’ as it falls, resulting
in a decrease in its settling velocity. However, the ‘trailing negative flow’ does the
opposite to a pusher. There is no ‘negative flow’ for a neutral squirmer. Different
types of squirmers show different trends in their terminal velocities with increasing
channel width.

(ii) The interactions between two pullers are complex. The SDF pattern observed for
a single puller at a large β does not exist in this situation. For most cases of two
squirmers (−5 ≤ β ≤ 5) released in a channel, they may interact with each other for
a certain time, but in the end, they settle in the channel separately while exhibiting
the same or different patterns of motion. In general, our simulations show that both
pullers begin to attract each other once they are released from rest, owing to the
low-pressure regions between them. They may quickly come into contact. After that,
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(e)(b)(a) (c) (d )

Figure 28. Instantaneous streamlines around the settling squirmers at α = 0.8 at different times showing the
interactions between a pusher (β = −3) and puller (β = 3): (a) t* ≈ 10, (b) t* ≈ 40, (c) t* ≈ 130, (d) t* ≈ 150
and (e) t* ≈ 160.

the upper puller attains an upward orientation and reaches an inclined state (SIF or
SIR, respectively). However, the lower puller undergoes an LSO motion at β ≈βc2,
similar to the case of a single puller. In particular, the SSO motion occurs only
at some values of β that are slightly larger than βc2. Otherwise, the lower puller
exhibits an SIF or SIR pattern.

(iii) In comparison with pullers, the interactions between two pushers are simple.
Only the SDF pattern is observed for both pushers in all studied cases. Pushers
always repel each other and begin to separate once they are released, owing to the
high-pressure regions between them. In addition, the ‘trailing negative flow’ behind
the lower pusher, which becomes strong at larger values of β, is seen to further
increase the separation between the pushers.

(iv) Regarding the interactions between a puller and pusher, two situations were
considered: a pusher initially leading a puller and its opposite. For both cases,
we assumed that both squirmers had the same |β|. In the former situation, the
pusher always approaches the puller, because the pusher moves faster than a puller
at the same |β|. Then, a stable doublet is quickly formed, and shows a noticeably
large settling velocity compared with the case of non-squirmer particles or a single
squirmer. In contrast, the latter situation is quite different. Both squirmers separate at
the initial stage. However, apart from the SDF pattern at large |β| values observed for
a single pusher at all values of |β|, the pusher may exhibit an oscillating motion (LSO
or SSO) at an intermediate |β| or an inclined state (SIF or SIR) at a small |β|, as a
result of its interactions with the puller. The most significant effect of the interactions
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on the puller is that there is no oscillating motion (LSO or SSO) for it, as compared
with the case of a single puller undergoing the LSO or SSO motion at intermediate
values of |β|. The reason for this is briefly explained below. The puller quickly turns
into an oscillating motion as it separates from the pusher. The pusher loses stability
and requires a long time to realize an oscillating motion. This significantly reduces
the settling velocity. Subsequently, the puller approaches it. After contact, the puller
turns its orientation upward, and ultimately reaches a steady state adjacent to its
nearby wall. However, the contact does not change the orientation of the pusher. In
other words, it remains downward, and continues to oscillate.

(v) It should be more interesting to perform three-dimensional analysis of squirmers
settling under gravity in a tube. In addition to the patterns exhibited by circular
squirmers, the extra dimension may allow different dynamical features to occur for
spherical squirmers (e.g. the spiral or zigzagging trajectory). On the other hand,
the gravity-driven motion of interacting squirmers at moderate Reynolds numbers
where the fluid inertia play an important role deserves more efforts. This becomes
our future work.
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