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AnexperimentalLagrangianstudybasedonparticletrackingvelocimetryhasbeencompleted
in an incompressible turbulent round water jet freely spreading into water. The jet is seeded
with tracers only through the nozzle: inhomogeneous seeding called nozzle seeding. The
Lagrangian flow tagged by these tracers therefore does not contain any contribution from
particles entrained into the jet from the quiescent surrounding fluid. The mean velocity field
of the nozzle seeded flow, 〈Uϕ〉, is found to be essentially indistinguishable from the global
mean velocity field of the jet, 〈U〉, for the axial velocity while significant deviations are found
for the radial velocity. This results in an effective compressibility of the nozzle seeded flow
for which ∇ · 〈Uϕ〉 /= 0 even though the global background flow is fully incompressible. By
using mass conservation and self-similarity, we quantitatively explain the modified radial
velocity profile and analytically express the missing contribution associated with entrained
fluid particles. By considering a classical advection–diffusion description, we explicitly
connect turbulent diffusion of mass (through the turbulent diffusivity KT ) and momentum
(through the turbulent viscosity νT ) to entrainment. This results in new practical relations
to experimentally determine the non-uniform spatial profiles of KT and νT (and hence of
the turbulent Prandtl number σT = νT/KT ) from simple measurements of the mean tracer
concentration and axial velocity profiles. Overall, the proposed approach based on nozzle
seeded flow gives new experimental and theoretical elements for a better comprehension
of turbulent diffusion and entrainment in turbulent jets.
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1. Introduction

Free shear flows, such as jets, wakes or mixing layers, are common flows in nature,
industry and the laboratory, with turbulence arising from mean velocity differences, i.e.
from shearing (Pope 2000). The incompressible free round jet, which is the flow studied
in this article, is a simple configuration generated by a high-speed fluid issuing from
a small source (nozzle) into a large reservoir with quiescent fluid. The jet eventually
grows into a flow which is statistically stationary, although inhomogeneous in space,
with a turbulent core surrounded by a slow (almost at rest) non-turbulent flow. Parcels
of fluid from the quiescent region are constantly crossing the turbulent/non-turbulent
interface (TNTI) feeding the jet (Cafiero & Vassilicos 2020; Zhou & Vassilicos 2020),
a process called entrainment (Corrsin & Kistler 1955; Philip & Marusic 2012). The
overall dynamics within the core of the jet therefore results from both contributions:
fluid parcels which have been injected through the nozzle together with fluid parcels
which have been entrained from the ambient. It can be observed in figure 1(a) where
fluid coming from the nozzle and fluid from the ambient are highly mixed. Figure 1(b)
presents a schematic of the jet and entrainment process with the notations used in the
following.

The major relevance for many natural and industrial systems (volcanic eruptions, sprays,
rocket exhaust, chemical injectors, etc.) together with remarkable properties of free round
jets have motivated numerous theoretical and experimental studies of this flow over almost
a century (Corrsin 1943; Hinze & Van Der Hegge Zijnen 1949; Corrsin & Uberoi 1950;
Wygnanski & Fiedler 1969; Panchapakesan & Lumley 1993a; Hussein, Capp & George
1994; Pope 2000; Schlichting & Gersten 2017). One of the most remarkable properties
revealed by these studies is that, sufficiently far downstream from the nozzle (typically
a few tens of nozzle diameters D), free round jets become self-similar with increasing
downstream distance z from the nozzle: the spatial dependence of velocity statistics
(including the mean and fluctuating axial and radial velocity profiles) can be simply
rescaled and expressed in terms of a single spatial variable η = r/z, where r is the radial
coordinate (note that due to axisymmetry, the statistics of free round jets are trivially
independent of the circumferential coordinate θ ). Interestingly, self-similarity does not
only hold for the kinematic properties of the jet, but also for its mixing properties. For
instance, if a passive scalar (temperature, dye, aerosol, etc.) is injected through the nozzle,
the streamwise evolution of the concentration field also exhibits self-similarity with
spatial profiles only dependent on the self-similar variable η = r/z (Dowling & Dimotakis
1990).

Self-similarity has profound consequences, both on physical properties and on the
development of reduced models for the jet. From the physical point of view, one of the
most celebrated consequences of self-similarity in a free round jet (associated with the
specific decay laws of that geometry) is for example that the turbulent Reynolds number
Re in the self-similar region is independent of the distance to the nozzle (Pope 2000). On
the modelling side, self-similarity combined with other relevant approximations (such as
the turbulent boundary-layer equations) allows derivation of analytical solutions for the jet
velocity and concentration profiles, in terms of effective turbulent transport coefficients
such as the turbulent viscosity νT and the turbulent diffusivity KT (related by the turbulent
Prandtl number σT = νT/KT ). These coefficients are crucial to model the turbulent mixing
of passive scalars injected through the nozzle (Batchelor 1957; Chua & Antonia 1990;
Tong & Warhaft 1995; Pope 2000; Chang & Cowen 2002). However, in spite of the
relatively deep knowledge achieved today on free round jets, important questions still
remain, even regarding such simple large-scale momentum and mass transport properties.
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Effective compressibility in a self-similar turbulent jet
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Figure 1. (a) Laser-induced fluorescence of a turbulent round water jet spreading into water (adapted from
Van Dyke (1982), based on Dimotakis, Miake-Lye & Papantoniou 1983). Fluorescent dye is injected through
the nozzle, thus white fluid comes from the nozzle and black fluid from the ambient. We can observe that
initially quiescent fluid is entrained up to the turbulent core of the jet. (b) Schematic of the jet with cylindrical
coordinates (z, r, θ) and velocity components U, V and W (two-dimensional projection of a three-dimensional
jet). The turbulent core of the jet is fed with entrained fluid.

In particular, the precise role of entrainment in the self-similar velocity and concentration
profiles, in the momentum and mass transport coefficients and in their eventual spatial
inhomogeneity is not yet elucidated.

From the seminal study of entrainment by Morton, Taylor & Turner (1956), numerous
studies have been realised to characterise it, from simulations (Mathew & Basu 2002;
Watanabe et al. 2016) to particle image velocimetry (Westerweel et al. 2005, 2009; Mistry
et al. 2016; Mistry, Philip & Dawson 2019) and particle tracking velocimetry (Wolf et al.
2012). Nevertheless, they have mainly focused on the dynamics of the TNTI and the
mechanisms in its vicinity by which ambient parcels of fluid get trapped into the core
of the jet, generally distinguishing the role of large-scale structures (engulfment) and
small-scale eddy motions (nibbling) (Philip & Marusic 2012). At this point, we can also
notice the works of Dopazo (1977) and Dopazo & O’Brien (1979) which ‘separate’ the
flow into turbulent and non-turbulent regions, leading to an analogous approach that our
Lagrangian-based study presented in the following, but from an Eulerian point of view. We
do not address here such, rather local, entrainment mechanisms, but rather question, from
a Lagrangian perspective (entrainment is innately Lagrangian), the impact of entrainment
on the global Eulerian properties of the turbulent core of the jet. In other words, when
describing the large-scale characteristics of the jet, such as the self-similar mean axial and
radial velocity profiles and the turbulent viscosity and diffusivity, can we distinguish (and
eventually separate) the contribution from fluid parcels which have been injected through
the nozzle (which we shall call in the following nozzle seeded particles) and that from
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fluid parcels which have been entrained into the jet (which we shall call in the sequel
entrained particles)? The question is far from rhetorical as in many practical situations
nozzle seeded and entrained particles are physically distinct, although coupled. It is the
case for instance of sprays, eruptions, chimneys, etc. where actual particles or parcels
of fluid carrying a passive scalar (concentration field, temperature, etc.) of interest are
injected solely through the nozzle although their subsequent spread is affected by their
coupling with the parcels of fluid entrained from the ambient medium. How deep into the
core of the jet do entrained particles influence the dynamics of nozzle seeded particles?
How substantial is their influence on the effective transport coefficients? In particular,
can we quantitatively measure and/or predict the influence of entrained particles on the
dispersion of nozzle seeded particles? Is this influence homogeneous in space or does it
impact differently the borders and the centre of the jet? Such are the questions we aim to
address in the present article.

In reference Eulerian measurements (such as hot-wire anemometry) carried out to
characterise turbulence in jets, both contributions are naturally entangled as the sensor
does not distinguish the origin (nozzle or ambient) of the fluid parcels it is probing. The
distinction between nozzle seeded and entrained particles is intrinsically Lagrangian as it
concerns specifically tagged particles according to the initial position of their trajectories.
In this respect, this distinction can also be investigated with Eulerian measurement
techniques based on particles, such as particle image velocimetry or laser Doppler
velocimetry, if they are used with the Lagrangian conditioning presented at the end
of the introduction, which is an inhomogeneous seeding situation. This inhomogeneous
seeding differs from the usual homogeneous seeding required to access truly Eulerian
fields. Effects of such an inhomogeneous seeding are known and generally classified,
in studies aiming at exploring global jet properties (Hussein et al. 1994; Martins et al.
2021) as sources of experimental bias. However, to the authors’ knowledge, no quantitative
physical understanding has been proposed to describe this bias. This metrological aspect
is an additional motivation to study the distinction between nozzle seeded and entrained
particles.

Beyond the fundamental or metrological aspect of disentangling the role of nozzle
seeded and entrained particles on the overall jet dynamics, this distinction is also of
relevance for applications such as particle-laden jets and the mixing of a passive scalar
injected within the jet. In such situations, particles (or substances) come from the nozzle
and get dispersed as they mix with entrained particles. Note that in particle-laden jets, the
dynamics of the particles may be further complicated by their finite inertia (related to their
finite size and/or density mismatch relative to the carrier flow). We do not address in the
present work the role of inertia, and will only consider the case of Lagrangian (without
inertia) tracers whose dynamics reflects that of fluid parcels. However, we will show in the
conclusion that some general ideas of our study are still relevant for jets laden with inertial
particles.

To achieve such a Lagrangian distinction, the present study focuses on the dynamics
of tracer particles solely injected through the nozzle of the jet (nozzle seeding), which
we compare with the known behaviour of the global Eulerian properties of the jet,
which naturally includes both (nozzle seeded and entrained) contributions. Our study
combines experimental measurements together with new theoretical formulations derived
specifically for the sole contribution of the flow tagged by nozzle seeded particles, and
accounting for mass conservation and self-similarity. By doing so, several remarkable
findings are obtained:
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Effective compressibility in a self-similar turbulent jet

(i) We experimentally show that the mean axial velocity profile associated with nozzle
seeded particles marginally differs from the global Eulerian profile. Whereas the
measured radial velocity profile of the flow tagged by nozzle seeded particles
is found to be compressible (i.e. non-divergence free): the continuity equation,
ensuring the zero divergence of the global Eulerian velocity field, is only fulfilled
if both nozzle seeded and entrained particles are considered together and not
separately.

(ii) This observation leads to the consideration of the tracer concentration field for the
continuity equation. A simple relation between the axial and the radial mean velocity
profiles of the nozzle seeded flow is found and, by comparison with its well-known
counterpart for the global Eulerian description of the jet, allows clear identification
of the contribution due to entrainment, up to the core of the jet.

(iii) By describing the dispersion of nozzle seeded particles as a classical
advection–diffusion process, we relate the turbulent diffusivity KT(η) (which is
assumed space dependent and self-similar) to the effective compressibility of the
nozzle seeded flow previously mentioned, hence to the entrainment process. Based
on this relation, we propose a novel approach to measure the spatial profile of
KT(η), which is found to depend on the mean axial velocity and tracer concentration
profiles. This approach can be extended to the estimate of the turbulent viscosity
νT(η), which follows a similar relation and thus is also related to entrainment.
Finally, combining these two quantities, we derive a simple expression of the
turbulent Prandtl number σT(η) which is experimentally measured.

In § 2, we present the experimental set-up and particle tracking methods used
to characterise the dynamics of nozzle seeded particles. Sections 3 and 4 provide
experimental and theoretical results for the mean axial and radial velocities of the
flow associated with nozzle seeded particles. In § 5, results about turbulent transport
coefficients based on the advection–diffusion model are reported. Finally, main
conclusions are summarised in § 6.

2. Experimental methods

2.1. Experimental set-up
A water jet seeded with particles was studied in the Lagrangian Exploration Module
(LEM) at the École Normale Supérieure de Lyon. The vertical water jet is injected with
a pump connected to a reservoir into the LEM, a convex regular icosahedral (20-faced
polyhedron) tank full of water. A schematic of the set-up is shown in figure 2. The jet is
ejected upwards from a round nozzle with a diameter D = 4 mm. At the nozzle exit, the
flow rate is Q � 10−4m3 s−1, generating an exit velocity UJ � 7 m s−1, and, in turn, a
Reynolds number based on the nozzle diameter ReD = UJD/ν � 2.8 × 104, with ν as the
water kinematic viscosity. An overflow valve releases the excess water from the top of the
tank at the same rate as injection from the nozzle. Experiments are performed at ambient
temperature.

The vertical position of the nozzle is chosen to observe a jet sufficiently far from the
walls to discount momentum effects from the LEM on the jet (Hussein et al. 1994), and
thus a free jet is observed. The interrogation volume spans 100 mm � z � 180 mm (25 �
z/D � 45) with the z axis along the jet axis and z = 0 the nozzle exit position. In this
region, the jet is self-similar (self-similarity holds for z � 15D) and the centreline velocity
is between 1 and 2 m s−1.
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Figure 2. Schematic of the experimental set-up. The three high-speed cameras are oriented orthogonal to the
brown faces.

The particles, seeding the jet during injection, are neutrally buoyant spherical
polystyrene tracers with a density ρp = 1060 kg m−3 and a diameter dp = 250 μm.
The reservoir is seeded with a mass loading of 0.05 % (reasonable seeding to observe
a few hundreds of particles per frame) and an external stirrer maintains homogeneity
of the particles. The quiescent water inside the LEM is not seeded, therefore tracked
particles are, in principle, only those injected into the measurement volume through
the nozzle. In practice, it is unavoidable that a few particles eventually end up being
resuspended in the surrounding fluid and reentrained within the jet. This could be caused
by several phenomena: the flow rate within the jet is growing with the axial distance due
to entrainment and thus part of the core of the jet cannot flow out and remains in the
LEM with some tracers; rarely, some particles can be detrained and reentrained later or,
in the same way, drift out due to their slight inertia or finite size effect. The main effect
is probably that, because between each movie we switch the jet on and off, while nearly
all the injected particles are eliminated in the overflow, some particles stay in the LEM
when the jet is switched off. The probed flow is therefore almost exclusively tagged by
nozzle seeded particles with a minor residual contribution of entrained particles (residual
homogeneous seeding). In the following, we will refer to this specific seeding as nozzle
seeding. Additional measurements with a homogeneous seeding in the whole volume of
the LEM (mass loading of 0.1 %) without nozzle seeding are also realised and will be
discussed too. The inlet valve is open some seconds before the recording, in such a way that
the jet is stationary but minimal particle recirculation occurs, ensuring a limited pollution
of the surrounding fluid with particles or any spurious background flow.

Three high-speed cameras (Phantom V12, Vision Research) mounted with 100 mm
macro lenses (Zeiss Milvus) are used to track the particles. The interrogation volume
is illuminated in a back-light configuration with three 30 cm square light-emitting diode
panels oriented one opposite to each camera. The spatial resolution of each camera
is 1280 × 800 pixels, creating a measurement volume of around 80 mm × 100 mm ×
130 mm. Hence, one pixel corresponds to approximately 0.1 mm. The three cameras are
synchronised via transistor–transistor logic (TTL) triggering at a frequency of 6 kHz for
8000 snapshots, resulting in a total record of nearly 1.3 s per run. A total of 50 runs are
performed to ensure statistical convergence.
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2.2. Particle tracking and post-processing
Lagrangian particle tracking requires three main steps to compute the tracks: particle
detection, stereoscopic reconstruction and tracking. A brief description of the method is
presented herein (the particle tracking source codes used for the present study are available
on request).

(i) Particle detection enables the measurement of positions of the centres of the particles
in the camera images by using an ad hoc process based on classical methods of image
analysis such as non-uniform illumination correction and centroid detection.

(ii) Stereoscopic reconstruction aims at finding the particle coordinates in three-
dimensional space by combining the two-dimensional views from the three cameras.
To achieve this, an accurate calibration is required, allowing the connection of pixel
coordinates to real world coordinates. A recent polynomial calibration developed
in Machicoane et al. (2019) and the matching algorithm by Bourgoin & Huisman
(2020) are used. The maximum tolerance of ray crossing for stereoscopic matching
errors (due to experimental noise such as pixel locking and thermal noise of the
camera CMOS sensor) is set to 50 μm, i.e. one fifth of the particle diameter.

(iii) Tracking of the particles through time transforms the cloud of points into
trajectories. This is obtained with a classical nearest neighbour approach to initialise
tracks and coupled with a predictive tracking based on a linear fit over the five
previous positions (Ouellette, Xu & Bodenschatz 2006; Viggiano et al. 2021).

Finally, the trajectories are smoothed by convolution with a Gaussian kernel and the
velocities are computed by convolving tracks with a first-order derivative Gaussian kernel
(Mordant, Crawford & Bodenschatz 2004). We stress that smoothing does not degrade the
temporal resolution for the velocity estimates presented here as the sampling frequency
of the cameras (6 kHz) oversamples the dissipation time scale τη between 0.3 and 0.8 ms
(Viggiano et al. 2021). Smoothing improves the signal-to-noise ratio of velocity estimates,
whose absolute accuracy is estimated (from small-scale Lagrangian increments statistics
(Viggiano et al. 2021)) to be of the order of 10−3 m s−1. Considering that the typical axial
velocity of the jet on the axis is 1 m s−1, this accuracy corresponds to a dynamical range of
velocity resolution of approximately three orders of magnitude. The corresponding error
bars in the mean velocity profiles discussed in this article are therefore of the order of the
size of the points in the plots and will be omitted.

The coordinate basis is adapted by coinciding the z axis with the jet axis and centring it
in the x and y directions. Positions and velocities are computed in adapted cylindrical
coordinates. A visualisation of tracks is shown in figure 3. It can be noted that most
trajectories come from the nozzle (where they are injected) and very few come from
the outside and correspond to particles entrained into the jet (visible in figure 3 as
radial trajectories towards the jet). The full data set is comprised of 3.5 × 106 trajectories
longer than or equal to four frames with a mean length of 29 frames, which corresponds
to 1.0 × 108 particle positions and velocities obtained from 50 independent runs. This
amount of statistics ensures sufficient convergence, in spite of the strong axial and radial
spatial conditioning we will use (axisymmetry of the configuration allows us to average
statistics over the circumferential component). As a consequence, all points of the velocity
profiles for the nozzle seeding experiments we will present result from averages taken over
several 103 or 104 points.

A more complete description of the hydraulic and optical set-ups as well as Lagrangian
particle tracking and post-processing methods is given in Viggiano et al. (2021) which
focuses on Lagrangian statistics in the same flow.
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Figure 3. A sample of tracks: 14 182 tracks longer than or equal to 50 frames (one colour per trajectory, one
film considered). The majority of the particles come from the nozzle, a few of them come from the tank.

3. Mean velocity field

We define the axial velocity U(z, r, θ, t) with z the axial coordinate, r the radial one, θ

the circumferential one and t the time. We also define the radial velocity V(z, r, θ, t) and
the circumferential velocity W(z, r, θ, t). The z axis is the jet axis and z = 0 is the nozzle
exit position (see figure 1b). The Eulerian statistics (i.e. time averaged statistics) of these
quantities (mean fields, Reynolds stresses, etc.) are well known through classical Eulerian
metrology, such as hot-wire or laser Doppler anemometry (Wygnanski & Fiedler 1969;
Panchapakesan & Lumley 1993a; Hussein et al. 1994; Pope 2000; Lipari & Stansby 2011).
Time average is denoted 〈·〉 and time averaged quantities are referred as mean quantities
(the studied jet is in a stationary state).

In the present study, we focus on the mean axial velocity field 〈U〉(z, r) (independent of
θ because of axisymmetry) and the mean radial velocity field 〈V〉(z, r) which is smaller
than 〈U〉 by one order of magnitude. The mean circumferential velocity 〈W〉 is zero
(experimentally it was found to be four orders of magnitude smaller than 〈U〉) because
we are considering a non-swirling jet. We will also investigate in the next section the mean
concentration field 〈ϕ〉(z, r) of nozzle seeded particles as they spread.

We shall distinguish in the sequel the Eulerian fields of the global jet, 〈U〉 and 〈V〉
(which would be measured with a homogeneous seeding), and the fields of the flow solely
tagged by nozzle seeded particles, which we denote 〈Uϕ〉 and 〈Vϕ〉 (other related quantities
would also be differentiated from those of the global jet with the subscript ϕ).

In practice, these fields are retrieved from the aforementioned Lagrangian experiments,
based on nozzle seeded particle trajectories. We consider all particles for all films and all
time steps, and bin the measurement volume to compute the mean axial or radial velocity
of all particles inside each bin. The resulting fields can be compared with the mean fields
from Eulerian measurements. Since the flow is only tagged with nozzle seeded particles,
we eventually expect to observe differences between the retrieved velocity field and the
Eulerian velocity field of the global jet: 〈U〉 /=〈Uϕ〉 and 〈V〉 /=〈Vϕ〉.

In the two following subsections, dedicated respectively to the mean axial and radial
velocity, we first recall the classical known properties of the mean Eulerian velocity field
(compiled in Pope 2000; Lipari & Stansby 2011), then we compare them with those
Lagrangian-based measurements.
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3.1. Mean axial velocity
We first recall known properties of the mean axial velocity in the self-similar region far
from the nozzle (approximately for z � 15D with D the nozzle diameter). We consider
the mean centreline velocity U0(z) = 〈U〉(z, r = 0), and its half-width r1/2(z) such that
〈U〉(z, r = r1/2(z)) = U0(z)/2. Self-similarity enables characterisation of the mean axial
velocity by these three relations

U0(z) = BUJD
z − z0

, (3.1)

with UJ the jet axial velocity at the nozzle, z0 a virtual origin and B a dimensionless
constant (typical values are z0 � 4D and B � 5.8 according to Pope 2000; Lipari &
Stansby 2011)

r1/2(z) = S(z − z0), (3.2)

with S a dimensionless constant (typical value is S � 0.094 according to Pope 2000; Lipari
& Stansby 2011)

f (η) = 〈U〉(z, r)
U0(z)

, (3.3)

which is the radial profile in its self-similar form with the dimensionless self-similar
coordinate η = r/(z − z0).

The self-similar mean axial velocity profile f must satisfy some constraints: by definition
f (0) = 1, while f ′(0) = 0 because f is even and smooth (the prime notation represents
the derivative with respect to the self-similar variable η). It is also expected to decrease
towards 0 as η increases (i.e. downstream and/or outwards the jet). However, no exact
analytical expression is known for f . Because the jet and other free shear flows are
slender flows, i.e. they do not extend far in the lateral direction and mainly extends
in the axial direction, the averaged turbulent boundary-layer equations are the usual
theoretical framework for the jet (Schlichting & Gersten 2017). Using these equations
as an approximation for the jet dynamics and assuming a constant (uniform) turbulent
viscosity (Pope 2000; Schlichting & Gersten 2017) (which will be further discussed in § 5
and Appendix B), an approximate analytical expression can be calculated for f leading to
a squared Lorentzian function

f (η) � (1 + Aη2)−2, (3.4)

with A = (
√

2 − 1)/S2. Experimentally, the squared Lorentzian profile is found to
reasonably hold near the jet centreline (η � 0.15), but to deviate from the measured
profile at larger η. This indicates that an accurate description of the self-similar mean
profile must account for the non-uniformity of the turbulent viscosity, which requires to
be experimentally determined. It is empirically found that an improved global fit of f is
obtained using a Gaussian function (So & Hwang 1986)

f (η) � e−Aη2
, (3.5)

with A = log(2)/S2.
The estimate of the mean field 〈Uϕ〉 (based on experimental trajectories with a nozzle

seeding) is performed in cylindrical coordinates (z, r, θ) and then averaged over θ (due
to axisymmetry) leading to statistics in the two-dimensional space (r, z). In practice, we
bin space in r and z every 0.5 mm and compute the mean axial velocity of the particles
inside each bin. For the self-similar profiles, we bin in η by steps of 0.01. Figure 4 shows
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Figure 4. Characterisation of the mean axial velocity field 〈Uϕ〉 based on trajectories with a nozzle seeding.
(a) Radial profiles of the mean axial velocity 〈Uϕ〉 (crosses: experimental points, solid lines: Gaussian fit).
(b) Mean centreline velocity U0ϕ(z) (crosses: experimental points, solid line: fit (3.1)). (c) Half-width r1/2ϕ(z)
(crosses: experimental points, solid line: fit (3.2)). (d) Self-similar profiles fϕ(η) (3.3) (crosses: experimental
points, solid line: fit (3.5)).

the radial profiles of the mean axial velocity 〈Uϕ〉(z, r) at different downstream positions
z, the axial evolution of the mean centreline velocity U0ϕ(z) and of the half-width r1/2ϕ(z)
and the self-similar profile fϕ(η) measured in our experiment when probing solely nozzle
seeded particles.

When comparing the nozzle seeded particle measurements with the classical Eulerian
relations given by (3.1), (3.2) and (3.3), we observe an excellent agreement. In
particular, self-similarity is very well satisfied, with a Gaussian self-similar profile fϕ
and fitting parameters Bϕ = 5.3 and Sϕ = 0.105 (Aϕ = 63), which are consistent with
those classically determined for the global Eulerian jet dynamics (Pope 2000; Lipari &
Stansby 2011). The value of Sϕ is found to be slightly larger than the values reported
in Eulerian measurements which usually span between 0.09 and 0.10 (Lipari & Stansby
2011), suggesting that the nozzle seeded particle profile is slightly wider than the actual
Eulerian profile. Despite this small difference, we will consider in the sequel that f � fϕ .

This first observation suggests that the axial dynamics of nozzle seeded particles
accurately represents the global axial Eulerian dynamics, even if entrained particles
are not probed. This will be further qualitatively discussed in the next subsection and
quantitatively justified in § 5. We will see in the next subsection that, on the contrary,
entrained particles play a crucial role in the mean radial velocity profile.

3.2. Mean radial velocity – an incompressibility paradox
We now perform the same study for the mean radial velocity. As previously done with the
mean axial velocity 〈U〉, we can define a self-similar profile for the mean radial velocity
〈V〉

g(η) = 〈V〉(z, r)
U0(z)

. (3.6)

Interestingly, in an incompressible jet, 〈U〉 and 〈V〉 are linked through the continuity
equation

∇ · 〈U〉 = 0, (3.7)

where 〈U〉 = 〈U〉ez + 〈V〉er. Combining (3.1) and definitions (3.3) and (3.6), the
continuity equation (3.7) can be rewritten as (Pope 2000)

η(ηf (η))′ = (ηg(η))′, (3.8)

which can be integrated to obtain the following general relation between the self-similar
mean radial and axial profiles for the global Eulerian dynamics of an incompressible free
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Figure 5. Self-similar profiles gϕ(η) (3.6) for a nozzle seeding (crosses: experimental points, solid line:
fit (3.10) with Aϕ = 63 previously found for fϕ(η)).

round jet:

g(η) = ηf (η) − 1
η

∫ η

0
xf (x) dx. (3.9)

Knowing that f (0) = 1 and f ′(0) = 0, we deduce that g(0) = 0, g′(0) = 1/2 and
g′′(0) = 0. Using the empirical Gaussian approximation (3.5) for f , (3.9) gives the
following approximated expression for g:

g(η) � ηe−Aη2 − 1 − e−Aη2

2Aη
. (3.10)

Figure 5 presents the experimental mean radial velocity profile gϕ(η) for the nozzle
seeding case (obtained as for the axial velocity, binning z in steps of 0.5 mm and η in
steps of 0.02), which is compared with the self-similar profile g(η) (3.10) expected for 〈V〉
from the previous incompressibility considerations for the global Eulerian profile. It can be
observed that, although the measured profiles of gϕ do hold self-similarity, they strongly
deviate from the expected self-similar incompressible profile for the global jet g. More
specifically, three points can be highlighted: (i) the amplitude of the measured maximums
of gϕ is twice that of the expected incompressible profile g, (ii) the measured profiles cross
zero at a much higher value of η and (iii) the slope at the origin (η = 0) of the measured
self-similar profile is 1 instead of 1/2.

Overall, contrary to the mean axial velocity profile which is essentially indistinguishable
between the nozzle seeding case and the global Eulerian field (fϕ � f ), the mean radial
velocity profile is strongly affected by the nozzle seeding up to the core of the jet
(gϕ /= g). Since the radial and axial velocity profiles are classically linked by simple
incompressibility considerations (as just discussed), and considering that the jet under
investigation does operate in incompressible conditions, this discrepancy may appear at
first sight as a paradox.

In order to rule out any possible experimental error as the origin of the major difference
observed between the measured profile with a nozzle seeding gϕ and the expected global
incompressible profile g, we performed experiments with an actual homogeneous seeding
in the whole volume of the tank. The measured radial profile g(η), shown in figure 6,
accurately matches the expected incompressible profile (3.10). Some discrepancy can be
observed for η � 0.2, which can be attributed to the fact that f is less well fitted by a
Gaussian function as it decreases towards zero. Moreover, with this homogeneous seeding,
we find S = 0.094 which is a usual value for S (Lipari & Stansby 2011).
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Figure 6. Self-similar profiles g(η) for a homogeneous seeding in the whole volume of the LEM without
nozzle seeding (crosses: experimental points, solid line: fit (3.10) with A = 79).

This therefore confirms that, when homogeneous seeding is used, global mean radial and
axial velocity profiles f and g are correctly retrieved by the particle tracking measurements
and found to be consistently related by the incompressibility constraint leading to (3.9),
while for nozzle seeding, fϕ � f but gϕ truly deviates from g and appears to not
comply with the incompressibility constrain. As a matter of fact, such an impact on the
seeding properties on the retrieved velocity profiles is well known by experimentalists
using a particle-based metrology (as stated in the introduction such as particle image
velocimetry or laser Doppler velocimetry). Martins et al. (2021) for instance report similar
observations for particle image velocimetry in an annular jet: axial velocity profiles are
almost indistinguishable between the two seedings while radial velocity profiles strongly
deviate. Such deviation is usually addressed simply in terms of an experimental bias
to be mitigated, but no quantitative physical explanation has been proposed. Section 4
presents a simple theoretical explanation (based on mass conservation and self-similarity
properties of the jet) of this apparent paradox. The proposed theory quantitatively
describes the experimental observations through an effective compressibility of the
velocity field associated with nozzle seeded particles. The physical origin of this effective
compressibility relies on the role played by entrained particles, not accounted for when
only nozzle seeded particles are tracked.

Before presenting these theoretical developments, we briefly discuss the qualitative
reasons of why nozzle seeding (compared with homogeneous seeding) may strongly
impact the radial profile g and not the axial profile f . The source of momentum in the
jet is the nozzle injection, which provides primarily axial momentum. Entrained particles,
which are captured in the jet by the inward transverse pressure gradient, are on the contrary
the main source of radial momentum. As they penetrate into the jet, entrained fluid parcels
eventually acquire an axial momentum, transferred from the nozzle seeded fluid parcels,
which in turn lose axial momentum, which results in the streamwise decay of the jet. In
the final steady state both the nozzle and entrained fluid parcels eventually equilibrate
to the same axial velocity, with almost indistinguishable profiles. On the contrary, the
radial velocity is expected to behave radically differently for nozzle and entrained particles.
Indeed, particles entrained from outside to inside the jet acquire a negative radial velocity
to reach the core of the jet and therefore contribute negatively to the global radial velocity
profile g. As they do so, mass and momentum conservation require fluid parcels from
the core of the jet to move outwards, with a positive radial contribution to g. Therefore,
when a homogeneous seeding is considered, the combination of these two contributions
(outward spreading and inward entrainment) eventually leads to the global radial profile
g (see figure 6), where spreading dominates in the centre (g(η) > 0 for η < 0.13) and
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entrainment dominates on the sides (g(η) < 0 for η > 0.13). When only nozzle seeded
particles are tagged, the inward contribution of entrained particles is not accounted in gϕ .
As a consequence, an overall hindering of the negative radial contribution associated with
those particles is expected, leading to a higher and mostly positive profile for gϕ , which
therefore considerably deviates from the global radial profile g as experimentally measured
(see figure 5).

We present in the next section a simple theoretical and quantitative justification for the
deviation between g and gϕ , based on mass conservation and self-similarity, explaining
the apparent compressibility of gϕ and explicitly giving the associated contribution of
entrainment to the global incompressible radial velocity profile g.

4. Effective compressibility of nozzle seeded profiles and entrainment

We qualitatively explained the differences between g and gϕ by the absence of the
contribution due to entrained particles in gϕ . We also pointed that, considering that f � fϕ
and that g as expressed in (3.10) comes directly from incompressibility considerations,
the discrepancy between gϕ and g implies that the measured mean velocity field 〈Uϕ〉
associated with nozzle seeded particles behaves as compressible, i.e. ∇ · 〈Uϕ〉 /= 0. This
is at first sight in contradiction to the experimental conditions as the free jet under
investigation is actually incompressible. The apparent compressibility of the flow tagged
solely by nozzle seeded particles is actually a simple consequence of the inhomogeneous
seeding (as presented in figure 6, with a homogeneous seeding in the whole experimental
volume, the retrieved velocity profiles do comply with incompressibility). In this section,
we rationalise this effective compressibility, giving an explicit relation between g and gϕ

which emphasises the contribution of entrained particles.

4.1. Nozzle seeding model
To account for effective compressibility and compute gϕ , we propose to generalise
the classical approach relating mean radial and axial velocity profiles through
incompressibility, in order to account for the inhomogeneity of the concentration field
(itself due to the inhomogeneous seeding).

We denote by ϕ(z, r, θ, t) the instantaneous concentration field of nozzle seeded tracers.
As we did for the mean axial and radial velocities, we consider the mean concentration
field 〈ϕ〉(z, r). The continuity equation for the mean concentration field 〈ϕ〉 and the mean
velocity field 〈Uϕ〉 imposes that

∇ · (〈ϕ〉〈Uϕ〉) = 0. (4.1)

Note that, because by definition Uϕ is exactly the advection velocity of the nozzle seeded
tracers (not including any eventually unknown random velocity perturbation, Uϕ is not
an Eulerian field), the continuity equation as written above for the mean (concentration
and velocity) fields is exact, as there is no additional diffusion term associated with the
transport of the tracers by the unperturbed advection velocity Uϕ . Note also that, for
a homogeneous seeding (i.e. 〈ϕ〉 independent of all spatial coordinates), (4.1) naturally
reduces to the classical incompressible relation ∇ · 〈Uϕ〉 = 0, which, however, does not
hold when 〈ϕ〉 is inhomogeneous, as for the case of nozzle seeded tracers investigated
here.

To solve (4.1), we first characterise the mean concentration field 〈ϕ〉(z, r). Figure 7
shows the main properties of 〈ϕ〉: the mean centreline concentration ϕ0(z) evolves as
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Figure 7. Characterisation of the mean concentration field 〈ϕ〉. (a) Centreline concentration ϕ0(z) (crosses:
experimental points, solid line: fit in 1/(z − z0)). Here, ϕ0 is the sum of the concentrations from all films
at all time steps, which explains the high values of ϕ0, but only the relative evolution along z is relevant.
(b) Self-similar profiles Φ(η) (4.2) (crosses: experimental points, dashed line: fϕ(η) previously measured). The
profiles of Φ(η) are wider than those of fϕ(η).

1/(z − z0) and we can define a self-similar profile

Φ(η) = 〈ϕ〉(z, r)
ϕ0(z)

, (4.2)

with ϕ0(z) ∝ 1/(z − z0). The fact that 〈ϕ〉 evolves as 〈U〉 can be justified by the behaviour
of a conserved passive scalar in a jet. Actually, it is known that, because the boundary-layer
equations for the mean axial velocity 〈U〉 and a scalar field 〈ϕ〉 are similar, a conserved
passive scalar scales with z in the same way as the mean axial velocity does, and the
self-similar profile is similar, usually wider (see Pope 2000). For the present concentration
field, the profiles of Φ are wider than those of f , this difference of width and also the shape
of Φ will be discussed in the next section.

From (4.1) and definition (4.2), we infer that self-similar profiles of mean concentration,
radial and axial velocity of nozzle seeded particles must satisfy the following relation:

Φ(η)[(ηgϕ(η))′ − η(ηfϕ(η))′] + η[gϕ(η)Φ ′(η) − fϕ(η)(ηΦ(η))′] = 0, (4.3)

which simplifies to
gϕ(η) = ηfϕ(η). (4.4)

The details of this calculation are given in Appendix A. It can be noticed that this result
does not depend on the exact shape of Φ: only the dependence of ϕ0(z) in 1/(z − z0) and
the self-similarity of Φ(η) are required.

Interestingly, the solution for the effectively compressible fields in the case of the nozzle
seeding turns out to be somehow simpler than the global incompressible case, as it does
not carry the additional term

ζ(η) = −1
η

∫ η

0
xf (x) dx. (4.5)

Going back to (3.9) and considering f = fϕ , we can see that the global mean radial velocity
profile (accounting for both nozzle seeded and entrained particles) can be written as the
sum of the profile of the nozzle seeded particles alone and this ζ term

g = gϕ + ζ. (4.6)

The ζ contribution can therefore be interpreted as the effect of entrained particles on the
global mean radial velocity profile of the jet. Its negative sign naturally reflects the inward
flux of particles due to entrainment. Therefore, we will refer to ζ as the entrainment term.
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Figure 8. Self-similar profiles gϕ(η) for a nozzle seeding (crosses: experimental points, solid line: fit (4.7)
with Aϕ = 63 previously found for fϕ(η)). This is the same figure as figure 5 but with the new fit (4.7).

4.2. Experimental validation
A first interesting property of (4.4) is that, as fϕ(0) = 1 by definition, then g′

ϕ(0) = 1.
This is agreement with the experimental slope of 1 observed in figure 5 for gϕ(η) at
η = 0. Considering a Gaussian function for fϕ , which was found in a previous section
to reasonably matches the experimental measurements, we have the expression

gϕ(η) � ηe−Aη2
. (4.7)

Figure 8 compares this expression with the experimental profiles for gϕ , showing a much
better agreement than the usual expression tested in figure 5 for the global profile g, with
not only the expected slope at the origin, but also a reasonable overall shape, at least up
to η � 0.2. The main noticeable difference concerns the negative part of the experimental
gϕ for the largest values of η, while the prediction given by (4.7) remains positive. This
negative part reflects the presence of an inward radial velocity in the outer regions of the
jet. This is very likely to be attributed to the presence of a few remaining particles in the
ambient fluid (not injected at the nozzle) being entrained into the core of the jet. As a
consequence, if some entrained particles are indeed tagged, it is expected that the radial
profile measured is not exactly gϕ but also carries some contribution due to the negative
entrainment term ζ . These few entrained particles with negative radial velocity may also
explain the slight overestimation of the maximum of the radial velocity profile prediction
compared with the experimental data. Despite this bias, experimental data globally support
the validity of relation (4.7) and hence of (4.4).

The validity of these relations is also tested on a separate data set from an independent
experiment, using similar methods at the Université Grenoble Alpes with a self-similar
round free air jet seeded with neutrally buoyant millimetric soap bubbles inflated with
helium (D = 2.25 cm, UJ � 25 m s−1, ReD � 3.7 × 104, dp = 2.5 mm). The advantage
of this set-up is that the jet blows in a very large room, and that helium filled soap bubbles
have a finite life time, so that experiments can be run with the warranty that no spurious
particles remain in the ambient fluid surrounding the jet. Mean axial and radial velocity
profiles for this experiment are represented in figure 9. The statistical convergence of this
new data set is not as accurate as for the water experiment and the accessible measurement
volume does not allow us to explore values of η above 0.3. However, it can still be seen
that no negative values of gϕ are measured and that the maximum of the experimental
profile matches very well the prediction in that case where entrained particles have been
totally avoided. The slight difference in the profiles between the air and water experiments
(for instance the maximum of gϕ in air is a bit larger than in water) are related to a slightly

947 A29-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

63
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.638


T. Basset and others

1.0

0.5

0.06

0.02

0.04

00 0.1 0.2 0.30.1 0.2 0.3

z (mm)
1245
1305
1365
1425f ϕ

(η
)

g ϕ
(η

)

ηη

(b)(a)

e–Aϕη2

ηe–Aϕη2

Figure 9. Characterisation of the mean velocity field for an air jet seeded through the nozzle with neutrally
buoyant soap bubbles. Self-similar profiles for mean (a) axial and (b) radial velocities (crosses: experimental
points, solid lines: fits (3.5) and (4.7) with Aϕ = 42).

different value of the fitting parameter Aϕ of the Gaussian fit for the mean axial velocity
profile fϕ , which could be linked to different geometries of the set-up or to the total absence
of entrained particles in the air jet.

5. Link with turbulent diffusion

Classical mean field approaches to describe the spreading of substances or particles in
turbulent flows usually rely on advection–diffusion modelling for the mean concentration
profile. In such approaches, the mean transport of the spreading particles is considered to
result from two contributions: the advection by the mean velocity 〈U〉 of the surrounding
turbulence and a diffusive velocity 〈Ud〉 modelling the mean field effect of unresolved
small-scale fluctuations. In such a framework, the mean velocity field of the transported
substance 〈Uϕ〉 can therefore be written as 〈Uϕ〉 = 〈U〉 + 〈Ud〉. This is schematically
represented in figure 10. In the previous section, we showed that the difference between
the global mean velocity field 〈U〉 and the actual mean velocity field 〈Uϕ〉 of nozzle
seeded particles is related to the entrainment mechanism through the entrainment term ζ

via mass conservation: ζ ensures the incompressibility of the global field (including both
the entrained and nozzle seeded particles), while the nozzle seeded particle velocity 〈Uϕ〉
is effectively compressible. The equivalence of these two approaches (advection/diffusion
and global flow/entrainment) to describing the spreading of nozzle seeded particles
suggests that the diffusive contribution in the former is therefore itself related to the
entrainment contribution in the latter.

The aim here is to link these two fields, 〈U〉 and 〈Uϕ〉, through the mean concentration
field of particles 〈ϕ〉, as previously presented in figure 7, with an advection–diffusion
model, in order to explicitly connect turbulent diffusion and entrainment.

5.1. Advection–diffusion equation with turbulent diffusivity KT

We consider that the tracers are, on the one hand, advected by the mean flow, and on the
other hand, spread by turbulence. Modelling this turbulent process as diffusive, we write

∇ · (〈ϕ〉〈U〉 − KT∇〈ϕ〉) = 0, (5.1)
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〈ϕ〉

〈U〉

Figure 10. Schematic of the nozzle seeding case with 〈Uϕ〉 = 〈U〉 + 〈Ud〉. The colour scale represents the
tracer concentration 〈ϕ〉. A first set of streamlines (dashed lines) is used to represent the mean trajectories of
the fluid parcels with the associated velocity field 〈U〉. A second set of streamlines (solid lines) represents the
mean trajectories of the tracers coming from the nozzle with the associated velocity field 〈Uϕ〉. Except on the
axis of the jet, the streamlines of the tracers differ from the jet streamlines due to the inhomogeneous nozzle
seeding. Thus 〈U〉 and 〈Uϕ〉 have the same axial component but different radial components. This difference
can be related to a transverse diffusive flow 〈Ud〉, as represented in the inset.

with KT the turbulent diffusivity. Equation (5.1) is the same as (4.1) with the relation
between 〈U〉 and 〈Uϕ〉

〈Uϕ〉 = 〈U〉 − KT
∇〈ϕ〉
〈ϕ〉 , (5.2)

where 〈Ud〉 = −KT(∇〈ϕ〉/〈ϕ〉 represents the aforementioned diffusive contribution.
With previous definitions for the self-similar mean axial and radial velocity fields and

mean concentration profile, and considering the decay law for the centreline velocity
from (3.1) (U0(z) = BUJD/(z − z0)), (5.2) leads to two expressions for the self-similar
mean axial and radial velocity profiles of the spreading particles

fϕ(η) = f (η) + KT(η)

BUJD

[
1 + η

Φ ′(η)

Φ(η)

]
, (5.3)

gϕ(η) = g(η) − KT(η)

BUJD
Φ ′(η)

Φ(η)
, (5.4)

where the first term in the right-hand side of both expressions accounts for advection
and the second for diffusion. At this stage, (5.3) and (5.4) are nothing but mathematical
expressions reflecting the a priori advection/diffusion decomposition of the particle
velocity in (5.2). To be physically relevant, they have to be consistent with the experimental
observations and the results of the mass conservation presented in previous sections for f ,
g, fϕ and gϕ .
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First, our experiments show that f � fϕ . To be consistent with (5.3), this requires the
second term of this relation to be negligible compared with f . Experimental measurements
of the turbulent diffusivity KT and of the self-similar mean concentration field Φ

(presented in the following) confirm the validity of this approximation (this term has the
same order of magnitude as g, thus it is more than one order of magnitude smaller than f ).

Second, to be consistent with (4.6), (5.4) implies that

KT(η) = −BUJD
Φ(η)

Φ ′(η)

1
η

∫ η

0
xf (x) dx. (5.5)

Thus, the turbulent diffusivity KT(η) is a self-similar quantity dependent on space and
expression (5.5) gives a practical relation to estimate it from the knowledge of simple
mean field quantities (namely mean concentration and mean axial velocity profiles) which
are easily measurable. This contrasts both with classical simplistic approaches assuming
a constant turbulent diffusivity and with the usual fundamental definition of turbulent
diffusivity, based on the cross-correlation between velocity and concentration fluctuations
(Pope 2000).

The parameter KT(η) as given by relation (5.5) is a dimensional quantity (with units
m2 s−1). Similarly to all other self-similar quantities characterising the jet, and as it is
done for turbulent viscosity, a dimensionless turbulent diffusivity K̂T can be defined

K̂T(η) = KT(η)/(U0(z)r1/2(z)) = −1
S

Φ(η)

Φ ′(η)

1
η

∫ η

0
xf (x) dx, (5.6)

which can ultimately be rewritten as

K̂T(η) = ζ(η)

Sχ(η)
, (5.7)

where ζ(η) = −(1/η)
∫ η

0 xf (x) dx has already been defined in (4.5) and shown
to be associated with entrainment, χ(η) = Φ ′(η)/Φ(η) characterises the persistent
inhomogeneity of the seeding and can be interpreted as a compressibility factor associated
with the flow of nozzle seeded particles and S = tan(δ) � δ with δ the semi-opening angle
of the jet cone based on r1/2.

Overall, relation (5.7) synthesises the connection between the a priori advection/
diffusion mathematical decomposition of particle velocity and the physical considerations
of mass conservation developed in previous sections by connecting the turbulent
diffusivity KT to (i) entrainment (via ζ ), (ii) apparent compressibility of the dispersing
phase (via χ ) and (iii) global spreading of the jet (via S). Note that a conceptually similar
connection between effective diffusivity and effective compressibility has been proposed
in the context of mixing in linear flows (Raynal et al. 2018).

5.2. Turbulent diffusivity and turbulent viscosity
The turbulent diffusivity KT and the turbulent viscosity νT are both effective transport
coefficients defined in the framework of a mean field description (transport of mass
for the first and of momentum for the second). They model the average contribution
of small-scale turbulence via cross-correlation terms of fluctuating quantities (〈uϕ′〉
for KT and 〈uv〉 for νT , with fluctuating quantities u = U − 〈U〉, v = V − 〈V〉 and
ϕ′ = ϕ − 〈ϕ〉 Pope 2000). This formal analogy between KT and νT , together with the
importance of νT for practical numerical modelling strategies (such as Reynolds-averaged
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Navier–Stokes (RANS) approaches) and the simplicity of the relations established in
the previous subsection allowing the estimation of KT from simple measurements of
mean field quantities, motivate us to further extend previous considerations (connecting
turbulent diffusivity to entrainment and mass conservation) in order to revisit formal links
between turbulent diffusivity and turbulent viscosity.

The relation between KT and νT is commonly written in terms of the turbulent Prandtl
number, σT = νT/KT , which compares the efficiency of momentum and mass transport.
Several studies have investigated the turbulent Prandtl number by studying for instance the
turbulent transport of conserved passive scalars such as temperature (Corrsin & Uberoi
1950; Chevray & Tutu 1978; Chua & Antonia 1990; Ezzamel, Salizzoni & Hunt 2015) or
concentration of chemical species (Papanicolaou & List 1988; Dowling & Dimotakis 1990;
Panchapakesan & Lumley 1993b; Lemoine, Wolff & Lebouche 1996; Chang & Cowen
2002), leading to values of σT of the order of unity (experimental values around 0.7 are
usually reported). However, there is no consensus about how σT exactly depends on space
and none of these studies explicitly address the question of a possible formal connection
with simple mean field quantities.

5.2.1. Uniform σT
In the case where σT is assumed to be uniform (independent of space), it can be shown
from the turbulent boundary-layer equations (see Schlichting & Gersten 2017) that

Φ(η) = f (η)σT or equivalently σT = log Φ

log f
. (5.8)

This relation combined with the expression of KT (5.6) leads to the following expression
for the turbulent viscosity:

ν̂T(η) = −1
S

f (η)

f ′(η)

1
η

∫ η

0
xf (x) dx. (5.9)

As for KT , νT can be inferred by simply measuring the profile f of mean axial velocity and
is analytically connected to the entrainment term ζ .

If we consider for instance a squared Lorentzian approximation (3.4) for f ,
expression (5.9) simplifies to a constant value

ν̂Lorentz
T = S

8(
√

2 − 1)
. (5.10)

This is expected, as the squared Lorentzian profile for f is known to be the exact solution
of the turbulent boundary-layer equations for a constant turbulent viscosity (Pope 2000)
(which is experimentally reasonable for η � 0.15). In addition, the relation found in (5.10)
between ν̂T and S coincides with the classical result when solving the boundary-layer
equations for a constant turbulent viscosity.

Expression (5.9) is, however, more general and remains valid beyond the constant
turbulent viscosity approximation (it still requires the turbulent Prandtl number to be
constant, however). In particular, if the Gaussian approximation (3.5) is considered for
f (η) (which is empirically known to better match the experimental self-similar profiles),
the following space-dependent profile is retrieved for the turbulent viscosity:

ν̂Gauss
T (η) = S

4 log(2)

1 − e−Aη2

Aη2 . (5.11)

This result is not new, and has been previously derived by So & Hwang (1986), who
propose a generalisation of the solution of the turbulent boundary-layer equations for a
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non-uniform turbulent viscosity. By considering different experimental functions used to
fit f , they argue that the Gaussian function is the best one to fit experimental profiles of
f and they analytically determine the expression for ν̂T for a Gaussian function, which is
exactly the same as (5.11).

At this point, we have therefore shown that formula (5.8) (valid in the case of a
uniform turbulent Prandtl number σT ) allows us to extend the connection established
in the previous subsection between turbulent diffusivity and entrainment, to turbulent
viscosity with relation (5.9). Besides, this quite general relation is found in agreement
with previous derivations, based on boundary-layer equations, for squared Lorentzian and
Gaussian mean axial velocity profiles. The next subsection generalises formula (5.8) to the
case of non-uniform σT .

5.2.2. Generalisation to non-uniform σT

In Appendix B, we show that the general equations (5.6) and (5.9) for K̂T(η) and
ν̂T(η), respectively, relating the self-similar profiles of turbulent diffusivity and turbulent
viscosity to the self-similar profiles of mean concentration Φ, mean axial velocity
f and entrainment term ζ , are actually the general solutions of the boundary-layer
equations.

Furthermore, we also conclude that these two relations remain valid even if the turbulent
Prandtl number σT(η) is not constant, and we show that

σT(η) = Φ ′(η)

Φ(η)

f (η)

f ′(η)
, (5.12)

is a generalisation of formula (5.8).
Altogether, beyond the conceptual interest of relating effective transport coefficients

in the jet to the entrainment process, relations (5.6), (5.9) and (5.12) are of great practical
interest as they allow determination of the spatial profiles of turbulent diffusivity, turbulent
viscosity and turbulent Prandtl number from the simple measurements of the mean axial
velocity profile and the mean concentration profile without requiring the measurement of
second-order correlations.

In the next subsection, we apply these relations to experimental measurements.

5.3. Experimental determination of KT, νT and σT

According to (5.6), (5.9) and (5.12), K̂T , ν̂T and σT can be experimentally determined from
the sole knowledge of the profiles of f and Φ (besides, only f is required to determine
ν̂T ). As these relations include the derivatives of f and Φ, instead of using the raw
experimental profiles, it is useful to consider functional fits of these, which can be more
easily manipulated.

(i) As already discussed, and as can be observed in figure 4(d), f is reasonably fitted by a
Gaussian function. However, for a better accuracy, we use the fitting function f (η) =
e−aη2

(1 + c2η
2 + c4η

4) introduced by Hussein et al. (1994) to fit their experimental
measurement of f (η) (they also use similar functions to fit the Reynolds stresses).
This Gaussian function corrected by a polynomial, although less practical, is closer
to the experimental points and leads to a more accurate estimate, in particular, of the
derivative f ′(η) which appears in the formula (5.9) for the turbulent viscosity. The
polynomial correction has a minor impact on the estimate of the integral entrainment
term ζ .
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0 0.1 0.2 0.3
η

0.05
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Φ(η)
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175
(5.13)

150
125
100

e–AΦη2

Figure 11. Self-similar profiles Φ(η) (crosses: experimental points, solid lines: fit (5.13) and Gaussian fit
with AΦ = 39). This is the same figure as figure 7(b) but with the new fit (5.13).

(ii) As can be observed in figure 11, the concentration profile Φ(η) is broader than
a Gaussian function for small values of η (typically η < 0.1) and steeper than a
Gaussian function for large values of η. We empirically find that a better function to
fit Φ(η) is

Φ(η) = erf((η + a)/b) − erf((η − a)/b)

2 erf(a/b)
, (5.13)

(green line in figure 11, to be compared with the Gaussian fit in light blue) where
erf(x) = 2/

√
π

∫ x
0 e−t2 dt is the error function and a and b the parameters of the fit

(here a = 0.126 and b = 0.102).

5.3.1. Determination of KT

Based on these fits for f and Φ, we compute the experimental profiles of K̂T(η)

from (5.6), which are shown in figure 12. Profiles are obtained for measurements at
different streamwise distances from the nozzle between z = 100 mm and z = 180 mm.
The solid line is the median value for all z positions along the axis, and the coloured
zone between the two dashed lines comprises 70 % of the measured values. The profile
of K̂T based on a Gaussian fit of Φ is also represented for comparison, showing that
small differences between the two fitting functions for Φ lead to large differences fin
the estimate of K̂T . A good determination of the profile of K̂T(η) therefore requires
an accurate measurement of Φ(η). Figure 12 indicates that the sensitivity to the fit is
particularly crucial near the centreline. This can be rationalised from (5.6), from which
it can be shown that K̂T(0) = −1/(2SΦ ′′(0)): the centreline value of K̂T(η) is related
to the curvature at the origin of Φ(η). This explains the underestimate of K̂T(0) from
the Gaussian fit, which is narrower than the error function fit (5.13). It also explains the
higher variability of the estimate of K̂T from the error function fit near the centreline when
data from all axial distances z are considered. Indeed, figure 11 shows that, although very
good, self-similarity is not perfect within the accessible range of distance from nozzle
(z/D � 45). In particular, a mild variation of the curvature at the origin of Φ(η) measured
at different downstream distances z can be seen. This sensitivity to small deviations from
self-similarity becomes, however, marginal away from the centreline. Overall, and in spite
imperfect self-similarity effects near the centreline (which can be expected to be improved
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0 0.1 0.2 0.3
η

0.05K̂T

0.10
Φ = (5.13)
Φ = e–AΦη2

Figure 12. Self-similar profile K̂T (η) based on two fits of Φ (solid lines: median values, coloured zones
limited by dashed lines: 70 % of the measured values).

in future studies exploring distances beyond z/D > 45), figure 12 shows that a reasonable
profile of K̂T can indeed be retrieved from (5.6) only requiring the determination of
mean concentration and axial velocity profiles. Few of such measurements of radial
inhomogeneity of turbulent diffusivity are available in the literature, mainly due to the
complexity of requiring simultaneous measurements of velocity and scalar fluctuations,
as classical estimates are based on velocity–scalar cross-correlations. The profile of K̂T in
figure 12 is in good agreement with such previous measurements in round free jets (Chua
& Antonia 1990; Lemoine et al. 1996; Chang & Cowen 2002).

5.3.2. Determination of νT

Similarly to K̂T , the turbulent viscosity ν̂T can be estimated from (5.9) knowing the mean
axial velocity profile f . Figure 13(a) shows the retrieved profile of the turbulent viscosity.
As for the turbulent diffusivity, estimates of ν̂T are obtained at various downstream
locations z. The solid line represents the median value for all z locations, and the coloured
zone within the dashed lines comprises 70 % of all measurements. The observed trend,
with a relatively constant value near the centreline and an outward decay as η increases, is
in good qualitative agreement with previous measurements based on the cross-correlation
of mean axial and radial velocity fluctuations as presented in Pope (2000). The centreline
value retrieved for ν̂T here, of the order of 0.3, is also in good agreement with the values
reported in these previous studies.

Interestingly, going back to the original definition of the turbulent diffusivity based on
the cross-correlation of mean axial and radial velocity fluctuations

ν̂T(η) = −(〈uv〉/U2
0)(η)

Sf ′(η)
, (5.14)

the previous estimate of ν̂T(η) can in turn be used to estimate the self-similar profile of
(〈uv〉/U2

0)(η). This is shown in figure 13(b), together with the direct measurements of this
quantity from the experimental measurements. It can be seen in this figure that, although
self-similarity is not perfectly reached yet within the range of accessible streamwise
distances, the profile of 〈uv〉/U2

0 for the farthest axial distance (corresponding to z/D �
45) approaches the profile predicted by (5.9). Concerning the fact that self-similarity of
〈uv〉/U2

0 is imperfect, it is actually known that when normalised by U2
0 (as classically

done) the Reynolds stress reaches self-similarity further downstream (typically beyond
z/D � 70 Ball, Fellouah & Pollard 2012) compared with mean velocity fields (Weisgraber
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0.2 0.3
η

0

0.02ν̂T

0.04

0.1 0.2 0.3
η

0 0.1

0.02
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Figure 13. (a) Self-similar profile ν̂T (η) based on relation (5.9) (solid line: median value, coloured
zone limited by dashed lines: 70 % of the measured values). Self-similar profile of (b) (〈uv〉/U2

0)(η)

and (c) (〈uv〉/max(〈uv〉))(η) (crosses and solid lines: experimental points, dashed line: fit based on the
relation (5.9) for ν̂T , dotted line: fit from Hussein et al. 1994).

& Liepmann 1998; Lipari & Stansby 2011; Khashehchi et al. 2013). Figure 13(b) shows the
profile of 〈uv〉/U2

0 fitted by Hussein et al. (1994) for their measurements at a streamwise
distance of the order of z/D � 70, which is found to be in good agreement with the trend
towards self-similarity of our measurements and with our prediction for the self-similar
Reynolds stress (note that their measurements stop at η � 0.2, hence their proposed fit is
not relevant beyond this radial position). Following the seminal works of Townsend (1976),
George (1989), Dairay, Obligado & Vassilicos (2015), Breda & Buxton (2018) and Cafiero
& Vassilicos (2019) have shown that, for jets and wakes, self-similarity for the Reynolds
stresses may be retrieved better and at earlier streamwise distances when normalised by the
local maximum of 〈uv〉, instead of U2

0. For the presently studied jet, such a normalisation
gives indeed a better self-similar collapse within the limited range of streamwise distances
z/D (see figure 13c). Using this more accurate alternative normalisation in the context
of the formalism developed in the present work is left for future studies. We note that for
practical application of the theory developed in this article to experimentally determine the
turbulent viscosity from relation (5.9), the classical normalisation (based on U2

0) remains,
however, of real pragmatic interest as it only involves measuring low-order statistics (mean
centreline velocity U0 and mean axial velocity profile f ) not requiring us to resolve
fluctuating velocities u and v.

5.3.3. Determination of σT
To finish, we propose here an estimate of the radial profile of the turbulent Prandtl
number σT . In a situation where σT = νT/KT would be uniform (independent of η),
according to relation (5.8) if f is assumed Gaussian (neglecting the aforementioned

947 A29-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

63
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.638


T. Basset and others

0

0.5σT

1.0

0.1 0.2 0.3
η

Figure 14. Self-similar profile σT (η) (solid line: median value, coloured zone limited by dashed lines: 70 %
of the measured values).

polynomial correction), then Φ should also be Gaussian, and the ratio of the half-widths
AΦ and A for Φ and f , respectively, directly gives an estimate of σT (Corrsin &
Uberoi 1950; Panchapakesan & Lumley 1993b; Ezzamel et al. 2015). Using such a
Gaussian approximation (light blue fit in figure 11), we obtain σT = AΦ/A = 0.62,
which is in good agreement with the usual experimental values around 0.7 (Pope
2000).

However, the deviation of the concentration profile Φ(η), while f (η) is quasi-Gaussian,
suggests that σT may not be considered as uniform. In this case, the profile of σT(η) can be
estimated with the generalised relation (5.12), from the simple knowledge of Φ and f . The
corresponding profile of σT is presented in figure 14. It is actually found to be dependent
on η, increasing between 0.4 near the centreline to an asymptotic value close to 0.8 as
larger radial distances, with an average value of the order of 0.6.

The trend of σT with η in previous works is not fully conclusive: Chevray & Tutu
(1978) and Chua & Antonia (1990) observe a slight increase of σT with η, while Chang
& Cowen (2002) report a nearly flat then decreasing profile. Direct numerical simulations
by Lubbers, Brethouwer & Boersma (2001) show a mild increase of σT with η while
those by van Reeuwijk et al. (2016) show a slight increase then decrease. The lack of
consensus regarding the radial dependency of σT may be related to the sensitivity of
the σT determination to experimental and numerical details. The broader-than-Gaussian
concentration profile Φ can for instance be interpreted as a possible effect of the finite
size of the particle injection point (at the jet nozzle in the present study), while studies
investigating the turbulent diffusion of a passive scalar such as temperature (Chevray &
Tutu 1978; Chua & Antonia 1990; Tong & Warhaft 1995) may consider injection points
closer to a point source, that seem to lead to Gaussian scalar profiles, and are hence
consistent with a relatively uniform profile of σT .

In this respect, while all studies are consistent regarding the order of magnitude of
σT and in particular regarding the fact that σT < 1 (i.e. scalar spreads at a slower rate
than momentum), the details of any eventual non-uniformity of σT and whether this is an
intrinsic property of the jet or a consequence of experimental/numerical protocols remain
to be further clarified. From this perspective, the relations established in the present study,
allowing the estimation of turbulent diffusivity, viscosity and Prandtl number from simple
measurement of mean concentration and velocity profiles, are particularly interesting for
future systematic investigations.
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6. Conclusion

Measurements of velocity fields were realised in a free round jet based on Lagrangian
tracer trajectories. By using a specific nozzle seeding (where only fluid particles emanating
from the nozzle are tagged and not those entrained into the jet from the surrounding fluid
at rest), the self-similar mean velocity profiles were found to differ from those of the global
jet (accounting for both, nozzle seeded and entrained fluid particles), in particular for the
radial velocity. More precisely, (i) the nozzle seeded profiles still preserve the self-similar
property of the jet, (ii) the self-similar mean axial velocity profile is not significantly
altered by the nozzle seeding compared with the global profile, (iii) the self-similar mean
radial velocity profile strongly deviates from the usual profile of the global jet.

By revisiting the classical considerations – connecting global mean axial and radial
velocity profiles through the incompressibility of the self-similar jet – in the more
general terms of mass conservation, we were able to quantitatively explain the modified
self-similar profile. The difference between the global profile and the nozzle seeded profile
allows us to specifically identify the contribution associated with the flux of entrained
particles to the global mean radial velocity, via a simple entrainment term ζ (4.5) solely
dependent on the self-similar mean axial velocity profile. This entrained contribution can
in turn be interpreted as an effective compressibility for the flow tagged by the nozzle
seeded particles. Interestingly, the influence of entrained particles on the mean radial
velocity profile is found to be significant up to the core of the jet.

We have then connected this global contribution of entrainment to the classical turbulent
advection–diffusion description of the jet. Under the hypothesis of self-similarity,
this allowed us to analytically relate turbulent diffusion (of mass and momentum)
to the previously identified entrainment term ζ . This results in simple analytical
relations (5.6), (5.9) and (5.12) for the turbulent diffusivity KT , the turbulent viscosity
νT and the turbulent Prandtl number σT allowing experimental determination of the
non-uniform spatial profiles of these quantities from the simple measurement of the
mean scalar (concentration) profile and the mean axial velocity profile. Interestingly, these
relations can be used even if the mean concentration and velocity profiles are measured
independently as, contrary to classical determinations of turbulent diffusivity based on
cross-correlations of velocity and scalar fluctuations, the present relations only require the
knowledge of each mean field separately, without requiring us to simultaneously measure
both fluctuating quantities. Therefore, beyond the fundamental interest of explicitly
connecting the entrainment process to turbulent diffusion properties of self-similar jets,
these relations can be of real practical interest to experimentally determine the associated
diffusion coefficients, including their eventual spatial non-uniformity. In particular, they
could help a simple systematic investigation of the non-uniformity of the turbulent Prandtl
number for which, while most studies (including the present work) converge to the fact
that it is lower than unity (meaning that passive scalar spreads slower than momentum),
its eventual spatial dependency remains to be clarified.

We would like to stress that the approach of the present study, based on a specific
inhomogeneous seeding of the flow, intimately connects Lagrangian and Eulerian
descriptions of the jet. It shows indeed how tagging particles with a prescribed initial
position from which all the Lagrangian trajectories originate affects the corresponding
Eulerian fields, which in particular may exhibit an apparent compressibility, even if
the global background flow is incompressible. The combination of such a Lagrangian
tagging with first principles such as mass conservation, and in the present case with
prescribed properties such as self-similarity, allowed us to gain new insight into the
role of entrainment in the mean spreading of the jet, eventually connecting turbulent
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diffusion properties to the aforementioned effective compressibility. From an experimental
perspective, our study develops and completes works on experimental bias due to
inhomogeneous seeding, such as the work by Martins et al. (2021) for particle image
velocimetry, by presenting a quantitative explanation of this bias for a turbulent round
jet.

It can also be noted that our study can be extended to the case of inertial particles.
In spite of their inertial nature, such particles, if inhomogeneously seeded (as in
particle-laden jet flows), will inevitably lead to similar apparent compressibility effects of
the velocity field of the particles. Indeed the continuity equation ∇ · (〈ϕ〉〈Uϕ〉) = 0 also
applies to inertial particles (although with different 〈ϕ〉 and 〈Uϕ〉 than those of tracers).
Such an inhomogeneous seeding compressibility effect will interplay with inertially
driven effective compressibility effects, such as the well-known preferential concentration
phenomenon (Monchaux, Bourgoin & Cartellier 2012). In this respect, although only the
case of tracers has been considered here, the present study is still relevant to the case of
inertial particles as it reveals a generic process at play in all sorts of particle-laden flows.
However, the diffusive model becomes questionable for inertial particles and should be
adapted.

In future studies, the present inhomogeneous seeding approach could be extended to
address higher-order turbulent statistics in self-similar jets. For instance, investigating
the Eulerian structure functions of the nozzle seeded flow compared with those of the
global jet could help in disentangling the roles of internal and external intermittency in
self-similar jets (Gauding et al. 2021). From a more Lagrangian perspective, having access
to longer trajectories (especially through numerical simulations) would enable one to study
separately the temporal dynamics of the nozzle seeded particles (from the nozzle to the
core of the jet) and of the entrained particles (from outside to inside the jet). This would
give access to a Lagrangian understanding of entrainment through the whole space, and
not only close to the TNTI. Finally, the approach could also be easily extended to other
free shear and/or self-similar flows, such as plane jets, wakes, mixing layers, homogeneous
shear flows, grid turbulence, etc. It may for instance help testing the hypothesis recently
proposed regarding the uniformity of the eddy viscosity for non-equilibrium scalings in
such flows (Cafiero, Obligado & Vassilicos 2020).
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Appendix A. Resolution of the nozzle seeding model

We need to solve the continuity equation

∇ · (〈ϕ〉〈Uϕ〉) = 〈ϕ〉∇ · 〈Uϕ〉 + 〈Uϕ〉 · ∇〈ϕ〉 = 0. (A1)

With the definitions of U0(z), ϕ0(z), fϕ(η), gϕ(η) and Φ(η) given in the main article, we
can show that

〈ϕ〉∇ · 〈Uϕ〉 = U0(z)ϕ0(z)
r

Φ(η)[(ηgϕ(η))′ − η(ηfϕ(η))′], (A2)

which leads to the usual incompressible solution, and

〈Uϕ〉 · ∇〈ϕ〉 = U0(z)ϕ0(z)
r

η[gϕ(η)Φ ′(η) − fϕ(η)(ηΦ(η))′]. (A3)

Thus, we get (4.3) given in the main article

Φ(η)[(ηgϕ(η))′ − η(ηfϕ(η))′] + η[gϕ(η)Φ ′(η) − fϕ(η)(ηΦ(η))′] = 0. (A4)

Equation (A4) can be rewritten as

Φ(η)gϕ(η) + η(Φ(η)gϕ(η))′ − η2(Φ(η)fϕ(η))′ − 2ηΦ(η)fϕ(η) = 0, (A5)

then
(ηΦ(η)gϕ(η))′ − (η2Φ(η)fϕ(η))′ = 0. (A6)

We integrate (A6) and simplify by ηΦ(η) (by considering η = 0, the constant of
integration is zero)

gϕ(η) = ηfϕ(η). (A7)

Appendix B. Turbulent quantities from boundary-layer equations

In a turbulent free round jet, the mean axial and radial velocity fields, respectively 〈U〉 and
〈V〉, are determined with the turbulent boundary-layer equations

(i) the continuity equation:
∂〈U〉
∂z

+ 1
r

∂(r〈V〉)
∂r

= 0, (B1)

(ii) and the Navier–Stokes equation

〈U〉∂〈U〉
∂z

+ 〈V〉∂〈U〉
∂r

= 1
r

∂

∂r

(
rνT

∂〈U〉
∂r

)
. (B2)

We use the Reynolds decomposition: U = 〈U〉 + u and V = 〈V〉 + v, and also the gradient
closure model 〈uv〉 = −νT(∂U/∂r) (see Pope (2000) or Schlichting & Gersten (2017) for
the determination of these equations). Equation (B2) is the most simplified writing of the
Navier–Stokes equation, and neglects in particular terms in 〈u2〉, 〈v2〉 and 〈w2〉. Hussein
et al. (1994) experimentally discuss these approximations, and show that it leads to a slight
underestimation of 〈uv〉 and νT .

Three quantities are unknown: 〈U〉, 〈V〉 and νT , with only two equations. Thus, we
cannot solve the system but we can write one quantity as a function of one other, especially,
we can determine νT as a function of 〈U〉, or, with the relations introduced in the main
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article, ν̂T as a function of f . We show in the main article than the continuity equation (B1)
leads to a relation between f and g

g(η) = ηf (η) − 1
η

∫ η

0
xf (x) dx. (B3)

Equation (B2) can be rewritten with f and g

− η[ f (η)(ηf (η))′ − g(η)f ′(η)] = S(ην̂T(η)f ′(η))′. (B4)

We remove g with (B3), and the left-hand side term is

−
[
ηf 2(η) + f ′(η)

∫ η

0
xf (x) dx

]
, (B5)

which can be rewritten as

−
[

f (η)

∫ η

0
xf (x) dx

]′
. (B6)

Thus integration of (B4) gives

ν̂T(η) = −1
S

f (η)

f ′(η)

1
η

∫ η

0
xf (x) dx. (B7)

In the same way, the momentum equation for a conserved passive scalar is

〈U〉∂〈ϕ〉
∂z

+ 〈V〉∂〈ϕ〉
∂r

= 1
r

∂

∂r

(
rKT

∂〈ϕ〉
∂r

)
. (B8)

A similar solution leads to

K̂T(η) = −1
S

Φ(η)

Φ ′(η)

1
η

∫ η

0
xf (x) dx. (B9)

Thus, νT and KT are determined with independent calculations, and the general formula
of σT is

σT(η) = νT(η)

KT(η)
= Φ ′(η)

Φ(η)

f (η)

f ′(η)
. (B10)
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