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Abstract. Bai [1] gave an intrinsic integral inequality for compact minimal
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Bai’s result to the case of pseudo-umbilical submanifolds.
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1. Introduction. Let V"™ be an (n + p)-dimensional Riemannian manifold of
constant curvature a. Let M" be an n-dimensional Riemannian manifold immersed
in V"7 Let h be the second fundamental form of the immersion, and & the mean
curvature vector. Denote by (-, -) the scalar product of V7. If there exists a func-
tion A on M" such that

(h(X,Y), 8 = 1X,Y), (1.1)

for any tangent vector X, Y on M", then M" is called a pseudo-umbilical sub-
manifold of V' Tt is clear that A > 0. If the mean curvature vector & = 0 iden-
tically, then M" is called a minimal submanifold of V"*7. Every minimal
submanifold of V" is itself a pseudo-umbilical submanifold of V"*7. Z. G. Bai
[1] gave an intrinsic integral inequality for compact minimal submanifolds of V"7
as follows.

THEOREM A. Let M" be an n-dimensional compact minimal submanifold of
(n+ p)-dimensional constant curvature Riemannian manifold V'P. Then

/ ”{pZR?jk,-i- 2p Y R:—R*—n(3p —2n+2)aR} * |
> n’(n — 1)(n — p — Da*Vol(M™), (1.2)
where ZR?I.,(, is the square length of the Riemannian curvature tensor, ZRIZ/ is the
square length of the Ricci curvature tensor and R is the scalar curvature.

In this paper, we extend Theorem A to the case in which M" is pseudo-umbilical.
We shall prove the following result.

THEOREM. Let M" be an n-dimensional compact pseudo-umbilical submanifold of
V1P, Then
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f {r ZRl/kl +2p Z R2 — R> —n(3p — 2n+2)aR — n(3p — 2n)H*R
+2n*(n — DpaH? + 2n*(n — VaH? + n’pH* — n*H*) % 1
> n*(n— 1)(n — p — Da*Vol(M"), (1.3)

where H is the mean curvature of M".
If H=0,i.e. M" is minimal, then (1.3) becomes (1.2).

2. Local formulae. In this paper, we shall make use of the following convention
on the ranges of indices:

]SA337C7"'Sn+p; lfl.vjskv"'fnv n+1§a,ﬂ7]/7“'§n+p,

and we shall agree that repeated indices are summed over the respective ranges.

We choose a local field of orthonormal frames ey, - -, e,4, in V"*” such that,
restricted to M", ey, -+, e, are tangent to M". Let w, -+, w4, be its dual frame
field. Then the structure equations of V" are given by

deZ—E wyp N wp, wyp+wpqg =0,

1
doyp = _Z(UAC/\CUCB“‘EZKABCDCUC/\(UD, 2.1

Kyscp = a(84c8pp — 84p85c).

We restrict these forms to M"; then we have

Wy = » Wy = Zh wj! ha = hz»
doj = — Z Wik N\ W+ 3 Z R A vy,
Rijir = a(u8j — 8udj) + Z(h,k 50— MG, (2.2)
da)aﬂ = — Z Way N Wyg + E Z Raﬂk/wk N wy,
Ropr =y _(h§ Ity — W), (2.3)

We call i = Zh"‘w,w,ea the second fundamental form of the immersed manifold M".
Denote by S =} (] )% the square length of / , £ = 15" trH,e, the mean curvature

vector and H = —,/ > (trH, )*> the mean curvature of M" respectively. Here tr is the
trace of the matrix H, = (h ). Now let ¢, be parallel to & Then we have

trHys =nH, trHy=0,0%#n+ L. (2.4)

Let hf and hf, denote the covariant derivative and the second covariant derivative
of i respectlvely, defined by
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> Hon = di = " Mo — Y Mo — Y hiopa, (2.5)
D i =digy =Y Whow — Y Wyop— Y Koy — Y W op.  (2.6)
Then we have
he — h; =0, (2.7)
Ukl U”‘ = Z hlmRmﬂ(l + Z hijmIkl Z hURaﬂk[ (28)

The Laplacian Ak of Ay is defined by Ahg = 3 hy, . By a direct calculation we have
(cf. [2,3]) ‘

- A S=Y () + Y KA
- Z(hz/k) + Z hi; hk/u/

+ Z hl] mklejk + Z hlj mi m/cjk - Z h‘;hl/fiRaﬁjk' (29)

3. Proof of Theorem. From (1.1) and (2.4) we have

(hej, ¢)), Heny1) = H*Sy; 3.1
therefore
> hhty =nH A H, (3.2)
and
S )P = S Y = n Y (ViH) = n|VHP. (33)
It is obvious that
1
5AHz =HAH+ |VH? (3.4)
and therefore
1
2 2 _ 2
D )+ hg > n|VH] +nHAH=>nbH. (3.5)

On the other hand, from (2.2)
th]hmkle//‘ ) Z(hlj mk m] zk)RmUk
ZEZ{Rimjk - a((stfjamk - 8)11_/8ik)}Rm[/k = - Z Rmz/k +aR (36)

and

Z hlj mi '71kik = Z{(n - l)aam/’ + nH28mj - R;11/}Rm[
=—> Ry, +(n— DaR+nHR. (3.7)
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From (2.3) we have
Z hehy Ragic = Z hEHEhhy, — Z hg;h;;{hﬁ(hg,
while

D HShghE G = {(n = Dady + nH*8; — Ry}’
=n(n — 1)’d® = 2n*(n — )aH*> — 2(n — 1)aR — 2nH*R + n” H* + ZR?, (3.8)

Let

S = 3 ()

ij

then we have

S:ZS(X.

a

Since

§? = (;S) ZS2+2ZS Sy

a<f

and

D (Su—Sp’ = —1)252—225 Sg>0

a<p a<p

it follows that

—1)252 >2) SuSp=8"— ZSZ;

a<p

that is
Y si= lg
o p

Since

(Zh >—Z<Zhﬁhg> S et

ij,lk

Z
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we have

A

2
1
> hihilh 5 Z (Z 11,k> "3 Z (Z hih’,ﬁ) +).8,
JiLk a

i Lk \ «

15w

ik «
=— EZ{Rmk — a8y — Sudy)) + >S5

1
Z Ry +2aR — n(n — D)a’ +]—)S2. (3.9)

From (2.9), (3.5)—(3.9) we have

1
5AS>2nAHz > Riy =2 R+ 3naR+3nHR

1
—n*(n— Da* = 20*(n — VHaH? — *H* +;SZ. (3.10)

Since M" is compact and
S=n(n—1)a+n*H — R,

we have

f Y Ry +2p) Ry —R*—n(3p—2n+2)aR — n(3p — 2n)H*R

+2n%(n — DpaH? + 2n(n — DaH? + n’pH* — n*H*} % 1
> n*(n— 1)(n — p — Da*Vol(M™).

Hence the Theorem is proved. O

REMARK. From (2.2), if M" is totally geodesic, i.e. S = 0, then (1.3) becomes the
equality. It is interesting to study the geometrical property of M" in this case.
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