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Equivariant Map Queer Lie Superalgebras

Lucas Calixto, Adriano Moura, and Alistair Savage

Abstract. An equivariant map queer Lie superalgebra is the Lie superalgebra of regular maps from
an algebraic variety (or scheme) X to a queer Lie superalgebra q that are equivariant with respect
to the action of a ûnite group Γ acting on X and q. In this paper, we classify all irreducible ûnite-
dimensional representations of the equivariant map queer Lie superalgebras under the assumption
that Γ is abelian and acts freely on X. We show that such representations are parameterized by
a certain set of Γ-equivariant ûnitely supported maps from X to the set of isomorphism classes
of irreducible ûnite-dimensional representations of q. In the special case where X is the torus, we
obtain a classiûcation of the irreducible ûnite-dimensional representations of the twisted loop queer
superalgebra.

1 Introduction

Equivariant map algebras can be viewed as a generalization of (twisted) current al-
gebras and loop algebras. Namely, let X be an algebraic variety (or, more generally,
a scheme) and let g be a ûnite-dimensional Lie algebra, both deûned over the ûeld
of complex numbers. Furthermore, suppose that a ûnite group Γ acts on both X and
g by automorphisms. _en the equivariant map algebra M(X , g)Γ is deûned to be
the Lie algebra of Γ-equivariant regular maps from X to g. Equivalently, consider the
induced action of Γ on the coordinate ring A of X. _en M(X , g)Γ is isomorphic to
(g ⊗ A)Γ , the Lie algebra of ûxed points of the diagonal action of Γ on g ⊗ A. Re-
cently, the representation theory of equivariant map algebras, either in full generality
or in special cases, has been the subject ofmuch research. We refer the reader to the
survey [NS13] for an overview.

Lie superalgebras are generalizations of Lie algebras and are an important tool
for physicists in the study of supersymmetries. _e ûnite-dimensional simple com-
plex Lie superalgebras were classiûed by Victor Kac in [Kac77], and the irreducible
ûnite-dimensional representations of the so-called basic classical Lie superalgebras
were classiûed in [Kac77,Kac78]. It is thus natural to consider equivariant map su-
peralgebras, where the target Lie algebra g mentioned above is replaced by a ûnite-
dimensional Lie superalgebra. In [Sav14], the third author classiûed the irreducible
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Equivariant Map Queer Lie Superalgebras 259

ûnite-dimensional representations of M(X , g)Γ when g is a basic classical Lie super-
algebra, X has a ûnitely-generated coordinate ring, and Γ is an abelian group acting
freely on the set of rational points of X. _ese assumptions make much of the the-
ory parallel to the non-super setting. _e goal of this paper is to move beyond the
setting of basic classical Lie superalgebras. In particular, we address the case where
g is the so-called queer Lie superalgebra. In this case, very little is known about the
representation theory of the equivariant map Lie superalgebra, even when Γ is trivial
or X is the aõne plane or torus (the current and loop cases, respectively), although
the representations of the corresponding aõne Lie superalgebra have been studied in
[GS08].

_e queer Lie superalgebra q(n) was introduced by Kac in [Kac77]. It is a simple
subquotient of the Lie superalgebra of endomorphisms ofCn∣n that commutewith an
odd involution (seeRemark 2.15). It is closely related to the Lie algebra sl(n+1), in the
sense that q(n) is a direct sum of one even and one odd copy of sl(n + 1). Although
the queer Lie superalgebra is classical, its properties are quite diòerent from those of
the other classical Lie superalgebras. In particular, the Cartan subalgebra of q(n) is
not abelian. (Here, and throughout the paper, we use the term subalgebra even in the
super setting, and avoid the use of the cumbersome term subsuperalgebra.) For this
reason, the corresponding theory of weight modules is much more complicated. _e
theory requires Cliòord algebra methods, since the highest weight space of an irre-
ducible highest weight q(n)-module has a Cliòord module structure. Nevertheless,
the theory of ûnite-dimensional q(n)-modules is well developed (see, for example,
[Pen86,PS97,Gor06]). It is the fact that the queer Lie superalgebra is similar to the
Lie algebra sl(n + 1) in some ways while, on the other hand, having very diòerent
structure and representation theory that explains the special attention this Lie super-
algebra has received.

To investigate the representation theory of the Lie superalgebra q(n) ⊗ A, where
A is a commutative unital associative algebra, the ûrst step is understanding the irre-
ducible ûnite-dimensional representations of its Cartan subalgebra h⊗ A, where h is
the standard Cartan subalgebra of q(n). _erefore, in this paper, we ûrst give a char-
acterization of the irreducible ûnite-dimensional h⊗A-modules (_eorem4.3). Next,
we give a characterization of quasiûnite irreducible highestweight q(n)⊗A-modules
in_eorem 5.6. Suchmodules generalize ûnite-dimensional modules. Using these re-
sults,we are able to give a complete classiûcation of the irreducible ûnite-dimensional
representations of the equivariantmap queerLie superalgebra in the casewhere the al-
gebraA is ûnitely generated and the group Γ is abelian and acts freely onMaxSpec(A).
Our main result, _eorem 7.3, is that the irreducible ûnite-dimensional modules are
parameterized by a certain set of Γ-equivariant ûnitely supported maps deûned on
MaxSpec(A). In the special caseswhere X is the torus or aõne line, our results yield a
classiûcation of the irreducible ûnite-dimensional representations of the twisted loop
queer Lie superalgebra and twisted current queer Lie superalgebra, respectively.

_is paper is organized as follows. In Section 2, we review some results on com-
mutative algebras, associative superalgebras (in particular Cliòord algebras), and Lie
superalgebras (especially the queer Lie superalgebra). We introduce the equivariant
map Lie superalgebras in Section 3. In Section 4, we give a characterization of the
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irreducible ûnite-dimensional representations of the Lie superalgebra h ⊗ A. In Sec-
tion 5, we deûne quasiûnite and highest weight modules, and we give a characteriza-
tion of the quasiûnitemodules. In Section 6,we introduce evaluation representations
and their irreducible products. _ese play a key role in our classiûcation. Finally, in
Section 7, we classify all the irreducible ûnite-dimensional modules of q(n)⊗ A and
(q(n)⊗ A)Γ .

Notation

We let Z be the ring of integers, N the set of nonnegative integers, and Z2 = {0, 1},
the quotient ringZ/2Z. Vector spaces, algebras, tensor products, etc. are deûned over
the ûeld of complex numbers C unless otherwise stated. Whenever we refer to the
dimension of an algebra or ideal, we refer to its dimension over C.

2 Preliminaries

2.1 Associative Superalgebras

We collect here some results thatwill be used in the sequel. Let A denote a commuta-
tive associative unital algebra and let MaxSpec(A) be the set of all maximal ideals of
A.

Deûnition 2.1 (Supp(I)) _e support of an ideal I ⊆ A is deûned to be the set

Supp(I) = {m ∈ MaxSpec(A) ∣ I ⊆ m}.

A proof of the following lemma can be found, for instance, in [Sav14, §2.1].

Lemma 2.2 Let I and J be ideals of A.
(i) If I is of ûnite codimension, then Supp(I) is ûnite.
(ii) If A is ûnitely generated and I has ûnite support, then I is of ûnite codimension in

A.
(iii) If I and J have disjoint supports, then IJ = I ∩ J.
(iv) If A is Noetherian, then every ideal of A contains a power of its radical.

Now let V = V0 ⊕ V1 be a Z2-graded vector space. _e parity of a homogeneous
element v ∈ Vi will be denoted by ∣v∣ = i, i ∈ Z2. An element in V0 is called even,
while an element in V1 is called odd. A subspace of V is a Z2-graded vector space
W =W0 ⊕W1 ⊆ V such that Wi ⊆ Vi for i ∈ Z2. We denote by Cm∣n the vector space
Cm ⊕Cn , where the ûrst summand is even and the second is odd.
An associative superalgebra A is a Z2-graded vector space A = A0 ⊕ A1 equipped

with a bilinear associativemultiplication (with unit element) such that A iA j ⊆ A i+ j ,
for i , j ∈ Z2. A homomorphism between two superalgebras A and B is amap g∶A→
B, which is a homomorphism between the underlying algebras, and, in addition,
g(A i) ⊆ B i for i ∈ Z2. _e tensor product A ⊗ B is the superalgebra whose vec-
tor space is the tensor product of the vector spaces of A and B, with the induced
Z2-grading andmultiplication deûned by (a1⊗b1)(a2⊗b2) = (−1)∣a2 ∣∣b1 ∣a1a2⊗b1b2,
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for homogeneous elements a i ∈ A, and b i ∈ B. An A-moduleM is always understood
in the Z2-graded sense, that is, M = M0 ⊕ M1 such that A iM j ⊆ M i+ j , for i , j ∈ Z2.
Subalgebras and ideals of superalgebras are Z2-graded subalgebras and ideals. A su-
peralgebra that has no nontrivial ideal is called simple. A homomorphism between
A-modules M and N is a linear map f ∶M → N such that f (xm) = x f (m), for all
x ∈ A andm ∈ M. A homomorphism is of degree ∣ f ∣ ∈ Z2 if f (M i) ⊆ N i+∣ f ∣ for i ∈ Z2.

We denote by M(m∣n) the superalgebra of complex matrices in m∣n-block form

( A B
C D ) ,

whose even subspace consists of the matrices with B = 0 and C = 0, and whose odd
subspace consists of thematrices with A = 0 and D = 0. If V = V0⊕V1 is a Z2-graded
vector space with dimV0 = m and dimV1 = n, then the endomorphism superalgebra
End(V) is the associative superalgebra of endomorphisms of V , where

End(V)i = {T ∈ End(V) ∣ T(Vj) ⊆ Vi+ j , j ∈ Z2}, i ∈ Z2 .

Note that ûxing ordered bases for V0 and V1 gives an isomorphism between End(V)
and M(m∣n).
For m ≥ 1, let P ∈ M(m∣m) be thematrix

( 0 Im
−Im 0 ) ,

and deûne Q(m)i ∶= {T ∈ M(m∣m)i ∣ TP = (−1)iPT}, for i ∈ Z2. _en Q(m) =
Q(m)0 ⊕ Q(m)1 is the subalgebra of M(m∣m) consisting ofmatrices of the form

(2.1) ( A B
B A ) ,

where A and B are arbitrary m ×m matrices.

_eorem 2.3 ([CW12, p. 94]) ConsiderCm∣n as an M(m∣n)-module viamatrixmul-
tiplication. _en the unique irreducible ûnite-dimensional module, up to isomorphism,
ofM(m∣n) (resp. Q(m)) is Cm∣n (resp. Cm∣m).

For an associative superalgebra A, we shall denote by ∣A∣ the underlying (i.e., un-
graded) algebra. Denote by Z(∣A∣) the center of ∣A∣. Note that Z(∣A∣) = Z(∣A∣)0 ⊕
Z(∣A∣)1, where Z(∣A∣)i = Z(∣A∣) ∩ A i , for i ∈ Z2.

_eorem 2.4 ([CW12, _. 3.1]) Let A be a ûnite-dimensional simple associative su-
peralgebra.
(i) If Z(∣A∣)1 = 0, then A is isomorphic to M(m∣n), for some m and n.
(ii) If Z(∣A∣)1 ≠ 0, then A is isomorphic to Q(m), for some m.

Deûnition 2.5 (Cliòord algebra) Let V be a ûnite-dimensional vector space and
f ∶V ×V → C be a symmetric bilinear form. We call the pair (V , f ) a quadratic pair.
Let J be the ideal of the tensor algebra T(V) generated by the elements

x ⊗ x − f (x , x)1, x ∈ V ,
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and set C(V , f ) ∶= T(V)/J. _e algebra C(V , f ) is called the Cliòord algebra of the
pair (V , f ) over C.

Remark 2.6 ([Hus94, Ch. 12, Def. 4.1 and_. 4.2]) For a quadratic pair (V , f ), there
exists a linear map θ∶V → C(V , f ) such that the pair (C(V , f ), θ) has the following
universal property: For all linear maps u∶V → A such that u(v)2 = f (v , v)1A for
all v ∈ V , where A is a unital algebra, there exists a unique algebra homomorphism
u′∶C(V , f )→ A such that u′θ = u.

Cliòord algebras also have a natural superalgebra structure. Indeed, T(V) pos-
sesses a Z2-grading (by even and odd tensor powers) such that J is homogeneous, so
the grading descends to C(V , f ). _us, the resulting superalgebra C(V , f ) is some-
times called the Cliòord superalgebra.

Lemma 2.7 ([Mus12,_. A.3.6]) Let (V , f ) be a quadratic pair with f nondegener-
ate. _en C(V , f ) is a simple associative superalgebra.

Remark 2.8 It follows from Lemma 2.7, together with _eorems 2.3 and 2.4, that
any Cliòord superalgebra associated with a nondegenerate pair (i.e., the symmetric
bilinear form associated with this pair is nondegenerate) has only one irreducible
ûnite-dimensional module up to isomorphism.

2.2 Lie Superalgebras

Deûnition 2.9 (Lie superalgebra) A Lie superalgebra is a Z2-graded vector space
g = g0 ⊕ g1 with bilinear multiplication [ ⋅ , ⋅ ] satisfying the following axioms:
(i) _emultiplication respects the grading: [gi , g j] ⊆ gi+ j for all i , j ∈ Z2.
(ii) Skew-supersymmetry: [a, b] = −(−1)∣a∣∣b∣[b, a], for all homogeneous elements

a, b ∈ g.
(iii) Super Jacobi Identity: [a, [b, c]] = [[a, b], c]+(−1)∣a∣∣b∣[b, [a, c]], for all homo-

geneous elements a, b, c ∈ g.

Example 2.10 Let A = A0⊕A1 be an associative superalgebra. We can make A into
a Lie superalgebra by letting [a, b] ∶= ab − (−1)∣a∣∣b∣ba, for all homogeneous a, b ∈ A,
and extending [ ⋅ , ⋅ ] by linearity. We call this the Lie superalgebra associated with A.
_e Lie superalgebra associated with End(V) (resp. M(m∣n)) is called the general
linear Lie superalgebra and is denoted by gl(V) (resp gl(m∣n)).

Just as for Lie algebras, a ûnite-dimensional Lie superalgebra g is said to be solv-
able if g(n) = 0 for some n ≥ 0, where we deûne inductively g(0) = g and g(n) =
[g(n−1) , g(n−1)] for n ≥ 1.

Lemma 2.11 ([Kac77, Prop. 5.2.4]) Let g = g0 ⊕ g1 be a ûnite-dimensional solvable
Lie superalgebra such that [g1 , g1] ⊆ [g0 , g0]. _en every irreducible ûnite-dimensional
g-module is one-dimensional.
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Lemma 2.12 ([Sav14, Lem. 2.6]) Suppose g is a Lie superalgebra and V is an irre-
ducible g-module such that Jv = 0 for some ideal J of g and nonzero vector v ∈ V . _en
JV = 0.

_e next two results are super versions of well-known results in representation
theory. Namely, the Poincaré-Birkhoò-Witt _eorem (or PBW_eorem) and Schur’s
Lemma, respectively.

Lemma 2.13 ([Mus12,_. 6.1.1]) Let g = g0 ⊕ g1 be a Lie superalgebra and let B0, B1
be totally ordered bases for g0̄ and g1, respectively. _en themonomials

u1 ⋅ ⋅ ⋅urv1 ⋅ ⋅ ⋅ vs , u i ∈ B0 , v i ∈ B1 and u1 ≤ ⋅ ⋅ ⋅ ≤ ur , v1 < ⋅ ⋅ ⋅ < vs ,

form a basis of the universal enveloping superalgebra U(g).

Lemma 2.14 ([Kac77, Schur’s Lemma, p. 18]) Let g be a Lie superalgebra and V be
an irreducible g-module. Deûne Endg(V)i ∶= {T ∈ End(V)i ∣ [T , g] = 0}, for i ∈ Z2.
_en,

Endg(V)0 = C id, Endg(V)1 = Cϕ,
where ϕ = 0 or ϕ2 = − id.

2.3 The Queer Lie Superalgebra

Recall the superalgebra Q(m) deûned in Section 2.1. If m = n + 1, then the Lie su-
peralgebra associated with Q(m) will be denoted by q̂(n). _e derived subalgebra
q̃(n) = [̂q(n), q̂(n)] consists of matrices of the form (2.1), where the trace of B is
zero. Note that q̃(n) has a one-dimensional center spanned by the identity matrix
I2n+2. _e queer Lie superalgebra is deûned to be the quotient superalgebra

q(n) = q̃(n)/CI2n+2 .

By abuse of notation, we denote the image in q(n) of a matrix X ∈ q̃(n) again by X.
_e Lie superalgebra q(n) has an even part isomorphic to sl(n + 1) and an odd part
isomorphic (as a module over the even part) to the adjoint module. One can show
that q(n) is simple for n ≥ 2 (see [Mus12, §2.4.2]). From now on, q = q(n) where
n ≥ 2.

Remark 2.15 Some references refer to q̂(n) as the queer Lie superalgebra. However,
in this paper, we reserve this name for the simple Lie superalgebra q(n).

Denote by N−, H, N+ the subset of strictly lower triangular, diagonal, and strictly
upper triangular matrices in sl(n + 1), respectively. We deûne

h0 = {( A 0
0 A ) ∣ A ∈ H} h1 = {( 0 B

B 0 ) ∣ B ∈ H} ,

n±0 = {( A 0
0 A ) ∣ A ∈ N±} , n±1 = {( 0 B

B 0 ) ∣ B ∈ N±} ,

h = h0 ⊕ h1 , and n± = n±0 ⊕ n±1 .
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Lemma 2.16 ([Mus12, Lem. 2.4.1]) We have a vector space decomposition

(2.2) q = n− ⊕ h⊕ n+

such that n± and h are graded subalgebras of q ,with n± nilpotent. _e subalgebra h is
called the standard Cartan subalgebra of q.

We now describe the roots of q with respect to h0. For each i = 1, . . . , n + 1, deûne
є i ∈ h∗0 by

є i(
h 0
0 h ) = a i ,

where h is the diagonal matrix with entries (a1 , . . . , an+1). For 1 ≤ i , j ≤ n + 1, we let
E i , j denote the (n+ 1)× (n+ 1) matrix with a 1 in position (i , j) and zeros elsewhere,
and we set

e i , j = ( E i , j 0
0 E i , j

) and e′i , j = ( 0 E i , j
E i , j 0 ) .

Given α ∈ h∗0 , let

qα = {x ∈ q ∣ [h, x] = α(h)x for all h ∈ h0} .

We call α a root if α ≠ 0 and qα ≠ 0. Let ∆ denote the set of all roots. Note that q0 = h
and, for α = є i − є j , 1 ≤ i ≠ j ≤ n + 1, we have

qα = Ce i , j ⊕Ce′i , j .

In particular,
q = ⊕

α∈h∗
0

qα .

A root is called positive (resp. negative) if qα ∩n+ ≠ 0 (resp. qα ∩n− ≠ 0). We denote by
∆+ (resp. ∆−) the subset of positive (resp. negative) roots. A positive root α is called
simple if it cannot be expressed as a sumof two positive roots. We denote byΠ the set
of simple roots. _us,

∆+ = {є i − є j ∣ 1 ≤ i < j ≤ n + 1}, Π = {є i − є i+1 ∣ 1 ≤ i ≤ n + 1},
∆− = −∆+ , ∆ = ∆+ ∪ ∆− .

It follows that
n+ = ⊕

α∈∆+
qα and n− = ⊕

α∈∆−
qα .

_e subalgebra b = h⊕ n+ is called the standard Borel subalgebra of q.
Notice that, since n ≥ 2, we have [h1 , h1] = h0. Indeed, for all i , j ∈ {1, . . . , n + 1}

with i ≠ j, we can choose k ∈ {1, . . . , n + 1} such that k ≠ i, k ≠ j, and then

e i , i − e j, j =
1
2
[e′i , i − e′j, j , e′i , i + e′j, j − 2e′k ,k].

_us, the result follows from the fact that elements of the form e i , i − e j, j , for i , j ∈
{1, . . . , n + 1} and i ≠ j, generate h0.
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2.4 Irreducible Finite-dimensional q-modules

Lemma 2.17 ([Mus12, Prop. 8.2.1]) For every λ ∈ h∗0 , there exists a unique irreducible
ûnite-dimensional h-moduleW(λ) such that hv = λ(h)v, for all h ∈ h0 and v ∈W(λ).
Moreover, any irreducible ûnite-dimensional h-module is isomorphic toW(λ) for some
λ ∈ h∗0 .

Let V be an irreducible ûnite-dimensional q-module. For µ ∈ h∗0 , let

Vµ = {v ∈ V ∣ hv = µ(h)v for all h ∈ h0} ⊆ V

be the µ-weight space of V . Since h0 is an abelian Lie algebra and the dimension of
V is ûnite, we have Vµ ≠ 0 for some µ ∈ h∗0 . We also have qαVµ ⊆ Vµ+α , for all α ∈ ∆.
_en, by the simplicity of V , we have the weight space decomposition

V = ⊕
µ∈h∗

0

Vµ .

Since V has ûnite dimension, there exists λ ∈ h∗0 such that Vλ ≠ 0 and qαVλ = 0
for all α ∈ ∆+. Since [h0 , h] = 0, each weight space is an h-submodule of V . If W
is an irreducible h-submodule of Vλ , then W ≅ W(λ) by Lemma 2.17. Now, the
irreducibility of V together with the PBW _eorem (Lemma 2.13), implies that

Vλ ≅W(λ) and U(n−)Vλ = V .

In particular, this shows that any irreducible ûnite-dimensional q-module is a highest
weight module, where the highest weight space is an irreducible h-module. On the
other hand, given an irreducible ûnite-dimensional h-moduleW(λ),we can consider
theVerma typemodule associatedwith it. Namely, regardW(λ) as ab-module,where
n+W(λ) = 0, and consider the induced q-module U(q) ⊗U(b) W(λ). _is module
has a unique proper maximal submodule, which we denote by N(λ). Deûne V(λ) =
(U(q)⊗U(b)W(λ))/N(λ). _en V(λ) is an irreducible q-module and every weight
of V(λ) is of the form

λ − ∑
α∈Π

mαα, mα ∈ N for all α ∈ Π.

Remark 2.18 It is important to note here that we allow homomorphisms of mod-
ules to be nonhomogeneous. Ifwewere to require such homomorphisms to be purely
even, the Cliòord algebra associated with a nondegenerate pair could have two irre-
ducible representations (seeRemark 2.8) and q(n) could have two irreducible highest
weight representations of a given highest weight.

Let P(λ) = {µ ∈ h∗0 ∣ V(λ)µ ≠ 0}. We will ûx the partial order on P(λ) given by
µ1 ≥ µ2 if and only if µ1 − µ2 ∈ Q+, where Q+ ∶= ∑α∈Π Nα denotes the positive root
lattice of q.
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3 Equivariant Map Queer Lie Superalgebras

In this section we introduce our main objects of study: the equivariant map queer Lie
superalgebras. Henceforth, we let A denote a commutative associative unital algebra
and q = q(n), with n ≥ 2.
Consider the Lie superalgebra q⊗ Awhere the Z2-grading is given by (q⊗ A) j =

q j ⊗ A, j ∈ Z2, and the bracket is determined by

[x1 ⊗ f1 , x2 ⊗ f2] = [x1 , x2]⊗ f1 f2 , x i ∈ q, f i ∈ A, i ∈ {1, 2}.

We will refer to a Lie superalgebra of this form as a map queer Lie superalgebra, in-
spired by the case where A is the ring of regular functions on an algebraic variety.

Deûnition 3.1 (Equivariant map queer Lie superalgebra) Let Γ be a group acting
on A and on q by automorphisms. _en Γ acts diagonally on q⊗ A. We deûne

(q⊗ A)Γ = {z ∈ q⊗ A ∣ γz = z for all γ ∈ Γ}

to be the Lie subalgebra of q⊗A of points ûxed under the action of Γ. We call (q⊗A)Γ

an equivariant map queer Lie superalgebra. Note that if Γ is the trivial group, then
(q⊗ A)Γ = q⊗ A.

Example 3.2 (Multiloop queer superalgebras) Let n,m1 , . . . ,mk be positive inte-
gers and consider the group

Γ = ⟨γ1 , . . . , γk ∣ γm i
i = 1, γ iγ j = γ jγ i , ∀ 1 ≤ i , j ≤ k⟩ ≅

k
⊕
i=1

Z/m iZ.

An action of Γ on q is equivalent to a choice of commuting automorphisms σi of q
such that σm i

i = id, for all i = 1, . . . , n. Let A = C[t±1 , . . . , t±k ] be the algebra of Laurent
polynomials in k variables and let X = Spec(A) (in other words, X is the k-torus
(C×)k). For each i = 1, . . . , k, let ξ i ∈ C be a primitivem i-th root of unity, and deûne
an action of Γ on X by

γ i(z1 , . . . , zk) = (z1 , . . . , z i−1 , ξ iz i , z i+1 , . . . , zk).

_is induces an action on A, and we call

M(q, σ1 , . . . , σk ,m1 , . . . ,mk) ∶= (q⊗ A)Γ

the (twisted) multiloop queer superalgebra relative to (σ1 , . . . , σk) and (m1 , . . . ,mk).
If Γ is trivial, we call it an untwisted multiloop queer superalgebra. If n = 1, then
M(q, σ1 ,m1) is called a (twisted or untwisted) loop queer superalgebra. _ese have
been classiûed, up to isomorphism, in [GP04, _. 4.4]. _is classiûcation uses the
fact that the outer automorphism group of q is isomorphic to Z4 (see [Ser84,_. 1]).

Deûnition 3.3 (AnnA(V), Supp(V)) Let V be a (q ⊗ A)Γ-module. We deûne
AnnA(V) to be the sum of all Γ-invariant ideals I ⊆ A, such that (q⊗ I)ΓV = 0. If ρ
is the associated representation, we set AnnA(ρ) ∶= AnnA(V). We deûne the support
of V to be the support of AnnA(V) (see Deûnition 2.1). We say that V has reduced
support if AnnA(V) is a radical ideal.

https://doi.org/10.4153/CJM-2015-033-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-033-6


Equivariant Map Queer Lie Superalgebras 267

4 Irreducible Finite-dimensional Representations of the Cartan
Subalgebra

In this section we study irreducible ûnite-dimensional h⊗ A-modules. _e goal is to
show that, for each such module, there exists a ûnite-codimensional ideal I ⊆ A, such
that I is maximal with respect to the property (h ⊗ I)V = 0. Once this is done, we
can proceed using similar arguments to those used in the study of irreducible ûnite-
dimensional h-modules (see [Mus12, Prop. 8.2.1] or [CW12, §1.5.4], for example).

Lemma 4.1 Let V be an irreducible ûnite-dimensional h ⊗ A-module and let I ⊆ A
be an ideal such that (h0 ⊗ I)V = 0. _en (h1 ⊗ I)V = 0.

Proof Let ρ be the associated representation of h ⊗ A on V . We must prove that
ρ(h1 ⊗ I) = 0. Note that

[ ρ(h⊗ A), ρ(h1 ⊗ I)] = ρ([h⊗ A, h1 ⊗ I]) ⊆ ρ([h, h1]⊗ I) ⊆ ρ(h0 ⊗ I) = 0.

_us, ρ(h1 ⊗ I) ⊆ Endh⊗A(V)1. Suppose that ρ(z) ≠ 0 for some z ∈ h1 ⊗ I. _en,
possibly a�er multiplying z by a nonzero scalar, we may assume by Schur’s Lemma
(Lemma 2.14) that ρ(z)2 = − id. But then we obtain the contradiction

−2 id = 2ρ(z)2 = [ ρ(z), ρ(z)] = ρ([z, z]) = 0,

where the last equality follows from the fact that [z, z] ∈ h0 ⊗ I.

Proposition 4.2 Let V be an irreducible h⊗A-module. _en V is ûnite-dimensional
if and only if there exists a ûnite-codimensional ideal I of A such that (h⊗ I)V = 0.

Proof Suppose V is an irreducible ûnite-dimensional h ⊗ A-module, and let ρ be
the associated representation. Let I be the kernel of the linear map

ϕ∶A→ HomC(V ⊗ h,V), a ↦ (v ⊗ h ↦ ρ(h ⊗ a)v) , a ∈ A, v ∈ V , h ∈ h.
Since V is ûnite-dimensional, I is a linear subspace of A of ûnite-codimension. We
claim that I is an ideal of A. Indeed, if r ∈ A, a ∈ I and v ∈ V , then we have

ϕ(ra)(v ⊗ h0) = ρ(h0 ⊗ ra)v = ρ([h1 , h1]⊗ ra)v
= ρ([h1 ⊗ r, h1 ⊗ a])v = ρ(h1 ⊗ r)ρ(h1 ⊗ a)v + ρ(h1 ⊗ a)ρ(h1 ⊗ r)v = 0.

_us, ϕ(ra)(V ⊗ h0) = 0 for all r ∈ A, a ∈ I, or equivalently, ρ(h0 ⊗ AI) = 0. In
particular,

[ ρ(h1 ⊗ AI), ρ(h⊗ A)] ⊆ ρ(h0 ⊗ AI) = 0,
which implies that ρ(h1 ⊗ AI) ⊆ Endh⊗A(V)1. Suppose now that ϕ(ra)(v ⊗ h) ≠ 0
for some v ∈ V and h ∈ h1. _en ρ(h⊗ ra) ≠ 0, with h⊗ ra ∈ h1 ⊗ AI. _us, as in the
proof of Lemma 4.1, we are lead to the contradiction (possibly a�er rescaling h⊗ ra):

−2 id = 2ρ(h ⊗ ra)2 = [ ρ(h ⊗ ra), ρ(h ⊗ ra)] ∈ ρ(h0 ⊗ (rar)a) = 0,

where, in the last equality, we used that ρ(h0 ⊗ AI) = 0. Since V ⊗ h1 is spanned by
simple tensors of the form v⊗ h, v ∈ V , h ∈ h1, it follows that ϕ(ra)(V ⊗h1) = 0, and
so ra ∈ I. _us I is a ûnite-codimensional ideal of A such that (h⊗ I)V = 0.
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Conversely, suppose that (h⊗ I)V = 0 for some ideal I ⊆ A of ûnite codimension.
_en V factors to an irreducible h⊗A/I-module with (h0 ⊗A/I)v ⊆ Cv for all v ∈ V
by Schur’s Lemma (Lemma 2.14). On the other hand, let {x1 , . . . , xk} be a basis of
h1 ⊗ A/I. Since V is irreducible, the PBW _eorem (Lemma 2.13) implies that

V = U(h⊗ A/I)v = ∑
1≤i1<⋅⋅⋅<is≤k

x i1 ⋅ ⋅ ⋅ x isCv ,

where i1 , . . . , is ∈ {1, . . . , k}. Hence, V is ûnite-dimensional.

Let

L(h⊗ A) =
{ψ ∈ (h0 ⊗ A)

∗ ∣ ψ(h0 ⊗ I) = 0, for some ûnite-codimensional ideal I ⊆ A}
and let R(h ⊗ A) denote the set of isomorphism classes of irreducible ûnite-dimen-
sional h⊗ A-modules. If ψ ∈ L(h⊗ A) and

S = { I ⊆ A ∣ I is an ideal, and ψ(h0 ⊗ I) = 0} ,
we set Iψ = ∑I∈S I.

_eorem 4.3 For any ψ ∈ L(h ⊗ A), there exists a unique, up to isomorphism,
irreducible ûnite-dimensional h ⊗ A-module H(ψ) such that xv = ψ(x)v, for all x ∈
h0 ⊗ A and v ∈ H(ψ). Conversely, any irreducible ûnite-dimensional h ⊗ A-module is
isomorphic to H(ψ), for some ψ ∈ L(h⊗ A). In other words, themap

L(h⊗ A)→ R(h⊗ A), ψ ↦ H(ψ),
is a bijection.

Proof Assume ûrst that V is an irreducible ûnite-dimensional h ⊗ A-module and
that xv = 0 for all x ∈ h0 ⊗ A and v ∈ V . _en, by Lemma 4.1, we have (h⊗ A)V = 0.
So we take H(0) to be the trivial module.
Assume now that ψ ∈ L(h ⊗ A) and ψ ≠ 0. Deûne a symmetric bilinear form fψ

on hψ ∶= h1 ⊗ A/Iψ by
(4.1) fψ(x , y) = ψ([x , y]), x , y ∈ hψ .

Let h⊥ψ = {x ∈ hψ ∣ fψ(x , hψ) = 0} denote the radical of fψ , and set

cψ ∶=
h⊗ A/Iψ

(kerψ)⊕ h⊥ψ
≅
h0 ⊗ A/Iψ

kerψ
⊕

hψ

h⊥ψ
.

We can regard ψ as a linear functional on (cψ)0. Since ψ ≠ 0 and dim((cψ)0) =
1, there exists a unique z ∈ (cψ)0 such that ψ(z) = 1. Deûne the factor algebra
Aψ ∶= U(cψ)/(z − 1). Consider the natural linear maps i∶ (cψ)1 ↪ T((cψ)1) and
p∶T((cψ)1) ↠ Aψ . It is straightforward to check, via the universal property of Clif-
ford algebras (see Remark 2.6), that the pair (Aψ , p ○ i) is isomorphic to the Cliòord
algebra of ((cψ)1 ,

1
2 fψ). By Remark 2.8, this Cliòord algebra admits only one, up to

isomorphism, irreducible ûnite-dimensional module. Let H(ψ) denote such amod-
ule. We can consider an action of h⊗ A on H(ψ) via themap

h⊗ A↠ cψ ↪ U(cψ)↠ Aψ .
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Note that H(ψ) is an irreducibleU(cψ)-module (and thus an irreducible cψ-module).
_erefore, H(ψ) is an irreducible ûnite-dimensional h⊗A-module. In particular, we
have that

xv = ψ(x)v , for all x ∈ h0 ⊗ A and v ∈ H(ψ).

It remains to prove the converse statement in the lemma. Let V be any irreducible
ûnite-dimensional h ⊗ A-module with associated representation ρ. Since h0 ⊗ A is
central in h⊗ A, there exists ψ ∈ (h0 ⊗ A)∗ such that xv = ψ(x)v, for all x ∈ h0 ⊗ A,
v ∈ V . On the other hand, by Proposition 4.2, there exists an ideal I of A of ûnite-
codimension such that (h ⊗ I)V = 0. In particular, we have that ψ(h0 ⊗ I) = 0, so
ψ ∈ L(h⊗ A), and that V factors to an irreducible h⊗ A/Iψ-module. If h⊥ψ is deûned
to be the radical of the bilinear form (4.1), then ρ(h⊥ψ) ⊆ gl(V) is central. Since ρ is
irreducible and ρ(h⊥ψ) consists of odd elements, it follows that ρ(h⊥ψ) = 0. Hence, V
is an irreducible ûnite-dimensional C((cψ)1 ,

1
2 fψ)-module, and so V ≅ H(ψ).

5 Highest Weight Modules

In [Sav14], the irreducible ûnite-dimensional modules of an equivariant map Lie su-
peralgebrawere investigated in the casewhere the target Lie superalgebra is basic clas-
sical. In particular, it was proved that such modules are either generalized evaluation
modules or quotients of analogues of Kac modules of some evaluation modules for
a reductive Lie algebra. It was heavily used that the highest weight space of any irre-
ducible ûnite-dimensional module is one-dimensional, and also that tensor products
of irreduciblemodules with disjoint supports are again irreduciblemodules.

In Section 4, we saw that irreducible ûnite-dimensional modules for the Cartan
superalgebra h ⊗ A are irreducible modules for certain Cliòord algebras. In partic-
ular, the dimension of such modules is not necessarily equal to one. In addition, it
is not true, in general, that the tensor product of irreducible modules with disjoint
supports is irreducible (see Example 6.1). _us, the arguments used in [Sav14] require
modiûcation.
From now on, we consider q ⊆ q ⊗ A as a Lie subalgebra via the natural isomor-

phism q ≅ q⊗C. We also ûx the triangular decomposition of q given in (2.2).

Deûnition 5.1 (Weightmodule) LetV be a q⊗A-module. We say thatV is aweight
module if it is a sum of its weight spaces, i.e.,

V = ⊕
λ∈h∗

Vλ , where Vλ = {v ∈ V ∣ hv = λ(h)v for all h ∈ h0}.

IfVλ ≠ 0, then λ ∈ h∗0 is called aweight ofV and the nonzero elements ofVλ are called
weight vectors of weight λ.

Deûnition 5.2 (Quasiûnitemodule) A weight q⊗ A-module is called quasiûnite if
all its weight spaces are ûnite-dimensional.
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Deûnition 5.3 (Highestweightmodule) A q⊗A-moduleV is called a highestweight
module if there exists a nonzero vector v ∈ V such that

U(q⊗ A)v = V , (n+ ⊗ A)v = 0, and U(h0 ⊗ A)v = Cv .
We call v a highest weight vector.

Proposition 5.4 If V is an irreducible ûnite-dimensional q⊗ A-module, then V is a
highest weight module. Moreover, the weight space associated with the highest weight is
an irreducible h⊗ A-module.

Proof Since h0 is an abelian Lie algebra and the dimension of V is ûnite, Vµ ≠ 0
for some µ ∈ h∗0 . Also note that (qα ⊗ A)Vµ ⊆ Vµ+α , for all α ∈ ∆. _en, by the
simplicity of V , it is a weight module. Since V is ûnite-dimensional, there exists a
maximal weight λ ∈ h∗0 such that Vλ ≠ 0. It follows immediately that

(n+ ⊗ A)Vλ = 0.

Considering Vλ as an h⊗ A-module, we can choose an irreducible h⊗ A-submodule
H(ψ) ⊆ Vλ . _us,U(h0⊗A)v ⊆ Cv, for all v ∈ H(ψ). Now by the simplicity of V ,we
haveU(q⊗A)v = V for any v ∈ H(ψ). In particular, the PBW_eorem (Lemma 2.13)
implies that Vλ = H(ψ).

Fix ψ ∈ L(h ⊗ A) and deûne an action of b ⊗ A on H(ψ) by declaring n+ ⊗ A to
act by zero. Consider the inducedmodule

V(ψ) = U(q⊗ A)⊗U(b⊗A) H(ψ).

_is is a highest weight module, and a submodule of V(ψ) is proper if and only if its
intersection with H(ψ) is zero. Moreover, any q⊗ A-submodule of a weight module
is also a weight module. Hence, ifW ⊆ V(ψ) is a proper q⊗ A-submodule, then

W =⊕
µ≠λ

Wµ ,

where λ = ψ∣h0
. _erefore, V(ψ) has a uniquemaximal proper submodule N(ψ) and

V(ψ) = V(ψ)/N(ψ)
is an irreducible highest weight q⊗ A-module.
By Proposition 5.4, every irreducible ûnite-dimensional q⊗ A-module is isomor-

phic to V(ψ) for some ψ ∈ L(h ⊗ A). Notice also that the highest weight space of
V(ψ) is isomorphic, as an h⊗ A-module, to H(ψ).

Lemma 5.5 Let ψ ∈ L(h⊗ A) and let I be an ideal of A. _en ψ(h0 ⊗ I) = 0 if and
only if (q⊗ I)V(ψ) = 0.

Proof Suppose that ψ(h0 ⊗ I) = 0 and set λ = ψ∣h0
. We know that V(ψ)λ ≅ H(ψ)

as h⊗A-modules, and, by Lemma 4.1, we have that (h⊗ I)V(ψ)λ = 0. Now, let v be a
nonzero vector in V(ψ)λ . By Lemma 2.12, to prove that (q⊗ I)V(ψ) = 0, it is enough
to prove that (q⊗ I)v = 0. It is clear that (h⊗ I)v = 0 and, since v is a highest weight
vector, we also have that (n+ ⊗ I)v = 0. It remains to show that (n− ⊗ I)v = 0.
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For α = ∑n
i=1 a iα i ,with a i ∈ N andwhere the α i are the simple roots of q,we deûne

the height of α to be

ht(α) =
n

∑
i=1
a i .

By induction on the height of α, we will show that (q−α ⊗ I)v = 0. We already have
the result for ht(α) = 0 (since q0 = h). Suppose that, for some m ≥ 0, the results hold
whenever ht(α) ≤ m. Fix α ∈ ∆+ with ht(α) = m + 1. _en

(n+ ⊗ A)(q−α ⊗ I)v ⊆ [n+ ⊗ A, q−α ⊗ I]v + (q−α ⊗ I)(n+ ⊗ A)v
= ([n+ , q−α]⊗ I)v = 0,

(5.1)

where the last equality follows from the induction hypothesis, since any element of
[n+ , q−α] is either an element of q−γ , with ht(γ) < ht(α), or an element of n+. Now
suppose that there exists a nonzero vector w ∈ (q−α ⊗ I)v ⊆ Vλ−α . By (5.1), we have
(n+⊗A)w = 0, and, since V is irreducible,we have V = U(q⊗A)w. But, by the PBW
_eorem (Lemma 2.13), this implies that V(ψ)λ = 0, which is a contradiction. _is
completes the proof of the forward implication. _e reverse implication is obvious.

_eorem 5.6 Let ψ ∈ L(h⊗ A). _e following conditions are equivalent.
(i) _emodule V(ψ) is quasiûnite.
(ii) _ere exists a ûnite-codimensional ideal I of A such that (q⊗ I)V(ψ) = 0.
(iii) _ere exists a ûnite-codimensional ideal I of A such that ψ(h0 ⊗ I) = 0.
If A is ûnitely generated, then the above conditions are also equivalent to the following:
(iv) _emodule V(ψ) has ûnite support.

Proof (i)⇒ (ii): Let λ = ψ∣h0
be the highestweight ofV(ψ). Let α be a positive root

of q and let Iα be the kernel of the linear map

A→ HomC(V(ψ)λ ⊗ q−α ,V(ψ)λ−α), f ↦ (v ⊗ u ↦ (u ⊗ f )v),
f ∈ A, v ∈ V(ψ)λ , u ∈ q−α .

SinceV(ψ) is quasiûnite, Iα is a linear subspace of A of ûnite-codimension. We claim
that Iα is, in fact, an ideal of A. Indeed, since α ≠ 0, we can choose h ∈ h0 such that
α(h) ≠ 0. _en, for all g ∈ A, f ∈ Iα , v ∈ V(ψ)λ and u ∈ q−α , we have

0 = (h ⊗ g)(u ⊗ f )v
= [h ⊗ g , u ⊗ f ]v + (u ⊗ f )(h ⊗ g)v
= −α(h)(u ⊗ g f )v + (u ⊗ f )(h ⊗ g)v .

Since (h ⊗ g)v ∈ V(ψ)λ and f ∈ Iα , the last term above is zero. Since we also have
α(h) ≠ 0, this implies that (u⊗ g f )v = 0. As this holds for all v ∈ V(ψ)λ and u ∈ q−α ,
we have g f ∈ Iα . Hence, Iα is an ideal of A.

Let I be the intersection of all the Iα . Since q is ûnite-dimensional (and thus has
a ûnite number of positive roots), this intersection is ûnite and thus I is also an ideal
of A of ûnite-codimension. We then have (n− ⊗ I)V(ψ)λ = 0. Since λ is the highest
weight of V(ψ),we also have (n+⊗ I)V(ψ)λ = 0. _en since h⊗ I ⊆ [n+⊗A, n−⊗ I],
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we have (h⊗ I)V(ψ)λ = 0. _us, (q⊗ I)V(ψ)λ = 0. Since V(ψ)λ ≠ 0, it follows from
Lemma 2.12 that (q⊗ I)V(ψ) = 0.

(ii)⇒ (iii): Let v be a highestweight vector of V(ψ). _en ψ(x)v = xv = 0 for any
x ∈ h0 ⊗ I. _us ψ(h0 ⊗ I) = 0.

(iii)⇒ (i): If ψ(h0 ⊗ I) = 0, then, by Lemma 5.5, we have (q⊗ I)V(ψ) = 0. _en
V(ψ) is naturally a module for the ûnite-dimensional Lie superalgebra q ⊗ A/I. By
the PBW _eorem (Lemma 2.13), we have

V(ψ) = U(q⊗ A/I)V(ψ)λ = U(n− ⊗ A/I)V(ψ)λ ,

and V(ψ)λ is ûnite-dimensional. Another standard application of the PBW_eorem
completes the proof.

Now suppose A is ûnitely generated. We prove that (ii) ⇔ (iv). By deûnition,
SuppA(V(ψ)) = Supp(AnnA(V(ψ))), where AnnA(V(ψ)) is the largest ideal of A
such that (q ⊗ I)V(ψ) = 0. _us, (ii) is true if and only of AnnA(V(ψ)) is of ûnite-
codimension. Since A is ûnitely generated, AnnA(V(ψ)) is of ûnite-codimension if
and only if it has ûnite support (see Lemma 2.2, parts (i) and (ii)).

Corollary 5.7 Let V be an irreducible ûnite-dimensional q⊗ A-module. _en there
exists an ideal I of A of ûnite-codimension such that (q⊗ I)V = 0.

Proof Since ûnite-dimensional modules are clearly quasiûnite, the result follows
from _eorem 5.6.

6 Evaluation Representations and their Irreducible Products

If R and S are associative unital algebras, all irreducible ûnite-dimensional modules
for R⊗ S are of the form VR⊗VS ,where VR and VS are irreducible ûnite-dimensional
modules for R and S, respectively. Furthermore, all such modules are irreducible.
When R and S are allowed to be superalgebras, the situation is somewhat diòerent.
In particular, VR ⊗ VS is not necessarily irreducible, as seen in the next example.

Example 6.1 By Remark 2.8, the unique irreducible ûnite-dimensional Q(1)-mod-
ule is C1∣1. However, C1∣1 ⊗ C1∣1 is not an irreducible Q(1) ⊗ Q(1)-module, since
Q(1) ⊗ Q(1) ≅ M(1∣1) as associative superalgebras and, again by Remark 2.8, the
unique irreducible ûnite-dimensional M(1∣1)-module is also C1∣1.

In general, if g1, g2 are two ûnite-dimensional Lie superalgebras, and V i is an irre-
ducible ûnite-dimensional gi-module, for i = 1, 2, then the g1⊕g2-module V 1⊗V 2 is
irreducible only if Endgi (V i)1 = 0 for some i = 1, 2 (recall that dim(Endgi (V i)1) ≠ 0
implies, by Schur’s Lemma (Lemma 2.14), that Endgi (V i)1 = Cϕ i , where ϕ2

i = −1).
When Endgi (V i)1 = Cϕ i , ϕ2

i = −1 for i = 1 and i = 2, we have that

V̂ = {v ∈ V 1 ⊗ V 2 ∣ (ϕ̃1 ⊗ ϕ2)v = v}, where ϕ̃1 =
√
−1 ϕ1 ,
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is an irreducible g1 ⊕ g2-submodule of V 1 ⊗ V 2 such that V 1 ⊗ V 2 ≅ V̂ ⊕ V̂ (see
[Che95, p. 27]). Set henceforth

V 1⊗̂V 2 =
⎧⎪⎪⎨⎪⎪⎩

V 1 ⊗ V 2 if V 1 ⊗ V 2 is irreducible,
V̂ ⊊ V 1 ⊗ V 2 if V 1 ⊗ V 2 is not irreducible.

In [Che95, Prop. 8.4] it is proved that every irreducible ûnite-dimensional g1 ⊕
g2-module is isomorphic to amodule of the form V 1⊗̂V 2, where V i is an irreducible
ûnite-dimensional gi-module for i = 1, 2. If ρ i denotes the representation associated
with the gi-moduleV i , then ρ1⊗̂ρ2 will denote the representation associatedwith the
g1 ⊕ g2-module V 1⊗̂V 2. Inductively, we deûne the g1 ⊕ ⋅ ⋅ ⋅ ⊕ gk-module

V 1⊗̂ ⋅ ⋅ ⋅ ⊗̂V k ∶= (V 1⊗̂ ⋅ ⋅ ⋅ ⊗̂V k−1)⊗̂V k

with associated representation denoted by ρ1⊗̂ ⋅ ⋅ ⋅ ⊗̂ρk . We will call ⊗̂ the irreducible
product. As the next lemma shows, it is associative, up to isomorphism.

Lemma 6.2 For i = 1, 2, 3, let gi be a Lie superalgebra and let V i be an irreducible
ûnite-dimensional gi-module. _en (V 1⊗̂V 2)⊗̂V 3 ≅ V 1⊗̂(V 2⊗̂V 3) as g1 ⊕ g2 ⊕
g3-modules.

Proof By [Che95, Prop. 8.4], the unique, up to isomorphism, irreducible ûnite-
dimensional g1⊕(g2⊕g3)-module contained inV 1⊗(V 2⊗V 3) isV 1⊗̂(V 2⊗̂V 3). On
the other hand, the unique irreducible ûnite-dimensional (g1⊕g2)⊕g3-module con-
tained in (V 1⊗V 2)⊗V 3 is (V 1⊗̂V 2)⊗̂V 3. Now, since g1⊕g2⊕g3 ≅ g1⊕(g2⊕g3) ≅
(g1 ⊕ g2) ⊕ g3 as Lie superalgebras, and (V 1 ⊗ V 2) ⊗ V 3 ≅ V 1 ⊗ (V 2 ⊗ V 3) as
g1 ⊕ g2 ⊕ g3-modules, we conclude that (V 1⊗̂V 2)⊗̂V 3 ≅ V 1⊗̂(V 2⊗̂V 3).

Proposition 6.3 Let V(ψ1) and V(ψ2) for ψ1 ,ψ2 ∈ L(h ⊗ A) be two irreducible
ûnite-dimensional g⊗ A-modules with disjoint supports. _en

V(ψ1)⊗ V(ψ2) ≅
⎧⎪⎪⎨⎪⎪⎩

V(ψ1 + ψ2), or
V(ψ1 + ψ2)⊕ V(ψ1 + ψ2).

Proof Let I i = AnnA(V(ψ i)) and let ρ i be the representation corresponding to
V(ψ i), for i = 1, 2. _en the representation ρ1 ⊗ ρ2 factors through the composition

(6.1) q⊗ A ∆↪ (q⊗ A)⊕ (q⊗ A) π↠ (q⊗ A/I1)⊕ (q⊗ A/I2),
where ∆ is the diagonal embedding and the secondmap is the obvious projection on
each summand. By Lemma 2.2(iii), we have that I1 ∩ I2 = I1I2, since the supports of
I1 and I2 are disjoint. _us A = I1 + I2, and so A/I1I2 ≅ (A/I1)⊕ (A/I2). We therefore
have the following commutative diagram:

q⊗ A

����

� � ∆ // (q⊗ A)⊕ (q⊗ A)

����
q⊗ A/I1I2 ≅ // (q⊗ A/I1)⊕ (q⊗ A/I2).
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It follows that the composition (6.1) is surjective. However, V(ψ1) ⊗ V(ψ2), as
a (q⊗ A/I1)⊕ (q⊗ A/I2)-module, is either irreducible or is isomorphic to V̂ ⊕ V̂ ,
whereas V̂ ⊊ V(ψ1)⊗V(ψ2) is an irreducible (q⊗ A/I1)⊕ (q⊗ A/I2)-module. _e
result then follows from the fact that V(ψ1)⊗V(ψ2), and hence V̂ ⊕ V̂ , is generated
by vectors on which h⊗ A acts by ψ1 + ψ2.

Note that if V(ψ1) and V(ψ) satisfy the hypothesis of Proposition 6.3, then

V(ψ1)⊗̂V(ψ2) ≅ V(ψ1 + ψ2).
In general, the following result follows by induction.

Corollary 6.4 Suppose that V(ψ1), . . . ,V(ψk) are q ⊗ A-modules with pairwise
disjoint supports. _en

⊗̂
n

i=1V(ψ i) ≅ V(
n

∑
i=1

ψ i) .

Now assume that Γ is a ûnite abelian group acting on both q and A by auto-
morphisms. We also assume that A is ûnitely generated and that Γ acts freely on
MaxSpec(A).

Deûnition 6.5 (Evaluationmap) Supposem1 , . . . ,mk are pairwise distinctmaximal
ideals of A. _e associated evaluation map is the composition

evm1 , . . . ,mk ∶ q⊗ A↠ (q⊗ A)/(q⊗
k

∏
i=1

mi) ≅
k
⊕
i=1

(q⊗ A/mi).

We let evΓ
m1 , . . . ,mk

denote the restriction of evm1 , . . . ,mk to (q⊗ A)Γ .

Let m1 , . . . ,mk be pairwise distinct maximal ideals of A, and for each i = 1, . . . , k,
letVi be an irreducible ûnite-dimensional q⊗A/mi-module,with corresponding rep-
resentation ρ i ∶ q⊗A/mi → gl(Vi). _en the representation given by the composition

q⊗ A
evm1 , . . . ,mkÐÐÐÐÐ→

k
⊕
i=1

(q⊗ (A/mi))
⊗̂k

i=1ρ iÐÐÐ→ End(⊗̂
k

i=1Vi)

is denoted by

(6.2) êvm1 , . . . ,mk(ρ1 , . . . , ρk),
and the corresponding module is denoted by

êvm1 , . . . ,mk(V1 , . . . ,Vk).
We deûne êvΓ

m1 , . . . ,mk
(ρ1 , . . . , ρk) to be the restriction of êvm1 , . . . ,mk(ρ1 , . . . , ρk) to (q⊗

A)Γ . _e notation êvΓ
m1 , . . . ,mk

(V1 , . . . ,Vk) is deûned similarly.
If we consider tensor products instead of irreducible products, then the above are

called evaluation representations and evaluation modules, respectively.

Remark 6.6 Observe that by deûnition

êvm1 , . . . ,mk(ρ1 , . . . , ρk) ≅ ⊗̂
k

i=1 evmi (ρ i).
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Proposition 6.7 An irreducible ûnite-dimensional representation of q⊗ A is isomor-
phic to a representation of the form (6.2) if and only if it has ûnite reduced support.

Proof Let ρ be an irreducible ûnite-dimensional representation of q⊗ A. Assume

ρ ≅ êvm1 , . . . ,mk(ρ1 , . . . , ρk),
where m1 , . . . ,mk are pairwise distinct maximal ideals of A and ρ i is an irreducible
representation of q ⊗ A/mi . Let I = ∏k

i=1 mi . _en Supp(I) = {m1 , . . . ,mk} and
ρ(q ⊗ I) = 0. _us, ρ has ûnite support. Furthermore we have that

√
I = ⋂k

i=1 mi =
∏k

i=1 mi = I and hence I is a radical ideal. _is proves the forward implication.
Suppose now that ρ(q⊗ I) = 0 for some radical ideal I of A of ûnite support. _us,

I =
√

I =∏n
i=1 mi for some distinct maximal idealsm1 , . . . ,mk of A. Hence, ρ factors

through themap

q⊗ A↠ (q⊗ A)/(q⊗
k

∏
i=1

mi) ≅
k
⊕
i=1

(q⊗ A/mi).

_en, by [Che95, Prop. 8.4], there exist irreducible ûnite-dimensional representations
ρ i of q⊗ A/mi , i = 1, . . . , k such that

ρ ≅ ⊗̂
k

i=1 evmi (ρ i) ≅ êvm1 , . . . ,mk(ρ1 , . . . , ρk).
_us, ρ is isomorphic to a representation of the form (6.2). _is completes the proof
of the reverse implication.

Deûnition 6.8 (X∗) Let X∗ denote the set of ûnite subsetsM ⊆ MaxSpec(A) having
the property that m′ ∉ Γm for distinct m,m′ ∈M.

Lemma 6.9 ([Sav14, Lem. 5.6]) If {m1 , . . . ,mk} ∈ X∗, then the map êvΓ
m1 , . . . ,mk

is
surjective.

Let R(q) denote the set of isomorphism classes of irreducible ûnite-dimensional
representations of q. _en Γ acts on R(q) by

Γ ×R(q)→ R(q), (γ, [ρ])↦ γ[ρ] ∶= [ρ ○ γ−1],
where [ρ] ∈ R(q) denotes the isomorphism class of a representation ρ of q.

Deûnition 6.10 (E(q,A), E(q,A)Γ) Let E(q,A) denote the set of ûnitely supported
functions Ψ∶MaxSpec(A)→ R(q) and let E(q,A)Γ denote the subset of E(q,A) con-
sisting of those functions that are Γ-equivariant. Here the support of Ψ, denoted
Supp(Ψ), is the set of all m ∈ MaxSpec(A) for which Ψ(m) ≠ 0, where 0 denotes
the isomorphism class of the trivial (one-dimensional) representation.

If ρ and ρ′ are isomorphic representations of q, then the representations evm(ρ)
and evm(ρ′) are also isomorphic for any m ∈ MaxSpecA. _erefore, for [ρ] ∈ R(q),
we can deûne evm[ρ] to be the isomorphism class of evm(ρ), and this is independent
of the representative ρ. For Ψ ∈ E(q,A) such that Supp(Ψ) = {m1 , . . . ,mk}, we
deûne êvΨ to be the isomorphism class of êvm1 , . . . ,mk(Ψ(m1), . . . ,Ψ(mk)), which is
well deûned by the above comments andRemark 6.6. IfΨ is themap that is identically
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0 onMaxSpec(A), then, by deûnition, êvΨ is the isomorphism class of the trivial (one-
dimensional) representation of q⊗ A.

Lemma 6.11 Let Ψ ∈ E(q,A)Γ andm ∈ MaxSpec(A). _en for all γ ∈ Γ,

êvm(Ψ(m)) = êvγm(γΨ(m)) = êvγm(Ψ(γm)).

Proof _e proof is the same as that in [NSS12, Lem. 4.13], where q is replaced by a
ûnite-dimensional Lie algebra.

Deûnition 6.12 (êvΓ
Ψ) Let Ψ ∈ E(q,A)Γ and let M = {m1 , . . . ,mk} ∈ X∗ contain

one element from each Γ-orbit in Supp(Ψ). We deûne

êvΓ
Ψ ∶= êvΓ

m1 , . . . ,mk
(Ψ(m1), . . . ,Ψ(mk)).

By Lemma 6.11, êvΓ
Ψ is independent of the choice ofM. If Ψ = 0, we deûne êvΓ

Ψ to be
the isomorphism class of the trivial (one-dimensional) representation of (q⊗ A)Γ .

Proposition 6.13 _e map Ψ ↦ êvΨ from E(q,A) to the set of isomorphism classes
of irreducible ûnite-dimensional representations of q⊗ A is injective.

Proof If Ψ ≠ Ψ′ ∈ E(q,A), then there exists m ∈ MaxSpec(A) such that Ψ(m) ≠
Ψ′(m). Without loss of generality, we may assume that Ψ(m) ≠ 0. Let Supp(Ψ) ∪
Supp(Ψ′) = {m1 , . . . ,mk}, wherem = m1 and consider the following ideal of A:

I = m2 ⋅ ⋅ ⋅mk .

Note that a = q⊗ I is a Lie subalgebra of q⊗ A such that evm(a) ≅ q and evm j(a) = 0
for j = 2, . . . , k.

Suppose that êvΨ ≅ êvΨ′ , and deûne

ρ ∶= evm2(Ψ(m2))⊗̂ ⋅ ⋅ ⋅ ⊗̂ evmk(Ψ(mk)),
ρ′ ∶= evm2(Ψ′(m2))⊗̂ ⋅ ⋅ ⋅ ⊗̂ evmk(Ψ′(mk)),

with associated modules V and V ′, respectively. _en ρ(a) = ρ′(a) = 0. We divide
the proof into three cases.
For the ûrst case, assume that we have isomorphisms of q⊗ A-modules

evm1(Ψ(m1))⊗ ρ ≅ ρ̂ ⊕ ρ̂ and evm1(Ψ′(m1))⊗ ρ′ ≅ ρ̂′ ⊕ ρ̂′ ,

where ρ̂ and ρ̂′ are subrepresentations of evm1(Ψ(m1)) ⊗ ρ and evm1(Ψ′(m1)) ⊗ ρ′,
respectively. Since êvΨ ≅ êvΨ′ , wemust have ρ̂ ≅ ρ̂′, and so

evm1(Ψ(m1))⊕ dim V ≅ (evm1(Ψ(m1))⊗ ρ)∣a ≅ (ρ̂ ⊕ ρ̂)∣a ≅ (ρ̂′ ⊕ ρ̂′)∣a
≅ (evm1(Ψ′(m1))⊗ ρ′)∣a ≅ evm1(Ψ′(m1))⊕ dim V ′

,

where the ûrst isomorphism follows from the fact that ρ(a) = 0 and the last follows
from the fact that ρ′(a) = 0. But this is a contradiction, since Ψ(m1) ≠ Ψ′(m1).
For the second case, assume

evm1(Ψ′(m1))⊗ ρ′ is irreducible and evm1(Ψ(m1))⊗ ρ ≅ ρ̂ ⊕ ρ̂,

https://doi.org/10.4153/CJM-2015-033-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-033-6


Equivariant Map Queer Lie Superalgebras 277

where ρ̂ ⊆ evm1(Ψ(m1)) ⊗ ρ is a subrepresentation. _us, ρ̂ ≅ evm1(Ψ′(m1)) ⊗ ρ′,
which implies that

evm1(Ψ(m1))⊕ dim V ≅ (ρ̂ ⊕ ρ̂)∣a ≅ (evm1(Ψ′(m1))⊗ ρ′)⊕2∣a
≅ evm1(Ψ′(m1))⊕2 dim V ′

.

So again we have a contradiction.
_e remaining case, when both evm1(Ψ′(m1)) ⊗ ρ′ and evm1(Ψ(m1)) ⊗ ρ are ir-

reducible q⊗ A-modules, is similar.

Corollary 6.14 For all Ψ ∈ E(q,A)Γ , we have that êvΓ
Ψ is the isomorphism class of

an irreducible ûnite-dimensional representation. Furthermore, themap Ψ ↦ êvΓ
Ψ from

E(q,A)Γ to the set of isomorphism classes of irreducible ûnite-dimensional representa-
tions of (q⊗ A)Γ is injective.

Proof _e ûrst statement follows from Lemma 6.9 and the deûnition of the irre-
ducible product. Suppose that Ψ,Ψ′ ∈ E(q,A)Γ such that êvΓ

Ψ = êvΓ
Ψ′ . Let M =

{m1 , . . . ,mk} ∈ X∗ contain one element of each Γ-orbit in Supp(Ψ) ∪ Supp(Ψ′).
_en êvΓ

Ψ and êv
Γ
Ψ′ are the restrictions to (g⊗A)Γ of êvm1 , . . . ,mk(Ψ(m1), . . . ,Ψ(mk))

and êvm1 , . . . ,mk(Ψ′(m1), . . . Ψ′(mk)), respectively. By Lemma 6.9, it follows that

êvm1 , . . . ,mk(Ψ(m1), . . . ,Ψ(mk)) = êvm1 , . . . ,mk(Ψ′(m1), . . . ,Ψ′(mk)) .

_en, by Proposition 6.13, we have Ψ(mi) = Ψ′(mi) for i = 1, . . . , k. _us, Ψ =
Ψ′.

Remark 6.15 If the target Lie superalgebra q is replaced by a Lie algebra or a basic
classical Lie superalgebra g, then the tensor product of irreducible ûnite-dimensional
representationswith disjoint supports is always irreducible (see [NSS12, Prop. 4.9] for
Lie algebras and [Sav14, Prop. 4.12] for basic classical Lie superalgebras). In particular,
the evaluation representation evΨ is an irreducible ûnite-dimensional representation
for all Ψ ∈ E(g,A), where evΨ is deûned by replacing the irreducible product by the
tensor product in the deûnition of êvΨ .

7 Classification of Finite-dimensional Representations

In this section we present our main result: the classiûcation of the irreducible ûnite-
dimensional q ⊗ A-modules and (q ⊗ A)Γ-modules. We assume that A is ûnitely
generated.

_eorem 7.1 _emap

E(q,A)→ R(q⊗ A), Ψ ↦ êvΨ ,

is a bijection, where R(q ⊗ A) is the set of isomorphism classes of irreducible ûnite-
dimensional representations of q ⊗ A. In particular, all irreducible ûnite-dimensional
representations are representations of the form (6.2).
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Proof By Proposition 6.13, it is enough to show that all irreducible ûnite-dimen-
sional representations of q ⊗ A are of the form (6.2). _us, it suõces, by Proposi-
tion 6.7, to show that, for every irreducible ûnite-dimensional q ⊗ A-module V , we
have (q⊗ J)V = 0 for some radical ideal J ⊆ A of ûnite-codimension.
By Corollary 5.7, we have that (q ⊗ I)V = 0 for some ideal I of A of ûnite codi-

mension. Let J =
√

I be the radical of I. To prove that (q ⊗ J)V = 0, it suõces, by
Lemma 2.12, to show that (q⊗ J)v = 0 for some nonzero vector v ∈ V .
Consider nowV as a q⊗A/I-module. Wewill show that (q⊗(J/I))v = 0 for some

nonzero v ∈ V . Since A is ûnitely generated, and hence Noetherian, we have Jk ⊆ I
for some k ∈ N, by Lemma 2.2(iv). Hence, (q⊗ (J/I))(k) = q(k) ⊗ (Jk/I) = 0, and so
q⊗ (J/I) is solvable. On the other hand, since q0 is a simple Lie algebra, we have

[(q⊗ (J/I))1 , (q⊗ (J/I))1] = [q1 , q1]⊗ (J2/I) ⊆ q0 ⊗ (J2/I)
= [q0 , q0]⊗ (J2/I) = [(q⊗ (J/I))0 , (q⊗ (J/I))0] .

_en, by Lemma 2.11, there exists a one-dimensional q⊗(J/I)-submodule ofV . _us,
we have a nonzero vector v ∈ V and θ ∈ (q⊗ J)∗ such that

µv = θ(µ)v , for all µ ∈ q⊗ J .
We want to prove that θ = 0. If µ ∈ n± ⊗ J, then θ(µ)mv = µmv = 0 for m suõciently
large, since V is ûnite dimensional and hence has a ûnite number of nonzero weight
spaces. _us, θ(n± ⊗ J) = 0. It remains to show that θ(h ⊗ J) = 0. Denote by θ′ the
restriction of θ to q0⊗ J. _en θ′ deûnes a one-dimensional representation of the Lie
algebra q0⊗ J, and hence the kernel of θ′ must be an ideal of q0⊗ J of codimension at
most one. Because q0 is a simple ûnite-dimensional Lie algebra, it is easy to see that
this kernel must be all of q0 ⊗ J, and hence θ′ = 0. Since h0 ⊆ q0, we also have that
θ(h0 ⊗ J) = 0. _erefore, Lemma 4.1 implies that (h⊗ J)v = 0.

Now assume that Γ is a ûnite abelian group acting on both q and A by automor-
phisms. We also assume that Γ acts freely on MaxSpec(A).

Proposition 7.2 Every ûnite-dimensional (q ⊗ A)Γ-module V is the restriction of a
q ⊗ A-module V ′ whose support is an element of X∗. Furthermore, V is irreducible if
and only if V ′ is.

Proof _e proof is the same as the proof of [Sav14, Prop. 8.5]. Although that ref-
erence assumes that the target Lie superalgebra g is basic classical, the proof of this
result only requires g to be a simple ûnite-dimensional Lie superalgebra. Note also
that the statement of [Sav14, Prop. 8.5] does not include the fact that the support of
V ′ is an element of X∗. However, this property is demonstrated in the proof.

_eorem 7.3 Suppose A is a ûnitely generated unital associative C-algebra and Γ is
a ûnite abelian group acting on A and q by automorphisms. Furthermore, suppose that
the induced action of Γ on MaxSpec(A) is free. _en themap

(7.1) E(q,A)Γ → R(q,A)Γ , Ψ ↦ êvΓ
Ψ ,

is a bijection, where R(q,A)Γ is the set of isomorphism classes of irreducible ûnite-
dimensional representations of (q⊗ A)Γ .
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Proof _e map (7.1) is surjective by Proposition 7.2, while injectivity follows from
Corollary 6.14.
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