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Abstract

A variant of Kurosh-Amitsur radical theory is developed for algebras with a collection of (finitary)
operations w, all of which are idempotent, that is satisfy the condition u(x, x,...,x) = x. In such
algebras, all classes of any congruence are subalgebras. In place of a largest normal radical subobject,
a largest congruence with radical congruence classes is considered. In congruence-permutable varieties
the parallels with conventional radical theory are most striking.

1980 Mathematics subject classification (Amer. Math. Soc.): 08 A 05, 08 C 99, 20 M 11.

Introduction

Since its introduction for rings in the early 50's, Kurosh-Amitsur radical theory
has been developed for many types of algebraic and topological-algebraic struc-
tures—groups, topological rings and groups, modules, lattice-ordered rings, etc.
—which form categories about as "nice" as categories of rings. (Though the
module version of the theory had, to some extent, a separate incarnation as
" torsion theory", it does belong in this list.)

A radical class of structures like the ones listed is a non-empty homomorphi-
cally closed class îl such that every object A has a largest normal ^subobject
<5i(A), and\<$l(A/<3l(A))\= 1 for every A.

The most obvious obstacle to an extension of the theory to other kinds of
algebraic structure is the absence of a satisfactory notion of normal subobject.
Some work has been done with semigroups with zero and with monoids. In the
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214 B.J.Gardner 12]

former case, ideals play the part of normal subobjects: see Szasz [28] for a
"literal" generalization of some basic results; there is also a quite extensive
literature (see for example [18]) dealing with another version, in which, rather
than homomorphic closure, only closure under Rees factor semigroups is imposed
on a radical class. In the monoid case, inverse images of the identity play the
special role; see Marki et al. [19].

It seem clear, however, that wide-ranging generalizations necessitate the re-
placement of the subobject 91(^4) by a suitable congruence on A. Some efforts
have been made in this direction: see Hoehnke [12], Mlitz [20] and Strecker [27].
These are largely based on Hoehnke's notion of an M-radical [12]. What is sought
is a congruence pA associated with a class 91 for each object A such that A/pA has
no congruence for which some nontrivial class is an object of 91 and, if possible,
pA contains every congruence on A having a class which is an object of 91.
Complications can arise if there are no congruence classes which are subobjects.

(We note in passing that another kind of radical, a subfunction r of the identity
such that f(r( A)) C r(f(A)) for homomorphisms/and | r(A)/r(A) \— 1 for all A
has an exact analogue in any setting; see, for example, Clifford [4] or Hoehnke
[12].)

In this paper we consider only varieties of idempotent algebras: those for which
every (finitary) operation u satisfies the condition

a(x,x,...,x) = x.

Equivalently, we are dealing with algebras in which every one-element subset is a
subalgebra. Equivalently again, our algebras are those in which every class of
every congruence is a subalgebra.

In defining radical classes 91 in terms of associated congruences pA, we have a
choice: either (i) require every pA-class to be in 91 and A/pA to have no non-trivial
congruence with all classes in 91 or (ii) require that A/pA have no congruence with
a non-trivial class in 91, and correspondingly require that pA be larger than any
congruence on A with a non-trivial class in 91. Both might be regarded as
generalizations of the "classical" version. Motivated in large part by examples like
the semilattice decomposition of a band, we have opted for (i). Radical classes
can in fact satisfy both (i) and (ii); they may then be viewed as resembling strict
or strong radical classes of rings.

Thus every algebra A will have a congruence pA, all of whose classes are
"radical" algebras and such that A/pA is a "semi-simple" algebra, hence the term
radical decomposition. Borrowing a convention from semigroup theory, we could
say that every algebra is a semi-simple algebra of radical algebras.

In radical theory for rings (and the like) the following characterization is very
useful. A class 91 is a radical class if and only if

(i) 91 is homomorphically closed;

https://doi.org/10.1017/S1446788700024666 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024666


[3] Radical decompositions of idempotent algebras 215

(ii) 91 is closed under extensions, that is, if I < R and if I, R/I E 91, then R £ 91
and

(iii) 91 contains all unions of chains of tfl-ideals.
To show that every ring has a largest (and not just maximal) 9l-ideal, one uses

(ii) in conjunction with the isomorphism theorem ( / + J)/J = / / / n J. In some
situations where we wish to discuss radical theory, there is no analogue of this
isomorphism and we need other conditions besides the analogues of (i), (ii) and
(iii), to be sure of getting radical classes.

An important case where a form of this isomorphism is valid is where
congruences permute, that is, a ° T = r ° a, where we define

a(a o T)b <=> 3c such that aac and crb.

In fact, throughout the paper, we prove two kinds of result: the general version
and the nicer, more complete version for congruence-permutable varieties.

Another point at which we have to make this distinction is in the requirement
of homomorphic closure for radical classes: when congruences do not permute
something more complicated than homomorphic closure (which suffices for
congruence-permutable varieties) is needed. In the general case, homomorphic
closure alone produces what we call weak radical classes (see Section 4). (For an
account of congruence-permutablility, see, for example, [3] Chapter II, Section
12.)

Varieties which are radical or semi-simple classes have been investigated
previously. For rings (associative and otherwise) the former are the varieties
which are closed under extensions, the latter the ones with attainable identities
[9]. The situation is more complicated with idempotent algebras (see Section 3).
Our version of extension-closure for a class % is as follows: if A has a congruence
a such that all o-classes and A /a are in 9C, then A E X. For attainability of the
identities of CV, we require that for every A, /\{a\A/a G 'T} have no congruence
classes with non-trivial images in CV. These are the definitions used by Tamura
[30] and Mal'cev [17] Chapter 32 who first considered these concepts.

The plan of the paper is as follows: Section 1 introduces radical classes; Section
2 semi-simple classes; Section 3 treats varieties; Section 4 discusses weak radical
classes; Section 5 is devoted to a version of the lower radical construction in
congruence-permutable varieties; all examples are contained in Section 6.

We should observe that while our discussion is purely algebraic, our theory has
some affinities with the generalized connectedness theory of topological spaces
(Arhangel'skii and Wiegandt [1]) and graphs (Fried and Wiegandt [8]).

For universal algebraic terminology we refer the reader to [3], for semigroup
theory to [13] and for radical-theoretic background to [33].

Throughout the paper, we shall always have as our universal class some variety
of idempotent algebras. By "variety" we mean "subvariety of the universal
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class". One piece of not-quite-standard notation: the trivial congruence (that is,
equality) on an algebra A is denoted by 0A, the largest congruence by \A (that is,
a\Ab for all a, b G A).

1. Radical classes

This section introduces radical classes and provides partial characterizations of
them, based on known characterizations of radical classes of rings.

1.1 DEFINITION. A radical class is a non-empty class 31 satisfying the following
conditions.

(Rl) If a and T are congruences on an algebra A such that all a-classes are in
31, then there is a congruence A on A/T such that (a V T) /T < A and all A-classes
are in 31.

(R2) For every algebra A there is a congruence pA on A such that all pA -classes
are in 31 and pA s» n for every congruence /i on A with all its classes in 31.

(R3)pA/p = 0A/f> for every A.
When convenient, we shall drop the subscript and write p instead of pA.

The following is obvious.

1.2 PROPOSITION. Let 31 be radical class, p the corresponding congruence. Then
pA = lA if and only if A G 31.

Property (Rl) ensures that the congruence associated with a radical class is
functorial in an appropriate weak sense.

1.3 PROPOSITION. Let 31 be a radical class with congruence p. For any surjective
homomorphism f: A -» B, we have f(pA) C pB.

PROOF. Let K = Ker(/). Then if alpAa2, we have al(pA V n)a2 and thus
/(a,X(p,< V K)/K)f(a2), so by (Rl) and (R2),f(ai)PBf(a2).

Note that by 1.3 and (R3), our radicals are radicals in the sense of Hoehnke
[12].

We consider next some closure properties which provide alternative characteri-
zations of radical classes. The first of these is a version of closure under
extensions, the others relate to joins of congruences. Let % be a class of algebras.
These are the properties, which % may or may not satisfy.
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[ 5 ] Radical decompositions of idempotent algebras 217

(E) If an algebra A has a congruence a such that all a-classes and A/a be long
to %, then A is in %.

(C) If {aa\a G A} is a chain of congruences on an algebra A such that each
aa-class is in % for each a, then each V a a 6 A - c l a s s is in %.

(J) If a, T are congruences on an algebra A such that all a-classes and all
r-classes are in %, then all a V -r-classes are in %.

1.4 P R O P O S I T I O N . Let 'Si be a radical class. Then 91 satisfies (E).

PROOF. Let A have a congruence a such that 91 contains each ao and A/a. Let
p be the congruence associated with 91. Then o < p, so A = A/p is a homomor-
phic image of A/a, whence by (Rl), A G 91, that is, pA = l j . But p j = Oj, so
l^/p^ |= |Z |= 1, that is, pA = \A, that is, A G 91.

1.5 PROPOSITION. Let <3lbe a radical class. Then 91 satisfies (C).

PROOF. Let {oa | a G A} be a chain of congruences on an algebra A such that
each aa-class is in 91 for each a, and let a = V a e A aa. Let K = ao be any a-class.
Then for each b G K, we have

K = ba= U K-

Let Ta denote the restriction of aa to the subalgebra K. Clearly ra is a congruence
on K and &TO = baa for each 6 G K. Thus each Ta-class is in 91, so that ra < p^ for
each a, and hence V a e A ra «£ pK. But V a e A ra is the restriction to .K of a and
this is 1*. Thus K is in 91.

1.6 THEOREM. Let'R, be a non-empty class satisfying (Rl), (E), (C) and (J). Then
91 K a radical class.

PROOF. We need to verify (R2) and (R3). Let Q(A) be the set of congruences
on A, all of whose classes are in 91, and let {aa | a G A} be a chain in &(A). Then
a = V a g A a a G C(,4) by (C), so &(A) has a maximal element, ^. For any
maximal member v of &{A), we have /t V v G C(^4) and thus n = p. Since (by a
similar argument to the one already used) every congruence in 6(^4) is contained
in a maximal one, 6(^4) has a largest element fiA. This gives us (R2).

Let A = A/pA and let X be a congruence on A, all of whose classes are in 91.
Let X be the congruence on A defined by

akb **
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and let T be a congruence class of X. Since /i < jX, we have

T= u
Let /i' denote the restriction of /i to T. Then all /x'-classes are /t-classes, and
therefore belong to <3l.

By construction, X//n = X, so T/p', as a X-class, is in '31. By (E) we have
r e l This means that X e (B(^) and thus X < p, that is, (an)X(bn) implies

that is, X = 0A/ll. We therefore have (with the obvious interpretation)
= 0A/li. Thus (R3) is also satisfied.

It is appropriate to say a word or two at this point about Properties (Rl) and
(J). The former, which ensures the "functoriality" of the congruence p associated
with a radical class & (1.3) is a strong form of homomorphic closure: if A e <3l,
then pA = \A, so for any congruence r on A, \A/r = \A/T — (\A V T ) / T must be
contained in a congruence with all its classes in <5l, that is, A/T must be in <Sl.
Property (J), on the other hand, ensures, in the presence of (C), that every algebra
has a largest, rather than merely maximal congruence with its classes in "31. We do
not in fact know of a class satisfying (Rl) (or homomorphic closure), (E) and (C)
but not (J). For (R2) and (R3) plus homomorphic closure but without (Rl), see
Section 6.B. As we shall shortly see, in the presence of permutable congruences,
we can dispense with (J) and replace (Rl) with homomorphic closure.

The following result is effectively given by Birkhoff ([2], pages 87-88).

1.7 THEOREM. Let a, T be permutable congruences on an algebra A. Then for any
a 6 A, we have

aa/ (a A T) D (aa X aa) = a(a V T) /T n (a(a V T) X a(a V T)) .

1.8 COROLLARY. In a variety with permutable congruences, a class 9C satisfies
(Rl), if and only if it is homomorphically closed.

PROOF. Let 9C be homomorphically closed and let a, T be congruences on an
algebra A such that all a-classes are in 9C. Let X — a V T, X = (a V T ) / T . Then
for a £ A, we have

(ar)X = {bT\a\b} = {br\b E a(a V T)} .

Thus (ai-)X is the image of a(a V T) under the natural map from A to A/T, that
is, (ar)X ss a(a V T ) / T n (fl(a V T) X a(a V T)). By 1.7, the latter is isomorphic
to ao/(o V T). Since aa G 9C and % is homomorphically closed, all congruence
classes of ( O V T ) / T ( = X ) are themselves in %. Thus % satisfies (Rl). The
converse has already been noted.

https://doi.org/10.1017/S1446788700024666 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024666


[7] Radical decompositions of idempotent algebras 219

1.9 COROLLARY. If a class 01 satisfies (Rl), (E), (C) and
(J') If a, 7 are congruences on A such that all a-classes and all T-classes are in 01,

then a o T = T ° a,

then 01 is a radical class.

PROOF. It is enough to show that (J') implies (J). From the proof of 1.7 it can be
seen that T induces a congruence T* on a(o V T) such that all T*-classes are
T-classes and therefore belong to 01. On the other hand, 1.7 also says that

a(a V T ) / T * SS aa/ (a A T) f~l (aa X aa),

so a(a V T ) / T * E 01 and hence, by (E), a(o V T) E 01.

For varieties with permutable congruences, we can prove an improved version
of 1.6.

1.10 THEOREM. In a congruence-permutable variety, a non-empty class is a radical
class if and only if it is homomorphically closed and satisfies (E) and (C).

PROOF. If 01 is a radical class, it satisfies the three stated conditions by 1.1, 1.4
and 1.5. Conversely, if the three stated conditions are satisfied, 01 satisfies (Rl) by
1.8. Thus by 1.9, 01 is a radical class.

It should be noted that the characterization of radical classes given by 1.10 is
very closely analogous to a well known characterization of radical classes of rings,
groups etc.

We conclude this section with a couple of characterizations of radical classes in
special cases.

1.11 DEFINITION. A class % of algebras is hereditary if for A G 9C we have
aa = % for every a G A and every congruence a on A.

1.12 PROPOSITION. A non-empty hereditary class 01 is a radical class if and only if
it satisfies (Rl), (E), (C) and (J).

PROOF. By 1.6, 1.1, 1.4 and 1.5, we only have to show that hereditary radical
classes satisfy (J). Let p be the congruence associated with a hereditary radical
class 01. If a, T are congruences on an algebra A such that all a-classes and all
T-classes are in 01, then a =s p, T < p and thus a V T < p. Thus a V r induces a
congruence on any p-class T, and all classes of this congruence are a V T-classes.
If a G T, then since T G 01 and 01 is hereditary, a(a V T) G 01. But every
a V T-class is accounted for in this way.
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2. Semi-simple classes

2.1 DEFINITION. A semi-simple class is a class S such that there exists a radical
class "31, with associated congruence p, for which

The characterization of semi-simple classes in universal classes of rings has
proved to be much more difficult than that of radical classes, though in some
cases, for example associative and alternative rings, very satisfactory characteriza-
tions have been obtained.

We now obtain a characterization of semi-simple classes in an arbitrary variety
of idempotent algebras. The description can be tidied up in the special case where
congruences permute.

With any class % containing all one-element algebras, and every algebra A, we
associate the congruence

K * = A {o\A/o(E%}.

2.2 THEOREM. A non-empty class S is a semi-simple class if and only if it satisfies
the following:

(50) All one element algebras are in §>.
(51) If r is a congruence on an algebra A and A/r G S, then for any congruence a

on A such that a ^ T, some a-class has a non-trivial homomorphic image in S.
(52) S is closed under subdirect products.
(53) For every algebra A, we have K^ = \Tfor every K^-class T.

PROOF. Let <3lbe a radical class with associated congruence p, § = {A \ pA = QA}.
Since p is a radical in the sense of Hoehnke [12] S is subdirectly closed, that is,
satisfies (S2). For any algebra A, we have A/pA G S, so KA < p. By (S2)
A/K%

A G S, SO by (Rl) the natural map A -» A/KA takes pA-equivalent elements to
/i-equivalent elements, where p is some congruence on A/K\ with all /i-classes in
SI. This means that \i = 0 and so pA < KA. Thus we have pA = KA.

Now let T be a congruence on an algebra A such that A/T G S. If a is a
congruence on A such that no a-class T has a non-trivial homomorphic image in
S, then for all such T, pT = KT = \T, so T G <3l. thus a *£ pA = KA ^ T and S
satisfies (SI).

If T is a K^-class for some algebra A, then as noted above, T is a p^-class, so
KT = pT= lT. Hence S satisfies (S3).

We now turn to the converse. Let S be non-empty and satisfy (SI), (S2) and
(S3), and let

<3l= {A\A/o E§=*o= \A).
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Then 51 = {A \ K^ = lA}. By (S3), each K^-class is in 51, for every algebra A; also

A = A/K\ G S by (S2), so KA = 0A.

Let a be a congruence on an algebra A with all a-classes in 51, that is, such that

no a-class T has a non-trivial homomorphic image in S. By (SI),

a<«5= A
 { I W T E S } .

By (S3) and (S2) KA satisfies (R2) and (R3).
It is easy to see that f(icA) C K | for any surjective homomorphism f: A ^> B.

Thus 91 satisfies (Rl), so 51 is a radical class, with KS as its associated congruence.
The corresponding semi-simple class is {A\KA = 0A), that is, §.

If a class S satisfies (SI), then for A e S we have A/0A e S, so every
non-trivial congruence 4̂ has a class with a non-trivial homomorphic image in S.
This latter is a more reasonable (and familiar) looking condition. It is difficult to
see, however, how the more cumbersome (SI) can be avoided in general. As usual,
there is some simplification when congruences permute.

2.3 THEOREM. In a congruence-permutable variety, a non-empty class is a
semi-simple class if and only if it satisfies (S2), (S3) and

(SI') If A G S, then for every congruence a =£• 0A on A, some a-class has a
non-trivial homomorphic image in §>.

PROOF. We only have to show that (SI') implies (SI). Let A/r be in S, and let a
be a congruence on A such that a ^ r. Then T < a V T and o = (oV T ) / T ¥= 0A/T.
Thus by (ST), some a-class has a non-trivial homomorphic image in S. But by the
argument used in the proof of 1.8, each (a V T)/r-class is a homomorphic image
of a a-class. Thus at least one a-class can be mapped non-trivially onto something
in S; thus S satisfies (SI).

2.3 is as much as can be hoped for. In particular, it seems unlikely that (S3) can
be dropped; its analogue is needed for non-associative rings, for example (see
[21]).

3. Varieties

In the case of universal classes which are varieties of rings and related
structures, a fair amount is now known about the (sub) varieties which are radical
or semi-simple classes (see, for example, [9]). We next consider these questions for
idempotent algebras.
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3.1 THEOREM. A (sub) variety Vis a radical class if and only if it satisfies (Rl),
(E) and (J).

PROOF. By 1.12 we need only observe that T satisfies (C). Let {aa\a E A} be a
chain of congruences on an algebra A such that all aa-classes are in T for each a.
Let a = V a G A aa. Since, for each a E A, aa = U a G A a a a and varieties are closed
under directed unions, we have aa £ V.

A variety °Vhas attainable identities (Tamura [30]) if (in the sense of Section 2)
V satisfies (S3).

3.2 THEOREM. A (sub) variety V is a semi-simple class if and only if it has
attainable identities.

PROOF. Suppose Thas attainable identities. Then we only need to prove that V
satisfies (SI). To this end, let a be a congruence on A such that no a-class has a
non-trivial homomorphic image in V. Then the natural map A -> A/K% takes each
a-class S to a subalgebra S of A/K%. But as V is a variety, we have S E V. By
attainability, K J = ls, whence \S\= 1. It follows that a < K] < T for all T with
i / r E T; thus (SI) is satisfied.

Conversely, if T is a semi-simple class, it has attainable identities by (S3).

A semi-simple radical class (SSR class), is a class which is at the same time a
radical class and the semi-simple class corresponding to some other radical class.
For varieties of rings and the like, a semi-simple class is an SSR class if and only
if it's homomorphically closed, [10], [33]. Here we can prove the following.

3.3 THEOREM. A semi-simple class is an SSR class if and only if it satisfies (Rl)
and (J).

PROOF. Let S be a semi-simple class satisfying (Rl) and (J). By (Rl) S is
homomorphically closed, and by 2.2 S is closed under subdirect products, so by
Kogalovskii's Theorem [14], [22] S is a variety. By 3.2 S has attainable identities
and so satisfies (E) ([17], page 443). It now follows from 3.1 that T i s an SSR
class.

Conversely, if T i s an SSR class, then again T i s homomorphically closed and
closed under subdirect products, hence a variety as well as a radical class. By 3.1
Tsatisfies (J) (as well as (Rl)).

3.4 COROLLARY. Every SSR class is a subvariety.
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In the presence of permutable congruences, we can state a neater result, in view
of 1.10 and 3.1.

3.5 THEOREM. In a congruence-permutable variety, a semi-simple class is an SSR
class if and only if it is homomorphically closed.

3.6 COROLLARY. In a congruence-permutable variety, a class is an SSR class if
and only if it is a subvariety with attainable identities.

4. Weak radical classes

Condition (Rl) in the definition (1.1) of a radical class is a rather cumbersome
one compared with homomorphic closure which suffices in the case of con-
gruence-permutable varieties. In this brief section we consider what happens in
general when the weaker property is substituted.

4.1 DEFINITION. A weak radical class is a non-empty homomorphically closed
class satisfying (R2) and (R3) of 1.1.

We shall see in Section 6.B below that there are weak radical classes which are
not radical classes. The following result provides a further connection between
these two concepts.

4.2 PROPOSITION. Let *3l be a weak radical class with associated congruence p.
The following are equivalent:

(i) <5l is a radical class.
(ii)f(pA) C pBfor every surjective homomorphism f: A -» B.
(iii) The class {A \ pA = 0A) is closed under subdirect products.

PROOF, (i) <=» (ii): This follows by the arguments used on pages 6-7 of Clifford
[4]-

(i) => (iii): 2.2.
(iii) =» (ii): Let S = {T\pT = 0T}. For each A, let K^ = A{a\A/a £ S}. Then

A/K\ £ S. Also A/pA £ S, so K^ < pA. But PA/K^ is a congruence on A/K\ with
its classes in 91, so pA = K^. Let / : A -» B be a surjective homomorphism. Then

4.3 THEOREM. A class €1 is a weak radical class if it is homomorphically closed
and satisfies (E), (C) and (J) of 1.6.
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(See the proof of 1.6.)

4.4 THEOREM. In a congruence-permutable variety, all weak radical classes are
radical classes.

4.5 THEOREM. A (sub) variety is a weak radical class if and only if it satisfies (E)
and (J).

PROOF. 3.1.

5. The lower radical construction

In this section we shall work entirely in a variety with permutable congruences.
In this setting, it is clear from 1.10 that every class is contained in a smallest
radical class. We shall obtain a construction of the latter, based on the version of
the Kurosh lower radical construction first used in [15].

Let 911 be a non-empty class; without loss of generality we can take 911 to be
homomorphically closed. We define a class 9Ha, for each ordinal number a, as
follows.

t
911, = 911; 9Ha = A \\A/a |> 1 =» A/a has a non-trivial congruence

(that is, ¥= 0) with all classes in U 91tp | ,

if a > 1. Note that 9Hy C 91ta if y < a.

5.1 THEOREM/DEFINITION. Let 9It6e a non-empty homomorphically closed class
in a congruence-permutable variety. Let

L (911) = U 9Ha, where a extends over all ordinals.

Then
(i) L(9IL) is a radical class and
(ii) L(91t) C <&for every radical class % with 9H C &.

is called the lower radical class defined by 9lt.

PROOF. We first show that L(<Dlt) is a radical class. By assumption, 91L, is
homomorphically closed, and a simple transfinite induction argument establishes
the homomorphic closure of the other 9lta. Thus L(9H) is homomorphically
closed.
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Let A be an algebra with a congruence a such that L(91t) contains A/a and all
a-classes. Then there are ordinals S and ya, a G A such that A/a G 91ts and
aa G 91tY for each a. Let TJ be an ordinal such that -q > S and ij > ya for each a.
Then y4/a and all the aa are in 911,,. Let T be any congruence on 4̂ such that
| , 4 / T |> 1. If a ss T, then, a s i / o E % „ , we have A/r G 9H,,. If a =£ T, then as in
the proof of 1.8, for every a G A, (ar)[(o V T ) / T ] is a homomorphic image of aa,
and one such class has cardinality greater than one. Thus (a V T ) / T is non-trivial,
and its classes are all in <DH7). We conclude that A is in 9IL,+1, whence L(91t)
satisfies (E).

Let [ax | X G A} be a chain of congruences on an algebra A such that for each
X, every ax-class is in L(91t). Let a = V A e A a A , and let T = aa be any a-class.
Each ax induces a congruence aA on T each class of which is a ax-class and is thus
in L(91t). If n is a congruence on Tsuch that | T/n\> 1, then for some A, a'x ^ ft.
Then as in the previous argument, for each t G T, (tii)[(ox V p)/n] is a homo-
morphic image of ta{. Let £x be an ordinal such that each ax-class is in 91L{ (see
the previous argument). Then each (ax V /t)/ja-class is in 9H{A. Let £ be an
ordinal greater than all the £ v Then every non-trivial homomorphic image of T
has a non-trivial congruence with all its classes in 9IL .̂ Thus J G "DILf+p so
aa = r G LC31L). This proves that L(91t) satisfies (C) and so is a radical class by
1.10.

Now let $1 be any radical class containing 911=911,, and let p be the
associated congruence. If 911^ C 31 for every /? < a, consider A G 91ta. If
l^/P/41^ 1> t n e n ^/P/i has a non-trivial congruence with all its classes in
U/s<a91Lp c 31. This is impossible, so p^ = 1^ and A G 31. Thus L(91t) C 31
and the proof is complete.

6. Examples

6.B. Bands. Every band, that is, semigroup satisfying x2 = x, has a smallest
congruence such that the corresponding factor band is a semilattice, that is, is
commutative. Now it turns out that the congruence classes for the congruence
referred to are rectangular [16], that is, satisfy the identity xyx = x. There are no
non-trivial rectangular semilattices and it follows from this and a few other
observations that the rectangular bands form a radical class whose corresponding
semi-simple class is the class of semilattices. (Full details are given below.) This
example provided the starting point for our investigation and a model for the
definition of a radical class of idempotent algebras. By 3.2, if we accept that the
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semilattices form a semi-simple class, the variety defined by xy = yx has attaina-
ble identities. In fact, Tamura [31] has provided the results which establish the
following.

6.B.I. THEOREM [31]. The non-trivial varieties of bands which are semi-simple
classes, that is, which have attainable identities are

(i) VAR(jcy = yx) (semilattices),
(ii) VAR(xy — y) (right zero semigroups),
(iii) VAR(xy = x) (left zero semigroups).

All the varieties in 6.B.1 are defined by two-variable identities; we shall now
classify all such varieties in terms of the concepts discussed in earlier sections.
Each such variety is defined by a single identity; the following list of defining
identities and names accounts for all the non-trivial ones. For a proof, see Petrich
[24].

xy = yx ( semilattices),

xy = xyx (left regular semigroups),

yx — xyx (right regular semigroups),

x = xyx (rectangular bands),

x = xy (left zero semigroups),

y = xy ( right zero seimgroups).

6.B.2. EXAMPLE. V A R ( X = xyx) is a radical class and the corresponding semi-
simple class is VAR(jcy = yx). To see this, we use 3.2 and 6.B.1 to see that
VAR(xy = yx) is a semi-simple class, the corresponding radical class 51 =
{A \A/a G VAR(jcy = yx) => a = lA} and the congruence p associated with 51 is
given by

pA = {o\A/oGVAR(xy=yx)}.

As noted above, pA has all its classes e VAR(JC = xyx). Thus for A G 51 (that is,
for pA = 1A) A itself is in VAR(JC = xyx). On the other hand, it is clear that
VAR(x = xyx) C <3l.

6.B.3. EXAMPLE. V A R ( X = xy) and VAR(y = xy) are radical classes. It is
enough that we discuss the class VAR(x = xy) of left zero semigroups. If a band
A has a congruence a such that A/a and all a classes are in VAR(x = xy), then
for a, b G A, we have aa — (ao)(bo) — (ab)a, that is, aaab, so a = a(ab) = a2b
— ab. Thus VAR(x = xy) satisfies (E). Let T, /t be congruences on a band B such
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that all r-classes and all /i-classes are in V A R ( x = xy). If a, b £ B and a(r V fi)b,
then there exist xx, x2,... ,xn £ B such that

Since arxlt we have a = ax{, since xxnx2> we have xx = xxx2, and so on. Thus

ab = axxb = axxx2b = • • • — axxx2 • • • xnb = (axxx2 • • • xn_x)(xnb)

= (axxx2 • • • xn__l)xn — • • • — axx = a.

This shows that VAR(x = xy) satisfies (J), so by 4.5, VAR(x = xy) is a weak
radical class. Let p be the associated congruence. To show that VAR(x = xy) is
actually a radical class, we obtain an explicit description of p.

Consider the relation X on a band A define by the condition

aXb «=> ab = a and ba = b.

As shown by McLean ([16], Lemmas 4 and 5), X is a right congruence. Let X* be
defined on A by

aX*b <=> aXb and raXrb Vr £ A.

Clearly X* is an equivalence relation. If aX*b, then for any s, r £ A, we have

r(sa) = (rs)aX(rs)b — r(sb),

so saX*sb. Furthermore raXrb for all r, so, X being a right congruence,

r(as) = (ra)sX(rb)s = r(bs),

that is, asX*bs, for all s. Thus X* is a congruence. If aX*b, then, in particular,
aXb, so ab = a; hence all X*-classes are left zero semigroups. If a is any
congruence on A, all of whose classes are left zero semigroups, then whenever uav
we have uv = u, vu = v, so uXv. But then, since ruarv for every r, we have ruXrv
for every r, that is, uX*v. Thus CT < X*. This proves that pA = X*, that is,

VA, apAb <* ab = a, ba = b, rarb — ra and rbra = rb for all r £ A.

From this characterization of p it is clear that f(pA) C pB for every surjective
homomorphism/: A -» 5 . By 4.2, VAR(x = xy) is a radical class.

6.B.4. EXAMPLE. Let 51, fee f//e class of bands A satisfying the following condition:

Va,fc £ A3 a finite sequence xo(= a), xx,...,xn(= b) such that for each
i, either xi+i is a right multiple of xt (in A) or xt is a right multiple of

Then 51, is a radical class, and the corresponding semi-simple class is VAR(x = xy).
(There is, of course, a corresponding result for VAR(>> = xy).) As noted above,
Tamura [31] has shown that VAR(x = xy) has attainable identities. By 3.2 and its
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proof, VAR(x = xy) is a semi-simple class and the corresponding radical class
has as its associated congruence for each band A, the congruence A{o\A/o G
VAR(x = xy)}. One now sees by reference to Lemma 2 of [31] (see also [7], [32])
that the radical class is <&,.

6.B.5. EXAMPLE. The class VAR(xy = yx) of semilattices is a weak radical class
but not a radical class. To see this, we first verify the conditions of 4.5, beginning
with (E).

Let a be a congruence on a band A such that A /a and all a-classes are
semilattices. If a, b G A, then (ab)a(ba), so (aba)o(ba2) = ba. Similarly
(bab)aab. Thus (aba)a(bab), so

ab = (ab)3 = {aba){bab) = (bab)(aba) = (ba)3 = ba,

that is, A is a semilattice. (This also follows from attainability, but the argument
we have given, which uses only 2-associativity, may be useful elsewhere.)

Now let jubea congruence on a band A with each /i-class a semilattice. If a\ib,
then for any c E A such that be = cb, we have (ac)n(bc) and (ca)n(cb), so
(ca)n(ac). Since (ca)3l(cac)£(ac), we have cafyac, and hence cafac, "31, £, ^
and % being Green's relations on the semilattice can. Then ca = ac (by [13], page
93).

If a and T are congruences on a band A and all a-classes and all T-classes are
semilattices, let a, b G A be such that a(a V T)6. Then there are elements
xx, x2,.. .,xn G A such that

• aaxtTX2ax3T • • • TXn_laxnrb.

Now xyx2
 = *2X] a nd aoxx, so, as above, ax2 — x2a. Then x2ax3, so ax3 = x3a,

and so on. Thus ab = ba and all (a V T)-classes are semilattices. This proves (J).
To see that VAR(xy = yx) is not a radical class, we consider the band C with

the following table:

a

b

c

d

a

a

a

c

c

b

b

b

d

d

c

c

c

c

c

d

d

d

d

d

Let p denote the congruence associated with VAR(xy = yx). Clearly the p^classes
are {a, c) and {b, d). The set / = {c, d) is an ideal of C. Let 0 be the congruence
on C defined by the Rees factor band C/I. Then 0 V pc/0 = 1. Since C/I is not
a semilattice, VAR(xy = yx) fails to satisfy (Rl), and so is not a radical class.
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6.B.6. EXAMPLE. VAR^xy = xyx) and VAR(>»x = xyx) are weak radical classes
but not radical classes. The demonstration follows the same pattern as that in the
previous example; only the left regular case, that is, VAR(jy = xyx), will be
considered.

Let A be a band with a congruence a such that A/a and all the a-classes are left
regular. If a, b G A, then abaaba, so

ab = (ab)3 = (ab)\a2b) = (ab){aba){ab) = (ab)(aba) = (abfa = aba.

Thus A is left regular, so VAR(xy = xyx) satisfies (E).
Now let ju be a congruence on a band A with all the ju-classes left regular. If

b,c e. A are such that be = beb, then cb = (cb)(cb) = c(bcb) — cbc, while
(cb)(bc)(cb) = cb2c2b = cbcb = cb and (cb\bc) = cb2c — cbc. Thus we have

(*) be = beb =>cb = cbc and (cb)(bc) = (cb)(bc)(cb).

Let apb and be ~ beb. Then (ca)fi(cb) and (ac)n(bc), so making use of (*), we
get

(ca)n = (ca) /x = (ca2c2a)n =[(ca)(ac)(ca)]n =[(cb)(bc)(cb)]n

= [(cb)(bc)]ti=[(ca)(ac)]li=(cac)li.

Thus (ca)n(cac), so that

ca = {ca) — cacac2a = ca(cac)ca = ca(cac) = (ca) c = cac.

Let a, T be congruences such that all a-classes and all T-classes are left regular. If
a(a V j)b, then there are elements JC,, x2,.. • ,xn of A such that

X2a • • • rxn_laxnrb.

Now axx = axxa and x2rxl, so as above ax2 = ox2
a- Since x2ax3, we have

ax3 = ax3a, and so on. Thus after a few repetitions, we get ab = aba. Every
a V r-class is therefore left regular, so VAR(xy = xyx) satisfies (J). Hence
VAR(xy = xyx) is a weak radical class.

Since semilattices are left regular, the congruence p c on the band C of 6.B.5 has
left regular classes. Since C/pc is a right zero semigroup, p c is the largest
congruence on C with left regular classes. Now C/I is not left regular, and as in
6.B.5, it follows that VAR(xy = xyx) is not a radical class.

A variety with attainable identities satisfies (E) in the contexts we are dealing
with and is closed under extensions—the exact analogue of (E)—in varieties of
rings and groups with operators. Some counterexamples in ring-based structures,
given in [10] and [11], show that the converse is false for this kind of universal
class. Our examples discussed so far provide similar counterexamples.
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6.B.7. EXAMPLE. In the variety of all bands, the subvarieties of rectangular bands,
left regular bands and right regular bands satisfy (E) but do not have attainable
identities.

In varieties of ring and group-based structures [9] and in congruence-permuta-
ble varieties of idempotent algebras (3.5) subvarieties with attainable identities are
SSR classes. The case of semilattices shows that the converse is false for
idempotent algebras in general.

6.B.8. EXAMPLE. In the variety of bands, the subvariety of semilattices has
attainable identities, but is not an SSR class.

In view of Tamura's theorem (6.B.1) above and 3.4 we can now state the
following.

6.B.9. THEOREM. The proper SSR-classes of bands are VAR(JC = xy) and \AR(y

= xy).

We can summarize the information obtained about two-variable definable
varieties of bands by the following table.

Defining
identity

xy=yx

xy = xyx

yx = xyx

x = xyx

x = xy

y = xy

(E)

Yes

Yes

Yes

Yes

Yes

Yes

Weak radical
class

Yes

Yes

Yes

Yes

Yes

Yes

Radical
class

No

No

Yes

Yes

Yes

Attainable
identities

Yes

No

No

No

Yes

Yes

SSR class

No

No

No

No

Yes

Yes

6.D. Idempotent distributive groupoids. We next consider (multiplicatively writ-
ten) groupoids for which the multiplication is idempotent and left and right
distributive over itself, that is, which satisfy the identities

x2 = x; x{yz) = (xy){xz); (xy)z = (xz)(yz).

We shall present two examples in the radical theory of idempotent distributive
groupoids, which we shall call ID groupoids.

In the case of bands, the variety of semilattices has attainable identities and the
corresponding radical class has as its associated congruence the two-sided Green's
equivalence f ([13], page 93).

https://doi.org/10.1017/S1446788700024666 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024666


[191 Radical decompositions of idempotent algebras 231

6.D.I. EXAMPLE. In the variety of ID groupoids, the subvariety

VAR((xy)z = x(yz), xy = yx)

of semilattices has attainable identities and is therefore a semi-simple class. Let "31
denote the corresponding radical class, p the associated congruence. Then for
a, b G A, we have

apAb <=> a and b generate the same ideal of A.

Most of what we need to establish this is stated without proof by Ruedin [25];
we include the details for the sake of completeness. Let T = VAR((xy)z =
x(yz); xy = yx), and let \ be the two-sided Green's relation, defined as for
semigroups. Let A be an ID groupoid.

If a, be A, then ab = ab2 = (ab)(ab) = (a(ab))(b(ab)) = (a(ab))((ba)b2),
from which it follows that abfyba. If a, b, c G A, then (ab)c = (ac)(bc) =
(a(bc)Xc(bc)), whence (ab)cfya(bc). ThusA/f G T.

Let B be a f-class of A, a G B. Then any b G B generates the same ideal of A
as a; in particular b is in the ideal generated by a. Hence b can be obtained from
a by a finite number of left and right multiplications by elements of A, that is, b
will look something like this:

If A is mapped onto a semilattice A, then B is taken onto a subsemilattice B in
which, denoting the images of a, b by a, b, b is a multiple of a (and similarly a is a
multiple of b). But then \B\= 1. It follows that $ = K^in the sense of Section 2.
The argument just given also shows that no f-class can be mapped onto a
semilattice at all. Thus VAR((xy)z — x(yz), xy — yz) has attainable identities
and the corresponding radical class has f as its associated congruence.

The class <3l of 6.D.1 may be regarded as analogous to the class of rectangular
bands. In our second example, we treat a counterpart of the left zero semigroups.
We first introduce some notation. For an element a of an ID groupoid A, we
denote left multiplication by La.

6.D.2. EXAMPLE. Let

91= {A\a,b GA =^Ln
a(b) = a for some n}.

Then 91 is a radical class. Let A be an ID groupoid. We consider the relation a on
A defined by

aab <=> Ln
a(b) — a for some n and L%(a) = b for some m.
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(Of course, without loss of generality we can take m — n.) Clearly a is reflexive
and symmetric. Let a — Ln

a(b\ b = Lb(c). Then

a = L"a{Lk
b(c)) = L^La(L

k(c)) = L"-lLk
ab(ac) = L"a^LaL

k
b{ac)

= L:-2Lk
iab)(a(ac)) = L*( . . . ( a ( a f c ) ) . . . ) («(- • • (a(ac)) • • • ) ) ,

where there are n a-factors in each product, that is

a = Lk
LW(L"a(c)) = Lk(L"a(c)) = Lk

a
+"(c).

It follows that a is transitive.
If a = L"a{b), then for any d E A,

d a = d ( a ( - - • ( a ( a b ) ) • • • ) ) = ( d a ) ( - • • ( d a ) ( ( d a ) ( d b ) ) • • • )

and

« / = ( * ( • • • (a(ab)) ...))d= ( « / ) ( • • • (ad)((ad)(bd)) •••)

from which it follows that a is a congruence. Clearly all a-classes are in <3l, and
a > T for every congruence T with all its classes in <3l, that is, (R2) holds. If aab,
where a, b E A/a, then for some n, a = L%(b), that is, aoL"(b), where a e a,
b G b. But then for some n, we have

a = K(L»a(b)) = L?+n(b),

so aab, that is, a = b. Hence (R3) holds also. Since R̂. is homomorphically closed,
it is weak radical class. The proof that 91 is actually a radical class is now like that
in 6.B.3.

6.P. Congruence-permutable varieties. Finally we consider some examples in
varieties where congruences permute. Radical classes are much easier to find, or
at any rate to recongnize, in such situations: see the characterization in 1.10. We
have already considered one way of constructing radical classes—the lower
radical construction in Section 5. We now consider upper radicals defined by
classes 9H satisyfing (SI') of Section 2.

6.P.I. THEOREM/DEFINITION. Let 9IL be a class satisfying (ST) in a congruence-
permutable variety. Let '31= {A \A/a £ 91L => a = 1^}. Then ^l is a radical class.
•31 is called the upper radical class defined by 'Dlt.

PROOF. Clearly 91 is homomorphically closed. Let A have a congruence a such
that 91 contains A/a and all the a-classes. Suppose A/t G <Dlt. If a ^ T, then
(a V T ) / T is non-trivial, so some (a V T)/r-class has a non-trivial homomorphic
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image in 91L. But as in the proof of 1.8, each (a V T)/T-class is a homomorphic
image of a a-class, so we have a contradiction. Thus a < T. But then the map
A -> A/T factors through A/a, so \A/T\= 1. Thus ,4 is in 61 and 61 satisfies (E).

Finally, let a = V a e A a a , where the aa form a chain of congruences on an
algebra A and all aa-classes are in 61 for each a. Let T be a a-class. Then each aa

induces a congruence a'a on r , V ^ = \T. If T / T G 9H, then as in the previous
part of the proof, every (a^ V r)/T-class, as a homomorphic image of a a^-class, is
in 61 and hence a^ < T. But then \T= V O ^ T ; it follows that T G 61, so 61
satisfies (C). By 1.10, 61 is a radical class.

6.P.2. COROLLARY. IfUtis hereditary, then 61 (as defined in 6.PA) is a radical
class.

6.P.3. COROLLARY. / /9It is a class of simple algebras then ^Jl(as defined in 6.P.1)
is a radical class.

We consider just one more general source of radical classes in a congruence-
permutable variety.

6.P.4. THEOREM. Let * be a binary derived operation, let p(x, y) = x*y,
p\x, y)=p(p(x,y),y),... ,pn+\x, y) = p( p\x, y), y), and let

61= {A\a,b GA => 3« such that b - p"(a, b)}.

Then 61 is a radical class.

PROOF. Again we verify that 61 satisfies the conditions of 1.10. Clearly 61 is
homomorphically closed. If A has a congruence a such that A/a and all a-classes
are in 61, then for a, b G A there is an n such that ba — p"(aa, ba) = p"{a, b)a.
Then for some m we have b = pm(p"(a, b), b) = pm+"(a, b), so A is in 61 and 61
satisfies (E). Since 61 is closed under directed unions, we get (C) as for varieties in
3.1.

An affine module over a ring R with identity is a structure defined on a unital
right /^-module by the operations

w = "„„fl2,...,<,„; a,GR, 2a, = 1; « ( K , , W 2 , . . . , « „ ) = 2«,.a,..

See, for example, [5] or [29] for details; for an internal characterization see
Ostermann and Schmidt [23]. The variety Aff-R of affine /{-modules has permuta-
ble congruences, as can be seen either from the tenary term

}p(x, y,z) = x - y + z
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[3] or the fact that the affine module congruences are precisely the module
congruences on the "same" module. Thus 1.10 characterizes the radical classes in
Aff-R. They were also investigated, from a quite different point of view, and
characterized by Szendrei [29]. It is, in fact, quite easy to find a correspondence
between radical classes in Aff-R and those in the variety Mod-/? of unital right
/^-modules.

Varieties of quasigroups, algebras with three binary operations,.,\ and / such
that

y\{yx) = (xy)/y = y{y\x) = (x/y)y = x

have permutable congruences; see, for example, [3], page 79.
We consider one example of a radical class in the variety of idempotent

groupoids, those satisfying the additional identity x2 — x (and hence also the
identities x\x = x and x/x = x).

6.P.5. EXAMPLE. For idempotent quasigroups, let

x*y=y\[(yx)x]

and let p"{x, y) be defined as in 6.P.4. Then

51 = {A\a, b E.A =*b=p"(a, b) for some n)

is a nontrivial radical class.

If we take a subvariety 'Y of idempotent quasigroups, then T n 51 is a radical
class in CV. As an example, consider the variety "iM of medial idempotent
quasigroups: these satisfy the extra identity

(xy)(zw) - (xz)(yw).

Now it has been shown by Csakany and Megyesi [6] that % , is equivalent to
Aff-P, where P is the ring of rational expressions of the form f(x)/xk(l - x)'
over the integers. Because of the closure properties characterizing radical classes,
this equivalence (described in [6], pages 18-19) takes radical classes to radical
classes. The radical class % , D 51 corresponds to the radical class

{A\a,bSA =>3« such that (1 + x)"a + (l - (1 + x)")b = b},

which in turn corresponds to the class of (1 + x)-primary modules in Mod-P. An
investigation of radical theory in one of *YM, Aff-P and Mod-P could possibly
throw some light on radical theory in the others; this seems worthy of further
consideration. (There appears to be a misprint on page 18 of [6]: the equations
t>(l — x) = 1, v' = 1 — c should, it seems, be t/(l — x) = 1, v — 1 — t/.)
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Note that the radical class of 6.D.2 is of the type described in 6.P.4. However
the proof that this class is a radical class is much more complicated, as con-
gruences need not permute in idempotent distributive groupoids. (For a counter-
example, see [26], page 143, Exemple.)
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