GENERALIZED ABSOLUTE CONTINUITY OF A FUNCTION OF WIENER'S CLASS

RAFAT NABI SIDDIQI

In the present paper we give a criterion for a function of Wiener's class to belong to the class of generalized absolute continuity, in terms of Fourier-Young coefficients $\{C_k\}$. More precisely, we prove the following theorem.

THEOREM. Let $\Lambda = (\lambda_{n,k})$ be a normal almost periodic matrix of real numbers such that $\lambda_{n,k} \geq \lambda_{n,k+1}$ for all n and k. Then for any function f of Wiener's class V_{ν} (1 < ν < 2) to be of class of generalized absolute continuity A_p (1 < p < ∞) it is necessary and sufficient that $\left\{ |C_k|^2 \right\}$ is summable Λ to zero.

1. Introduction

Let f be a 2π -periodic function defined on $[0, 2\pi]$. We set

$$V(f; a, b) = \sup \left\{ \sum_{i=1}^{n} |f(t_i) - f(t_{i-1})|^{\nu} \right\}^{1/\nu} \quad (1 \le \nu < \infty) ,$$

where the supremum has been taken with respect to all partitions $P: a = t_0 < t_1 < t_2 < \ldots < t_n = b$ of the segment [a, b] contained in $[0, 2\pi]$. We call $V_v(f; a, b)$ the vth total variation of f on [a, b]. If we denote the vth total variation of f on $[0, 2\pi]$ by

Received 11 April 1980. This research work was supported by the College of Graduate Studies of Kuwait University, grant M2.

 $\mathcal{V}_{_{\mathcal{Y}}}(f)$, then we can define Wiener's class simply by

$$V_{v} = \left\{f : V_{v}(f) < \infty\right\} .$$

It is clear that V_1 is the ordinary class of functions of bounded variation, introduced by Jordan. The class V_{v} was first introduced by Wiener [7]. He [7] showed that functions of the class V_{v} could only have simple discontinuities. We note [6] that

(1)
$$V_{\nu_{1}} \subset V_{\nu_{2}} \quad (1 \leq \nu_{1} < \nu_{2} < \infty)$$

is a strict inclusion. Hence for an arbitrary $1 \le \nu < \infty$, Wiener's class V_{ν} is strictly larger than the class V_{1} . Wiener [7] also proved the following theorem.

THEOREM A. If $f \in V_{v}$ $(1 \le v < \infty)$ and $D(x_{j}) = f(x_{j}+0) - f(x_{j}-0)$ is the jump of f at $x_{j} \in [0, 2\pi]$, then

$$V_{v_1}(f) = \sum_{j=0}^{\infty} |D(x_j)|^{v_1}$$

for all $v_1 > v$.

Recently we defined [6] the sequence of Fourier-Young coefficients by

$$C_k = (2\pi)^{-1} \int_0^{2\pi} e^{ikt} df(t) \quad (k = 0, \pm 1, \pm 2, \ldots)$$

which exists for every $f \in V_{\mathcal{V}}$ $(1 \leq \nu < \infty)$. Let $\Lambda = (\lambda_{n,k})$ (n, k = 0, 1, 2, ...) be an infinite matrix of real numbers. A sequence $\{C_k\}$ is said to be summable Λ if $\lim_{n \to \infty} \sum_{k=0}^{\infty} \lambda_{n,k} C_k$ exists; it is said to

be summable F_{Λ} if $\lim_{n \to \infty} \sum_{k=0}^{\infty} \lambda_{n,k} C_{k+\nu}$ exists uniformly in $\nu = 0, 1, 2, \ldots$. We also proved [5] the following theorem.

THEOREM B. Let $\Lambda = (\lambda_{n,k})$ be an infinite matrix of real numbers such that $\lambda_{n,k} > \lambda_{n,k+1}$ for all n and k. Then for every $f \in V_{v}$

254

$$(1 \le v \le 2)$$
, the sequence $\{|C_k|^2\}$ is summable Λ to
 $(4\pi)^{-1} \sum_{j=0}^{\infty} |D(x_j)|^2$ if and only if Λ is a normal almost periodic matrix.

2.

Love [2] first introduced pth power generalization of absolute continuity in the following way. For p > 1, A_p is the class of functions f which satisfy: given $\varepsilon > 0$, there is a $\delta > 0$ such that

$$\left\{ \Sigma \mid f(y_k) - f(x_k) \mid^p \right\}^{1/p} < \epsilon$$

for all finite sets of non overlapping intervals $\{(x_k^{}, y_k^{})\}$ such that

$$\left\{\Sigma \left(y_k - x_k\right)^p\right\}^{1/p} < \delta$$
.

In particular for p = 1, A_1 reduces to the class of absolutely continuous functions. It is known [2] that

$$(2) A_1 \subset A_p \subset C \quad (1$$

are strict inclusions, where C denotes the class of continuous functions. Love [2] further proved the following theorem.

THEOREM C. If p > 1, a necessary and sufficient condition for f to be of A_p is that, given $\varepsilon > 0$, there is a subdivision $a = x_0 < x_1 < \ldots < x_n = b$ of [a, b] such that

$$\sum_{i=1}^{n} (V_p(f; x_{i-1}, x_i))^p < \varepsilon^p .$$

3.

The main aim of this paper is to characterize the class A_p in terms of Fourier-Young coefficients of a function of Wiener's class V_v . In other words we give a criterion for a function of Wiener's class to belong to the class A_p . More precisely we prove the following theorem.

THEOREM 1. Let $\Lambda = (\lambda_{n,k})$ be a normal almost periodic matrix of real numbers such that $\lambda_{n,k} > \lambda_{n,k+1}$ for all n and k. Then for any function $f \in V_{v}$ (1 < v < 2) to be of the class A_{p} for every p > 1, it is necessary and sufficient that $\{|C_{k}|^{2}\}$ is summable Λ to zero.

Proof. If $f \in A_p$ for p > 1, it is clearly continuous and hence $D(x_j) = 0$ for all $j = 1, 2, 3, \ldots$. It follows from Theorem B that $\left\{ |C_k|^2 \right\}$ is summable Λ to zero.

Conversely suppose that $\left\{ |\mathcal{C}_k|^2 \right\}$ is summable Λ to zero, that is,

(3)
$$\lim_{n \to \infty} \sum_{k=1}^{\infty} \lambda_{n,k} |C_k|^2 = 0$$

But if $f \in V_{\mathcal{V}}$ (1 < ν < 2), then we easily obtain [5] by using Theorem B that

(4)
$$\lim_{n \to \infty} \sum_{k=0}^{\infty} \lambda_{n,k} |C_k|^2 = (4\pi)^{-1} \sum_{j=0}^{\infty} |D(x_j)|^2$$

From (3) and (4) we conclude that $\sum_{j=0}^{\infty} |D(x_j)|^2 = 0$. Since $f \in V_v$ (1 < v < 2), it follows from Theorem A that

$$\sum_{j=1}^{\infty} |D(x_j)|^2 = V_2(f) ,$$

which is equal to zero. Now using Theorem C, we conclude that $f \in A_p$ for every $p \ge 1$. This completes the proof of Theorem 1.

Applying Theorem 1 and Schwarz's inequality, we obtain the following theorem.

THEOREM 2. For $f \in V_{v}$ (1 < v < 2), the following statements are equivalent:

(1)
$$f \in A_p$$
 for every $p > 1$;

- (2) $\left\{ \left| C_{k} \right|^{2} \right\}$ is summable Λ to zero by a normal almost periodic matrix such that $\lambda_{n,k} > \lambda_{n,k+1}$ for all n and k;
- (3) $|C_k|$ is summable Λ to zero by a normal almost periodic matrix such that $\lambda_{n,k} > \lambda_{n,k+1}$ for all n and k.

We can further reformulate Theorem 2 in the following:

THEOREM 3. For $f \in V_{v}$ (1 < v < 2) to be of the class A_{p} for every p > 1, it is necessary that $\left\{ |C_{k}|^{2} \right\}$ is summable F_{Λ} to zero by each normal almost periodic matrix Λ for which $\lambda_{n,k} > \lambda_{n,k+1}$ for all n and k and sufficient that $\left\{ |C_{k}|^{2} \right\}$ is summable Λ to zero by some normal almost periodic matrix for which $\lambda_{n,k} > \lambda_{n,k+1}$ for all n and k.

Theorem 3 extends the various theorems on continuity to the generalized class of absolute continuity A_p including those given by Wiener [7], Lozinskiĭ [3], Matveev [4] (*cf.* Bary [1], p. 256) and Siddiqi [5].

We also like to remark here that if $v \ge 2$, there is no necessary and sufficient condition for f to be of the class A_p in terms of the summability of the absolute value of its Fourier-Young coefficients. For we have the following two functions:

(5)
$$f(x) = \sum_{k=1}^{\infty} \frac{\sin kx}{k}; \quad g(x) = \sum_{k=1}^{\infty} \frac{\sin k(x+\ln k)}{k}.$$

It is easy to verify (cf. Zygmund [8], pp. 241-243) that both series in (5) converge for all x. We also note [8] that f(x) is a discontinuous function belonging to V_1 and g(x) belongs to $\operatorname{Lip}_{\frac{1}{2}}$ and hence belongs to V_2 . We can determine the values of the Fourier-Young coefficients $C_k(f) = C_k(g) = 1$ for $k = 1, 2, 3, \ldots$ and $C_0(f) = C_0(g) = 0$. In this way we obtain two functions f and g belonging to V_{v} ($2 < v < \infty$); the first is discontinuous and hence does not belong to A_n for p > 1

and the second belongs to A_p for p > 1 such that $C_k(f) = C_k(g)$ for k = 0, 1, 2, ... Hence Theorem 2 and Theorem 3 cannot be extended for $v \ge 2$ in terms of Fourier-Young coefficients.

References

- [1] N.K. Bary, A treatise on trigonometric series, Volume I (translated by Margaret F. Mullins. Pergamon Press, London, New York, Paris, 1964).
- [2] E.R. Love, "A generalization of absolute continuity", J. London Math. Soc. 26 (1951), 1-13.
- [3] S. Lozinski, "On a theorem of N. Wiener", C.R. (Doklady) Acad. Sci. URSS (N.S.) 49 (1945), 542-545.
- [4] Б.В. Матбееб [V.A. Matveev], "О теоремах Винера и Лозинсного" [On the theorems of Wiener and Lozinskii], Исследования по современным проблемам конструктивной теории функций [Studies of contemporary problems in the constructive theory of functions], 460-468 (Proc. Second All-Union Conf., Baku, 1962. Izdat. Akad. Nauk Azerbaidzan. SSR, Baku, 1965).
- [5] Rafat N. Siddiqi, "Determination of jump of a function of V_p by means of its Fourier-Stieltjes coefficients", Rend. Circ. Mat. Palermo (2) 23 (1974), 135-144.
- [6] Rafat N. Siddiqi, "Fourier-Young coefficients of a function of Wiener's class V_n", Canad. J. Math. 28 (1976), 753-759.
- [7] N. Wiener, "The quadratic variation of a function and its Fourier coefficients", Massachusetts J. Math. 3 (1924), 72-94.
- [8] A. Zygmund, Trigonometric series, Volume I (Cambridge University Press, Cambridge, 1959).

Department of Mathematics, Kuwait University, Kuwait, Arabian Gulf.

258