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Lectures on Vertex Algebras

Atsushi Matsuo

Abstract

The purpose of the present chapter is to explain the basics of vertex algebras, as
well as some more advanced topics on vertex operator algebras, to the reader
mainly in the fields of group theory and algebraic combinatorics.

CONTENTS

Introduction 4

1.1 Axioms for Vertex Algebras 7
1.1.1 Preliminaries on Algebras 7
1.1.2 Preliminaries on Formal Series 12
1.1.3 Vertex Algebras 16
1.1.4 A Few Examples 21
1.1.5 Description by Generating Series 25

1.2 Vertex Algebras of Series 29
1.2.1 Residue Products of Series 30
1.2.2 Operator Product Expansions 35
1.2.3 Vertex Algebras of Series 40
1.2.4 Identification of Vertex Algebras 44
1.2.5 Representations and Modules 48

1.3 Examples of Vertex Algebras 52
1.3.1 Heisenberg Vertex Algebra 52
1.3.2 Affine Vertex Algebras 57
1.3.3 Virasoro Vertex Algebras 62

3

https://doi.org/10.1017/9781009338073.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009338073.002


4 Atsushi Matsuo

1.4 Lattice Vertex Algebras 68
1.4.1 Series with Homomorphism Coefficients 68
1.4.2 Vertex Operators 72
1.4.3 Residue Products of Vertex Operators 75
1.4.4 Lattice Vertex Algebras for Rank One Even Lattices 77
1.4.5 Lattice Vertex Algebras for General Even Lattices 82

1.5 Twisted Modules 86
1.5.1 OPE of Shifted Series 87
1.5.2 Shifted and Twisted Modules 90
1.5.3 Twisted Heisenberg Modules 94
1.5.4 Twisted Vertex Operators 97
1.5.5 Twisted Modules for Rank One Even Lattices 101
1.5.6 Twisted Modules for General Even Lattices 103

1.6 Vertex Operator Algebras 107
1.6.1 Conformal Vectors 108
1.6.2 Vertex Operator Algebras and their Modules 112
1.6.3 Simple N-Graded Modules 115
1.6.4 Fusion Rules 119
1.6.5 Modular Invariance 126

Epilogue 131

Bibliography 137

Introduction

The Monster, the largest sporadic finite simple group of order

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71
= 808017424794512875886459904961710757005754368000000000,

54 digits

is known to be realized as the automorphism group of the moonshine mod-
ule V♮, a distinguished example of a vertex operator algebra, equipped with a
grading of the shape
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V♮ = C1 ⊕ 0 ⊕ B♮ ⊕ V♮3 ⊕ V
♮
4 ⊕ · · · ,

dim 1 0 196884

of which the dimensions of the homogeneous subspaces satisfy

q−1
∞∑
n=0

dimV♮n qn = j(τ) − 744
= q−1 + 0 + 196884q + 21493760q2 + · · · ,

(1)

where j(τ) is the elliptic modular function and q = e2π
√
−1τ .

The 196884-dimensional subspace B♮ of degree 2 inherits a structure of a
commutative nonassociative algebra with unity equipped with a nondegenerate
symmetric invariant bilinear form, which we call the Griess–Conway algebra,
as suggested by S. P. Norton. The algebra B♮ is a variant of the algebras con-
structed by R. L. Griess in [61] to prove the existence of the Monster, and it is
indeed the same as the algebra constructed by J. H. Conway in [38].
The notion of vertex algebras was introduced by R. E. Borcherds in the

seminal paper [32] in 1986 by axiomatizing properties of infinite sequences
of operators constructed from even lattices that generalize those considered for
the root lattices of ADE type in the famousFrenkel–Kac construction, achieved
by I. B. Frenkel and V. G. Kac in [57], to realize representations of affine Kac–
Moody algebras associated with simple Lie algebras of the corresponding type.
Such sequences of operators are related to the vertex operators in string the-
ory, whence the term vertex algebra. The vertex operator is actually not a single
operator but an infinite series with operator coefficients. The concept of vertex
algebras can be seen to be a mathematical formulation of what is called the
operator product algebra or the chiral algebra in physics.
Borcherds then applied vertex algebras to the study of the Monster via the

moonshine module V♮, which was previously introduced by I. B. Frenkel, J.
Lepowsky, and A. Meurman [59] as a vector space equipped with some struc-
tures, and achieved in [33], with numerous outstanding ideas and works, the
proof of the Conway–Norton conjecture, the conjecture that states the famous
moonshine phenomena relating representations of theMonster and certainmodu-
lar functions, the simplest among which is (1).
The concepts of vertex operator algebras (VOA) and their modules, in turn,

were formulated by I. B. Frenkel, J. Lepowsky, and A. Meurman in [1] in order
to set up appropriate “algebras” and “modules” by modifying those for vertex
algebras. More precisely, a VOA is not just a vertex algebra, but a pair con-
sisting of a vertex algebra and its element generating a representation of the
Virasoro algebra satisfying a number of conditions that would make it suitable
for applications.
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Table 1 Codes, lattices and VOAs

Doubly even codes Postive-definite
even lattices VOAs

Length Rank Central charge
Weight enumerator Theta function Conformal character
Self-dual Unimodular Holomorphic
Extended Hamming code H8 Gosset lattice E8 Lattice VOA VE8
Extended Golay code G24 Leech lattice Λ Moonshine module V♮
Mathieu group M24 Conway group C0 Monster M = F1

For example, VOAs are assumed to be graded by integers with the homoge-
neous subspaces being finite-dimensional, so that one may consider the con-
formal character, the generating series of dimensions such as (1).
In fact, important applications of vertex algebras are often based on the prop-

erties of the Virasoro algebra, thus justifying the definition of VOAs.
The moonshine module V♮ indeed carries a natural structure of a VOA. It

possesses a distinguished position among VOAs when viewed through the fa-
mous analogies of binary codes, lattices, and VOAs as indicated in Table 1,
although the uniqueness of V♮ conjectured in [1], which is an analogue of the
uniqueness of the extended Golay code G24 and the Leech lattice Λ, is yet to
be settled. Thus the concept of VOAs is as natural as those of binary codes
and lattices. However, even constructing a single example of a VOA is not so
easy.
In Section 1.1, we will describe the definition of vertex algebras after pre-

liminary sections, and then proceed to realization of vertex algebras by formal
series with operator coefficients in Section 1.2, where the concept of modules
over vertex algebras will also be introduced. Such realization enables us to
state and prove the existence of vertex algebra structures under certain circum-
stances. Standard examples of vertex algebras will be described in Section 1.3.
Section 1.4 is devoted to construction of the vertex algebras associated with

even lattices, where commutation relations of vertex operators play fundamen-
tal roles. In Section 1.5, we will explain the definition and construction of what
are called twisted modules over vertex algebras by repeating the arguments of
the previous sections in slightly more general settings, which enables one to
construct the moonshine module V♮ as a module over a fixed-point subalgebra
of the Leech lattice vertex algebra by a lift of the (−1)-involution.
In Section 1.6, we will give brief accounts of theory of VOAs including fu-

sion rules and modular invariance. We will then finish the sections by mention-
ing properties of the moonshine module and their variants that opened ways to
new research directions.

https://doi.org/10.1017/9781009338073.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009338073.002


Lectures on Vertex Algebras 7
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It was a hard task, to be honest, but verymuch fruitful indeed. The lectures were
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partly based on the author’s past lectures at Nagoya Institute of Technology,
National Taiwan University, University of the Ryukyus in 2003 etc.

1.1 Axioms for Vertex Algebras

A vertex algebra is a vector space equipped with countably many binary oper-
ations indexed by integers satisfying a number of axioms.
In Section 1.1, we start with preliminary sections on algebras and formal ser-

ies and then describe the definition of vertex algebras and some consequences
of the axioms. We will give a few examples: the commutative vertex algebras,
the Heisenberg vertex algebra, and a Virasoro vertex algebra as a vertex subal-
gebra of the Heisenberg vertex algebra.
We will work over a field F of any characteristic not 2, thus vector spaces

and linear maps are always over such a field F, unless otherwise stated. We
denote the set of integers by Z and that of nonnegative integers by N.

1.1.1 Preliminaries on Algebras
For a vector spaceM, consider the set EndM of all operators (endomorphisms)
acting onM. The symbol I = IM refers to the identity operator.
For an operator A ∈ EndM, we will denote the value of A at v ∈ M by

juxtaposition:

A : M // M, v 7→ Av.

Compositions of operators, also written by juxtaposition, are taken from right
to left unless specified by parentheses: for A,B,C ∈ EndM and v ∈ M,

ABC = A(BC), ABCv = A(B(Cv)), etc.

The commutator of operators is denoted by the bracket as

[A,B] = AB − BA

for A,B ∈ EndM.
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1.1.1.1 Associative Algebras
Let us first recall the definition of associative algebras. We will always assume
that associative algebras are unital.
An associative algebra is a vector space A equipped with a bilinear map

A × A // A, (a, b) 7→ ab,

calledmultiplication or the product operation, satisfying the following axioms:

(A1) Associativity. For all a, b, c ∈ A:

(ab)c = a(bc).

(A2) Unity. There exists an element 1 ∈ A such that for all a ∈ A:

1a = a and a1 = a.

The element 1 ∈ A in (A2) is uniquely determined by the conditions therein
and called the unity of A,
For a vector space M, the set EndM of all operators acting on M becomes

an associative algebra by composition of operators, of which the unity is the
identity operator.

1.1.1.2 Modules over Associative Algebras
Amodule overA, or anA-module, is a vector spaceM equipped with a bilinear
map

A ×M // M, (a, v) 7→ av,

called an action of A onM, satisfying

(AM1) Associativity. For all a, b ∈ A and v ∈ M:

(ab)v = a(bv).

(AM2) Identity. For all v ∈ M: 1v = v.

For a ∈ A, the operator onM sending v to av is called the action of a onM.
For an A-module M, consider the map assigning the action on M to each

element of A:
ρM : A // EndM, a 7→ [v 7→ av].

Then this map is a homomorphism of algebras. Such a homomorphism is called
a representation of A onM. The concepts of modules over A and representa-
tions of A are essentially the same.
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The algebra A itself becomes an A-module by the product operation, for
which the left action of a ∈ A sending x to ax is called left multiplication by
a. The corresponding representation

ρA : A // EndA, a 7→ [x 7→ ax]

is an isomorphism of algebras onto its image.

1.1.1.3 Lie Algebras
A Lie algebra is a vector space L equipped with a bilinear map

[ , ] : L × L // L, (X,Y ) 7→ [X,Y ],

called the bracket operation, satisfying

(1) For all X,Y, Z ∈ L:

[X, [Y, Z ]] + [Y, [Z,X ]] + [Z, [X,Y ]] = 0.

(2) For all X ∈ L:
[X,X ] = 0.

As the base field is assumed to be not of characteristic 2, the set of the two
conditions is equivalently replaced by

(L1) Jacobi identity. For all X,Y, Z ∈ L:

[[X,Y ], Z ] = [X, [Y, Z ]] − [Y, [X, Z ]].

(L2) Antisymmetry. For all X,Y ∈ L:

[X,Y ] = −[Y,X ].

Throughout the sections, we will take the latter conditions (L1) and (L2) as
the axioms for Lie algebras and call the identity in (L1) the Jacobi identity,
although this term usually refers to (1) rather than (L1).
For a vector spaceM, the space EndM becomes a Lie algebra by the com-

mutator of operators, for which the Jacobi identity

[[A,B],C] = [A, [B,C]] − [B, [A,C]], A,B,C ∈ EndM

trivially holds by cancellation of terms in

(ABC − BAC) − (CAB − CBA)
=

(
(ABC − ACB) − (BCA − CBA)

)
−

(
(BAC − BCA) − (ACB − CAB)

)
.
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A variant of this simple observation will serve as a basis for the Borcherds
identity, the main identity for vertex algebras, where A,B,C are replaced by
series with operator coefficients. (See Subsection 1.2.3.1.)
Similarly, any associative algebraA is regarded as a Lie algebra by the com-

mutator

[a, b] = ab − ba, a, b ∈ A.

We will denote this Lie algebra by L(A).
Note 1.1. A vector space L equipped with a bracket operation satisfying (L1)
but not necessarily (L2) is called a (left) Leibniz algebra and the property (L1)
is called the (left) Leibniz identity. Note that (L1) is equivalently written as

[X, [Y, Z ]] = [[X,Y ], Z ] + [Y, [X, Z ]],

which says that the operations of taking the brackets by elements of L are
derivations with respect to the bracket operation itself.

1.1.1.4 Modules over Lie Algebras
An L-module, or amodule over L, is a vector spaceM equipped with a bilinear
map

L ×M // M, (X, v) 7→ Xv,

satisfying

(LM) For all X,Y ∈ L and v ∈ M:

[X,Y ]v = X(Yv) − Y (Xv).

For an L-module M, consider the map assigning the corresponding action on
M to each element of L:

ρM : L // EndM, X 7→ [v 7→ Xv].

Then this map is a homomorphism of Lie algebras. Such a homomorphism
is called a representation of L on M. The concepts of modules over L and
representations of L are essentially the same.
The Lie algebra L itself becomes an L-module by the bracket operation, for

which the action of X ∈ L sending Y to [X,Y ] is called the adjoint action of X ,
and the corresponding representation

ρL : L // EndL, X 7→ [Y 7→ [X,Y ]],

is called the adjoint representation of L.
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Let ρ be a representation of L on a vector spaceM:

ρ : L // EndM, ρ(X) : v 7→ Xv.

For X1,X2, . . . ,Xd ∈ L, the product X1X2 · · · Xd makes sense in EndM as

(X1X2 · · · Xd)v = X1X2 · · · Xdv,

but such a product X1X2 · · · Xd does not make sense in the Lie algebra L.
The universal enveloping algebra resolves this inconvenience by collecting

expressions of the form X1X2 · · · Xd subject to appropriate relations. We will
give the precise formulation in the next subsection.

1.1.1.5 Universal Enveloping Algebras
Let L be a Lie algebra and consider the tensor algebra over L,

T(L) =
∞⊕
d=0

Td(L), Td(L) = L ⊗ · · · ⊗ L
d times

.

We will identify the elements of T0(L) with the scalars.
Let U(L) be the quotient of T(L) by the two-sided ideal J(L) generated by

the elements of the form

X ⊗ Y − Y ⊗ X − [X,Y ], X,Y ∈ L.

We will denote the image of X1 ⊗ · · · ⊗ Xd in U(L) by X1 · · · Xd .
Let j be the canonical map which sends X ∈ L to its image in U(L):

j : L // U(L) = T(L)/J(L).

The associative algebra U(L) equipped with the map j is called the universal
enveloping algebra of the Lie algebra L, which is characterized by the follow-
ing universal property:

For any associative algebra A and any homomorphism φ : L // L(A) of
Lie algebras, there exists a unique homomorphism of associative algebras
ψ : U(L) // A such that the diagram

L

j

��

φ // L(A)

U(L)
ψ

// A

commutes.
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Considering the case whenA = EndM for a vector spaceM, we see that giving
an L-module structure on M is equivalent to giving a U(L)-module structure
onM:

L-modules←→ U(L)-modules.

The structure of the universal enveloping algebra as a vector space is de-
scribed by the following theorem, called Poincaré–Birkhoff–Witt theorem, or
PBW for short.

Theorem 1.2 (PBW) Let L be a Lie algebra and B a totally ordered basis of
L. Then the elements of the set

{X1 · · · Xk | k ∈ N, X1, . . . ,Xk ∈ B, X1 ≤ · · · ≤ Xk }

form a basis of U(L).

In particular, it follows that the canonical map j : L // U(L) is injective,
and the representation

L / / EndU(L),

given by left multiplication, is an isomorphism of Lie algebras onto its image.
When the Lie algebra L is commutative, the algebra U(L) reduces to the

symmetric algebra S(L) over the vector space L.

1.1.2 Preliminaries on Formal Series
Wewill substantially work with formal series with operator coefficients. Let us
summarize notations and basic properties of formal series in advance.
The formal series we will be dealing with are series consisting of infinitely

many terms of both positive and negative degrees. We will simply call such a
formal series a series for short.

1.1.2.1 Spaces of Formal Series
Let z be an indeterminate, V a vector space, and v(z) a series with coefficients
in V . Throughout the text, unless otherwise stated, the coefficients of a series
v(z) are indexed as in

v(z) =
∑
n

vnz−n−1,

where the summation is over all n ∈ Z. The set of such series is denoted as

V[[z, z−1 ]] =
{∑
n
vnz−n−1 �� vn ∈ V for all n ∈ Z

}
.
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Recall the following spaces of series of specific types:

V[[z]] =
{∑
n
vnz−n−1 �� vn = 0 for all n ≥ 0

}
,

V((z)) =
{∑
n
vnz−n−1 ��∃N ∈ N: vn = 0 for all n ≥ N

}
,

V[z, z−1 ] =
{∑
n
vnz−n−1 ��∃N ∈ N: vn = 0 unless −N ≤ n ≤ N

}
,

V[z] =
{∑
n
vnz−n−1 ��∃N ∈ N: vn = 0 unless −N ≤ n < 0

}
.

Their elements are, respectively, called formal power series, formal Laurent
series, Laurent polynomials, and polynomials. We may write

V((z)) = V[[z]][z−1 ], V[z, z−1 ] = V[z][z−1 ], etc.

A bilinear map U × V // W induces bilinear maps on series such as

U((z)) × V((z)) // W((z)), U[z, z−1 ] × V[[z, z−1 ]] // W[[z, z−1 ]],

by the product ∑
m

umz−m−1
∑
n

vnz−n−1 =
∑
m,n

umvnz−m−n−2.

We will also consider series in many indeterminates. For example,

V((y))((z)) =
{∑
n
vn(y)z−n−1

���� vn(y) ∈ V((y)) for all n and
∃N ≥ 0: vn(y) = 0 for all n ≥ N

}
,

V((z))((y)) =
{∑
m
vm(z)y−m−1

���� vm(z) ∈ V((z)) for all m and
∃M ≥ 0: vm(z) = 0 for all m ≥ M

}
.

We will write

V((y, z)) = V((y))((z)) ∩ V((z))((y)).

The three spaces do not agree unless V = 0.

Note 1.3. A series of the form v(z) = ∑
n vnz−n−1 is seen to be a formalFourier

series by substitution z = e2πit . In this regard, the coefficients are sometimes
called the Fourier coefficients or even the Fourier modes of the series.

1.1.2.2 Binomial Expansions
Let x, y, z, etc. be indeterminates. The binomial theorem states that, for non-
negative integer n,

(x + z)n =
n∑
i=0

(
n
i

)
xizn−i =

n∑
i=0

(
n
i

)
xn−izi .
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We may consider similar expansions for negative powers, but then the two ex-
pansions become different. We will distinguish them by writing

(x + z)n
�� |x |> |z | = ∞∑

i=0

(
n
i

)
xn−izi ,

(x + z)n
�� |x |< |z | = ∞∑

i=0

(
n
i

)
xizn−i .

We understand that the left-hand sides denote the formal series given by the
right-hand sides, respectively. We thus have

(x + z)n
�� |x |> |z | ∈ F[x, x−1][[z]] ⊂ F((x))((z)),

(x + z)n
�� |x |< |z | ∈ F[z, z−1 ][[x]] ⊂ F((z))((x)).

The regions attached signify where the series are convergent when working
over C. Similarly, we write

(y − z)n
�� |y |> |z | = ∞∑

i=0
(−1)i

(
n
i

)
yn−izi ,

(y − z)n
�� |y |< |z | = ∞∑

i=0
(−1)n−i

(
n
i

)
yizn−i ,

which belong to F((y))((z)) and F((z))((y)), respectively.
Note 1.4. These expansions are often written in the literatures as

ιy,z(y − z)n =
∞∑
i=0
(−1)i

(
n
i

)
yn−izi,

ιz,y(y − z)n =
∞∑
i=0
(−1)n−i

(
n
i

)
yizn−i .

It is also common to distinguish them by the order of the summands in the
argument as (y − z)n and (−z + y)n, although sometimes confusing.

1.1.2.3 Divided Derivatives of Series
Consider the operators ∂(k)z acting on series in z defined for k ∈ N as

∂
(k)
z : V[[z, z−1 ]] // V[[z, z−1 ]], v(z) 7→ ∂

(k)
z v(z),

where ∂(k)z v(z) denotes the kth divided derivative:

∂
(k)
z

∑
n

vnz−n−1 =
∑
n

(−n − 1
k

)
vnz−n−k−1

=
∑
n

(−n + k − 1
k

)
vn−k z−n−1.

We will omit the subscript z in ∂(k)z if there is no danger of confusion.
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The operators ∂(k) are iterative in the following sense:

∂(i)∂(j) =

(
i + j

i

)
∂(i+j) for all i, j ∈ N.

They annihilate constants:

∂(k)v = 0 for all k ≥ 1 and v ∈ V .

They satisfy the Leibniz rule

∂(k)(u(z)v(z)) =
∑
i+j=k

(∂(i)u(z))(∂(j)v(z)),

as long as the products make sense.
For an indeterminate x, define a formal power series ex∂z with operator co-

efficients by

ex∂z =
∞∑
k=0

xk∂(k)z .

Then it acts on a series v(z) in the following sense:

ex∂z v(z) =
∞∑
k=0

xk∂(k)z v(z) = v(x + z)
�� |x |< |z | ∈ V[[z, z−1 ]][[x]]. (1.1)

This is seen to be a formal analogue of Taylor expansion of v(y) at y = z giving
a power series in x = y − z. Note that the Leibniz rule can be restated as

ex∂z (u(z)v(z)) = (ex∂z u(z))(ex∂z v(z)).

Over a field of characteristic zero, we have

ex∂z =
∞∑
k=0

(x∂z)k
k!

, where ∂z =
∂

∂z
,

which justifies the notation.

1.1.2.4 Formal Delta Functions
Let us next consider the formal delta function, which is a series defined by

δ(x) =
∑
n

xn.

We will often encounter the following series of two indeterminates:

δ(y, z) = z−1δ(y/z) =
∑
n

ynz−n−1 =
∑
n

y−n−1zn.

Notice the following formula:

δ(y, z) =
∞∑
i=0

y−i−1zi +
∞∑
i=0

yiz−1−i =
1

y − z

���
|y |> |z |

− 1
y − z

���
|y |< |z |

.
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Let δ(k)(y, z) denote the kth divided derivative of δ(y, z) with respect to z:

δ(k)(y, z) = ∂(k)z δ(y, z) = 1
(y − z)k+1

���
|y |> |z |

− 1
(y − z)k+1

���
|y |< |z |

.

The relation
(y − z)k+1δ(k)(y, z) = 0

holds for all k ∈ N.
Note 1.5. The formal delta function δ(x) is seen to be the Fourier series ex-
pansion of a periodic analogue of the Dirac delta function up to a scalar factor.

1.1.3 Vertex Algebras
There are many equivalent ways to define vertex algebras. Here we pick up the
one given by Borcherds in [33] and include the identity property. The resulting
set of axioms is, in the author’s opinion, the most natural.
To begin with, let us recall that an associative algebraC is said to be commu-

tative if the multiplication is symmetric, that is, ab = ba holds for all a, b ∈ C.
Since associative algebras are unital by assumption, we may replace symmetry
by commutativity of left multiplication, that is, a(bc) = b(ac) for a, b, c ∈ C.
We may therefore define a commutative associative algebra alternatively by

saying that it is a vector space C equipped with a bilinear map

C × C // C, (a, b) 7→ ab,

satisfying

(C1) Commutativity and associativity. For all a, b, c ∈ C:

a(bc) = b(ac) and (ab)c = a(bc).

(C2) Unity. There exists an element 1 ∈ C such that, for all a ∈ C,

1a = a and a1 = a .

Note that associativity follows from commutativity under the presence of unity.

1.1.3.1 Definition of Vertex Algebras
Let V be a vector space equipped with countably many bilinear maps indexed
by integers n as

V × V // V, (a, b) 7→ a(n)b.

We will call a(n)b the nth product for each n.
A vertex algebra is a vector space V equipped with such product operations

satisfying the following axioms:
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(V0) Local truncation. For any a, b ∈ V, there exists an N ∈ N such that

a(N+i)b = 0 for all i ≥ 0.

(V1) Borcherds identity. For all a, b, c ∈ V and p,q,r ∈ Z:
∞∑
i=0

(
p
i

)
(a(r+i)b)(p+q−i)c

=

∞∑
i=0
(−1)i

(
r
i

)
a(p+r−i)(b(q+i)c) −

∞∑
i=0
(−1)r−i

(
r
i

)
b(q+r−i)(a(p+i)c).

(V2) Vacuum. There exists an element 1 ∈ V satisfying
1. Identity. For any a ∈ V and n ∈ Z:

1(n)a =

{
0 (n , −1),
a (n = −1).

2. Creation. For any a ∈ V and n ∈ Z≥−1:

a(n)1 =

{
0 (n ≥ 0),
a (n = −1).

Here are remarks on the axioms.

1. The three sums in the Borcherds identity in (V1) are finite sums by (V0).
We therefore assume (V0) without a mention in referring to (V1).

2. The element 1 in (V2) is called the vacuum of V, which is uniquely deter-
mined as it is a unity with respect to the (−1)st product.

3. The products a(n)1with n ≤ −2 are not specified in (V2), but their properties
are encoded in the operators T (k) : V → V defined by T (k)a = a(−k−1)1
for k = 0,1,2, . . ., called the translation operators, as described later in
Subsection 1.1.3.4.

4. The identity property in (V2) in fact follows from the other axioms.

The concepts of subalgebras, homomorphisms, isomorphisms, ideals, and quo-
tients, etc. are defined in obvious ways. A subalgebra of a vertex algebra is
called a vertex subalgebra. For modules over vertex algebras, see Section 1.2.5.

The axioms (V1) and (V2) can be seen to be modelled on properties of series
with operator coefficients under some assumptions on the set of series. See
Section 1.2.3 for details.
Note 1.6. 1. Local truncation is usually called truncation in the literatures.
2. For each a ∈ V and n ∈ Z, consider the action a(n) : x 7→ a(n)x. Then the
countably many product operations are collectively treated by the generating
series Y (a, z) = ∑

n
a(n)z−n−1. See Section 1.1.5 for details.
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1.1.3.2 Structure of the Borcherds Identity
Although the Borcherds identity looks extremely complicated, it includes im-
portant properties as special cases. Here are a few instances.

1. The Borcherds identity (V1) with (p,q,r) = (0,0,0) reads

(a(0)b)(0)c = a(0)(b(0)c) − b(0)(a(0)c),

which is the Jacobi identity (L1) for Lie algebras with respect to the bracket
given by the 0th product as [a, b] = a(0)b.

2. If a(n)b = 0 and a(n)c = 0 hold for all n ≥ 0, then the Borcherds identities
with (p,q,r) = (0,−1,−1) and (p,q,r) = (−1,−1,0), respectively, read

(a(−1)b)(−1)c = a(−1)(b(−1)c), a(−1)(b(−1)c) = b(−1)(a(−1)c),

which is the axiom (C1) for commutative associative algebras with respect
to the (−1)st product.

Thus the Borcherds identity can be viewed as an “enhancement” of the Jacobi
identity for Lie algebras and an “extension” of associativity and commutativity
for commutative associative algebras.
There are redundancies in the Borcherds identity. Let B(p,q,r) be either of

the three sums in (V1):

B(p,q,r) =
∞∑
i=0

(
p
i

)
(a(r+i)b)(p+q−i)c,

∞∑
i=0
(−1)i

(
r
i

)
a(p+r−i)(b(q+i)c),

or
∞∑
i=0
(−1)r−i

(
r
i

)
b(q+r−i)(a(p+i)c).

Then the following recurrence relation holds for all p,q,r ∈ Z:

B(p + 1,q,r) = B(p,q + 1,r) + B(p,q,r + 1). (1.2)

This implies the following lemma.

Lemma 1.7 If the Borcherds identity holds for some p and all q,r and for
some r and all p,q, then it holds for all p,q,r .

Note 1.8. A vertex algebra equipped with the 0th product need not be a Lie
algebra since skew-symmetry (L2) may not hold (cf. Notes 1.1 and 1.10).

1.1.3.3 Commutator and Associativity Formulas
The Borcherds identity with (p,q,r) = (m,n,0) reads

∞∑
i=0

(
m
i

)
(a(i)b)(m+n−i)c = a(m)(b(n)c) − b(n)(a(m)c).
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Therefore, the following property holds in any vertex algebra V.

(VC) Commutator formula. For all a, b ∈ V and m,n ∈ Z:

[a(m), b(n) ] =
∞∑
i=0

(
m
i

)
(a(i)b)(m+n−i) .

The Borcherds identity with (p,q,r) = (0,n,m) is as follows.

(VA) Associativity formula. For all a, b, c ∈ V and m,n ∈ Z:

(a(m)b)(n)c =
∞∑
i=0
(−1)i

(
m

i

)
a(m−i)b(n+i)c −

∞∑
i=0
(−1)m−i

(
m

i

)
b(m+n−i)a(i)c.

By Lemma 1.7, the Borcherds identity holds if and only if both the commutator
formula and the associativity formula hold:

(V1) ⇐⇒ (VC) + (VA).

As an application of the commutator formula, consider the subspace of EndV
spanned by the left actions of elements of a vertex algebra V:

Span
{

a(n)
�� a ∈ V, n ∈ Z

}
⊂ EndV.

Then (VC) implies that this space is closed under taking commutators, thus
forms a Lie subalgebra of EndV.
As for the associativity formula, let 〈S〉VA denote the vertex subalgebra gen-

erated by a subset S of a vertex algebra, that is, the span of the elements ob-
tained by repeatedly applying the product operations to elements of S in arbi-
trary order. Then, by (VA) and (V2), it is actually given by left actions as

〈S〉VA = Span
{

a1
(n1) · · · a

k
(nk )1

�� k ∈ N, a1, . . . ,ak ∈ S, n1, . . . ,nk ∈ Z
}
.

We understand that application zero time gives the vacuum 1.
Note 1.9. 1. The associativity formula in the sense above is called the iterate
formula or the associator formula in the literatures. 2. The Lie algebra spanned
by the left actions of a vertex algebra is often called the Lie algebra of Fourier
modes (cf. Subsection 1.6.3.1).

1.1.3.4 Translation Operators
For any vertex algebra V, canonically associated are the operators

T (k) : V // V, k = 0,1,2, · · ·

defined by setting, for a ∈ V,

T (k)a = a(−k−1)1.
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These operators are called the translation operators or the derivations of the
vertex algebra V. Note that T (0) = I is just the identity operator.
By these operators, the creation property in (V2) is completed as

a(n)1 =

{
0 (n ≥ 0),
T (k)a (n = −k − 1 < 0).

On the other hand, the identity property in (V2) implies

T (k)1 =

{
0 (k ≥ 1),
1 (k = 0).

The following properties are consequences of the Borcherds identity.

(VT) Translation. For all a, b ∈ V, n ∈ Z and k ∈ N:

(T (k)a)(n)b = (−1)k
(

n
k

)
a(n−k)b.

(VL) Leibniz rule. For all a, b ∈ V, n ∈ Z and k ∈ N:

T (k)(a(n)b) =
∑
i+j=k

(T (i)a)(n)(T (j)b).

(VI) Iterativity. For all i, j ∈ N:

T (i)T (j) =
(
i + j

i

)
T (i+j).

Over a field of characteristic zero, (VI) implies

T (k) =
Tk

k!
for T = T (1),

and the properties (VT) and (VL) for all k ∈ N follow from those with k = 1.

1.1.3.5 Skew-Symmetry
The following property follows from the axioms (V1) and (V2).

(VS) Skew-symmetry. For all a, b ∈ V and n ∈ Z:

a(n)b = (−1)n+1
∞∑
i=0
(−1)iT (i)(b(n+i)a).
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We may view this property as a counterpart in vertex algebras of symme-
try and antisymmetry for commutative associative algebras and Lie algebras,
respectively, depending on the parity of n.
To be more precise, consider the following subspace of V:

T (≥1)V =
∞∑
k=1

T (k)V.

Then, picking up the term with i = 0 in (VS), we have

a(n)b ≡ (−1)n+1b(n)a mod T (≥1)V.

Therefore, modulo the subspace T (≥1)V, the nth product of a vertex algebra V
is symmetric for odd n and antisymmetric for even n.

Note 1.10. 1. The 0th product of a vertex algebra V satisfies the Jacobi iden-
tity (L1) on V, while the skew-symmetry (L2) holds modulo T (≥1)V, and the
quotientV/T (≥1)V indeed becomes a Lie algebra. 2. If the base field is of char-
acteristic zero, then the subspace T (≥1)V agrees with the image of the transla-
tion operator T = T (1). Moreover, if T agrees with the left action of an element
of V, then, by skew-symmetry, left ideals of V become two-sided ideals. This
remark indeed applies to vertex operator algebras. See Sections 1.6.1 and 1.6.2
for details.

1.1.4 A Few Examples
It is not at all easy to construct examples of vertex algebras. The easiest is the
commutative vertex algebra, but it is not really a new object since it is just a
commutative associative algebra with iterative derivations.
The second easiest, the simplest noncommutative example of a vertex al-

gebra, is supplied by free boson theory in physics. It is called the Heisenberg
vertex algebra and contains another example of a vertex algebra, a Virasoro
vertex algebra, as a vertex subalgebra.

1.1.4.1 Commutative Vertex Algebras
In a vertex algebraV, the following conditions for elements a, b ∈ V are equiva-
lent to each other by (VC) and (V2).

(1) a(k)b = 0 for all k ≥ 0. (2) [a(m), b(n) ] = 0 for all m,n ∈ Z.

A vertex algebra V is said to be commutative if the equivalent conditions hold
for all a, b ∈ V.

https://doi.org/10.1017/9781009338073.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009338073.002


22 Atsushi Matsuo

Regard such a vertex algebra as a vector space and equip it with the product
given by the (−1)st product:

ab = a(−1)b.

Then it becomes a commutative associative algebra, for which the vacuum 1 is
the unity. The translation operators T (k) act as iterative derivations with respect
to the product, by which the nth products are written as

a(n)b =

{
0 (n ≥ 0),
(T (k)a)b (n = −k − 1 < 0).

Thus the commutative vertex algebras fall into the concept of commutative
associative algebras with iterative derivations. In this regard, vertex algebras
are essentially infinite-dimensional objects, as we see by the following prop-
osition.

Proposition 1.11 Any finite-dimensional vertex algebra is commutative.

Proof. Assume a(n)b , 0 for some n ≥ 0 and take the minimal n among such.
Then the matrix with entries (T (i)a)(n+j)b indexed by i, j ∈ N is upper triangular
with the diagonals (−1)i

(n + i
i

)
a(n)b, which are nonzero for infinitely many

i ∈ N. Therefore, the sequence a,Ta,T (2)a, · · · contains infinitelymany linearly
independent elements of V.

1.1.4.2 Heisenberg Vertex Algebra
Let h be an element of a vertex algebra V satisfying

h(n)h =

{
0 (n ≥ 2),
1 (n = 1).

(1.3)

Then h(0)h = 0 follows by skew-symmetry (VS), and the commutator formula
(VC) implies that the operators an = h(n) satisfy

[am,an ] = mδm+n,0, (1.4)

the commutation relation for the Heisenberg algebra.
The Heisenberg commutation relation (1.4) can be realized in a vertex alge-

bra. To see it, consider the polynomial ring F[x1, x2, · · ·] with countably many
indeterminates. Identify the scalar multiple of the unity of the ring with the
scalars and denote the multiplication operator for a polynomial by the same
symbol.
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Let an, n ∈ Z denote the operators acting on F[x1, x2, · · ·] defined by

an =


n ∂
∂xn

(n> 0),
0 (n= 0),
xk (n= – k < 0).

(1.5)

Then they satisfy the commutation relation (1.4).
The vertex algebra given in the following proposition is called the Heisen-

berg vertex algebra.

Proposition 1.12 The vector space F[x1, x2, · · ·] carries a unique structure of
a vertex algebra such that

x1(n) = an for all n ∈ Z, (1.6)

with the vacuum 1 being the unity of the polynomial ring.

By the definition (1.5) of the actions an, the condition (1.6) implies, for
example:

x1(n)x1 =


0 (n ≥ 2),
1 (n= 1),
0 (n = 0),
xkx1 (n= – k < 0).

Thus the element h = x1 satisfies (1.3). Repeated use of the associativity for-
mula (VA) allows us to calculate the nth products for all polynomials.
The difficulty lies in guaranteeing consistency of the elements arising from

the use of the Borcherds identity. We will see in the Section 1.2 that we can
avoid this difficulty by identifying the nth products with certain products de-
fined on series with operator coefficients, for which the Borcherds identity
automatically holds under certain circumstances.
We will describe the details of this example including the proof of the prop-

osition in Section 1.3, where the underlying polynomial ring F[x1, x2, · · ·] will
be naturally identified with what is called the Fock module of charge 0 over
the Heisenberg algebra (cf. Proposition 3.1).

Note 1.13. The vertex algebra described above is the Heisenberg vertex alge-
bra of rank one. It is also called the free bosonic vertex algebra in the literatures.
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1.1.4.3 Virasoro Vectors
Let ω be an element of a vertex algebra V satisfying the following condition
with a scalar c:

ω(n)ω =


0 (n ≥ 4),
(c/2)1 (n = 3),
2ω (n = 1).

(1.7)

Then ω(0)ω = T (1)ω and ω(2)ω = 0 follow by skew-symmetry (VS).
Such an ω is called a Virasoro vector since the operators Ln = ω(n+1) satisfy

[Lm, Ln ] = (m − n)Lm+n +
m3 − m

12
cδm+n,0,

the commutation relation for the Virasoro algebra of central charge c, where

m3 − m
12

=
1
2

(
m + 1

3

)
is a half integer.
TheHeisenberg vertex algebra F[x1, x2, · · ·] actually contains a Virasoro vec-

tor. Indeed, consider the following element:

u = x 2
1 = x1(−1)x1 = a−1a−11.

By the associativity formula (VA) with m = −1, we have

u(n)u= (x1(−1)x1)(n)u=
∞∑
i=0

a−i−1an+ia−1a−11+
∞∑
i=0

an−1−iaia−1a−11.

After some algebra,

u(1)u = 2a−1a1a−1a−11 = 4u,

u(3)u = 2a1a−11 = 2,
u(4)u = 2a2a−11 = 0, · · · .

Therefore, the following element satisfies (1.7) as desired with c = 1:

ω =
u
2
=

1
2

x 2
1 . (1.8)

We will call it the standard Virasoro vector of the Heisenberg vertex algebra
to distinguish it from other Virasoro vectors in the same vertex algebra.
We may consider the vertex subalgebra generated by ω, which is actually

spanned by the elements of the form

Ln1 · · · Lnk 1 (k ∈ N, n1, . . . ,nk ∈ Z).

This is an example of what is called a Virasoro vertex algebra.
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Note 1.14. 1. Over the field C of complex numbers, the Virasoro vertex al-
gebra obtained above is actually isomorphic to the simple vertex algebra de-
noted L(1,0) See Subsection 1.3.3.3 for details. 2. The construction of ω as
above is a particular case of the process called the Sugawara construction
for affine Lie algebras (cf. Subsection 1.3.2.4). 3. For any scalar λ, the vector
ωλ = x 2

1 /2 + λx2 is a Virasoro vector of central charge c = 1 − 12λ2. This
construction is called the Feigin–Fuchs construction.

1.1.5 Description by Generating Series
Let V be a vertex algebra. For each a ∈ V and n ∈ Z, consider the left actions
with respect to the nth product:

a(n) : V // V, x 7→ a(n)x.

Then the countably many product operations are collectively expressed in the
generating series

Y (a, z) =
∑
n

a(n)z−n−1,

and the axioms (V0) and (V2), for instance, are expressed as follows:

(V0) Local truncation. For all a, b ∈ V: Y (a, z)b ∈ V((z)).
(V2) Vacuum. There exists an element 1 ∈ V satisfying, for all a ∈ V,

Y (1, z)a = a and Y (a, z)1 ∈ a + V[[z]]z.
In this section, we will describe various properties of vertex algebras in terms
of generating series. The expression of the Borcherds identity (V1) by gener-
ating series in its full form, called the Cauchy–Jacobi identity, will be given in
Subsection 1.1.5.3.

1.1.5.1 Local Commutativity and Associativity
Recall that the conjunction of the commutator formula (VC) and the associativ-
ity formulas (VA) is equivalent to the Borcherds identity (V1). In this subsec-
tion, we will consider another pair of conditions whose conjunction is equiva-
lent to the Borcherds identity.
By local truncation (V0), there exists an N such that a(N+i)b = 0 for all i ≥ 0.

For such an N , the Borcherds identity with (p,q,r) = (m,n,N) reads:

0 =
∞∑
i=0
(−1)i

(
N
i

)
a(m+N−i)(b(n+i)c)

−
∞∑
i=0
(−1)N−i

(
N
i

)
b(n+N−i)(a(m+i)c).
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Similarly, there exists an L such that a(L+i)c = 0 for all i ≥ 0. For such an L,
the Borcherds identity with (p,q,r) = (L,n,m) reads:

∞∑
i=0

(
L
i

)
(a(m+i)b)(n+L−i)c =

∞∑
i=0
(−1)i

(
m
i

)
a(m+L−i)(b(n+i)c).

These properties are better described by generating series as follows:

(VLC) Local commutativity. For any a, b ∈ V, there exists an N ∈ N such that

(y − z)NY (a, y)Y (b, z) = (y − z)NY (b, z)Y (a, y).

(VLA) Local associativity. For any a, c ∈ V, there exists an L ∈ N such that,
for all b ∈ V,

(x + z)LY (Y (a, x)b, z)c = (x + z)LY (a, x + z)
�� |x |> |z |Y (b, z)c.

By the recurrence relation (1.2), we have the following implications:

(VC) =⇒ (VLC), (VA) =⇒ (VLA),

(V1) ⇐⇒ (VLC) + (VLA).

Note 1.15. 1. In the literatures, local commutativity is usually called locality
or weak commutativity, while local associativity is called weak associativity.
They are sometimes called commutativity and associativity, respectively.
2. The commutator formula (VC) and the associativity formula (VA) are written
respectively in terms of generating series as

[Y (a, y),Y (a, z)] =
∞∑
i=0

Y (a(i)b, z)δ(i)(y, z),

Y (a(m)b, z) = Y (a, z) (m)Y (b, z) (m ∈ Z).

These formulas, as well as local commutativity and local associativity, have
clear meanings in the language of operator product expansion. See Section 1.2
for details.

1.1.5.2 Translation Covariance
Let us next consider the translation operators defined for each k ∈ N by

T (k) : V // V, a 7→ T (k)a = a(−k−1)1.

For an indeterminate x, we formally write

exT =
∞∑
k=0

xkT (k).

Here are properties related to the translation operators.
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(VT) Translation. For all a ∈ V and k ∈ N:

Y (T (k)a, z) = ∂(k)z Y (a, z).

(VL) Leibniz rule. For all a ∈ V:

exTY (a, z) = Y (exT a, z)exT .

(VS) Skew-symmetry. For all a, b ∈ V:

Y (a, z)b = ezTY (b,−z)a.

The translation property (VT) implies

Y (exT a, z) = ex∂zY (a, z) = Y (a, x + z)
�� |x |< |z | .

Therefore, the operators T (k) are seen to generate translation.
Combining it with (VL), we have the translation covariance,

exTY (a, z)e−xT = Y (a, x + z)| |x |< |z | ,

from which Y (a, z)1 = ezT a follows by (V2).
Note 1.16. Over a field of characteristic zero, we have

exT =
∞∑
k=0

(xT)k
k!

, where T = T (1).

The properties (VT) and (VL) for all k follow from those with k = 1:

Y (Ta, z) = ∂zY (a, z) and [T,Y (a, z)] = Y (Ta, z),

whence ∂zY (a, z) = [T,Y (a, z)], the “equation of motion” of Y (a, z).

1.1.5.3 Cauchy–Jacobi Identity
For convenience of readers in consulting the literatures, we will describe the
Borcherds identity (V1) in terms of generating series.
Recall the formal delta function δ(z) = ∑

n
zn,where n runs over the integers,

and consider the following expressions:

y−1δ
( z + x

y

)
=

∑
n

∞∑
i=0

(
n
i

)
xiy−n−1zn−i (| x | < | z |),

x−1δ
( y − z

x

)
=

∑
n

∞∑
i=0
(−1)i

(
n
i

)
x−n−1yn−izi (| y | > | z |),

x−1δ
( z − y

−x

)
=

∑
n

∞∑
i=0
(−1)n−i

(
n
i

)
x−n−1yizn−i (| y | < | z |).
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The region of expansion is signified by the order of variables in the numerator
of the argument of delta for each.
The Borcherds identity (V1) is now expressed in terms of generating series.

(V1) Cauchy–Jacobi identity. For all a, b, c ∈ V:

y−1δ
( z + x

y

)
Y (Y (a, x)b, z)

= x−1δ
( y − z

x

)
Y (a, y)Y (b, z) − x−1δ

( z − y

−x

)
Y (b, z)Y (a, y).

(1.9)

Indeed, the coefficients to x−r−1y−p−1z−q−1 in the Cauchy–Jacobi identity form
the Borcherds identity as described in Subsection 1.1.3.1.
Note 1.17. 1. The Cauchy–Jacobi identity is usually called the Jacobi identity
for vertex algebras in the literatures. 2. The left-hand side of (1.9) is equiva-
lently rewritten by the relation

y−1δ
( z + x

y

)
= z−1δ

( y − x
z

)
,

which can be easily verified by direct calculations.

1.1.5.4 Tensor Product of Vertex Algebras
As an application of the description by generating series, let us briefly explain
the tensor product of vertex algebras, which produces a new vertex algebra
from a pair of given vertex algebras.
Let V andW be vertex algebras with the vacuums 1V and 1W. Consider the

tensor product V ⊗W of vector spaces and set

Y (a ⊗ b, z) = Y (a, z) ⊗ Y (b, z). (1.10)

Then it equips V ⊗ W with a structure of a vertex algebra, called the tensor
product of vertex algebras, for local commutativity and local associativity for
V andW imply those forV⊗W, and the vacuum properties holds with 1V⊗W =
1V ⊗ 1W.
As the right-hand side of (1.10) equals∑

i, j

a(i)z−i−1 ⊗ b(j)z−j−1 =
∑
i, j

a(i) ⊗ b(j)z−i−j−2,

the nth product of the tensor product is given by

(a ⊗ b)(n) =
∑

i+j+1=n
a(i) ⊗ b(j).

The same process works for constructing the tensor product of a finite number
of vertex algebras.
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Bibliographic Notes

The main reference for Section 1.1 is the monograph [7] by K. Nagatomo and
the author, where weworked over a field of characteristic zero. It is more or less
straightforward to describe most materials covered in Section 1.1 over commu-
tative rings (cf. Borcherds [32], [34] and Borcherds and Ryba [35]). See Mason
[78] for accounts over Z under the name “vertex ring,” including the proof that
the creation property implies the identity property under the Borcherds identity.
For more information on the Borcherds identity and its formulation by gener-

ating series, see Frenkel, Lepowsky, and Meurman [1], Feingold, Frenkel, and
Ries [2], Frenkel, Huang, and Lepowsky [3], or Lepowsky and Li [10]. The
formulation of local commutativity as in (VLA) is due to Dong and Lepowsky
[4]. Some textbooks such as Kac [6] or Frenkel and Ben-Zvi [8] are based on
an equivalent but apparently different formulation of vertex algebras, where
the translation operator is taken as a part of the structure. See Rosellen [11] for
various formulations and their relation to other algebraic concepts.
For geometric interpretation of vertex algebras, see Frenkel and Ben-Zvi

[8]. See Bakalov and Kac [29], Etingof and Kazhdan [52], and Li [75], for
noncommutative or nonlocal analogues of vertex algebras, that is, objects sat-
isfying local associativity but not necessarily local commutativity in our ter-
minology. For more general frameworks, see Beilinson and Drinfeld [9] and
Borcherds [34].

1.2 Vertex Algebras of Series

In order to construct an example of a group, it is often convenient to realize it
as a set of bijective transformations of a set. If such a setG of transformations is
closed under composition and inversion and contains the identity transforma-
tion, then it becomes a group by composition of transformations. The advantage
of such construction lies in that associativity automatically holds for composi-
tion of maps. The set on which G acts then carries a structure of a permutation
representation of G.
Analogously, we can construct a commutative associative algebraC by real-

izing it as a vector space consisting of commuting operators on a vector space
M, for which associativity is again automatic, andM becomes a representation
of C or equivalently a module over C.
In Section 1.2, we will explain a way to construct vertex algebras along the

same line. That is, we will realize a vertex algebra V as a vector space con-
sisting of series with operator coefficients equipped with product operations
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for which the Borcherds identity is automatic under certain conditions. We will
also introduce the concepts of a representation of V or a module over V.
We will continue to work over a field F of characteristic not 2 unless other-

wise stated.

1.2.1 Residue Products of Series
In this section, we introduce a sequence of operations

Hom(M,M((z))) × Hom(M,M((z))) // Hom(M,M((z)))
(A(z),B(z)) � // A(z)(m)B(z),

indexed by m ∈ Z, called the residue products, which associate a series to a
pair of series for each m.

1.2.1.1 Expansions in Various Regions
Let V be a vector space and x, y, z indeterminates, and consider the space

V((x, y, z)) = V[[x, y, z]][x−1, y−1, z−1 ],

whose elements are written in the following form with some L,M,N ∈ N:

w(x, y, z) = w0(x, y, z)
xN yL zM

, w0(x, y, z) ∈ V[[x, y, z]].

For such an element, substitute x = y − z, and apply the binomial expansions
to each term. Then we obtain

w(y − z, y, z)
�� |y |> |z | ∈ V((y))((z)),

w(y − z, y, z)
�� |y |< |z | ∈ V((z))((y)).

Similarly, we obtain the following series in x and z:

w(x, x + z, z)
�� |x |> |z | ∈ V((x))((z)),

w(x, x + z, z)
�� |x |< |z | ∈ V((z))((x)).

Since xNw(x, y, z) ∈ V[[x]]((y, z)) and yLw(x, y, z) ∈ V[[y]]((x, z)), we have

(y − z)Nw(y − z, y, z)
�� |y |> |z | = (y − z)Nw(y − z, y, z)

�� |y |< |z | , (2.1)

(x + z)Lw(x, x + z, z)
�� |x |> |z | = (x + z)Lw(x, x + z, z)

�� |x |< |z | . (2.2)

https://doi.org/10.1017/9781009338073.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009338073.002


Lectures on Vertex Algebras 31

The expansions fit in the diagram

w(y − z, y, z)
�� |y |> |z |qq (2.1)

--

(2.3)

w(y − z, y, z)
�� |y |< |z |

w(x, y, z)�
|y |> |z |kkVVVVVVVVV (

|y |< |z | 33hhhhhhhhh
(

|x |> |z |sshhhhh
hhhh _

|x |< |z |

��

w(x, x + z, z)
�� |x |> |z |
gg

(2.2) -- w(x, x + z, z)
�� |x |< |z | ,

where the bent double-headed arrows indicate relations (2.1) and (2.2), and the
vertical equality is given by the identification

w(y − z, y, z)
�� |y |> |z | = w(x, x + z, z)

�� |x |> |z | (2.3)

via the isomorphisms

V((y))((z))
ϕ // V((x))((z))
ψ

oo

inverse to each other, defined by

ϕ : v(y, z) 7→ v(x + z, z)
�� |x |> |z |, ψ : v(x, z) 7→ v(y − z, z)

�� |y |> |z | .
In this sense, we may think of the three series

w(y − z, y, z)
�� |y |> |z |, w(y − z, y, z)

�� |y |< |z |, w(x, x + z, z)
�� |x |< |z |

as being “analytically continued” to each other under x = y − z.

1.2.1.2 Extracting Coefficients by Formal Residues
Let Resz denote the operation of taking the formal residue in z:

Resz : V[[z, z−1 ]] // V, v(z) =
∑
n

vnz−n−1 7→ Resz v(z) = v0.

By this operation, the coefficients of a series are extracted as

vn = Resz v(z)zn.

If a series v(y, z) in y and z belongs to V((y))((z)) or V((z))((y)), then Resy
v(y, z) sits in V((z)), thus the operation Resy gives rise to maps

Resy : V((y))((z)) // V((z)), Resy : V((z))((y)) // V((z)).
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Let s(y, z) and t(y, z) be series inV((y))((z)) andV((z))((y)), respectively, such
that there exists a series w(x, y, z) in V((x, y, z)) satisfying

s(y, z) = w(y − z, y, z)
�� |y |> |z | and t(y, z) = w(y − z, y, z)

�� |y |< |z | . (2.4)

We are interested in finding the expansion

u(x, z) = w(x, x + z, z)
�� |x |< |z |

as in the following diagram:

s(y, z) t(y, z)

w(x, y, z)
+
|y |< |z | 55kkkkkkk�

|y |> |z |iiSSSSSSS

_

|x |< |z |
��

u(x, z).

Let us expand the series u(x, z) as follows:

u(x, z) =
∑
m

um(z)x−m−1 =
∑
m,n

um,nx−m−1z−n−1.

Then the series um(z) are expressed as

um(z) = Resy(y − z)m
�� |y |> |z |s(y, z) − Resy(y − z)m

�� |y |< |z |t(y, z), (2.5)

and their coefficients by

um,n =
∞∑
i=0
(−1)i

(
m
i

)
sm−i,n+i −

∞∑
i=0
(−1)m−i

(
m
i

)
ti,m+n−i .

In particular, u(x, z) does not depend on the choice of w(x, y, z) as in (2.4),
although it is clear from the beginning.
The formula (2.5) is actually equivalent to the following identity valid for

any series v(x, y, z) in V((x, y, z)):

Resx v(x, x + z, z)
��
|x |< |z | = Resy v(y − z, y, z)

��
|y |> |z |

− Resy v(y − z, y, z)
��
|y |< |z | .

(2.6)

Indeed, (2.5) is obtained by substituting xmw(x, y, z) for v(x, y, z) in (2.6).
Note 2.1. 1. Heuristically, take the series s(y, z) and t(y, z) as if they were
expansions of ameromorphic function v(y, z) of ywith only poles at y = 0, z,∞.
Then the coefficients to (y − z)−m−1 in the expansion of v(y, z) at y = z are

1
2π
√
−1

∮
Cz

(y − z)mv(y, z)dy,
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where Cz is a small circle surrounding z with | y − z | < | z |. As this becomes
1

2π
√
−1

∮
C0,z

(y − z)mv(y, z)dy − 1
2π
√
−1

∮
C0

(y − z)mv(y, z)dy

by deformation of contour, where C0,z is a circle surrounding 0 and z with
| y | > | z | and C0 surrounding 0 with | y | < | z |. Thus formula (2.5) is seen
to describe um(z) by the latter expression (cf. [8], [13], etc.). 2. Substituting
xr ypzqw(x, y, z) for v(x, y, z) in (2.6), we have

∞∑
i=0

(
p
i

)
ur+i,p+q−i =

∞∑
i=0
(−1)i

(
r
i

)
sp+r−i,q+i

−
∞∑
i=0
(−1)r−i

(
r
i

)
tq+r−i,p+i .

The resemblance with the Borcherds identity (V1) is not an accident, as we will
see in the sequel.

1.2.1.3 Series Acting on Vector Spaces
Let M be a vector space and consider formal series in (EndM)[[z, z−1 ]]. We
will call such a series a series acting onM, or just a series onM for short.
For such a series A(z), set

A(z) =
∑
n

Anz−n−1,

where the summation is over all n ∈ Z and An are operators onM. For an elem-
ent v ∈ M, we write

A(z)v =
∑
n

Anvz−n−1.

In particular, consider the series I(z) such that the only nonzero term is the
constant term being the identity operator I:

I(z) =
∑
n

Inz−n−1, where Inv =

{
0 (n , −1),
v (n = −1).

We will call it the identity series and often identify it with the scalar 1.
For a series A(z), split it into the sum of series with nonnegative and negative

powers as ∑
n

Anz−n−1 =
∑
n<0

Anz−n−1

nonnegative
powers in z

+
∑
n≥0

Anz−n−1.

negative
powers in z

(2.7)
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Let us denote the resulting series by A(z)≥0 and A(z)<0, respectively:

A(z)≥0 =
∑
n<0

Anz−n−1 =
∑
n≥0

A−n−1zn,

A(z)<0 =
∑
n≥0

Anz−n−1 =
∑
n<0

A−n−1zn.

We will also denote them by A(z)<0 and A(z)≥0, respectively.

1.2.1.4 Locally Truncated Series
Wewill say that a series A(z) on a vector spaceM is locally truncated if A(z)v ∈
M((z)) for all v ∈ M, thus

A(z) is locally truncated ⇐⇒ A(x) ∈ Hom(M,M((z))).

In other words, A(z) is locally truncated if and only if for any v ∈ M, there
exists an N ∈ N such that AN+iv = 0 for all i ∈ N.
Consider series A(z) and B(z), split A(y) as in (2.7), and set

◦
◦A(y)B(z) ◦◦ = A(y)≥0B(z) + B(z)A(y)<0.

Assume that A(z) and B(z) are locally truncated. Then, for v ∈ M,
◦
◦A(y)B(z) ◦◦v ∈ M((y, z)).

Therefore, the following expression gives rise to a locally truncated series:
◦
◦A(z)B(z) ◦◦ = A(z)≥0B(z) + B(z)A(z)<0. (2.8)

Such an expression is called the normally ordered product of A(z) and B(z).
Note 2.2. A series on a vector space is also called a formal distribution and a
locally truncated series a field in the literatures following [6].

1.2.1.5 Residue products
Let A(z) and B(z) be series on a vector spaceM and m an integer:

A(z),B(z) ∈ (EndM)[[z, z−1 ]], m ∈ Z.

If m ≥ 0, then we may consider the following expression as a series with op-
erator coefficients:

A(z)(m)B(z) = Resy(y − z)m[A(y),B(z)]
= Resy(y − z)mA(y)B(z) − Resy(y − z)mB(z)A(y).

For m < 0, assume that A(z) and B(z) are locally truncated. Then, for v ∈ M,

A(y)B(z)v ∈ M((y))((z)), B(z)A(y)v ∈ M((z))((y)),
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and the following expressions make sense as series in y and z:

(y − z)m
��
|y |> |z |A(y)B(z)v, (y − z)m

��
|y |< |z |B(z)A(y)v.

We may therefore consider the expression

A(z)(m)B(z) = Resy(y − z)m
��
|y |> |z |A(y)B(z)

− Resy(y − z)m
��
|y |< |z |B(z)A(y)

as a series with operator coefficients.
We will call the series A(z)(m)B(z) thus obtained the mth residue product of

A(z) and B(z) for each m ∈ Z.

Lemma 2.3 If series A(z) and B(z) on a vector space are locally truncated,
then so is the residue product A(z)(m)B(z) for all m ∈ Z.

To describe the coefficients explicitly, set

A(z)(m)B(z) = (A(m)B)(z) =
∑
n

(A(m)B)nz−n−1.

Then we have

(A(m)B)n =
∞∑
i=0
(−1)m

(
m
i

)
Am−iBn+i −

∞∑
i=0
(−1)m−i

(
m
i

)
Bm+n−i Ai . (2.9)

For m = −1, the residue product A(z)(−1)B(z) agrees with the normally ordered
product ◦◦A(z)B(z) ◦◦ defined by (2.8), and, for k ∈ N,

A(z)(−k−1)B(z) = ◦
◦
(
∂(k)A(z)

)
B(z) ◦◦ .

In particular, for the identity series I(z),

I(z)(m)A(z) =
{

0 (m , −1),
A(z) (m = −1),

A(z)(m)I(z) =
{

0 (m ≥ 0),
∂(k)A(z) (m = −k − 1 < 0),

which is the vacuum property (V2) completed by the divided derivatives.

1.2.2 Operator Product Expansions
In Section 1.2.2, we will explain a rigorous formulation in certain circum-
stances of what is called operator product expansion (OPE) in physics and
its relation to residue products.
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Let us briefly outline the concept by example. Let an, n ∈ Z, be operators
on a vector spaceM satisfying the Heisenberg commutation relation (1.4). By
the generating series a(z) = ∑

n
anz−n−1, the relation is written as

[a(y),a(z)] =
∑
n

ny−n−1zn−1 (= δ(1)(y, z) ). (2.10)

Note that the equality (y − z)2a(y)a(z) = (y − z)2a(z)a(y) follows.
Split (2.10) into two equalities by collecting terms with nonnegative and

negative powers in y. Then, after some algebra, we arrive at
a(y)a(z) = 1

(y − z)2
���
|y |> |z |

+ ◦
◦a(y)a(z) ◦◦,

a(z)a(y) = 1
(y − z)2

���
|y |< |z |

+ ◦
◦a(y)a(z) ◦◦ .

(2.11)

The two equalities in (2.11) are written as

a(y)a(z) ' a(z)a(y) ∼ 1
(y − z)2

(2.12)

and called the OPE. The mth residue products a(z)(m)a(z) for m ≥ 0 are then
read off from the OPE (2.12) as

a(z)(m)a(z) =


0 (m ≥ 2),
1 (m = 1),
0 (m = 0),

where 1 for m = 1 is the numerator in (2.12), that is, the identity series I(z).

1.2.2.1 OPE of Locally Commutative Series
Let A(z) and B(z) be series on a vector space M. We will say that they are
locally commutative if the following holds for some N ∈ N:

(y − z)N A(y)B(z) = (y − z)N B(z)A(y). (2.13)

In other words,
∞∑
i=0
(−1)i

(
N
i

)
Am+N−iBn+iv =

∞∑
i=0
(−1)N−i

(
N
i

)
Bn+N−i Am+iv (2.14)

for some N ∈ N and all m,n ∈ Z.
Let A(z) and B(z) be locally commutative series on a vector spaceM and take

N ∈ N such that (2.13) holds. Split A(y) into the sum of series with nonnegative
and negative powers as in (2.7). Then local commutativity becomes

(y − z)N
[
A(y)≥0,B(z)

]
= −(y − z)N

[
A(y)<0,B(z)

]
.
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Comparing the degrees in y, we see that there exist series C0(z), . . . ,CN−1(z)
in z such that

(y − z)N
[
A(y)<0,B(z)

]
=

N−1∑
k=0
(y − z)N−1−kCk(z),

−(y − z)N
[
A(y)≥0,B(z)

]
=

N−1∑
k=0
(y − z)N−1−kCk(z).

Multiplying them by (y − z)−N
�� |y |> |z | and (y − z)−N

�� |y |< |z | , respectively, and
adding ◦

◦A(y)B(z) ◦◦ = A(y)≥0B(z) + B(z)A(y)<0, we have


A(y)B(z) =

N−1∑
k=0

Ck(z)
(y − z)k+1

���
|y |> |z |

+ ◦
◦A(y)B(z) ◦◦,

B(z)A(y) =
N−1∑
k=0

Ck(z)
(y − z)k+1

���
|y |< |z |

singular part

+ ◦◦A(y)B(z) ◦◦ .

regular part

(2.15)

The two equalities are written at once as

A(y)B(z) ' B(z)A(y) ∼
N−1∑
k=0

Ck(z)
(y − z)k+1 , (2.16)

and it is called (the singular part of) the OPE.
As the difference of the left-hand sides of (2.15) becomes the commutators
[A(y),B(z)], the commutation relations of the coefficients are encoded in the
series C0(z), . . . ,CN−1(z) in the OPE (2.16), which are related to the residue
products as

A(z)(m)B(z) =
{

0 (N ≤ m),
Cm(z) (0 ≤ m < N).

The OPE as described above gives a rigorous formulation of what is called by
the same term in physics.

1.2.2.2 Expansion of Regular Parts
Let us further expand the regular part ◦◦A(y)B(z) ◦◦ of the equalities in (2.15)
under the assumption that A(z) and B(z) are locally truncated. For v ∈ M, set

w(x, y, z) =
N−1∑
k=0

Ck(z)v
xk+1 +

◦
◦A(y)B(z) ◦◦v.
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By local truncation, we have ◦◦A(y)B(z) ◦◦v ∈ M((y, z)), thus

w(x, y, z) ∈ M((y, z))[x−1 ] ⊂ M((x, y, z)).

The OPE (2.15) is now restated as
A(y)B(z)v = w(y − z, y, z)

�� |y |> |z | ,
B(z)A(y)v = w(y − z, y, z)

�� |y |< |z | .
Expand w(x, y, z) in the region | x | < | z | by substitution y = x + z and denote
the resulting series by (A ◦ B)(x, z). Then, by (1.1), we have

(A ◦ B)(x, z)v =
N−1∑
k=0

Ck(z)v
xk+1 +

∞∑
k=0

xk ◦◦
(
∂(k)A(z)

)
B(z) ◦◦v,

or equivalently

(A ◦ B)(x, z)v =
∑
m

x−m−1 A(z)(m)B(z).

The situation is summarized in the following diagram as in Subsection
1.2.1.1:

A(y)B(z)v qq
(2.17)

--
B(z)A(y)v

w(x, y, z)�

|y |> |z |kkWWWWWWWWWWWWW
'|x |> |z |

ssggggg
ggggg _

|x |< |z |

��

(
|y |< |z | 33hhhhhhhhhh

A(x + z)B(z)v
�� |x |> |z |
gg

(2.18) -- (A ◦ B)(x, z)v.

Here the bent double-headed arrows signify the following relations for suffi-
ciently large L and N:

(y − z)N A(y)B(z)v = (y − z)N B(z)A(y)v, (2.17)

(x + z)L A(x + z)B(z)v
�� |x |> |z | = (x + z)L(A ◦ B)(x, z)v. (2.18)

The relation (2.17) is local commutativity which we have assumed, whereas
(2.18) is a consequence, which is a form of local associativity.
In this sense, the series

A(y)B(z)v, B(z)A(y)v, (A ◦ B)(x, z)v
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are thought of as being “analytically continued” to each other, and the OPE
(2.16) is formally completed as

A(y)B(z) ' B(z)A(y) '
N−1∑
k=0

Ck(z)
(y − z)k+1 +

∞∑
k=0
(y − z)k ◦◦

(
∂(k)A(z)

)
B(z) ◦◦

by including the expansion of the regular part and formally substituting y − z
for x, although the result does not make sense in general as series in y and z.

Note 2.4. Let A(z) and B(z) be locally commutative and locally truncated.
Then the formula in Note 2.1 implies the Borcherds identity in the form

∞∑
i=0

(
p
i

)
(A(r+i)B)p+q−i =

∑
∞
i=0(−1)r

(
r
i

)
Ap+r−iBq+i

−
∞∑
i=0
(−1)r−i

(
r
i

)
Bq+r−i Ap+i

for all p,q,r ∈ Z, as noted by Tuite [22] in a different method, which is to be
identified with the Borcherds identity (M1) for modules in Subsection 1.2.5.2.

1.2.2.3 Skew-Symmetry of Residue Products
Let us now consider the series (B ◦ A)(−x, y) obtained by switching the roles
of A(y) and B(z) as in the following diagram:

A(y)B(z)v qq --
B(z)A(y)v

w(x, y, z)�

|y |> | z |kkVVVVVVVVVVVVV
(

| x |> | z |

sshhhhh
hhhhh

hh D

| x |< | z |

����
��
��
��
��
��

'
| z |> |y |

33ggggggggggggggg
� | x |> |y |

++WWWW
WWWWW

WWWW{

| x |< |y |

��;
;;

;;
;;

;;
;;

;

A(x + z)B(z)v
��| x |> | z |

^^

((

B(−x + y)A(z)v
��| x |> |y |

>>

uu
(A ◦ B)(x, z)v (B ◦ A)(−x, y)v.

Then we have

(A ◦ B)(x, z)v = (B ◦ A)(−x, x + z)v
�� |x |< |z |

=
∑
m,n

(B(m)A)n(−x)−m−1(x + z)−n−1�� |x |< |z |
= ex∂z

∑
m,n

(B(m)A)n(−x)−m−1z−n−1

= ex∂z (B ◦ A)(−x, z)v.
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Therefore,

A(z)(m)B(z) = (−1)m+1
∞∑
i=0
(−1)i∂(i)

(
B(z)(m+i)A(z)

)
,

which is the skew-symmetry for the residue products (cf. Subsection 1.1.3.5).

1.2.3 Vertex Algebras of Series
Recall that a linear space consisting of commuting operators on a vector space
becomes a commutative associative algebra by composition of operators if it is
closed under composition and contains the identity operator.
In this section, we will pursue such consideration for vertex algebras, where

the analogue of operators is given by series with operator coefficients and that
of composition is the residue products.

1.2.3.1 Borcherds Identity for Residue Products
Recall that the set of locally truncated series onM in an indeterminate z can be
identified with the set Hom(M,M((z))), and the residue products of locally trun-
cated series are again locally truncated. Therefore, the residue products equip
Hom(M,M((z))) with a sequence of binary operations:

Hom(M,M((z))) × Hom(M,M((z))) // Hom(M,M((z)))
(A(z),B(z)) � // A(z)(n)B(z).

Let A(z), B(z), and C(z) be locally truncated series on a vector space M.
Let us further assume that they are locally commutative with each other, that
is, A(z) and B(z), B(z) and C(z), and A(z) and C(z) are locally commutative
separately.

Theorem 2.5 Let A(z), B(z), and C(z) be locally truncated series on a vector
space locally commutative with each other. Then the Borcherds identity

∞∑
i=0

(
p
i

)
(A(z)(r+i)B(z))(p+q−i)C(z)

=

∞∑
i=0
(−1)i

(
r
i

)
A(z)(p+r−i)(B(z)(q+i)C(z))

−
∞∑
i=0
(−1)r−i

(
r
i

)
B(z)(q+r−i)(A(z)(p+i)C(z))

(2.19)

holds for all p,q,r ∈ Z with respect to the residue products.

https://doi.org/10.1017/9781009338073.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009338073.002


Lectures on Vertex Algebras 41

To see it, let us first consider the case when the integers p,q,r are nonnega-
tive. The Jacobi identity for the commutators in the following form obviously
holds by cancellation:

[[A(x),B(y)],C(z)] = [A(x), [B(y),C(z)]] − [B(y), [A(x),C(z)]]. (2.20)

Multiply both sides by D(x, y, z) = (x − z)p(y − z)q(x − y)r :

(x − z)p(y − z)q(x − y)r [[A(x),B(y)],C(z)]

= (x − z)p(y − z)q (x − y)r [A(x), [B(y),C(z)]]

− (x − z)p(y − z)q (x − y)r [B(y), [A(x),C(z)]].

To the underlined factors, apply the following expansions, respectively:

(x − z)p =
(
(x − y) + (y − z)

)p
=

p∑
i=0

(
p
i

)
(x − y)i(y − z)p−i ,

(x − y)r =
(
(x − z) − (y − z)

)r
=

r∑
i=0
(−1)i

(
r
i

)
(x − z)r−i(y − z)i ,

(x − y)r =
(
(x − z) − (y − z)

)r
=

r∑
i=0
(−1)r−i

(
r
i

)
(x − z)i(y − z)r−i .

Then we have

p∑
i=0

(
p
i

)
(x − y)r+i(y − z)p+q−i[[A(x),B(y)],C(z)]

=

r∑
i=0
(−1)i

(
r
i

)
(x − z)p+r−i(y − z)q+i[A(x), [B(y),C(z)]]

−
r∑
i=0
(−1)r−i

(
r
i

)
(x − z)p+i(y − z)q+r−i[B(y), [A(x),C(z)]].

Taking Resx Resy , we arrive at the Borcherds identity (2.19).
For general p,q,r , the situation is much more complicated, for the factor

D(x, y, z) is no longer a polynomial.
In such a case, multiply the terms of the Jacobi identity (2.20) by the expan-

sions of D(x, y, z) = (x − z)p(y − z)q(x − y)r in regions depending on the order
of A(x),B(y),C(z) as
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Q123 = D(x, y, z)
�� |x |> |y |> |z |A(x)B(y)C(z),

Q132 = D(x, y, z)
�� |x |> |z |> |y |A(x)C(z)B(y),

Q213 = D(x, y, z)
�� |y |> |x |> |z |B(y)A(x)C(z),

Q231 = D(x, y, z)
�� |y |> |z |> |x |B(y)C(z)A(x),

Q312 = D(x, y, z)
�� |z |> |x |> |y |C(z)A(x)B(y),

Q321 = D(x, y, z)
�� |z |> |y |> |x |C(z)B(y)A(x).

Then, again by cancellation, we have

(Q123 −Q213) − (Q312 −Q321)
=

(
(Q123 −Q132) − (Q231 −Q321)

)
−

(
(Q213 −Q231) − (Q132 −Q312)

)
.

The result follows similarly by taking Resx Resy after carefully manipulating
series under local commutativity. See [7] and [11] for details.
Alternatively, for A(z),B(z),C(z) as above and v ∈ M, note that there exists

an element w(x, y, z, ξ, η, ζ ) ∈ M((x, y, z, ξ, η, ζ)) such that

A(x)B(y)C(z)v = w(x, y, z, x − y, x − z, y − z)
�� |x |> |y |> |z |,

A(x)C(z)B(y)v = w(x, y, z, x − y, x − z, y − z)
�� |x |> |z |> |y |,

B(y)A(x)C(z)v = w(x, y, z, x − y, x − z, y − z)
�� |y |> |x |> |z |,

B(y)C(z)A(x)v = w(x, y, z, x − y, x − z, y − z)
�� |y |> |z |> |x |,

C(z)A(x)B(y)v = w(x, y, z, x − y, x − z, y − z)
�� |z |> |x |> |y |,

C(z)B(y)A(x)v = w(x, y, z, x − y, x − z, y − z)
�� |z |> |y |> |x | .

Set W(x, y, z, ξ, η, ζ ) = ξrηpζqw(x, y, z, ξ, η, ζ ). Then the Borcherds identity
(2.19) follows by taking Resζ of the identity

Resξ W(ξ + ζ + z, ζ + z, z, ξ, ξ + ζ, ζ)
�� |ξ |< |ζ+z |, |ξ |< |ζ |< |z |

= Resη W(η + z, ζ + z, z, η − ζ, η, ζ)
�� |ζ |< |η |< |z |

− Resη W(η + z, ζ + z, z, η − ζ, η, ζ)
�� |η |< |ζ |< |z | ,

which is in fact a variant of (2.6). Note that the region |ξ | < |ζ + z | attached
in the left-hand side can be replaced by |ξ + ζ | < | z | without affecting the
expansion.

1.2.3.2 Vertex Algebra of Series
We will say that a subset S of Hom(M,M((z))) is locally commutative if so are
all the pairs of series belonging to S, including the pairs of the same series.
By combining the properties of the residue products obtained so far, we ar-

rive at the following result due to H. S. Li.
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Table 2 Vertex algebras, abstract versus realization

Abstract vertex algebra Vertex algebra of series

V abstract vector space V subspace of Hom(M,M((z)))
a(n)b abstract products A(z)(n)B(z) residue products
1 the vacuum I(z) = I the identity series
T (k) translation operators ∂

(k)
z divided derivatives

Corollary 2.6 LetV be a vector space consisting of series on a vector space
satisfying the following conditions:

(1) V is locally truncated and locally commutative.
(2) V is closed under the residue products.
(3) V contains the identity series.

ThenV becomes a vertex algebra by the residue products.

We will call the vertex algebra thus obtained a vertex algebra of series for
short. See Table 2 for comparison of abstract vertex algebras and vertex alge-
bras of series.
We have shown that a locally commutative subspace of Hom(M,M((z)))

automatically becomes a vertex algebra by the residue products if it is closed
under the residue products and contains I(z). Conversely, any vertex algebra V
is realized in this way by lettingM be the vertex algebra V itself and consider-
ing the imageV of the generating series map Y (−, z). (cf. Section 1.2.4.)
In this regard, the axioms for vertex algebras are seen to be modelled on

the properties of locally truncated locally commutative series with respect to
the residue products in the same way as those for groups are modelled on the
properties of bijective transformations of a set with respect to composition of
transformations.

1.2.3.3 Generation by a set of series
The following is called Dong’s Lemma.

Lemma 2.7 Let A(z), B(z), and C(z) be locally truncated series on V. If they
are locally commutative with each other, then the residue products A(z)(n)B(z)
and C(z) are locally commutative for all n ∈ Z.

LetS be a locally commutative subset of Hom(M,M((z))). Then, by Lemma,
we may construct a vertex algebraV by repeatedly applying residue products
to the series belonging to S:

I(z), A(z), A(z)(m)B(z), (A(z)(m)B(z))(n)C(z), A(z)(m)(B(z)(n)C(z)), etc.
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We will denote the vertex algebra V thus defined by 〈S〉RP and call it the
vertex algebra of series generated by S with respect to the residue products.
By the associativity formula (VA) for V = 〈S〉RP, the space is spanned by

the elements of the following form:

A1(z)(n1) · · · Ak(z)(nk )I(z),

where k ∈ N, A1(z), . . . , Ak(z) ∈ S and n1, . . . ,nk ∈ Z and the operations are
taken from right to left.

1.2.4 Identification of Vertex Algebras
Let V be a vertex algebra andV the image of the generating series map:

Y (−, z) : V // Hom(V,V((z))).

ThenV is a vertex algebra of series by Corollary 2.6, and the map Y (−, z) is a
homomorphism of vertex algebras by the associativity formula

Y (a(n)b, z) = Y (a, z) (n)Y (b, z).

Moreover, Y (−, z) is an isomorphism ontoV with the inverse given by

σV : V // V, Y (a, z) 7→ Y (a, z)1|z=0.

Now, forget the vertex algebra structure on V, but retain that Y is a linear
isomorphism onto a vertex algebraV of series on V with the inverse given as
above. Then the vertex algebra structure on V is reconstructed fromV as

a(n)b = σV(Y (a, z) (n)Y (b, z)).

In this section, we will construct a vertex algebra structure on a vector space V
by identifying it with a vertex algebra of series along this line.

1.2.4.1 Creativity and the State Map
Let V be a vector space equipped with a candidate 1 ∈ V of the vacuum. To
relate a vertex algebra of series on V to a vertex algebra structure on V, we
introduce the concept of creativity for series.
A series A(z) on V is said to be creative (with respect to 1 ∈ V) if

An1 = 0, n ≥ 0,

that is, A(z)1 ∈ V[[z]]. We will say that a subset V ⊂ (EndV)[[z, z−1 ]] is
creative if so is every series in it.
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Consider the following map, which we will call the state map:

σ : (EndV)[[z, z−1 ]] // V, A(z) 7→ A−11.

If A(z) is creative, then σ(A(z)) = A(z)1
��
z=0.

Lemma 2.8 Let A(z) and B(z) be locally truncated series on V. If they are
creative, then so are the residue products A(z)(n)B(z), for which

σ(A(z)(n)B(z)) = AnB−11

holds for all n ∈ Z.

1.2.4.2 Identification by the State Map
Let V be a vertex algebra of series on V. Assume that V is creative and the
state map restricts to a bijection fromV onto V:

σV = σ |V : V ∼ // V, A(z) 7→ A−11.

Then we may transfer the vertex algebra structure on V to V via σV. That is,
for any a, b ∈ V, choose A(z),B(z) ∈ V so that σ(A(z)) = a and σ(B(z)) = b,
and define the product as

a(n)b = σ(A(z)(n)B(z)).

By Lemma 2.8, we actually have

a(n)b = AnB−11 = Anb.

As this holds for all b ∈ V, we have

Y (a, z) = A(z).

Thus the map Y agrees with the inverse of σV. Moreover, since the vacuum of
V is the identity series I(z), the vacuum of V is given by σ(I(z)) = I−11 = 1.
In summary, we have the following theorem.

Theorem 2.9 LetV be a vertex algebra of series on V and assume that it is
creative with respect to 1 ∈ V. If σV : V // V is bijective, then V carries a
unique structure of a vertex algebra such that

Y (A−11, z) = A(z) for all A(z) ∈ V,

with vacuum 1.

Consider now the case when V is a vertex algebra of series generated by a
locally commutative subset of Hom(V,V((z))).
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Corollary 2.10 Let V be a vector space, 1 an element of V, and S a set of
locally truncated series on V satisfying the following conditions:

(1) S is locally commutative.
(2) S is creative with respect to 1.
(3) σV : V // V is bijective forV = 〈S〉RP.

Then V carries a unique structure of a vertex algebra such that

Y (S−11, z) = S(z) for all S(z) ∈ S

with vacuum 1.

1.2.4.3 Bijectivity by Translation Covariance
Let V be a vertex algebra of series on a vector space V and assume that V is
creative with respect to 1 ∈ V. To transfer the vertex algebra structure to V by
applying Theorem 2.9, we need know that the restriction σV = σ |V of the state
map is bijective onto V.
For the convenience of readers, we will show that, under translation covari-

ance, knowing surjectivity suffices, although we will not use this result in the
rest of the sections.
Let T = (T (k)) be a sequence of operators on V indexed by positive integers:

T (k) : V // V (k = 1,2, · · · ).

We set T (0) = I and assume that the operators are iterative and annihilating 1
in the following senses, respectively:

T (i)T (j) =
(
i + j

i

)
T (i+j) for i, j ≥ 0, and T (k)1 = 0 for k ≥ 1.

For an indeterminate x, define the formal exponentials e±xT by

exT =
∞∑
k=0

xkT (k), e−xT =
∞∑
k=0
(−x)kT (k).

Then, by iterativity, they are inverse to each other:

e−xT exT = 1 = exT e−xT .

Now, let A(z) be a series on V. It is said to be translation covariant (with
respect to T) if

exT A(z)e−xT = ex∂z A(z),

or equivalently,
exT A(z)e−xT = A(x + z)

��
|x |< |z | .
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If A(z) is translation covariant, then the coefficients of v(z) = A(z)1 satisfy

T (k)vn = (−1)k
(

n
k

)
vn−k .

Therefore, A(z) is creative and v−k−1 = T (k)v−1.
We will say that a subsetV ⊂ (EndV)[[z, z−1 ]] is translation covariant if so

is every series in it.
The following result is a variant of what is called Goddard’s uniqueness the-

orem.

Proposition 2.11 LetV be a locally commutative and translation covariant
subspace of Hom(V,V((z))). If σV is surjective, then it is bijective.

Proof. Assume thatσV is surjective. The result follows by showing injectivity
of p and i in the diagram below:

Hom(V,V((z)))

σ

))// V[[z]] // V
∪ ∪ ‖
V p // V1 i // V

A(z) � // A(z)1 � // A−11.

Assume A−11 = 0. Then, by translation covariance, A−k−11 = T (k)A−11 = 0
for all k ≥ 0, thus A(z)1 = 0 since A(z) is creative. Now, for any b ∈ V, by
surjectivity of σV, there exists B(z) ∈ V such that B−11 = b. Since A(z) and
B(z) are locally commutative, we have, for some N ∈ N,

zN A(z)b = (z − y)N A(z)B(y)1
��
y=0 = (z − y)N B(y)A(z)1

��
y=0 = 0.

Hence A(z)b = 0 holds for all b ∈ V. Thus A(z) = 0.

Therefore, by Theorem 2.9, we have the following result.

Theorem 2.12 Let V be a vector space, T a sequence of iterative operators
annihilating 1 ∈ V, andV a vertex algebra of series on V satisfying:

(1) V is translation covariant with respect to T.
(2) The state map σ restricts to a surjective map fromV onto V.

Then V carries a unique structure of a vertex algebra such that

Y (A−11, z) = A(z) for all A(z) ∈ V

with vacuum 1.
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To deal with vertex algebras generated by series, we note the following.

Lemma 2.13 Let A(z) and B(z) be locally truncated series on V. If they are
translation covariant, then so are the residue products A(z)(n)B(z) for all n ∈ Z.

Proof. For n ≥ 0, by ex∂y ex∂z (y − z)n = (y − z)n and the Leibniz rule, we
have

ex∂z Resy(y − z)nA(y)B(z) = Resy ex∂z ((y − z)nA(y)B(z))
= Resy ex∂y ex∂z ((y − z)nA(y)B(z)) = Resy(y − z)n(ex∂y A(y))(ex∂z B(z)),

as well as the one with the positions of A(y) and B(z) switched. Therefore, we
have ex∂z (A(z)(n)B(z)) = (ex∂z A(z))(n)(ex∂z B(z)), and the result is now clear
by exT (A(z)(n)B(z))e−xT = (exT A(z)e−xT )(n)(exT B(z)e−xT ). The same proof
works for n < 0 as well by replacing (y − z)n with its expansions.

Therefore, we arrive at the following corollary, a variant of what is called
the existence theorem of Frenkel–Kac–Radul–Wang.

Corollary 2.14 Let V be a vector space, T a sequence of iterative operators
annihilating 1 ∈ V, and S a set of locally truncated series on V satisfying:

(1) S is locally commutative.
(2) S is translation covariant with respect to T.
(3) The state map σ restricts to a surjective map from 〈S〉RP onto V.

Then V carries a unique structure of a vertex algebra such that

Y (S−11, z) = S(z) for all S(z) ∈ S

with vacuum 1.

Note 2.15. The equality ex∂z (A(z)(n)B(z))= (ex∂z A(z))(n)(ex∂z B(z)) achieved
in the proof of Lemma 2.13 also follows from the Borcherds identity if A(z)
and B(z) are not only locally truncated but also locally commutative.

1.2.5 Representations and Modules
Recall that a representation of a commutative associative algebra C is a vector
spaceM equipped with a homomorphism ρ : C // EndM of algebras. How-
ever, since EndM is not commutative in general, let us alternatively define a
representation of C to be a vector spaceM equipped with a map

ρ : C // EndM

satisfying the following properties:
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(1) The image of ρ is a commutative associative algebra of operators onM.
(2) The map ρ gives a homomorphism of commutative associative algebras

onto the image.

Then, letting the action of C onM be given by

C ×M // M, (a, v) 7→ av = ρ(a)v,

the vector spaceM becomes a module over C.
In this section, we will follow this line to define the equivalent concepts of

representations of a vertex algebra and modules over a vertex algebra.

1.2.5.1 Representations of Vertex Algebras
Let V be a vertex algebra andM a vector space. Consider a sequence (ρn) of
countably many maps from V to EndM indexed by integers n ∈ Z,

ρn : V // EndM, n ∈ Z.

For an indeterminate z, let us write the generating series as

ρ(a, z) =
∑
n

ρn(a)z−n−1, a ∈ V,

which give rise to a map

ρ(−, z) : V // Hom(M,M[[z, z−1 ]]), a 7→ ρ(a, z).

The sequence (ρn) is said to be a representation of the vertex algebra V on the
vector spaceM if the following conditions are satisfied:

(1) The image of ρ(−, z) is a vertex algebra of series onM.
(2) The map ρ(−, z) gives a homomorphism of vertex algebras onto the image.

Note that (1) in particular says that ρ(a, z) is locally truncated for any a ∈ V.
Let V be a vertex algebra of series on a vector spaceM. Then the obvious

maps
ρn : V // EndM, A(z) 7→ An

form a representation ofV onM.

1.2.5.2 Modules over Vertex Algebras
Let ρ = (ρn) be a representation of a vertex algebra V on a vector space M.
Consider the corresponding actions of V onM given by

V ×M // M, (a, v) 7→ anv = ρn(a)(v).

Then the conditions for representations imply the following properties:
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(M0) Local truncation. For any a ∈ V and v ∈ M, there exists an N ∈ N such
that

aN+iv = 0 for all i ≥ 0.

(M1) Borcherds identity. For all a, b ∈ V, v ∈ M, and p,q,r ∈ Z:
∞∑
i=0

(
p
i

)
(a(r+i)b)p+q−iv

=

∞∑
i=0
(−1)i

(
r
i

)
ap+r−ibq+iv −

∞∑
i=0
(−1)r−i

(
r
i

)
bq+r−iap+iv.

(M2) Identity. For any v ∈ M and n ∈ Z:

1nv =

{
0 (n , −1),
v (n = −1).

A vector spaceM equipped with actions satisfying (M0)–(M2) is called amod-
ule over V or a V-module. Conversely, any module M over V gives rise to a
representation of V by letting ρn(a) = an for a ∈ V and n ∈ Z. Thus the
concepts of modules and representations are essentially the same.
The generating series ρ(a, z) for a V-moduleM are usually denoted

YM(a, z) =
∑
n

anz−n−1.

In particular, the vertex algebraV itself is thought of as a module overV, called
the adjoint module, for which YV(a, z) = Y (a, z) for all a ∈ V.

1.2.5.3 Consequences of the Axioms
In the same way as in the case of the Borcherds identity for vertex algebras,
we can derive various properties for modules. First note that (M0) means local
truncation of the generating series YM(a, z):

YM(a, z) ∈ Hom(M,M((z))).

(MC) Commutator formula. For all a, b ∈ V and m,n ∈ Z:

[am, bn ] =
∞∑
i=0

(
m
i

)
(a(i)b)m+n−i .

(MA) Associativity formula. For all a, b ∈ V, and m,n ∈ Z:

(a(m)b)nv =
∞∑
i=0
(−1)i

(
m
i

)
am−ibn+iv −

∞∑
i=0
(−1)m−i

(
m
i

)
bm+n−iaiv.
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In terms of generating series, they are written respectively as follows:

[YM(a, y),YM(b, z)] =
∞∑
i=0

YM(a(i)b, z)δ(i)(y, z),

YM(a(m)b, z) = YM(a, z) (m)YM(b, z) (m ∈ Z).

(MLC) Local commutativity. For any a, b ∈ V, there exists an N ∈ N such
that:

(y − z)NYM(a, y)YM(b, z) = (y − z)NYM(b, z)YM(a, y).

(MLA) Local associativity. For any a ∈ V and v ∈ M, there exists an L ∈ N
such that for all b ∈ V:

(x + z)LYM(YV(a, x)b, z)v = (x + z)LYM(a, x + z)
�� |x |> |z |YM(b, z)v.

Recall the translation operators:

T (k) : V // V, a 7→ T (k)a = a(−k−1)1.

The following property follows from (M1) and (M2):

(MT) Translation. For all a ∈ V, v ∈ M, n ∈ Z and k ∈ N:

(T (k)a)nv = (−1)k
(

n
k

)
an−kv.

Note 2.16. 1. The commutator formula (MC) is equivalent to the OPE

YM(a, y)YM(b, z) ' YM(b, z)YM(a, y) ∼
∞∑
i=0

YM(a(i)b, z)
(y − z)i+1 ,

while the Borcherds identity (M1) is equivalent to

YM(a, y)YM(b, z) ' YM(b, z)YM(a, y) ' YM(YV(a, y − z)b, z).

Thus the Borcherds identity (M1) is characterized by the following condition:
There exists an element w(x, y, z) ∈ M((x, y, z)) such that

YM(a, y)YM(b, z)v = w(y − z, y, z)
�� |y |> |z | ,

YM(b, z)YM(a, y)v = w(y − z, y, z)
�� |y |< |z | ,

YM(Y (a, x)b, z)v = w(x, x + z, z)
�� |x |< |y | .

The Borcherds identity (V1) for vertex algebras, which is seen to be a par-
ticular case of (M1), is also formulated in the same way. 2. In the definition
of modules, the Borcherds identity (M1) can be replaced by local associativity
(MLA) thanks to skew-symmetry (VS) for the vertex algebra (cf. [8]).
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ies is due to [4]. See [6] and [7] for formulation of operator product expansion
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The statement of Theorem 2.5 is due to [7] (cf. [11]), although the result was
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the residue products and their relation to vertex algebras are studied by Lian
and Zuckerman [77]. See Goddard [20] for the original form of the unique-
ness theorem and its applications, and Frenkel et al. [55] for the existence
theorem.

1.3 Examples of Vertex Algebras

In Section 1.3, we will describe some standard examples of vertex algebras, the
Heisenberg vertex algebra, the affine vertex algebras, and the Virasoro vertex
algebras. Yet another class of standard examples, the lattice vertex algebras,
will be described in Section 1.4.
For affine and Virasoro vertex algebras, we will first describe the universal

ones as vector spaces and characterize the vertex algebra structure on them
by conditions over a field of any characteristic not 2, and then describe some
simple quotients over the field C of complex numbers.

1.3.1 Heisenberg Vertex Algebra

Let us start by constructing the Heisenberg vertex algebra of rank one briefly
described in Subsection 1.1.4.2. Generalization to higher rank is straightfor-
ward (cf. Subsection 1.4.2.1).
Although they are particular cases of affine vertex algebras described in the

next section, the Heisenberg vertex algebras have distinguished properties and
play an important role in constructing the lattice vertex algebras in Section 1.4.
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1.3.1.1 Heisenberg Algebra
Let an with n ∈ Z and ζ be indeterminates and set

ĥ =
⊕
n∈Z
Fan ⊕ Fζ .

Then ĥ becomes a Lie algebra by the bracket

[am,an ] = mδm+n,0ζ, [ζ,an ] = 0.

It is an infinite-dimensional Heisenberg Lie algebra.
Consider the quotientU(ĥ,1) of the universal enveloping algebraU(ĥ) by the

two-sided ideal generated by ζ − 1, where the scalar multiples of the unity of
U(ĥ) are identified with the scalars:

U(ĥ,1) = U(ĥ)/(ζ − 1).

We will denote the images of the generators an by the same symbol. Then

[am,an ] = mδm+n,0 (3.1)

for m,n ∈ Z, where the bracket denotes the commutator.
The algebra U(ĥ,1) is the associative algebra generated by the symbols an,

n ∈ Z subject to (3.1) as the fundamental relations. We will call it the Heisen-
berg algebra.
Let M be a U(ĥ,1)-module, regard the element an with n ∈ Z as operators

acting on M, and consider the generating series which we will call a current
following physics terminology:

a(z) =
∑
n

anz−n−1.

As mentioned at the beginning of Section 1.2.2, we have

a(y)a(z) ' a(z)a(y) ∼ 1
(y − z)2

, (3.2)

where the numerator 1means the identity series I(z). Note in particular that the
current a(z) is locally commutative with itself.

1.3.1.2 Fock Modules
Let ĥ<0 and ĥ≥0 be the Lie subalgebras of ĥ spanned by an with n < 0 and
n ≥ 0, respectively. They are commutative, and generate subalgebras ofU(ĥ,1)
isomorphic to the symmetric algebras S(ĥ<0) and S(ĥ≥0), respectively. By PBW
for U(ĥ), as vector spaces,

U(ĥ,1) = S(ĥ<0) ⊗ S(ĥ≥0). (3.3)
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The element a0 is central and, when acting on a module, its eigenvalue is called
the charge.
Now, for each scalar λ, define a one-dimensional S(ĥ≥0)-module Fvλ by

anvλ =

{
0 (n ≥ 1),
λvλ (n = 0),

and consider the universal U(ĥ,1)-module generated by vλ given by

Fλ = U(ĥ,1) ⊗S(ĥ≥0) Fvλ

on which ĥ acts by left multiplication on U(ĥ,1). The U(ĥ,1)-module Fλ thus
obtained is called the Fock module of charge λ, also called the Fock space of
charge λ.
Let us denote the element 1 ⊗ vλ simply by vλ. By (3.3), we have

Fλ = S(ĥ<0)vλ ' S(ĥ<0).

The Fock module Fλ is characterized by the following universal property:

For any U(ĥ,1)-moduleM and w ∈ M satisfying

anw =

{
0 (n ≥ 1),
λw (n = 0),

there exists a unique homomorphism ψ : Fλ // M ofU(ĥ,1)-modules send-
ing vλ to w.

Here the condition of ψ means that the following diagram commutes:

Fvλ

��

// Fw

��
Fλ ψ

// M.

Here the upper arrow sends vλ to w and the vertical ones are inclusions.
We may further identify the Fock module with the polynomial ring via the

linear isomorphism as in Table 3 defined by

F[x1, x2, · · ·] ∼ // Fλ, p(x1, x2, · · · ) 7→ p(a−1,a−2, · · · )vλ.

Then the actions of an for n , 0 turn out to be the same as (1.5) given by
differential operators, while a0 acts as multiplication by λ.
Among the Fock modules, the module F0 of charge 0 is called the vacuum

module and the vector v0 the vacuum.
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Table 3 Fock module of charge λ

0 1 2 3 4

1 x1 x2 x3 x4
x2
1 x1x2 x1x3

x3
1 x2x2

x2
1 x2

A basis of F [x1, x2, · · ·] x4
1

vλ a−1vλ a−2vλ a−3vλ a−4vλ
a−1a−1vλ a−1a−2vλ a−1a−3vλ

a−1a−1a−1vλ a−2a−2vλ
a−1a−1a−2vλ

A basis of Fλ a−1a−1a−1a−1vλ

1.3.1.3 Vertex Algebra of Series on Fock Modules
Regard the current a(z) as a series acting on Fλ for a λ ∈ h∗. Since it is locally
truncated and locally commutative with itself, it generates a vertex algebra of
series.
Recall that it is the span of the series obtained by repeatedly applying residue

products of the current a(z), which is actually spanned by the series of the form
a(z)(n1) · · · a(z)(nk )I(z), where the residue products are taken from right to left.
Let us denote it by

F0 (λ) = Span
{

a(z)(n1) · · · a(z)(nk )I(z)
�� k ∈ N, n1, . . . ,nk ∈ Z

}
,

where λ signifies that the space consists of series acting on Fλ.
Since F0 (λ) is a vertex algebra, the commutator formula is available. To

describe it, consider the residue products of the current a(z) with itself, which
can be read off by extracting coefficients in the OPE (3.2) as

a(z)(n)a(z) =


0 (n ≥ 2),
1 (n = 1),
0 (n = 0).

Therefore, the commutator formula reads

[a(z)(m),a(z)(n) ] =
∞∑
i=0

(
m
i

)
(a(z)(i)a(z))(m+n−i) = mδm+n,0.

Remarkably, this is the same as the Heisenberg commutation relation (3.1), and
the space F0 (λ) becomes a U(ĥ,1)-module by

an : F0 (λ) // F0 (λ), X(z) 7→ a(z)(n)X(z).
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Table 4 Fock module of charge 0, abstract versus realization

0 2 3

vλ a−1vλ a−2vλ a−3vλ
a−1a−1vλ a−1a−2vλ

A basis of F0 a−1a−1a−1vλ
I(z) a(z)(−1)I(z) a(z)(−2)I(z) a(z)(−3)I(z)

a(z)(−1)a(z)(−1)I(z) a(z)(−1)a(z)(−2)I(z)
A basis of F0 (λ) a(z)(−1)a(z)(−1)a(z)(−1)I(z)

Moreover, since the identity series I(z) = 1 satisfies

a(z)(n)I(z) = 0 (n ≥ 0),

the universal property of the Fock module implies that there exists a unique
homomorphism of U(ĥ,1)-modules sending the vector v0 to the identity series
I(z) on Fλ ,

ψλ : F0 // F0 (λ), v0 7→ I(z), (3.4)

which is surjective since the U(ĥ,1)-module F0 (λ) is generated by I(z) (cf.
Table 4).

1.3.1.4 Identification of Heisenberg Vertex Algebra
For λ = 0, the current a(z) is creative with respect to v0 and the map ψ0 is
inverse to the state map, hence the state map restricted to F0 (0) is bijective:

σF0 (0) : F0 (0) ∼ // F0 .

Therefore, we may transfer the vertex algebra structure on F0 (0) to F0 via the
map σF0 (0), and general theory in Section 1.2 yields the following result, which
restates Proposition 1.11.

Proposition 3.1 The Fock module F0 of charge 0 carries a unique structure
of a vertex algebra such that

Y (a−1v0, z) = a(z)

with vacuum 1 = v0

For each λ ∈ h∗, the map (3.4) turns out to be a representation of F0 , giving
rise to a structure of a module over the Heisenberg vertex algebra F0 on the
space Fλ .
By considering the action of Heisenberg algebra, it is not difficult to show

that, over a field of characteristic zero, the modules Fλ with λ ∈ h∗ are simple,
as well as the Heisenberg vertex algebra F0 itself.
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The construction of the Virasoro vector (1.8) is restated as

ω =
1
2

a−1a−11. (3.5)

The space F0 is given a grading by

deg a−k1−1 · · · a−ki−1v0 = k1 + · · · + ki ,

which agrees with the eigenvalue for the action of L0.
Let F0,d denote the subspace of degree d. Then distribution of degrees is

encoded in the graded dimension:
∞∑
d=0

qd dimF0,d =

∞∏
k=1

1
1 − qk

=
1

ϕ(q) =
q1/24

η(τ) ,

where ϕ(q) is the Euler function and η(τ) the Dedekind eta function with q =
e2π
√
−1τ .

1.3.2 Affine Vertex Algebras
The Heisenberg Lie algebra as in the preceding section is actually a particular
example of an affine Lie algebra.
In this section, we will describe affine Lie algebras and the associated vertex

algebras.

1.3.2.1 Affine Lie Algebras
A bilinear form ( | ) on a Lie algebra g is said to be invariant (with respect to
the adjoint action of g) if, for all X,Y, Z ∈ g,

([X,Y ] |Z) = (X | [Y, Z ]).

Let F[t, t−1 ] denote the ring of Laurent polynomials in t and let K be an inde-
terminate.
For a Lie algebra g, set

ĝ = g ⊗ F[t, t−1 ] ⊕ FK .

Denote the element X ⊗ tn for X ∈ g and n ∈ Z as

Xn = X ⊗ tn.

Given a bilinear form ( | ) on g, define a bracket operation by setting

[Xm,Yn ] = [X,Y ]m+n + mδm+n,0(X |Y )K, [K,Xn ] = 0.

If the bilinear form is symmetric and invariant, then the bracket equips ĝ with
a structure of a Lie algebra. The Lie algebra ĝ thus obtained is called the affine
Lie algebra associated with g and ( | ).
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A ĝ-module on which the central element K acts by a scalar k is said to be
of level k, which is the same as a module over the quotient

U(ĝ, k) = U(ĝ)/(K − k),

where the scalar k is identified with the multiple of the unity by k.
Let M be a ĝ-module of level k, regard the elements Xn for each X ∈ g as

operators onM, and consider the generating series, again called a current:

X(z) =
∑
n

Xnz−n−1.

Then the commutation relation for [Xm,Yn ] is equivalently described by the
OPE:

X(y)Y (z) ' Y (z)X(y) ∼ [X,Y ](z)
y − z

+
k(X |Y )
(y − z)2

. (3.6)

In particular, X(z) and Y (z) are locally commutative with each other.

1.3.2.2 Generalized Verma Modules
Consider the following Lie subalgebras of the affine Lie algebra ĝ:

ĝ<0 = g ⊗ F[t−1 ]t−1, ĝ≥0 = g ⊗ F[t ].

They generate subalgebras ofU(ĝ, k) isomorphic toU(ĝ<0) andU(ĝ≥0), respect-
ively, and PBW for U(ĝ) implies

U(ĝ, k) = U(ĝ<0) ⊗ U(ĝ≥0).

Let V be a g-module and regard it as a U(ĝ≥0)-module in the following way:
for X ∈ g and v ∈ V ,

Xnv =

{
0 (n ≥ 1),
Xv (n = 0).

Define a ĝ-moduleMk(V) by

Mk(V) = U(ĝ, k) ⊗U(ĝ≥0) V ,

where the action of ĝ is by left multiplication on U(ĝ, k). This is a particular
type of what is called the generalized Verma module.
When V is the one-dimensional trivial g-module Fv0, the module Mk(Fv0)

is called the universal vacuum module, and the vector v0 the vacuum vector.
We will often identify Fv0 with F and denote the universal vacuum module by
Mk(F), which has an obvious universal property by construction.
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1.3.2.3 Affine Vertex Algebras
Let V be a g-module and consider the induced moduleMk(V). Regard the cur-
rents X(z) for X ∈ g as series acting on Mk(V), which are locally truncated.
Since they are locally commutative, they generate a vertex algebra of series:

Mk(F)V =
{

X1(z)(n1) · · · X l(z)(nl )I(z)
���� l ∈ N, X1, . . . ,X l ∈ g
n1, . . . ,nl ∈ Z

}
.

By the OPE (3.6),

X(z)(n)Y (z) =


0 (n ≥ 2),
k(X |Y ) (n = 1),
[X,Y ](z) (n = 0).

The commutator formula implies

[X(z)(m),Y (z)(n) ] = [X,Y ](z)(m+n) + k(X |Y )mδm+n,0.

The identity series satisfies

X(z)(n)I(z) = 0 (n ≥ 0).

Therefore, by the universal property ofMk(F), there exists a unique homomor-
phism of U(g, k)-modules sending the vector v0 to the identity series I(z):

ψV : Mk(F) //Mk(F)V , v0 7→ I(z),

which is surjective since the U(g, k)-moduleMk(F)V is generated by I(z).
When V is the one-dimensional trivial g-module F = Fv0, the currents are

creative with respect to v0, and the map ψ = ψF is inverse to the state map.

Proposition 3.2 The universal vacuum module Mk(F) of level k over the
affine Lie algebra ĝ carries a unique structure of a vertex algebra such that

Y (X−1v0, z) = X(z), X ∈ g,

with vacuum 1 = v0.

The vertex algebra thus obtained is called the universal affine vertex algebra
associated with g at level k. The moduleMk(V) associated with a g-module V
becomes a module over the vertex algebraMk(F).
A quotient ofMk(F) is generally called an affine vertex algebra associated

with g at level k. The structure of such a quotient, including the simple one,
heavily depends on the Lie algebra g and the level k.
Note 3.3. Consider the subspace ofMk(F) spanned by X(−1)1 withX ∈ g:

Mk(F)1 = Span
{

X(−1)1
�� X ∈ g

}
.

https://doi.org/10.1017/9781009338073.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009338073.002


60 Atsushi Matsuo

Then the 0th product equips it with a structure of a Lie algebra and the coeffi-
cient to 1 of the 1st product gives a symmetric bilinear form on it. The map

i : g // Mk(F)1, X 7→ X(−1)1

is an isomorphism of Lie algebras, which is an isometry multiplied by k.

1.3.2.4 Integrable Highest Weight Modules over ŝl2
Let us consider the case when g is the three-dimensional simple Lie algebra sl2.
We assume that the base field is C.
The Lie algebra sl2 is spanned by

E =
[
0 1
0 0

]
, H =

[
1 0
0 −1

]
, F =

[
0 0
1 0

]
with the brackets

[H,E ] = 2E, [H,F ] = −2F, [E,F ] = H.

An invariant bilinear form on sl2 is a scalar multiple of the Killing form. We
normalize it as

(H |H) = 2, (E |F) = (F |E) = 1,
(E |E) = (F |F) = (H |E) = (H |F) = 0.

Let ŝl2 denote the associated affine Lie algebra, which is (the derived algebra
of) the affine Kac–Moody algebra of type A(1)1 .
Finite-dimensional simple sl2-modules are classified by their dimensions.

We will denote the (2 j + 1)-dimensional simple module by Vj , where j is a
nonnegative half integer. The representation Vj is said to be of spin j.

1. The module V0 corresponds to the one-dimensional trivial representation.
2. The module V1/2 corresponds to the two-dimensional vector representation,

the representation defining sl2 by 2 × 2 matrices.
3. The moduleV1 corresponds to the three-dimensional adjoint representation,

the representation by the adjoint action of sl2 on itself.

LetM(k, j) denote the moduleMk(Vj) and L(k, j) its simple quotient. The im-
age of an element ofM(k, j) in the quotient L(k, j)will be denoted by the same
symbol by abuse of notation.
For a positive integer k, consider the k + 1 simple quotients

L(k,0),L(k,1/2), . . . ,L(k, k/2).
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Table 5 Universal and simple ŝl2-modules

0 1 2 0 1 2

E−1E−1v0
E−2v0 E−2v0

E−1v0 H−1E−1v0 E−1v0
F−1E−1v0

v0 H−1v0 H−2v0 v0 H−1v0 H−2v0
H−1H−1v0 H−1H−1v0

F−1v0 F−1H−1v0 F−1v0
F−2v0 F−2v0

A basis ofM(k , 0) F−1F−1v0 A basis of L(1, 0)

1 3 1 ⊕ 3 ⊕ 5 1 3 1 ⊕ 3

Then they form an important class of representations of the affine Kac–Moody
Lie algebra ŝl2, called the integrable highest weight representations of level k.
Among them, L(k,0) is a simple vertex algebra, and the rest as well as itself
are simple modules over it.
For example, when k = 1, the vector E−1E−1v0 generates a maximal proper

submodule ofM(1,0) and the quotient L(1,0) is a simple vertex algebra (Table
5). The last rows exhibit the decomposition of each subspace under the action
of sl2 given by E0,H0,F0, where 1 = V0, 3 = V1, and 5 = V2.
For k , −2, we may consider the Sugawara vector defined by

ωk =
1

2(k + 2)
(1
2

H−1H−1 + E−1F−1 + F−1E−1

)
v0. (3.7)

Then it becomes a Virasoro vector of central charge ck = 3k/(k + 2). That is,
the operators Ln = ω(n+1) with n ∈ Z satisfy the commutation relation:

[Lm, Ln ] = (m − n)Lm+n +
m3 − m

12
ckδm+n,0, ck =

3k
k + 2

.

We take the Virasoro vector ωk defined by (3.7) as the standard choice for the
affine vertex algebra associated with sl2.
Note 3.4. 1. In this construction, the Lie algebra sl2 can be replaced by any
finite-dimensional simple Lie algebra g. Among the integrable highest weight
modules over the affine Kac–Moody algebra ĝ of level k, for which k is a
positive integer, the vacuum module L(k,0) becomes a vertex algebra and the
simple modules are classified as L(k, λ) where λ runs over the dominant inte-
gral weights of level k. For details, see [17]. 2. The construction (3.7) is called
the Sugawara construction, which works for any finite-dimensional simple Lie
algebra g by means of the Casimir element of g as long as k + h∨ , 0, where
h∨ the dual Coxeter number, that is, half the value of the Casimir action on the

https://doi.org/10.1017/9781009338073.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009338073.002


62 Atsushi Matsuo

adjoint module, and the central charge of the resulting Virasoro action is given
by ck = k dim g/(k + h∨). For example, if g = sl2, then h∨ = 2, so c1 = 1,
c2 = 3/2, c3 = 9/5, etc.

1.3.3 Virasoro Vertex Algebras
In this section, we will describe the universal Virasoro vertex algebras and their
simple quotients. There is a particularly nice family of such quotients, called
the Virasoro minimal models.

1.3.3.1 Virasoro Algebras
Let Ln, n ∈ Z and C be indeterminates and set

Vir =
⊕
n∈Z
FLn ⊕ FC.

Then Vir becomes a Lie algebra, called the Virasoro algebra, by the bracket

[Lm, Ln ] = (m − n)Lm+n +
m3 − m

12
δm+n,0C, [C, Ln ] = 0.

A Vir-module on which the central element C acts by a scalar c is said to be of
central charge c. It is equivalently described as a module over the quotient

U(Vir, c) = U(Vir)/(C − c),

where the scalar c is identified with the multiple of the unity by c.
LetM be a Vir-module of central charge c, regard the element Ln for n ∈ Z

as operators acting onM, and consider the generating series which we denote,
following physics, as follows:

T(z) =
∑
n

Lnz−n−2.

Then the Virasoro commutation relation is equivalently described by the OPE:

T(y)T(z) ' T(z)T(y) ∼ ∂T(z)
y − z

+
2T(z)
(y − z)2

+
c/2
(y − z)4

.

In particular, T(z) is locally commutative with itself.

1.3.3.2 Verma Modules
Let Vir<0 and Vir≥0 be the subspaces of Vir spanned by Ln with n < 0 and n ≥
0, respectively, which form Lie subalgebras of Vir. They generate subalgebras
of U(Vir, c) isomorphic to U(Vir<0) and U(Vir≥0), respectively, and

U(Vir, c) = U(Vir<0) ⊗ U(Vir≥0).
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Table 6 Virasoro Verma module

0 1 2 3 4

vh L−1vh L−2vh L−3vh L−4vh
L−1L−1vh L−2L−1vh L−2L−2vh

L−1L−1L−1L−1vh L−3L−1vh
L−2L−1L−1vh

A basis ofM(c, h) L−1L−1L−1L−1vh

For each scalar h, define a one-dimensional U(Vir≥0)-module Fvh by

Lnvh =

{
0 (n ≥ 1),
hvh (n = 0),

and a Vir-moduleM(c, h) by

M(c, h) = U(Vir, c) ⊗U(Vir≥0) Fvh ,

where the action of Vir is by left multiplication on U(Vir, c) (cf. Table 6). The
resulting Vir-module is a highest weight module, called the Verma module of
highest (conformal) weight h (although the value of the weight h is actually the
lowest).
An element v of a Vir-module M is said to be a singular vector (for the

Virasoro action) or a primary vector of M if the following condition holds:

Lnv = 0 (n ≥ 1).

One often assumes that v is an eigenvector with respect to the action of L0.

1.3.3.3 Virasoro Vertex Algebras
The moduleM(c,0) actually does not carry a natural structure of a vertex alge-
bra. Indeed, if so with 1 = v0, then, by the creation property, we must have

L−11 = ω(0)1 = 0.

We are thus led to consider a Virasoro module generated by a highest weight
vector that is annihilated not only by Ln for n ≥ 0 but also by L−1.
To construct a universal one among such, let Vir≥−1 be the subspace of Vir

spanned by Ln with n ≥ −1, which becomes a Lie subalgebra of Vir and gen-
erates a subalgebra of U(Vir, c) isomorphic to U(Vir≥−1).
Consider the one-dimensional trivial U(Vir≥−1)-module with v0 a basis and

define a Vir-module by

V(c) = U(Vir, c) ⊗U(Vir≥−1) Fv0.
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Table 7 Universal vacuum module

0 1 2 3 4 5 6

v0 L−2v0 L−3v0 L−4v0 L−5v0 L−6v0
L−2L−2v0 L−2L−3v0 L−2L−4v0

L−3L−3v0
A basis of V(c) L−2L−2L−2v0

Then V(c) is a highest weight Vir-module, which we will call the universal
vacuum module. (See Table 7.)
The module V(c) is also described as a quotient ofM(c,0) as

V(c) =M(c,0)/U(Vir, c)L−1v0,

whereU(Vir, c)L−1v0 is the submodule generated by L−1v0. Note that the vector
L−1v0 is a singular vector of weight 1 inM(c,0).

Proposition 3.5 The universal vacuum module V(c) of central charge c over
the Virasoro algebra carries a unique structure of a vertex algebra such that

Y (L−2v0, z) = T(z)

with vacuum 1 = v0.

The vertex algebraV(c) thus obtained is called the universal Virasoro vertex
algebra of central charge c. It is generated by the Virasoro vector ω = L−21.
The quotients ofM(c, h) are modules over V(c) for any h ∈ F.
The simple quotient of V(c) is called the simple Virasoro vertex algebra

and denoted L(c,0). For example, the Virasoro vector (3.5) generates a vertex
subalgebra in the Heisenberg vertex algebra of rank one, which is isomorphic
to L(1,0) over C.
Theory of simple Virasoro vertex algebras L(c,0) heavily relies on represen-

tation theory of the Virasoro algebra, for its structure and properties seriously
change by presence of singular vectors in V(c) for special values of c.

1.3.3.4 Virasoro Minimal Models
In this subsection, we will work over the field C of complex numbers.
Let p,q be a pair of coprime positive integers and consider the rational num-

ber cp,q defined by

cp,q = 1 − 6(p − q)2
pq

.
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For positive integers r, s, consider the following numbers:

hr ,s =
(pr − qs)2 − (p − q)2

4pq
.

We have the following list of simple Virasoro modules of central charge
cp,q:

L(cp,q, hr ,s) (1 ≤ r ≤ q − 1, 1 ≤ s ≤ p − 1), (3.8)

which constitute Virasoro minimal models in physics. Among them, L(cp,q,0)
is a simple vertex algebra and the rest as well as itself are the simple modules
over it. By hr ,s = hq−r ,p−s , we have (p − 1)(q − 1)/2 simple modules.
When (p,q) = (m + 3,m + 2) for some m = 1,2, · · · , set

cm = cm+3,m+2 = 1 − 6
(m + 2)(m + 3) .

The corresponding Virasoromodules in (3.8) are precisely the unitarizable ones
among the modules in the minimal models.
Here are some examples.

1. For m = 1, we have (p,q) = (4,3) and c = 1/2. The simple vertex algebra
L(1/2,0) is related to the Ising model in physics. The list of simple modules
is as follows:

L(1/2,0), L(1/2,1/2), L(1/2,1/16).

2. For m = 2, we have (p,q) = (5,4) and cp,q = 7/10. The simple vertex
algebra L(7/10,0) is related to the tricritical Ising model in physics. There
are six simple modules.

3. Form = 3, we have (p,q) = (6,5) and cp,q = 4/5. The simple vertex algebra
L(4/5,0) is related to the three-state Potts model in physics. There are ten
simple modules.

The corresponding lists of highest weights hr ,s are given in Table 8, respect-
ively. Such a table is called the Kac table or the conformal grid.
Here is an example of a nonunitary minimal model.

For (p,q) = (5,2), the simple vertex algebra L(−22/5,0) is related to the Lee–
Yang model in physics. The list of simple modules is as follows:

L(−22/5,0), L(−22/5,−1/5).

The last model is interesting in its relation to the Rogers–Ramanujan identities.
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Table 8 Virasoro minimal models
3 1

2 0
2 1

16
1
16

1 0 1
2

s/r 1 2
c = 1/2

4 3
2

7
16 0

3 3
5

3
80

1
10

2 1
10

3
80

3
5

1 0 7
16

3
2

s/r 1 2 3
c = 7/10

5 3 7
5

2
5 0

4 13
8

21
40

1
40

1
8

3 2
3

1
15

1
15

2
3

2 1
8

1
40

21
40

13
8

1 0 2
5

7
5 3

s/r 1 2 3 4
c = 4/5

1.3.3.5 Ising Model and Majorana Fermions
Let us briefly describe an alternative construction of the simple Virasoro vertex
algebra L(1/2,0) related to the Ising model over C.
Recall that the simple Virasoro vertex algebra L(1,0) of central charge 1

is realized by the standard Virasoro vector in the Heisenberg vertex algebra
F0 = C[x1, x2, · · ·], which is a mathematical formulation of free boson theory
in physics.
In contrast, the simple Virasoro vertex algebra L(1/2,0) of central charge

1/2, is realized by replacing the polynomial ring C[x1, x2, · · ·] by the exterior
algebra Λ(x1, x2, · · · ), resulting in the theory of free Majorana fermions, where
the structure is described not by a vertex algebra but a vertex superalgebra,
which is, roughly speaking, obtained by replacing the commutator by the anti-
commutator when the operators are both from the odd subspace.
Let us consider the associative algebra generated by

· · · ,ψ−3/2,ψ−1/2,ψ1/2, · · ·

subject to the fundamental relations

ψm+1/2ψn+1/2 + ψn+1/2ψm+1/2 = δm+n+1,0.

Let us denote it by Aψ , which is the counterpart of U(ĥ,1), and consider the
generating series

ψ(z) =
∑
n

ψn+1/2z−n−1.

Then, we have ψ(y)ψ(z) + ψ(z)ψ(y) = δ(y, z) and, by considering local anti-
commutativity instead of local commutativity, we have
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ψ(y)ψ(z) ' −ψ(z)ψ(y) ∼ 1
y − z

.

In particular, ψ(z) is locally anticommutative with itself.
Let Aψ

>0 be the subalgebra generated by ψn+1/2 with n ≥ 0 and consider the
one-dimensional Aψ

>0-module Cv0 characterized by

ψn+1/2v0 = 0, n ≥ 0.

Define the fermionic Fock space Fψ by setting

Fψ = Aψ ⊗Aψ
>0
Cv0 ' Λ(x1, x2, · · · ).

The space Fψ carries a unique structure of a vertex superalgebra such that
Y (ψ−1/2v0, z) = ψ(z) with vacuum 1 = v0.
By analogy with the construction of the standard Virasoro vector (3.5) for

the Heisenberg vertex algebra, consider the vector

ω =
1
2
ψ−3/2ψ−1/2v0.

Then it generates a vertex subalgebra isomorphic to L(1/2,0), and

Fψ ' L(1/2,0)
F+ψ

⊕L(1/2,1/2)
F−ψ

,

where F±ψ are the eigenspaces of the involution θ induced by the action
ψ 7→ −ψ on the generator ψ = ψ−1/2v0. We can then readily read off their
graded dimensions as

∞∑
d=0

qd dimF±ψ,d =
1
2

( ∞∏
k=0
(1 + qk+1/2) ±

∞∏
k=0
(1 − qk+1/2)

)
,

where the degree is given by setting degψ−n−1/2 = n + 1/2.
Note 3.6. 1. The fermionic construction as described is useful in construct-
ing VOAs associated with binary even codes introduced by Miyamoto [84]
(cf. [81]) and consequently in studying framed VOAs including the moonshine
module (cf. [43]). See Subsection 1.4.4.3 for a related construction. 2. Themod-
uleL(1/2,1/16) can be constructed by considering the twistedmodule over ver-
tex superalgebra Fψ . See Section 1.5 for the concept and examples of twisted
modules over vertex algebras.

Bibliographic Notes
General references are Kac [6], Frenkel and Ben-Zvi [8], and Lepowsky and Li
[10], for Section 1.3. For descriptions of algebras appearing in various models
in physics, consult Di Francesco et al. [13] (cf. Ginsparg [19]).
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Construction of affine and Virasoro vertex algebras are due to Frenkel and
Zhu [60]. Our exposition follows Li [70]. See also Primc [88] for a related
work.
See Kac [17] and Lepowsky and Li [10] (cf. Tsuchiya, Ueno, and Yamada

[97]) for generalities on affine Kac–Moody algebras, and Kac, Raina, and
Rozhkovskaya [18] and Iohara and Koga [15] for the Virasoro algebra.
For the construction of the Ising model L(1/2,0) by Majorana fermions, see

[54], [13], and [18].

1.4 Lattice Vertex Algebras

From here on, we will work over the field C of complex numbers, although
most of the results hold over a field of characteristic zero.
Recall that a (nondegenerate integral) lattice is a free Z-module L of finite

rank equipped with a nondegenerate symmetric bilinear form valued in Z:

( | ) : L × L // Z.

Theory of lattices is important in many areas of mathematics.
For a lattice L, consider the Heisenberg Lie algebra ĥ; that is, the affine Lie

algebra associated with the commutative Lie algebra h = L ⊗Z C and the bilin-
ear form extending that of the lattice, and the direct sum of the Fock modules
of charge belonging to the lattice:

VL =
⊕
λ∈L

Fλ .

Then the vertex algebra structure on the Heisenberg vertex algebra F0 can be
extended to VL by using the vertex operators in a natural but subtle way.
In Section 1.4, we will describe properties of vertex operators and the way

how to construct a vertex algebra structure on VL .
Note that the Fock modules are written as Fλ = S(ĥ<0)vλ, where S(ĥ<0)

denotes the symmetric algebra over ĥ<0. Thus the lattice vertex algebra is also
written as

VL = S(ĥ<0) ⊗ C[L ]

by identifying the vector vλ with the basis vector eλ of the group algebra.

1.4.1 Series with Homomorphism Coefficients
In the previous sections, we have considered series with operator coefficients,
where the operators are endomorphisms of a vector space. In this section,
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we will consider slightly more general types of series, whose coefficients are
homomorphisms (linear maps) between vector spaces.

1.4.1.1 Local Truncation and Residue Products
Let M and N be vector spaces and let Φ(z) be a series with coefficients in
Hom(M,N):

Φ(z) =
∑
n

Φnz−n−1, Φn : M // N.

Let A(z) be a series onM and N, that is, a series with coefficients in the set

Hom((M,N), (M,N)) = Hom(M,M) ⊕ Hom(N,N).

Denote the actions of the coefficients onM and N by the same symbol:

A(z) =
∑
n

Anz−n−1, An : M // M, N // N.

We may then consider the compositions of the coefficients as in the diagram:

M
Am

��

Φn // N
Am
��

M
Φn

// N.

We say that Φ(z) is locally truncated if it belongs to Hom(M,N((z))). The
concept of local truncation for A(z) is defined in an obvious way, and denote
the set of such series as

Hom (((M,N), ((M,N)((z))) = Hom(M,M((z))) ⊕ Hom(N,N((z))).

If A(z) and Φ(z) are locally truncated, then the residue products make sense
for all m ∈ Z:

A(z)(m)Φ(z) = Resy(y − z)m
�� |y |> |z |A(y)Φ(z)

− Resy(y − z)m
�� |y |> |z |Φ(z)A(y).

Explicitly, the coefficients of A(z)(m)Φ(z) =
∑

n(A(m)Φ)nz−n−1 are given by

(A(m)Φ)n =
∞∑
i=0
(−1)m

(
m
i

)
Am−iΦn+i −

∞∑
i=0
(−1)m−i

(
m
i

)
Φm+n−i Ai,

as in the case of series acting on a vector space.
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1.4.1.2 Local Commutativity and Borcherds Identity for Series
The series A(z) and Φ(z) are locally commutative if the following holds for
some N ∈ N:

(y − z)N A(y)Φ(z) = (y − z)NΦ(z)A(y).

For such series, we have the OPE

A(y)Φ(z) ' Φ(z)A(y) ∼
N−1∑
k=0

Ψk(z)
(y − z)k+1 ,

by which the residue products are found as

A(z)(m)Φ(z) =
{

0 (N ≤ m),
Ψm(z) (0 ≤ m < N).

Let A(z),B(z) be locally truncated series acting onM and N and Φ(z) a lo-
cally truncated series with coefficients in Hom(M,N):

A(z),B(z) ∈ Hom((M,N), (M,N)((z))), Φ(z) ∈ Hom(M,N((z))).

If they are locally commutative with each other, then the Borcherds identity
∞∑
i=0

(
p
i

)
(A(z)(r+i)B(z))(p+q−i)Φ(z)

=

∞∑
i=0
(−1)i

(
r
i

)
A(z)(p+r−i)(B(z)(q+i)Φ(z))

−
∞∑
i=0
(−1)r−i

(
r
i

)
B(z)(q+r−i)(A(z)(p+i)Φ(z))

holds for all p,q,r ∈ Z with respect to the residue products.

1.4.1.3 OPEs in General Settings
Let L,M1,M2,N be vector spaces and consider locally truncated series

Ψ(z) ∈ Hom((L,M1), (M2,N)((z))), Φ(z) ∈ Hom((L,M2), (M1,N)((z)))

and their compositions

Φ(y)Ψ(z) ∈ Hom(L,N((y))((z))), Ψ(z)Φ(y) ∈ Hom(L,N((z))((y))),

where
M1 Ψm

**UUU
UUUU

UU

L
Φn

44iiiiiiiii

Ψm **UUU
UUUU

UU N.

M2
Φn

44iiiiiiiii
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Consider the residue products

Φ(z)(m)Ψ(z) =Resy(y − z)m
�� |y |> |z |Φ(y)Ψ(z)

− Resy(y − z)m
�� |y |> |z |Ψ(z)Φ(y).

We will say that Φ(z) and Ψ(z) are locally commutative if, for some N ∈ N,

(y − z)NΦ(y)Ψ(z) = (y − z)NΨ(z)Φ(y).

Then, for some series Γ0(z), . . . ,ΓN−1(z) ∈ Hom(L,N)((z)), the OPE

Φ(y)Ψ(z) ' Ψ(z)Φ(y) ∼
N−1∑
k=0

Γk(z)
(y − z)k+1

holds in the obvious sense, and the residue products are given by

Φ(z)(m)Ψ(z) =
{

0 (m ≥ N),
Γm(z) (0 ≤ m < N)

for m ∈ N.
1.4.1.4 Formal Taylor Expansion

For series Φ(z) and Ψ(z) as in Subsection 1.4.1.3, assume that the composite
Φ(y)
Ψ(z) is written in the following form with some m0 ∈ Z:

Φ(y)Ψ(z) = (y − z)−m0−1�� |y |> |z |Γ(y, z), Γ(y, z) ∈ Hom(L,N((y, z))).
Then Taylor expansion of Γ(y, z) yields

Γ(x + z, z)
�� |x |< |z | = ∞∑

i=0
xi∂(i)y Γ(y, z)

��
y=z

.

Therefore, by substitution x = y − z,

Φ(y)Ψ(z) = x−m0−1�� |y |> |z |Γ(y, z)
=

∞∑
i=0

x−m0+i−1�� |y |> |z |∂(i)y Γ(y, z)��y=z .
Hence the residue products are determined as

Φ(z)(m)Ψ(z) =
{

0 (m > m0),
∂
(i)
y Γ(y, z)

��
y=z

(m = m0 − i ≤ m0).
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1.4.2 Vertex Operators
Let us now describe vertex operators, which are the main ingredients in con-
structing lattice vertex algebras.
A vertex operator is a series of the form

Vλ (z) = exp
(
−

∑
n<0

λn
z−n

n

)
exp

(
−

∑
n>0

λn
z−n

n

)
eλzλ0 ,

where λn with n ∈ Z are actions of the Heisenberg algebra (of higher rank in
general). Thus, contrary to its name, a vertex operator is not a single operator,
but a series with operator coefficients.

1.4.2.1 Heisenberg Vertex Algebras of Higher Rank
Let h be a finite-dimensional vector space, and let ( | ) be a symmetric bilinear
form on h, which we assume to be nondegenerate.
Regard h as a commutative Lie algebra and consider the affine Lie algebra

associated with h and ( | ):

ĥ = h ⊗ C[t, t−1 ] ⊕ CK .

Define the Heisenberg algebra associated with h and ( | ) by

U(ĥ,1) = U(ĥ)/(K − 1).

We will sometimes call a U(ĥ,1)-module a Heisenberg module.
Let ĥ<0 and ĥ≥0 be the commutative Lie subalgebra of ĥ spanned by h ⊗ tn

with n < 0 and n ≥ 0, respectively, for which

U(ĥ,1) = S(ĥ<0) ⊗ S(ĥ≥0)

as a vector space.
Let λ ∈ h∗ be a linear form on h, where h∗ = HomC(h,C). Consider the

one-dimensional S(ĥ≥0)-module Cvλ given as follows for all h ∈ h and n ≥ 0:

hnvλ =

{
0 (n ≥ 1),

λ(h)vλ (n = 0).

The Fock module of charge λ is the U(ĥ,1)-module:

Fλ = U(ĥ,1) ⊗S(ĥ≥0) Cvλ.

It is isomorphic to S(ĥ<0) ⊗C Cvλ as a vector space by PBW. Having this in
mind, we often write

Fλ = S(ĥ<0)vλ.
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The Fock module F0 carries a natural structure of a vertex algebra, and Fλ are
simple modules over the vertex algebra F0 for all λ ∈ h∗.
The construction of the standard Virasoro vector (3.5) generalizes to higher

rank cases by

ω =
1
2

d∑
i=1

ai−1ai,−1v0,

where (a1, . . . ,ad) and (a1, . . . ,ad
) are dual bases of h with respect to the non-

degenerate bilinear form (−|−).

1.4.2.2 The Operators eλ and zλ0

From here on, we identify the vector space h with its dual h∗ = HomC(h,C) by
the symmetric bilinear form ( | ), which we have assumed to be nondegenerate,
so that λ(h) = (λ |h) for λ, h ∈ h.
For λ ∈ h, there exists a unique homomorphism of S(ĥ<0)-modules sending

vµ to vλ+µ, which we denote by

eλ : Fµ // Fλ+µ, vµ 7→ vλ+µ.

Next, for λ, µ ∈ h satisfying (λ |µ) ∈ Z, define

zλ0 : Fµ // Fµ z(λ |µ), v 7→ zλ0v = z(λ |µ)v.

Then, for λ, h ∈ h and n ∈ Z,

[hn, eλ ] = (λ |h)δn,0eλ, [hn, zλ0 ] = 0.

The operators zλ0 and eµ do not commute, but satisfy

zλ0 eµ = z(λ |µ)eµzλ0 (4.1)

for λ, µ ∈ h.

1.4.2.3 Vertex Operators
For λ ∈ h, consider the following expression:

Vλ (z) = exp
(∑
n<0

λn
z−n

−n

)
exp

(∑
n>0

λn
z−n

−n

)
eλzλ0 ,

where the sums are over negative and positive integers, respectively, and the
exponential of a series is defined as

exp x(z) =
∞∑
k=0

x(z)k
k!

.
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To see the meaning and well-definedness ofVλ (z), note the following structure:

exp
(∑
n<0

λn
z−n

−n

)
positive powers
coefficients in ĥ<0

exp
(∑
n>0

λn
z−n

−n

)
negative powers
coefficients in ĥ>0

eλ

shifting
charge

zλ0

shifting
exponent

.

Let µ ∈ h satisfy (λ |µ) ∈ Z. Then, for any element P ∈ S(ĥ<0),

zλ0 Pvµ = Pvµz(λ |µ), eλzλ0 Pvµ = Pvλ+µz(λ |µ).

Since if n1 + · · · + nk is sufficiently large, then λn1 · · · λnk Pvλ+µ = 0, we have

exp
(∑
n>0

λn
z−n

−n

)
negative powers
coefficients in ĥ>0

Pvλ+µz(λ |µ) ∈ Fλ+µ[z−1 ]z(λ |µ),

thus

exp
(∑
n<0

λn
z−n

−n

)
nonnegative powers

exp
(∑
n>0

λn
z−n

−n

)
Pvλ+µz(λ |µ)

finitely many terms with
negative powers

∈ Fλ+µ((z))z(λ |µ).

Therefore, for µ ∈ h∗ with (λ |µ) ∈ Z, the expressionVλ (z) gives rise to a locally
truncated series with coefficients being maps from Fµ to Fλ+µ :

(λ |µ) ∈ Z =⇒ Vλ (z) ∈ Hom(Fµ,Fλ+µ((z))).

The series Vλ (z) thus constructed is called the vertex operator.
Note 4.1. 1. Following the physics literatures, formally write

ϕλ(z) = ϕλ(z)<0 + ϕλ(z)>0 + λ0 log z + λ,

where

ϕλ(z)<0 =
∑
n<0

λn
z−n

−n
, ϕλ(z)>0 =

∑
n>0

λn
z−n

−n
.

Then we have ∂ϕλ(z) = λ(z) so that the expression ϕλ(z) is thought of as the
“indefinite integral” of the series λ(z). 2. The vertex operator Vλ (z) as defined
here is thought of as a regularization of the divergent expression eϕλ(z) by “nor-
mal ordering” and often denoted as

··eϕλ(z) ·· = exp
(
ϕλ(z)<0

)
exp

(
ϕλ(z)>0

)
eλzλ0 .
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1.4.2.4 Commutation with Currents
Let X,Y be operators or series on a vector space such that expY =

∑∞
k=0

Y k/k! makes sense in an appropriate way. Then

[X,Y ] commutes with Y =⇒ [X,expY ] = [X,Y ] expY ,

where the bracket refers to the commutator.
By using this, we have

[h(y),Vλ (z)] = λ(h)Vλ (z)δ(y, z).

In particular, the current h(z) and the vertex operator Vλ (z) are locally commu-
tative and their OPE is given by

h(y)Vλ (z) ' Vλ (z)h(y) ∼
λ(h)
y − z

Vλ (z).

We thus have

h(z)(n)Vλ (z) =
{

0 (n ≥ 1),
λ(h)Vλ (z) (n = 0).

For each λ ∈ h∗, repeatedly apply the residue products by the currents to the
vertex operator Vλ (z), and let Fλ denote the span of such series:

Fλ = Span
{

h1(z)(n1) · · · hk(z)(nk )Vλ (z)
���� k ∈ N, h1, . . . , hk ∈ h

n1, . . . ,nk ∈ Z

}
. (4.2)

Then it becomes an F0-module by the residue products. By the OPE, it is iso-
morphic to the Fock module Fλ of charge λ as a Heisenberg module.

1.4.3 Residue Products of Vertex Operators
Assume that λ, µ, ν ∈ L satisfy (λ |µ), (µ |ν), (λ |ν) ∈ Z and consider the vertex
operators

Vλ (z) ∈ Hom((Fν,Fµ+ν ), (Fλ+ν,Fλ+µ+ν )((z))),
Vµ (z) ∈ Hom((Fν,Fλ+ν ), (Fµ+ν,Fλ+µ+ν )((z))).

Their coefficients fit in

Fµ+ν Vλ,m

**VVVV
VVVVV

Fν

Vµ,n 44jjjjjjjjj

Vλ,m **UUU
UUUU

UU Fλ+µ+ν

Fλ+ν . Vµ,n

33hhhhhhhhh

We are interested in commutation of Vλ (y) and Vµ (z) for λ, µ ∈ L.
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1.4.3.1 Commutation of Vertex Operators
Let X,Y be operators or series on a vector space such that exp X , expY , and
exp [X,Y ] make sense in an appropriate way. Then

[X,Y ] commutes with X and Y =⇒ exp X expY = exp [X,Y ] expY exp X .

Apply this to the following partial product of Vλ (z)Vµ (y):

exp
(∑
n<0

λn
y−n

−n

)
exp

(∑
n>0

λn
y−n

−n

X

)
exp

(∑
n<0

µn
z−n

−n

Y

)
exp

(∑
n>0

µn
z−n

−n

)
.

Then, since[∑
n>0

λn
y−n

−n

X

,
∑
n<0

µn
z−n

−n

Y

]
=

∑
m>0

∑
n<0
[λm, µn ]

y−mz−n

mn

= (λ |µ)
∑
m>0

y−mzm

−m
= (λ |µ) log

(
1 − z

y

)
,

we have
expX

exp
(∑
n>0

λn
y−n

−n

) expY

exp
(∑
n<0

µn
z−n

−n

)
=

(
1 − z

y

) (λ |µ)
exp [X ,Y ]

���
|y |> |z |

exp
(∑
n<0

µn
z−n

−n

)
expY

exp
(∑
n>0

λn
y−n

−n

)
.

expX

On the other hand, by (4.1),

eλ yλ0 eµ zµ0 = y(λ |µ)eλ eµyλ0 zµ0 = y(λ |µ)eλ+µyλ0 zµ0 .

Combining them together, we arrive at

Vλ (y)Vµ (z) = (y − z)(λ |µ)
��
|y |> |z |Vλ,µ (y, z),

Vµ (z)Vλ (y) = (z − y)(µ |λ)
��
|y |< |z |Vλ,µ (y, z),

(4.3)

where

Vλ,µ (y, z) = exp
(∑
n<0

λny
−n + µnz−n

−n

)
exp

(∑
n>0

λny
−n + µnz−n

−n

)
eλ+µyλ0 zµ0 .

Therefore, if (λ |µ), (µ |ν), (λ |ν) ∈ Z, then we have the following equalities as
series with coefficients in Hom(Fν,Fλ+µ+ν ).
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1. If (λ |µ) ≥ 0, then

Vλ (y)Vµ (z) = (−1)(λ |µ)Vµ (z)Vλ (y).

2. If (λ |µ) < 0, then, for N = −(λ |µ) ≥ 0,

(y − z)NVλ (y)Vµ (z) = (−1)(λ |µ)(y − z)NVµ (z)Vλ (y).

In particular, if (λ |µ) ∈ 2Z, then Vλ (z) and Vµ (z) are locally commutative.

1.4.3.2 OPE of Vertex Operators
Consider the case with (λ |µ) ∈ Z. Then, by the last result, we have

Vλ (y)Vµ (z) = (y − z)(λ |µ)
��
|y |> |z |Vλ,µ (y, z).

Applying Taylor expansion to Vλ,µ (y, z) in the first equality of (4.3), we have

Vλ,µ (x + z, z) = eλ
∞∑
i=0

xi∂(i)y

(
exp

(∑
n<0

λny
−n

−n

)
Vµ (z)

exp
(∑
n>0

λny
−n

−n

)
yλ0

)����
y=z

.

The result can be written in a compact form as

Vλ,µ (x + z, z)
��
|x |< |z | = exp

( ∞∑
k=0

xk+1

k + 1
λ(z)(−k−1)

)
Vλ+µ (z).

When (λ |µ) ∈ 2Z, the residue products make sense and read

Vλ (z)(n)Vµ (z) =



0 (n ≥ −(λ |µ)),
Vλ+µ (z) (n = −(λ |µ) − 1),
◦
◦λ(z)Vλ+µ (z) ◦◦ (n = −(λ |µ) − 2),

· · · · · · · · · .

In particular, Vλ (z)(n)Vµ (z) belongs to Fλ+µ for all n ∈ Z.

1.4.4 Lattice Vertex Algebras for Rank One Even Lattices
Let L be an even lattice and set h = L ⊗Z C. Consider the direct sum of vector
spaces given by

VL =
⊕
λ∈L

Fλ ,

where Fλ = S(ĥ<0)vλ is the Fock module of charge λ.
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If L is an even lattice of rank one, then the bilinear form takes values in 2Z.
In such a case, the vertex operators Vλ (z) with λ ∈ L are locally commutative,
and general theory in Section 1.2 is available.
In this section, we will describe the vertex algebra structure on VL .

1.4.4.1 Lattice Vertex Algebras of Rank One
Let L be an even lattice of rank one. Recall the currents h(z) with h ∈ h and
the vertex operators Vλ (z) with λ ∈ L, and regard them as series acting on VL .
Since L is a lattice, the series Vλ (z) has integral exponents by zλ0vµ = z(λ |µ)vµ
for λ, µ ∈ L. Thus:

h(z),Vλ (z) ∈ Hom(VL ,VL ((z))).

As we have already seen, the currents and the vertex operators are locally trun-
cated and locally commutative with themselves.
Consider the vertex algebra of series generated by the currents and vertex

operators:

VL = 〈h(z),Vλ (z) |h ∈ h, λ ∈ L〉RP.

Since the vertex operators, as well as the currents, are creative with respect to
the vacuum vector v0, the state map σ restricts to a map

σVL
: VL

// VL .

The OPEs of vertex operators show

VL =
⊕
λ∈L
Fλ ,

where Fλ is defined by (4.2) with the operators replaced by those acting onVL ,
which is isomorphic to the Fock module Fλ via the state map σVL

. Therefore,
we have the following result.

Proposition 4.2 Let L be an even lattice of rank one. Then the vector space
VL carries a unique structure of a vertex algebra with vacuum 1 = v0 such
that

Y (h−1v0, z) = h(z) and Y (vλ, z) = Vλ (z)

for all h ∈ h and λ ∈ L.

The vertex algebra VL thus obtained is called the lattice vertex algebra as-
sociated with L. It is not so difficult to show that it is a simple vertex algebra.
Consider the group algebra C[L ] of the lattice L spanned by eλ, λ ∈ L. We

often identify the vector vλ with 1 ⊗ eλ or eλ as in the following diagram:
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VL =
⊕

λ∈L Fλ = S(ĥ<0) ⊗ C[L ] C[L ]oo

vλ oo // 1 ⊗ eλ eλ.//oo

Then the operator eλ described in Subsection 1.4.2.2 is regarded as the multi-
plication by eλ in C[L ] and the conditions in Proposition 4.2 become

Y (h−1 ⊗ e0, z) = h(z) and Y (1 ⊗ eλ, z) = Vλ (z),

where e0 is the unity of C[L ].
The space VL is given a grading by

deg h−i1 · · · h−ik vλ = i1 + · · · + ik +
(λ |λ)

2
,

which agrees with the eigenvalue for the action of L0 with respect to the Vira-
soro vector ω of the Heisenberg vertex subalgebra F0 .
If L is positive-definite, then the degree takes values in nonnegative integers

and the subspace of degree 0 is spanned by v0, and the graded dimension is
given by

∞∑
d=0

qd dimVL,d =
∑
λ∈L

∞∏
k=1

q(λ |λ)/2

1 − qk
=
ΘL(τ)
ϕ(q) = q1/24ΘL(τ)

η(τ) ,

where ΘL(τ) is the theta constant associated with the lattice L.

1.4.4.2 The Lattice of Type A1
Let us take L to be the root lattice

√
2Z of type A1, a unique lattice generated

by a root α; that is, an element of squared norm 2:

A1 = Zα, (α |α) = 2.

The structure of VA1 looks as in Table 9. The graded dimension is given by
∞∑
d=0

qd dimVA1 ,d =

∑
n qn2∏∞

k=1(1 − qk)
=
θ3(τ)
ϕ(q) = q1/24 θ3(τ)

η(τ) ,

where θ3(τ) is the Jacobi theta constant.
Pick up the following elements of degree 1:

E = vα, H = α−1vλ, F = v−α.

Then the subspace of degree 1 becomes a Lie algebra isomorphic to sl2 with
respect to the bracket defined by [X,Y ] = X(0)Y :

[H,E ] = 2E, [H,F ] = −2F, [E,F ] = H,
[H,H ] = [F,F ] = [E,E ] = 0.
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Table 9 Lattice vertex algebra of type A1

0 1 2 3 4

v2α
vα α−1vα α−2vα α−3vα

α−1α−1vα α−1α−2vα
α−1α−1α−1vα

v0 α−1v0 α−2v0 α−3v0 α−4v0
α−1α−1v0 α−1α−2v0 α−1α−3v0

α−1α−1α−1v0 α−2α−2v0
α−1α−1α−2v0

α−1α−1α−1α−1v0
v−α α−1v−α α−2v−α α−3v−α

α−1α−1v−α α−1α−2v−α
α−1α−1α−1v−α

A basis ofV√2Z v−2α

Moreover, the bilinear form defined by (X |Y )1 = X(1)Y becomes

(H |H) = 2, (E |F) = (F |E) = 1,
(E |E) = (F |F) = (H |E) = (H |F) = 0,

which is invariant with respect to the Lie bracket.
Therefore, there exists a homomorphism of vertex algebras from the univer-

sal affine vertex algebraM(1,0) associated with sl2 at level k = 1. SinceVA1 is
a simple vertex algebra generated by the degree 1 subspace, the map π induces
an isomorphism of vertex algebras from L(1,0) onto VA1 :

L(1,0) ∼ // VA1 .

TheL(1,0)-moduleL(1,1/2) can be constructed as the spaceVA1+1/
√

2 (cf. Sub-
section 1.4.5.3).

Note 4.3. 1. The Sugawara vector ωk ∈ M(k,0) given by (3.7) coincides for
k = 1 with the Virasoro vector ω ∈ F0 given by (3.5). 2. The construction of
ŝl2-modules as described above is a particular case of the famous Frenkel–Kac
construction mentioned in the Introduction, which works for the root lattices
of ADE type and realizes integrable highest weight representations of the cor-
responding affine Kac–Moody algebras of level 1.

1.4.4.3 The Lattice of Type D1
Let L be the even lattice 2Z generated by a norm 2 element as

2Z =
√

2A1 = Zβ, (β | β) = 4,
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Table 10 Lattice vertex algebra of type D1

0 1 2 3 4

vβ β−1vβ β−2vβ
β−1β−1vβ

v0 β−1v0 β−2v0 β−3v0 β−4v0
β−1β−1v0 β−1β−2v0 β−1β−3v0

β−1β−1β−1v0 β−2β−2v0
β−1β−1β−2v0

β−1β−1β−1β−1v0
v−β β−1v−β β−2v−β

A basis of V2Z β−1β−1v−β

which can be thought of as the root lattice of type Dn with n formally set
to 1.
The structure of V2Z looks as in Table 10. Consider the elements

e+ =
ω

2
+
vβ + v−β

4
, e− =

ω

2
−
vβ + v−β

4
,

where ω is the Virasoro vector (3.5) with an = (1/2)βn, n ∈ Z. Then e± are
Virasoro vectors of central charge c = 1/2 commuting with each other:

e+(n)e
− = 0 (n ≥ 0), e±(n)e

± =


0 (n ≥ 4),
1/4 (n = 3),
2e± (n = 1).

In fact, they generate vertex subalgebras isomorphic to the simple Virasoro
vertex algebra of central charge 1/2,

〈e+〉VA ' L(1/2,0) ' 〈e−〉VA,

and we have a decomposition of the form

V2Z = L(1/2,0) ⊗ L(1/2,0)
V+2Z

⊕L(1/2,1/2) ⊗ L(1/2,1/2)
V−2Z

,

where V±2Z are the eigenspaces of an involution characterized by

θ : V2Z // V2Z , h 7→ −h, vβ 7→ v−β .

Note 4.4. 1. Formore information onV+2Z and its applications, see [43]. 2.Many
interesting and useful examples of vertex algebras are found as subalgebras of
the vertex algebras (or vertex superalgebras) associated with a rank one lat-
tice. For example, the vertex algebra V+√

6Z
is identified with what is called the
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minimal W4 algebra of central charge 1, which can be used to describe the ac-
tions of 4A elements of the Monster on the moonshine module V♮ (cf. [79] and
[93]).

1.4.5 Lattice Vertex Algebras for General Even Lattices
Recall the commutation of vertex operators described by (4.3), which implies,
for sufficiently large N ,

(y − z)NVλ (y)Vµ (z) = (−1)(λ |µ)(y − z)NVµ (z)Vλ (y).

For an even lattice L of higher rank, the value (λ |µ) for λ, µ ∈ L can be odd
and, for such a case, the series Vλ (z) and Vµ (z) are not locally commutative.
By this reason, we wish to modify the vertex operators by multiplying it by a

sign factor in such a way that the resulting series become locally commutative
and creative. We will then describe the lattice vertex algebras VL in the same
way as in the rank one case, and give a brief account on the simple modules
over VL .

1.4.5.1 Cocycle Factors and Central Extensions
For λ, µ ∈ L, the vertex operator Vλ (z) restricts to

Vλ (z)
��
Fµ : Fµ // Fλ+µ((z)).

We will multiply it by a sign factor so that the resulting series become locally
commutative. To be more precise, consider a function

ε : L × L // {±1},

that is to be called a cocycle factor, and set

Vλ,ε (z)
��
Fµ = ε(λ, µ)Vλ (z)

��
Fµ . (4.4)

Then the condition on the function ε so that Vλ,ε (z) become locally commuta-
tive and creative with respect to v0 are stated, respectively, as follows:

(1) For all λ, µ, ν ∈ L: ε(λ, µ + ν)ε(µ, ν) = (−1)(λ |µ)ε(µ,λ + ν)ε(λ, ν).
(2) For all λ ∈ L: ε(0, λ) = 1 = ε(λ,0).

These conditions imply:

(3) For all λ, µ, ν ∈ L: ε(λ, µ)ε(λ + µ, ν) = ε(λ, µ + ν)ε(µ, ν).
(4) For all λ, µ ∈ L: ε(λ, µ)ε(µ,λ) = (−1)(λ |µ).

https://doi.org/10.1017/9781009338073.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009338073.002


Lectures on Vertex Algebras 83

We actually have the equivalence

(1) + (2) ⇐⇒ (2) + (3) + (4).

To see the meaning of the latter, consider a central extension of groups of the
form

0 // {±1} // L̂ π // L // 0. (4.5)

Choose a set-theoretical section ι : L // L̂ and denote its value at λ by eλ.
Assume that the group structure on L̂ and the function ε : L × L // {±1} are
related by, for all λ, µ ∈ L,

eλeµ = ε(λ, µ)eλ+µ.

Then condition (2) says that e0 is the identity element and (3) that the product
is associative. In other words, the function ε : L × L // {±1} satisfying (2)
and (3) is a normalized 2-cocycle associated with the group extension (4.5).
Now the condition (4) means that the extension (4.5) is subject to

eλeµ = (−1)(λ |µ)eµeλ,

for which the correspondence (eλ, eµ) 7→ eλeµe−1
λ e−1

µ = (−1)(λ |µ) is called the
commutator map.

Note 4.5. As the vertex operators generate intertwining operators among the
Fock modules (cf. Section 1.6.4), the problem of constructing a vertex algebra
structure on VL is a particular case of that for a direct sum of modules over a
vertex algebra by intertwining operators. Such a problem is studied in detail for
a good vertex algebra under certain conditions (cf. [37] and references therein),
although VL as a sum of Fock modules does not fulfill such conditions.

1.4.5.2 Lattice Vertex Algebras
Let us explicitly construct a cocycle factor as a bimultiplicative map:

ε(λ, µ + ν) = ε(λ, µ)ε(λ, ν), ε(λ + µ, ν) = ε(λ, ν)ε(µ, ν).

Let α1, . . . , αn be a basis of L, set the values of ε(αi, αj) so that

ε(αi, αj) = (−1)(αi |αj )ε(αj, αi),

and extend it bimultiplicatively to the whole L. Then it indeed satisfies the
conditions for a cocycle factor and the following proposition holds for the series
Vλ,ε (z) defined by (4.4).
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Proposition 4.6 For an even lattice L and a cocycle factor ε, there exists
a unique structure of a vertex algebra on the vector space VL with vacuum
1 = v0 such that

Y (h−1v0, z) = h(z) and Y (vλ, z) = Vλ,ε (z)

for h ∈ h and λ, µ ∈ L.

The vertex algebra VL is called the lattice vertex algebra associated with
the even lattice L, which is a simple vertex algebra. The isomorphism class
of the resulting vertex algebra does not depend on the choice of the cocycle
factor.
The space VL is given a grading as in the rank one case. If L is positive-

definite of rank n, the graded dimension is given by
∞∑
d=0

qd dimVL,d =
∑
λ∈L

∞∏
k=1

q(λ |λ)/2

(1 − qk)n
=
ΘL(τ)
ϕ(q)n = qn/24ΘL(τ)

η(τ)n .

Note 4.7. 1. The cocycle factor ε : L × L // {±1} here can be chosen so that
it is bimultiplicative and satisfies ε(λ,λ) = (−1)(λ |λ)/2 for all λ ∈ L. 2. Let
Fλ(d) be the subspace of Fλ of degree (λ |λ)/2 + d for each λ ∈ L and d ∈ N.
In particular, we have Fλ(0) = Cvλ. Then the following properties hold:
(1) For all h ∈ h, λ ∈ L and k,m ∈ Z: [hk,vλ (m) ] = λ(h)vλ (k+m).
(2) For all λ, µ ∈ L and m ∈ Z: vλ (m)vµ ∈ Fλ+µ(−(λ |µ) − m − 1).
(3) For all λ, µ ∈ L: vλ (−(λ |µ)−1)vµ = ±vλ+µ .

These properties in fact characterize the vertex algebra structure of the lattice
vertex algebra VL . (See the arguments in [76].)

1.4.5.3 Modules over Lattice Vertex Algebras
Let us briefly describe modules over the lattice vertex algebras. (See [40] for
details.)
For a lattice L, the dual lattice is the set

L◦ = {µ ∈ h | (λ |µ) ∈ Z} ,

which is an additive subgroup of h containing L. The values of the bilinear
form on L◦ are rational numbers, and L◦ need not be a lattice in the sense we
followed so far.
The isomorphism classes of simpleVL -modules are in one-to-one correspon-

dence with the cosets in L◦/L. For each coset M ∈ L◦/L, it has the following
shape:
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VM =
⊕
λ∈M

Fλ .

In particular, the adjoint module VL is the case with M = L.
Recall that a lattice is said to be unimodular if L◦ = L. For a unimodular

lattice L, the adjoint module is the only simple module over VL .
Here are examples of even unimodular positive-definite lattices. Note that

the rank of such a lattice is a multiple of 8.

1. Rank 8. There is only one such lattice: the Gosset lattice E8.
2. Rank 16. There are two such lattices: E8 ⊕ E8 and D+16.
3. Rank 24. There are 24 such lattices, called Niemeier lattices. Among them,

there is a distinguished one without roots called the Leech lattice.

The graded dimensions of the vertex algebras associated with the Gosset lattice
E8 and the Leech lattice Λ are given by
∞∑
d=0

qd dimVE8 ,d =
ΘE8 (τ)
ϕ(q)8

= q1/3 E4(τ)
η(τ)8

and

∞∑
d=0

qd dimVΛ,d =
ΘΛ(τ)
ϕ(q)24 = q( j(τ) − 720) = 1 + 24q + 196884q2 + · · · ,

respectively, where E4(τ) is the Eisenstein series of weight 4,

E4(τ) = 1 + 240
∞∑
n=1

n3q
1 − qn

,

and j(τ) the elliptic modular function. The graded dimensions for the Niemeier
lattices are all the same except for the coefficients to q.
Note 4.8. To construct theVL -module structures onVM for cosets M in L◦/L,
we need to extend the factor ε to an appropriate one defined on L × L◦ valued
in a cyclic group containing {±1}. See [40] for details.

Bibliographic Notes
Main references for Section 1.4 are Frenkel, Lepowsky, and Meurman [1],
Dong and Lepowsky [4], and Dong [40]. See also Kac [6] and Lepowsky and
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For generalities on lattices, see Ebeling [14] and Conway and Sloan [12].
See Frenkel andKac [57] andKac [17] for Frenkel–KacConstruction (cf. (cf.

Segal [92]), and Lepowsky and Wilson [69] for a slightly earlier construction
of ŝl2 by twisted vertex operators and Frenkel, Lepowsky, and Meurman [58]
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Construction of the lattice vertex algebras, as well as introduction of the con-
cept of vertex algebras, is due to Borcherds [32]. See Frenkel, Lepowsky, and
Meurman [59] for an earlier attempt to construct and investigate the moonshine
module V♮ by means of vertex operators.
There are a huge number of applications of vertex operators in various fields

of mathematics and physics.

1.5 Twisted Modules

Let V be a vertex algebra and θ an involution of V, that is, an automorphism
of order 2, and consider the subspace of fixed-points,

V+ = {a ∈ V | θa = a} ,

which is a vertex subalgebra of V. Let i : V+ // V denote the inclusion.
For any representation ρ(−, z) : V // Hom(M,M((z))), we obtain a repre-

sentation of V+ by restriction as

V+ i // V
ρ(−,z) // Hom(M,M((z))).

Representation of V+ may also be obtained by restricting “generalized” repre-
sentations of V in such a way that series in half-integral powers are involved
but the restriction becomes valued in series with integral powers:

V+

**TTT
TTTT

TTTT
TTTT

TTTT
i // V

ρ(−,z) // Hom(M,M((z1/2)))

Hom(M,M((z))).

OO

The concept of θ-twisted modules over V corresponds to such a generaliza-
tion of representations ofV, achieved by appropriately generalizing the residue
products to series with half-integral powers in z.
More generally, for an automorphism g of finite order N , the concept of g-

twisted modules is defined by replacing z1/2 with z1/N :

V
ρ(−,z) // Hom(M,M((z1/N ))).

Although twisted modules are considered under presence of the action of an
automorphism, generalization of the residue products works well for series with
complex powers in z without actions of automorphisms.
In Section 1.5, we will first describe the general theory of twisted modules

and then proceed to classical examples, the θ-twisted modules over the Heisen-
berg vertex algebras and the lattice vertex algebras, where θ is lift of the (−1)
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-involution, the automorphism of order 2 induced by negation −1 of the gener-
ators of the Heisenberg algebra or the lattice.
We will work over the field C of complex numbers.

1.5.1 OPE of Shifted Series
In this section, we will generalize the residue products to those of the series
whose exponents are integers shifted by a complex number for each. We will
then appropriately adjust the concept of operator product expansion so that it
fits such shifted series.

1.5.1.1 Preliminaries on Shifted Series
For a complex number α, consider the vector space V[[z, z−1 ]]z−α consisting
of the formal expressions of the form∑

n

vn+αz−n−α−1,

where the summation is over the integers n. In this section, we will call such a
series a series shifted by α ∈ C.
We will also consider subspaces such as V((z))z−α or

V((y))((z))y−αz−β, V((z))((y))y−αz−β, V((y, z))y−αz−β

for indeterminates y, z and complex numbers α, β.
Let x, y, z be indeterminates. We write

(x + z)n−α
�� |x |> |z | = ∞∑

i=0

(
n − α

i

)
xn−α−izi,

(x + z)n−α
�� |x |< |z | = ∞∑

i=0

(
n − α

i

)
xizn−α−i .

Note that

(x + z)n−α
�� |x |> |z | ∈ C[x, x−1][[z]]x−α ⊂ C((x))((z))x−α,

(x + z)n−α
�� |x |< |z | ∈ C[z, z−1 ][[x]]z−α ⊂ C((z))((x))z−α.

Similarly, we write

(y − z)n−α
�� |y |> |z | = ∞∑

i=0
(−1)i

(
n − α

i

)
yn−α−izi ∈ C((y))((z))y−α,

(y − z)n−α
�� |y |< |z | = ∞∑

i=0
(−1)n−α−i

(
n − α

i

)
yizn−α−i ∈ C((z))((y))z−α.
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1.5.1.2 Expansions of Shifted Series
Let x, y, z be indeterminates and α, β complex numbers. Consider the space

V((x, y, z))y−αz−β ,

whose elements are written in the following form with some L,M,N ∈ N:

w(x, y, z) = w0(x, y, z)
xN yL+αzM+β

, w0(x, y, z) ∈ V[[x, y, z]].

Since xNw(x, y, z) ∈ V[[x]]((y, z))y−αz−β ,

(y − z)Nw(y − z, y, z)
�� |y |> |z | = (y − z)Nw(y − z, y, z)

�� |y |< |z | . (5.1)

Similarly, yL+αw(x, y, z) ∈ V[[y]]((x, z))z−β implies

(x + z)L+αw(x, x + z, z)
�� |x |> |z | = (x + z)L+αw(x, x + z, z)

�� |x |< |z | .
Let s(y, z) and t(y, z) be series belonging to the spacesV((y))((z))y−αz−β and

V((z))((y))y−αz−β , respectively, and w(x, y, z) ∈ V((x, y, z))y−αz−β satisfy

s(y, z) = w(y − z, y, z)
�� |y |> |z | ∈ V((y))((z))y−αz−β,

t(y, z) = w(y − z, y, z)
�� |y |< |z | ∈ V((z))((y))y−αz−β .

Consider the series u(x, z) = w(x, x + z, z)
�� |x |< |z | . Then the coefficients um(z)

in u(x, z) = ∑
m

um(z)x−m−1 are determined by

um(z) =
∞∑
i=0

(−α
i

)
z−α−i Resy

(
(y − z)m+i

�� |y |> |z |yαs(y, z)

− (y − z)m+i
�� |y |< |z |yαt(y, z)

)
,

where the sum is a finite sum by (5.1). Note that um(z) does not depend on the
choice of α such that yαw(x, y, z) is of integral powers in y.
Note 5.1. The right-hand side is obtained by formally calculating the expression

(y − z)ms(y, z)
�� |y |> |z | − (y − z)mt(y, z)

�� |y |< |z | .
Indeed, inserting y−αyα, we formally write it as

y−α(y − z)m
�� |y |> |z | yαs(y, z) − y−α(y − z)m

�� |y |< |z | yαt(y, z). (5.2)

Replace the factor y−α(y − z)m by the expansion

(x + z)−α
�� |x |< |z | xm = ∞∑

i=0

(−α
i

)
z−α−i xm+i ,

and then expand it by substitution x = y− z in the respective regions. Although
the result does not make sense as a series in y and z, the expression (5.2) turns
out to give a well-defined expression by (5.1).
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1.5.1.3 Residue Products of Shifted Series
LetM be a vector space and α a complex number. We will call such an element
of (EndM)[[z, z−1 ]]z−α a series onM shifted by α. For such a series A(z), set

A(z) =
∑
n

An+αz−n−α−1,

where the sum is over the integers n and An+α are operators acting onM.
We will say that A(z) is locally truncated if A(z)v ∈ M((z))z−α for all v ∈ M.

The set of such series is identified with Hom(M,M((z))z−α).
Let A(z) and B(z) be series on a vector spaceM shifted by complex numbers.

They are said to be locally commutative if the following holds for some N ∈ N:

(y − z)N A(y)B(z) = (y − z)N B(z)A(y).

This is the same as the case of series with integral powers.
Let A(z) and B(z) be locally truncated and locally commutative series on a

vector spaceM shifted by complex numbers α and β, respectively. Define the
nth residue product of A(z) and B(z) by

A(z)(n)B(z) =
∞∑
i=0

(−α
i

)
z−α−i

(
Resy(y − z)n+i

�� |y |> |z |yαA(y)B(z)

−Resy(y − z)n+i
�� |y |< |z |yαB(z)A(y)

)
=

∞∑
i=0

(−α
i

)
(zαA(z))(n+i)B(z) z−α−i

for each n ∈ Z.
As the identity series I(z) is unshifted, the identity property holds:

I(z)(n)A(z) =
{

0 (n , −1),
A(z) (n = −1).

The relation A(z)(n)I(z) = 0 for n ≥ 0 is clear and

A(z)(−1)I(z) =
∞∑
i=0

(−α
i

)
z−α−i(zαA(z))(−1+i)I(z)

= z−α(zαA(z))(−1)I(z) = z−αzαA(z) = A(z).

Therefore, the creation property also holds:

A(z)(n)I(z) =
{

0 (n ≥ 0),
A(z) (n = −1).

It is not difficult to show the relation

A(z)(−k−1)I(z) = ∂(k)A(z)

for n = −k − 1 < 0 by (zαA(z))(−k−1)I(z) = ∂(k)(zαA(z)).
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1.5.1.4 Modified OPE of Shifted Series
Let A(z) and B(z) be locally truncated locally commutative series on a vector
spaceM shifted by α and β, respectively:

A(z) ∈ Hom(M,M((z))z−α), B(z) ∈ Hom(M,M((z))z−β).

Since zαA(z) and zβB(z) are of integral powers, we have an OPE of the follow-
ing form for some N ∈ N and series C0(z), . . . ,CN−1(z) with integral powers:

yαA(y)zβB(z) ' zβB(z)yαA(y) ∼
N−1∑
k=0

Ck(z)
(y − z)k+1 .

Therefore,

A(y)B(z) ' B(z)A(y) ∼ y−αz−β
N−1∑
k=0

Ck(z)
(y − z)k+1 . (5.3)

Let us further expand y−α by substitution y = x + z in | x | < | z |, connect by ≈
if the two sides are related by this process, and neglect the regular part. Then
the right-hand side of (5.3) results in

y−αz−β
N−1∑
k=0

Ck(z)
(y − z)k+1 ≈

N−1∑
k=0

Dk(z)
(y − z)k+1 ,

where

Dk(z) =
N−k∑
i=0

(−α
i

)
Ck+i(z)z−α−β−i (0 ≤ k < N).

We thus arrive at the following expression:

A(y)B(z) ' B(z)A(y) ≈
N−1∑
k=0

Dk(z)
(y − z)k+1 . (5.4)

Let us call it (the singular part of) the modified OPE of A(z) and B(z).
The modified OPE (5.4) allows us to find the residue products for m ∈ N as

A(z)(m)B(z) =
{

0 (N ≤ m),
Dm(z) (0 ≤ m < N),

by the formula (5.4).

1.5.2 Shifted and Twisted Modules
In this section, we will generalize the concept of modules over a vertex algebra
by replacing vertex algebra of series with vertex algebra of shifted series. Under
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presence of the action of an automorphism g of finite order, those fitting g give
rise to the concept of g-twisted modules.

1.5.2.1 Vertex Algebras of Shifted Series
Let us now consider a finite sum of series shifted by complex numbers. Such a
sum v(z) is written in the following form with some k ∈ N and α1, . . . , αk ∈ C:

v(z) =
k∑
i=1

∑
n

vn+αi z
−n−αi−1.

We will simply call such a series a shifted series. The concepts of local trunca-
tion, local commutativity, and residue products are generalized to shifted series
in obvious ways.
The result shown Theorem 5.2 is a shifted analogue of Theorem 5.2 and can

be proved in the same spirit.

Theorem 5.2 Let A(z),B(z),C(z) be locally truncated shifted series on a vec-
tor space. If they are locally commutative with each other, then the Borcherds
identity

∞∑
i=0

(
p
i

)
(A(z)(r+i)B(z))(p+q−i)C(z)

=

∞∑
i=0
(−1)i

(
r
i

)
A(z)(p+r−i)(B(z)(q+i)C(z)

−
∞∑
i=0
(−1)r+i

(
r
i

)
B(z)(q+r−i)(A(z)(p+i)C(z)

holds for all p,q,r ∈ Z.

As in the unshifted case, we readily obtain the following result due to Li and
Roitman.

Corollary 5.3 LetV be a vector space consisting of shifted series on a vector
spaceM satisfying the following conditions.

(1) The spaceV is locally truncated and locally commutative.
(2) The spaceV is closed under the residue products.
(3) The spaceV contains the identity series.

Then the spaceV becomes a vertex algebra by the residue products.

We will call the vertex algebra thus obtained a vertex algebra of shifted ser-
ies.
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1.5.2.2 Shifted Representations
Let us denote the sets of shifted series and shifted Laurent series with coeffi-
cients in a vector space V respectively by

V[[z, z−1 ]]zC =
∑
α∈C

V[[z, z−1 ]]z−α,

V((z))zC =
∑
α∈C

V((z))z−α =
∑
α∈C

V[[z]]z−α.

Let V be a vertex algebra and M a vector space, and consider a map of the
following form:

ρ(−, z) : V // Hom(M,M[[z, z−1 ]]zC), a 7→ ρ(a, z).

Such amap is said to be a shifted representation ofV if the following conditions
are satisfied:

(1) The image of ρ(−, z) is a vertex algebra of shifted series onM.
(2) The map ρ(−, z) induces a homomorphism of vertex algebras onto its im-

age.

Note that (1) in particular says that ρ(a, z) is locally truncated for any a ∈ V.

1.5.2.3 Twisted Modules
By abuse of notation, we will denote the image of a complex number α ∈ C in
C/Z by the same symbol α.
Let g be an automorphism of a vertex algebra V of finite order:

g : V // V.

Let N ∈ N be the order of g and set

Γ = ((1/N)Z)/Z = {0,1/N, . . . , (N − 1)/N}.

Then the eigenspace decomposition of V with respect to the action of g is writ-
ten as follows:

V =
⊕
α∈Γ

Vα, Vα =
{
a ∈ V

��� ga = e2π
√
−1αa

}
.

Since g is an automorphism of V, we have

Vα(m)Vβ ⊂ Vα+β

for all α, β ∈ Γ, and m ∈ Z.
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In such a situation, a shifted representation given by a direct sum of maps

ρα(−, z) : Vα // Hom(M,M((z))z−α)

is called a g-twisted representation of V.
For each α ∈ Γ and a ∈ Vα , let us write

ρα(a, z) =
∑
n

an+αz−n−α−1,

so that the coefficients give rise to maps

ρα,n : Vα ×M // M, (a, v) 7→ an+αv. (5.5)

Then the direct sum of ρα(−, z) becomes a g-twisted representation of V if and
only if the following properties holds:

(T0) Local truncation. For any α ∈ Γ, a ∈ Vα and v ∈ M, there exists an
N ∈ N such that

aN+α+iv = 0 for all i ≥ 0.

(T1) Borcherds identity. For all α, β ∈ Γ, a ∈ Vα, b ∈ Vβ , v ∈ M, and
p ∈ Z + α, q ∈ Z + β and r ∈ Z:

∞∑
i=0

(
p
i

)
(a(r+i)b)p+q−iv =

∞∑
i=0
(−1)i

(
r
i

)
ap+r−i(bq+iv)

−
∞∑
i=0
(−1)r−i

(
r
i

)
bq+r−i(ap+iv).

(T2) Identity. For any v ∈ M and n ∈ Z:

1nv =

{
0 (n , −1),
v (n = −1).

A sequence of maps as in (5.5) satisfying the properties (T0)–(T2) is called a
g-twisted module over V or a g-twisted V-module.
The generating series ρα(a, z) for a ∈ Vα is usually written as

YM(a, z) =
∑
n

an+αz−n−α−1.

A module over a vertex algebra in the ordinary sense is sometimes called an
untwisted module. A g-twisted V-module M is an untwisted module over the
subalgebra V0.
In later sections, we will be concerned with the case N = 2, where the

eigenspaces V0 and V1/2 are denoted by V+ and V−, respectively.
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Note 5.3. In the physics literatures, the untwisted and twisted modules are
often called the untwisted and twisted sectors (of the theory or the model under
consideration), respectively.

1.5.3 Twisted Heisenberg Modules
In this section, we illustrate an example of a twisted module in the case of
the Heisenberg vertex algebra with a particular involution θ; the one induced
by negation of the standard generator, which is the most simple and classical
example of twisted modules.
For simplicity, we will work with the Heisenberg vertex algebra of rank one

following the description in Section 1.3.1. The higher rank cases are treated in
the same way (cf. Subsection 1.5.4.1).

1.5.3.1 OPE of Twisted Current
Let an+1/2 with n ∈ Z and ζ be indeterminates and set

ĥ
tw =

⊕
n∈Z
Can+1/2 ⊕ Cζ .

Then ĥ tw becomes a Lie algebra by the bracket

[am+1/2,an+1/2 ] = (m + 1/2)δm+n+1,0ζ, [ζ,an+1/2 ] = 0.

Consider the twisted Heisenberg algebra defined by

U(ĥ tw,1) = U(ĥ tw)/(ζ − 1).

We will denote the images of the generators an+1/2 by the same symbol.
Then

[am+1/2,an+1/2 ] = (m + 1/2)δm+n+1,0

for m,n ∈ Z, where the bracket denotes the commutator.
Consider the twisted current

a tw(z) =
∑
n

an+1/2z−(n+1/2)−1 =
∑
n

an+1/2z−n−3/2.

Then the commutation relation turns out to be expressed as

[a tw(y),a tw(z)] =
∑
m

(m + 1/2)y−m−1/2−1zm−1/2

= ∂z
(
y−1/2z1/2δ(y, z)

)
=

1
2
y−1/2z−1/2δ(y, z) + y−1/2z1/2δ(1)(y, z).
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Table 11 Twisted Fock module

0 1/2 1 3/2 2

Ftw : vtw a−1/2vtw (a−1/2)2vtw a−3/2vtw a−1/2a−3/2vtw
(a−1/2)3vtw (a−1/2)4vtw

Therefore, we have the following OPE:

a tw(y)a tw(z) ' a tw(z)a tw(y) ∼ 1
2
y−1/2z−1/2

y − z
+

y−1/2z1/2

(y − z)2
.

In particular, a tw(z) is locally commutative with itself.
Expansion of the factor y−1/2 by y = x + z in | x | < | z | yields

(x + z)−1/2�� |x |< |z | = ∞∑
k=0

(−1/2
k

)
xk z−1/2−k .

After some algebra, we find that the modified OPE is given by

a tw(y)a tw(z) ' a tw(z)a tw(y) ≈ 1
(y − z)2

.

Therefore, the shifted residue products for n ∈ N is determined as

a tw(z)(n)a tw(z) =


0 (n ≥ 2),
1 (n = 1),
0 (n = 0),

(5.6)

which is exactly of the same form as the untwisted case.

1.5.3.2 Twisted Fock Module
Consider the following subspaces of the Lie algebra ĥ tw:

ĥ
tw
<0 = Span

{
an+1/2

�� n < 0
}
, ĥ tw>0 = Span

{
an+1/2

�� n ≥ 0
}
.

They are commutative Lie subalgebras, and generate subalgebras of U(ĥ tw,1)
isomorphic to the symmetric algebras S(ĥ tw

<0) and S(ĥ
tw
>0), respectively.

Let Cvtw be the one-dimensional trivial module over S(ĥ tw
>0), for which

an+1/2vtw = 0 (n ≥ 0).

Define the twisted Fock module by

Ftw = U(ĥ tw,1) ⊗S(ĥ tw
>0)
Cvtw ' S(ĥ tw<0) ⊗ Cv

tw.

See Table 11.
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Unlike the untwisted case, there is no freedom of charge, for it is the eigen-
value of the action of the central element a0, which is present in U(ĥ,1) but
absent in U(ĥ tw,1).

1.5.3.3 Twisted F0-Module
Since the twisted current on Ftw is locally truncated and locally commutative
with itself, the twisted currents generate a vertex algebra, which we denote
as

F tw
0 = 〈a tw(z)〉RP.

Now recall the (untwisted) Fock module F0 = S(ĥ<0)v0 = C[x1, x2, · · ·] of
charge 0. By the shifted OPE (5.6) and the universal property of the Fock mod-
ule F0 , there exists a unique homomorphism of U(ĥ,1)-modules sending the
vacuum vector v0 to the identity series I(z) on Ftw,

ψ tw : F0 // F tw
0 , v0 7→ I(z),

giving rise to a shifted representation of the Heisenberg vertex algebra F0 on
the twisted Fock module Ftw.
The corresponding shifted F0-module becomes a twisted module. To see it,

consider the involution θ of the polynomial ring F0 = C[x1, x2, · · ·] which
negates the indeterminates:

θ : F0 // F0, xk 7→ −xk (k = 1,2, · · · ).

Then θ turns out to be an automorphism of a vertex algebra, actually deter-
mined by its action on the generator x1 = a−1v0, for which the eigenspace
decomposition is of the form

F0 = F+0 ⊕ F−0 ,

where
F+0 = {a ∈ F0 | θa = a} , F−0 = {a ∈ F0 | θa = −a} .

On the other hand, the space F tw
0 decomposes according to the shifts of the

series as
F tw

0 = F tw,+
0 ⊕ F tw,−

0 ,

where
F tw,+

0 = F tw
0 ∩ Hom(F

tw,Ftw((z))),
F tw,−

0 = F tw
0 ∩ Hom(F

tw,Ftw((z))z−1/2).

For example,

I(z) ∈ F tw,+
0 , a tw(z) ∈ F tw,−

0 , a tw(z)(n)a tw(z) ∈ F tw,+
0 (n ∈ Z).
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In general, the residue products of even numbers of a tw(z) belong to F tw,+
0 ,

whereas odd numbers to F tw,−
0 .

The shifted representation of F0 now decomposes into the direct sum of

ψ tw,+ : F+0 // F tw,+
0 , ψ tw,− : F−0 // F tw,−

0 ,

giving rise to a structure of a θ-twisted F0-module on the twisted Fock module
Ftw.
As the spaceF tw,+

0 consists of series with integral powers and the fixed-point
subspace F+0 is a vertex subalgebra of F0 , the map

ψ tw,+ : F+0 // F tw,+
0

gives rise to an untwisted representation of F+0 on Ftw.

1.5.3.4 Twisted Virasoro Actions
Recall the standard Virasoro vector for the Heisenberg vertex algebra given by
(1.8) and (3.5):

ω =
1
2

x 2
1 =

1
2

a−1a−1v0.

The corresponding twisted series on Ftw turns out to be

T tw(z) = 1
2

a tw(z)(−1)a tw(z)(−1)I(z) =
1
2

a tw(z)(−1)a tw(z).

After some algebra following the definition of the residue products,

T tw(z) = 1
2

z−1/2 ◦
◦ (z1/2a tw(z))a tw(z) ◦◦ +

1
16

z−2.

The Fourier modes of T tw(z) generate a representation of Virasoro algebra of
central charge 1. For example,

L tw
0 =

1
16
+ a−1/2a1/2 + a−3/2a3/2 + a−5/2a5/2 + · · · .

Note that the Virasoro vector ω belongs to the subspace F+0 .

1.5.4 Twisted Vertex Operators
In this section, we will generalize and continue the consideration of the pre-
ceding section for higher-rank Heisenberg vertex algebras, and introduce the
twisted version of the vertex operators. The twisted vertex operators will be
used to construct twisted modules over lattice vertex algebras in the next sec-
tion.
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1.5.4.1 Twisted Currents of Higher Rank
Let h be an n-dimensional vector space regarded as an abelian Lie algebra and
( | ) a nondegenerate symmetric invariant bilinear form on h. Recall the Heisen-
berg algebra U(ĥ,1) and related notations from Subsection 1.4.2.1.
Let us now consider the space

ĥ
tw = h ⊗ C[t, t−1 ]t1/2 ⊕ CK .

Denote h ⊗ ts by hs for h ∈ h and s ∈ Z + 1/2 and equip ĥ tw with a structure
of a Lie algebra by setting, for g, h ∈ h,

[gr , hs ] = r(g |h)δr+s,0K .

Define the twisted Heisenberg algebra associated with h and ( | ) by

U(ĥ tw,1) = U(ĥ tw)/(K − 1).

Define the spaces such as ĥ tw
<0 and the twisted module space F

tw as before. By
PBW,

Ftw = S(ĥ tw<0) ⊗ Cv
tw

as vector spaces.
For h ∈ h and s ∈ Z + 1/2, denote the image of hs in U(ĥ tw,1) by the same

symbol, and consider the twisted current

h tw(z) =
∑
s

hsz−s−1,

where the sum is over s ∈ Z + 1/2. Then the twisted currents are locally trun-
cated shifted series on the twisted Fock module, they are locally commutative,
and their modified OPE is given by

g tw(z)(n)h tw(z) =


0 (n ≥ 2),
(g |h) (n = 1),

0 (n = 0),

which is again of the same form as the untwisted case.

1.5.4.2 Twisted Vertex Operators
Regard λ ∈ h∗ as an element of h via the identification h∗ ' h induced by
( | ) and consider the actions of λs with s ∈ Z + 1/2 on Ftw. The following
expression is called the twisted vertex operator:

U tw
λ (z) = exp

(
−

∑
s<0

λs
z−s

s

)
exp

(
−

∑
s>0

λs
z−s

s

)
.
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Here s runs over the elements of N + 1/2 and −N − 1/2, respectively, and

U tw
λ (z) ∈ Hom(Ftw,Ftw((z1/2))).

Note that

U tw
λ (z) +U tw

−λ(z) ∈ Hom(Ftw,Ftw((z))),
U tw
λ (z) −U tw

−λ(z) ∈ Hom(Ftw,Ftw((z))z1/2).

We will later modify U tw
λ (z) in a suitable way and call the resulting expression

by the same term.
For h ∈ h and λ ∈ h∗, we have[

h tw(y),U tw
λ (z)

]
= y−1/2z1/2λ(h)δ(y, z)U tw

λ (z).

In particular, the twisted currents are locally commutative with twisted vertex
operators, and the modified OPE reads

h tw(y)U tw
λ (z) ' U tw

λ (z)h tw(y) ≈
λ(h)
y − z

U tw
λ (z).

Hence the residue products for nonnegative n become

h tw(z)(n)U tw
λ (z) =

{
0 (n ≥ 1),
λ(h)U tw

λ (z) (n = 0),

which is of the same form as the untwisted case.

1.5.4.3 Commutation Relations
For λ, µ ∈ h∗, consider the compositeU tw

λ (y)U tw
µ (z) of twisted vertex operators,

exp
(∑
r<0

λr
y−r

−r

)
exp

(∑
r>0

λr
y−r

−r

)
exp

(∑
s<0

µs
z−s

−s

)
exp

(∑
s>0

µs
z−s

−s

)
,

and denote the expression obtained by switching the underlined factors by
U tw
λ,µ(y, z), which is written as

U tw
λ,µ(y, z) = exp

(∑
r<0

λr
y−r

−r
+

∑
s<0

µs
z−s

−s

)
exp

(∑
r>0

λr
y−r

−r
+

∑
s>0

µs
z−s

−s

)
.
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By the commutation relations of twisted Heisenberg algebra,[∑
r>0

λr
y−r

−r
,
∑
s<0

µs
z−s

−s

]
=

∑
r>0

∑
s<0
[λr , µs ]

y−r

−r
z−s

−s

=
∑
r>0

∑
s<0

r(λ |µ)δr+s,0
y−r

−r
z−s

−s

= −(λ |µ)
∑
r>0

y−r zr

r
.

We have

−
∑
r>0

y−r zr

r
= log

(
y1/2 − z1/2

y1/2 + z1/2

)����
|y |> |z |

,

where the region | y | > | z | indicates that the expression is to be expanded in
| y1/2 | > | z1/2 |. Therefore, we have the following equalities, with the latter
obtained by switching the roles of U tw

λ (y) and U tw
µ (z):

U tw
λ (y)U tw

µ (z) =
(
y1/2 − z1/2

y1/2 + z1/2

) (λ |µ)����
|y |> |z |

U tw
λ,µ(y, z),

U tw
µ (z)U tw

λ (y) =
(

z1/2 − y1/2

z1/2 + y1/2

) (λ |µ)����
|z |> |y |

U tw
λ,µ(y, z).

(5.7)

Therefore, it follows that, for sufficiently large N ,

(y − z)NU tw
λ (y)U tw

µ (z) = (−1)(λ |µ)(y − z)NU tw
µ (z)U tw

λ (y),

since the numerators of the right-hand sides of

y1/2 − z1/2

y1/2 + z1/2 =

(
y1/2 − z1/2)2

y − z
,

y1/2 + z1/2

y1/2 − z1/2 =

(
y1/2 + z1/2)2

y − z

are symmetric polynomials in y1/2 and z1/2.

1.5.4.4 Correction of Operators
Consider the following expansion:(

y1/2 + z1/2)−2(λ |µ) ≈ 2−2(λ |µ)z−2(λ |µ)/2 + · · · .

Then, by the first equality in (5.7),

U tw
λ (y)U tw

µ (z) ≈ 2−2(λ |µ)z−(λ |µ)(y − z)(λ |µ)
�� |y |> |z | (U tw

λ+µ(z) + · · ·
)
.

To remove the unpleasant factors, define, for λ ∈ h∗:

Ũ tw
λ (z) = 2−(λ |λ)z−(λ |λ)/2U tw

λ (z). (5.8)

Then we have

Ũ tw
λ (y)Ũ tw

µ (z) ≈ (y − z)(λ |µ)
�� |y |> |z | (Ũ tw

λ+µ(z) + · · ·
)
.
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Note that the equalities in (5.7) become

Ũ tw
λ (y)Ũ tw

µ (z) =
(
y1/2 − z1/2

y1/2 + z1/2

) (λ |µ)����
|y |> |z |

Ũ tw
λ,µ(y, z),

Ũ tw
µ (z)Ũ tw

λ (y) =
(

z1/2 − y1/2

z1/2 + y1/2

) (λ |µ)����
|z |> |y |

Ũ tw
λ,µ(y, z),

where, for λ, µ ∈ h∗,

Ũ tw
λ,µ(y, z) = 2−(λ |λ)−(µ |µ)y−(λ |λ)/2z−(µ |µ)/2U tw

λ,µ(y, z).

Therefore, by the same argument as in the preceding subsection, we have, for
sufficiently large N ,

(y − z)NŨ tw
λ (y)Ũ tw

µ (z) = (−1)(λ |µ)(y − z)NŨ tw
µ (z)Ũ tw

λ (y).

In particular, if (λ |µ) is even, then the twisted vertex operators Ũ tw
λ (z) and

Ũ tw
µ (z) are locally commutative.

1.5.5 Twisted Modules for Rank One Even Lattices
In this section, we will describe θ-twisted modules over the lattice vertex al-
gebra VL with respect to a lift θ of the (−1)-involution induced from the (−1)-
involution of the lattice:

θ : L // L, λ 7→ −λ.

We will first describe them for the rank 1 cases in this section, and then proceed
to higher-rank cases in the next section.

1.5.5.1 Shifted VL-Module
Let L be an even lattice of rank one, set h = L ⊗Z C, and extend the bilinear
form on L to h. Recall the lattice vertex algebra:

VL =
⊕
λ∈L

Fλ

Since L is of rank 1, we have (λ |µ) ∈ 2Z for all λ, µ ∈ L.
Consider the twisted FockmoduleFtw for the twistedHeisenberg algebra and

the twisted currents h tw(z) for h ∈ h acting on it. Let V tw
λ (z) denote the twisted

vertex operator Ũ tw
λ (z) with correction factors given by (5.8), and simply call

it the twisted vertex operator from now on:

V tw
λ (z) = Ũ tw

λ (z).

Then the twisted currents and the twisted vertex operators become locally com-
mutative, and they generate a vertex algebra by the residue products, which we
denote byV tw

L :
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V tw
L = 〈h tw(z),V tw

λ (z) |h ∈ h, λ ∈ L〉RP.

Moreover, for all n ∈ Z,

V tw
λ (z)(n)V tw

µ (z) ∈ F tw
λ (λ + µ).

Therefore, we have

V tw
L =

⊕
λ∈L
F tw
λ ,

where F tw
λ is the F0-submodule generated by V tw

λ (z), which is isomorphic to
Fλ as an F0-module.
It is therefore likely that there exists a homomorphism of vertex algebras

satisfying

ρtw : VL
// V tw

L , vλ 7→ V tw
λ (z).

This is indeed the case, and the map ρtw is actually an isomorphism of vertex
algebras, since properties enough to characterize the lattice vertex algebra have
already been verified. We thus have a shifted representation

ρtw : VL
// Hom(Ftw,Ftw((z1/2)))

of the lattice vertex algebra VL on the twisted Fock module Ftw.

1.5.5.2 Twisted VL-Module
The shifted VL -module Ftw constructed in the preceding subsection can be
given a structure of a twistedmodulewith respect to a lift θ of the (−1)-involution
of the lattice L.
Let θ denote the involution of h induced from the (−1)-involution of L; that

is,

θ : h // h, h 7→ −h.

Then θ induces an involution of theHeisenberg algebraU(ĥ,1), hence of S(ĥ<0),
and of the lattice vertex algebra as

θ : VL
// VL , Pvλ 7→ (θP)(θ̂vλ),

where P ∈ S(ĥ<0) and θ̂vλ = v−λ. The eigenspace decomposition with respect
to the action of θ looks thus:

VL = V+L ⊕ V−L , (5.9)

where V±L = {a ∈ VL | θa = ±a} are the eigenspaces.
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Recall the vertex algebra V tw
L of shifted series on the twisted Fock module

Ftw generated by the twisted currents and the twisted vertex operators. Then it
decomposes as

V tw
L = V

tw,+
L ⊕V tw,−

L ,

where
V tw,+

L = V tw
L ∩ Hom(Ftw,Ftw((z))),

V tw,−
L = V tw

L ∩ Hom(Ftw,Ftw((z))z1/2).

By the very definition of the twisted vertex operators, we have

V tw
λ (z) + V tw

−λ (z) ∈ V
tw,+
L and V tw

λ (z) − V tw
−λ (z) ∈ V

tw,−
L .

Therefore, it turns out that the shifted representation Ftw is actually a θ-twisted
VL -module by the decomposition (5.9).

Proposition 5.4 Let L be an even lattice of rank 1. Then the twisted Fock
module Ftw carries a unique structure of a θ-twisted VL -module such that

YF tw (h−11, z) = h tw(z) and YF tw (vλ, z) = V tw
λ (z)

for h ∈ h and λ ∈ L, respectively.

Note 5.5. 1. There is another θ-twistedVL -module structure on the same space
Ftw given by V tw

β (z) = −Ũ tw
β (z) for a generator β of L. In other words, for

λ = nβ,

V tw
nβ (z) = (−1)nŨ tw

nβ(z).

The two θ-twisted modules correspond to the two 1-dimensional representa-
tions of L as a group, the trivial representation and the sign representation.
2. The θ-twisted VL -modules for a rank one even lattice L are actually clas-
sified by representations of L/2L ' Z/2Z. See Subsection 1.5.6.3 for more
details.

1.5.6 Twisted Modules for General Even Lattices
Let us now describe θ-twisted modules over lattice vertex algebras associated
with general even lattices, where the cocycle factor has to be taken into account.
We will first describe a lift θ of the (−1)-involution of the lattice L in terms of
the central extension L̂ of the lattice by {±1}, and then classify L̂-modules T
such that the tensor products Ftw ⊗ T carry structures of θ-twisted modules.
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1.5.6.1 Relation to Central Extensions
Let L be an even lattice, choose a cocycle factor ε : L × L // {±1}, and
consider the corresponding central extension as in Section 1.4.5:

0 // {±1} // L̂ π // L // 0.

Let λ 7→ eλ be a set-theoretical section of π such that eλeµ = ε(λ, µ)eλ+µ.
Recall that the lattice vertex algebra can be written as

VL = S(ĥ<0) ⊗ C[L ],

on which the generating series Y (vλ, z) given by the series Vλ,ε (z) defined as in
(4.4) factors as

Y (vλ, z) = Uλ(z) ⊗ eλzλ0 ,

where Uλ(z) is the part acting on S(ĥ<0) and eλ sends eµ to ε(λ, µ)eλ+µ so that
C[L ] becomes an L̂-module on which the image of −1 in L̂ acts by −1.
We are to construct a shifted VL -module on the tensor product of the form

M = S(ĥ tw<0) ⊗ T

so that the generating series for vλ acts in the form

YM(vλ, z) = Ũ tw
λ (z) ⊗ e twλ ,

where Ũ tw
λ (z) refers to the series defined by (5.8) acting on S(ĥ tw<0) and e twλ is

an operator acting on T.
Indeed, if T is an L̂-module on which e twλ operates by the action of eλ on T

in such a way that the image of −1 in L̂ acts by −1, then

e twλ e twµ = (−1)(λ |µ)e twµ e twλ .

Hence the series YM(vλ, z) become locally commutative with each other, thus
giving rise to a structure of a shifted VL -module on the spaceM = S(ĥ tw<0) ⊗ T
by the same argument as in the rank one case.

1.5.6.2 Lifts of (−1)-Involutions
To generalize the construction of θ-twisted modules for rank one lattices to the
higher rank cases, let us lift the (−1)-involution of the lattice L to an automor-
phism of the lattice vertex algebra VL .
To this end, first choose a lift θ̂ of θ = −1 on L to an automorphism of L̂.

0 // {±1} // L̂

θ̂

��

// L

θ

��

// 0

0 // {±1} // L̂ // L // 0.
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Note that, by definition,

θ̂eλ ∈ {±e−λ} = {±(eλ)−1}.

Such an automorphism θ̂ automatically becomes an involution. There is actu-
ally a canonical choice defined by θ̂eλ = (−1)(λ |λ)/2(eλ)−1 for each λ ∈ L.
Now define the action of θ on VL by

Pvλ 7→ (θP)(θvλ),

where θvλ is given by 1 ⊗ θ̂eλ under the identification of vλ with 1 ⊗ eλ. Then
the lattice vertex algebra decomposes as

VL = V+L ⊕ V−L , where V±L = {a ∈ VL | θa = ±a}

as in the rank one case. The isomorphism class of the vertex algebra V+L does
not depend on the choice of the lift θ̂ (cf. [43]).

1.5.6.3 Construction of Twisted VL-Modules
In order for the shifted representationM = S(ĥ tw

<0) ⊗ T to become a θ-twisted
VL -module, the generating series YM(vλ, z) = Ũ tw

λ (z) ⊗ e twλ must satisfy

YM(vλ, z) + YM(θvλ, z) ∈ Hom(M,M((z))),
YM(vλ, z) − YM(θvλ, z) ∈ Hom(M,M((z))z1/2).

Since Ũ tw
λ (z) already satisfy this property, it remains to impose the following

condition on the L̂-module T: for all λ ∈ L,

(θ̂eλ)
��
T = eλ

��
T.

To describe it, consider the following set:

K =
{
(θg)g−1 �� g ∈ L̂}

⊂ L̂.

Then the condition holds if and only if K acts on T by 1.
It is readily checked that K is a central subgroup of L̂, which fits in the

following commutative diagram of exact sequences:
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0

��

0

��
K

��

∼ // 2L

��
0 // {±1} // L̂

��

// L

��

// 0

0 // {±1} // L̂/K

��

// L/2L

��

// 0

0 0.

Therefore, the space S(ĥ tw
<0) ⊗ T carries a structure of a θ-twisted VL -module

if and only if T is an L̂/K-module on which (−1)K acts by −1.
To classify such L̂/K-modules, let R be the radical of the commutator map

modulo 2:

R = {λ ∈ L | (λ |L) ⊂ 2Z} .

Then the inverse image of R in L̂ agrees with the center of L̂, and the number of
central characters of L̂/K of which (−1)K acts by −1 agrees with |R/2L |. For
each such character χ, we have a unique L̂-module Tχ satisfying the desired
properties, whose dimension is given by

dimC Tχ = |L/R |1/2.

See [1] for details.
Let us finally mention the case when L is the Leech latticeΛ, the unique even

unimodular positive-definite lattice of rank 24without roots. Being unimodular
implies that the commutator map induces a nondegenerate bilinear form on
Λ/2Λ, hence the radical R agrees with 2Λ. Therefore, there exists a unique
Λ̂-module T of which (−1)K acts by −1, and its dimension is given by

dimC T = |Λ/2Λ |1/2 =
√

224 = 212.

The central extension Λ̂/K is actually the extraspecial 2-group 21+24
+ for the

canonical choice of the lift θ.
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to another.
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1.6 Vertex Operator Algebras

Recall that standard examples of vertex algebras, such as the lattice vertex alge-
bra associated with a positive-definite even lattice, often admit an action of the
Virasoro algebra that is internal in the sense that it is given by the actions of an
element of the vertex algebra. Such a vector is called a conformal vector if the
Virasoro action includes the translation operator. The presence of a conformal
vector leads to additional features such as gradings and various transformation
formulas.
A vertex algebra may have many conformal vectors, and it is natural to spe-

cify one and to impose appropriate conditions on it. The resulting concept is
that of a vertex operator algebra (VOA). Thus a VOA is a pair (V,ω) of a
vertex algebra V and a conformal vector ω satisfying a number of conditions.
Section 1.6 is a brief introduction to theory of vertex operator algebras. We

will start by describing consequences of the presence of a conformal vector
and then give terminologies specific to VOAs. As a VOA is graded, we may
talk about the category of N-graded modules for which the simple objects are
controlled by the top subspaces by means of Zhu’s algebra, an associative al-
gebra universally constructed by the VOA structure alone without addressing
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modules. Twomore important topics, fusion rules amongmodules and modular
invariance of conformal characters, are also included.
We will work over the field C of complex numbers.

1.6.1 Conformal Vectors
In this section, we will give the precise definition of conformal vectors of a ver-
tex algebra and describe various consequences of the presence of a conformal
vector. We will show that a grading is given to a vertex algebra by L0 action
for the choice of the conformal vector and that various transformation formulas
hold by a part of the Virasoro action.

1.6.1.1 Virasoro Vectors in Vertex Algebras
Let V be a vertex algebra. Recall that an element e ∈ V is called a Virasoro
vector if there exists a scalar ce, called the central charge, such that

e(n)e =


0 (n ≥ 4),
(ce/2)1 (n = 3),

2e (n = 1),

from which the properties e(0)e = Te and e(2)e = 0 follow, where T = T (1) is
the translation operator.
Set Le

n = e(n+1) so that

Y (e, z) =
∑
n

Le
nz−n−2.

Then the condition above is equivalent to the OPE

Y (e, y)Y (e, z) ' Y (e, z)Y (e, y) ∼ ∂Y (e, z)
y − z

+
2Y (e, z)
(y − z)2

+
ce/2
(y − z)4

,

or to the Virasoro commutation relation

[Le
m, L

e
n ] = (m − n)Le

m+n + δm+n,0
m3 − m

12
ce.

Here we have identified a scalar with multiplication by it.

1.6.1.2 Conformal Vectors in Vertex Algebras
Let V be a vertex algebra and recall that the translation operator T = T (1) is
given by

T : V // V, a 7→ Ta = a(−2)1.
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Let ω be a Virasoro vector of V. Denote the actions Lωn simply by Ln and the
central charge cω by c:

[Lm, Ln ] = (m − n)Lm+n + δm+n,0
m3 − m

12
c.

Such a vector ω is called a conformal vector of V if, for all a ∈ V,

ω(0)a = a(−2)1,

that is, L−1 agrees with the translation operator T as operators acting on
V:

L−1 = T : V // V.

Then, for a conformal vector ω, the translation property (VT) with k = 1 gives

(L−1a)(n)b = −na(n−1)b. (6.1)

Namely:

Y (L−1a, z) = ∂zY (a, z). (6.2)

The standard Virasoro vectors for the Heisenberg vertex algebras, the lattice
vertex algebras, the affine vertex algebras, and the Virasoro vertex algebras are
conformal vectors of the vertex algebras under consideration.

Note 6.1. 1. A conformal vector in our sense is often called a Virasoro element
in the literatures (cf. [1], [32]), and a Virasoro vector in our sense is sometimes
called a conformal vector (cf. [83]). 2. The Virasoro vector obtained by Sug-
awara construction is a conformal vector of the affine vertex algebra as long
as it makes sense. 3. Under the presence of a conformal vector ω, left ideals of
the vertex algebra become two-sided ideals by skew-symmetry; for T = ω(0) is
one of the left actions.

1.6.1.3 Grading by Conformal Weights
Let ω be a conformal vector of a vertex algebra V and consider the action of
L0 on V. Then, for a, b ∈ V,

L0(a(n)b) = (L0a)nb + a(n)(L0b) − (n + 1)anb (6.3)

by the Borcherds identity (V1) with (p,q,r) = (1,n,0) and (6.1).
Now assume that the operator L0 is semisimple on V with integral eigenval-

ues and consider the eigenspace decomposition:

V =
⊕
d

Vd , where Vd = Ker (L0 − d)|V. (6.4)
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The eigenvalue of a homogeneous element a is called the conformal weight of
a with respect to ω, which we denote by ∆(a):

a ∈ Vd ⇐⇒ ∆(a) = d.

For example, since L01 = ω(1)1 = 0 and L0ω = ω(1)ω = 2ω,

∆(1) = 0 and ∆(ω) = 2.

The relation (6.3) implies

Vd (n)Ve ⊂ Vd+e−n−1 . (6.5)

Namely:
∆(a(n)b) = ∆(a) + ∆(b) − n − 1.

Note 6.2. A direct sum decomposition of V satisfying the relation (6.5) in
general is called a grading of the vertex algebra V.

1.6.1.4 Projective Linear Transformations
Let ω be a conformal vector and consider the actions Lm with m = −1,0,1.
Then, as a part of the Virasoro commutation relations, we have

[L0, L−1 ] = L−1, [L0, L1 ] = −L1, [L1, L−1 ] = 2L0.

Thus the actions L−1, L0, L1 give rise to a representation of sl2 on V by identi-
fying L−1 = E , L0 = (1/2)H, and L1 = −F, for which

exp xE =
[
1 x
0 1

]
, exp xH =

[
ex 0
0 e−x

]
, exp xF =

[
1 0
x 1

]
.

The corresponding projective linear transformations are given by the substitu-
tions

exp xL−1 : z 7→ z + x, exp xL0 : z 7→ ex z, exp xL1 : z 7→ z
1 − xz

.

Moreover, the operators L−1, L0, L1 generate formal actions on the space of gen-
erating series Y (a, z) with a ∈ V corresponding to projective linear transform-
ations of the variable z. Indeed, by the commutator formula (VC),

[Lm,a(n) ] =
∞∑
i=0

(
m + 1

i

)
(Li−1a)(m+n−i).

In particular, for m = −1,0,1, we have, by the translation property (6.2),

[L−1,Y (a, z)] = ∂zY (a, z),
[L0,Y (a, z)] = z∂zY (a, z) + Y (L0a, z),
[L1,Y (a, z)] = z2∂zY (a, z) + 2zY (L0a, z) + Y (L1a, z).
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Then, by exponentiation,

exL−1Y (a, z)e−xL−1 = Y (a, z + x),
xL0Y (a, z)x−L0 = Y (xL0 a, xz),

exL1Y (a, z)e−xL1 = Y
(
ex(1−xz)L1 (1 − xz)−2L0 a,

z
1 − xz

)
.

(6.6)

The first one is the translation covariance.

1.6.1.5 Formal Change of Coordinates
The transformations corresponding to L0 and L1, which send z to xz and to
z/(1 − xz), respectively, are thought of as coordinate transformations that fix
the origin, thus forming a part of more general transformations of the affine
line C generated by vector fields in zC[[z]](d/dz) under the isomorphism

zC[[z]] d
dz

//
⊕
n≥0
CLn, zn+1 d

dz
7→ −Ln (6.7)

of Lie algebra.
Assume thatV is graded by integral conformal weights by L0 for a conformal

vector, and that the actions of L1, L2, · · · are locally nilpotent on V.
Let ϕ : t 7→ ϕ(t) be a formal change of variables such that

ϕ(t) = ϕ1t + ϕ2t2 + · · · with ϕ1 , 0.

Let c0, c1, c2, · · · be a sequence of complex numbers such that

ϕ(t) =
(
exp

∞∑
j=1

cj t j+1∂t

)
ct∂t0 t.

Accordingly, define an operator R(ϕ) acting on the vertex algebra V by the
Virasoro action via the embedding (6.7) as

R(ϕ) = exp
(
−
∞∑
j=1

cjLj

)
c−L0

0 .

Here, by definition, ct∂t0 tn = cn0 tn and c−L0
0 a = c−∆(a)0 a for a homogeneous

a ∈ V.
Consider the series ϕz(t) in t with coefficients in zC[[z]] defined by

ϕz(t) = ϕ(z + t) − ϕ(z).

Then, for a ∈ V and ϕ as above,

R(ϕ)−1Y (a, z)R(ϕ) = Y (R(ϕz)−1a, ϕ(z)). (6.8)

This formula is called Huang’s formula.
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1.6.2 Vertex Operator Algebras and their Modules
This section is devoted to giving the precise definition of a vertex operator
algebra (VOA) and the concepts of modules of various types for it. We will be
selecting the types of modules to work with according to the purpose.

1.6.2.1 Vertex Operator Algebras
A vertex operator algebra (VOA) is a pair (V,ω) of a vertex algebra V and a
conformal vector ω of V satisfying the following conditions:

(1) The action of L0 is semisimple on V with integral eigenvalues.
(2) The eigenvalues of L0 are bounded below.
(3) The eigenspaces for L0 are finite-dimensional.

The central charge of ω is called the central charge of the VOA (V,ω).
As usual, we alternatively say that a VOA is a vertex algebra V equipped

with a conformal vector ω satisfying (1)–(3), and often refer to (V,ω) by V
without mentioning ω explicitly.
By (1), the underlying vertex algebra V is graded by the conformal weights

as in (6.4). By (3), the eigenspaces are finite-dimensional:

dimVd < ∞ for all d ∈ Z.

By (2), the grading is of the following shape:

V = V−d0 ⊕ · · · ⊕ V−1

negative degrees

⊕ V0 ⊕ V1 ⊕ · · · .

In other words, the conformal weights are bounded below.
A VOA (V,ω) is said to be of CFT type if the grading satisfies Vd = 0 for

all d < 0 and V0 = C1:

V = C1 ⊕ V1 ⊕ V2 ⊕ · · · .

Many typical examples of VOAs, such as Heisenberg VOAs, lattice VOAs
associated with positive-definite even lattices, Virasoro VOAs, affine VOAs
associated with finite-dimensional simple Lie algebras at general levels, etc.,
are of CFT type under the standard choices of the conformal vectors.

Note 6.3. A pair (V,ω) of a vertex algebra V and a conformal vector ω ∈ V
is called a conformal vertex algebra if it satisfies (1).

1.6.2.2 Weak Modules and Ordinary Modules
A module over the underlying vertex algebra V of a VOA (V,ω) is a called a
weak module for the VOA.
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For a weak module M, consider the action of L0 on M. Then, we have a
counterpart of the property (6.3) for modules: for a ∈ V and v ∈ M,

L0(anv) = an(L0v) + (L0a)nv − (n + 1)anv. (6.9)

Assume thatM has an eigenspace decomposition

M =
⊕
λ∈C

Mλ, where Mλ = Ker (L0 − λ)
��
M.

Let us call such a module a weight module for (V,ω) and the eigenspace Mλ

the weight space of conformal weight λ.
Let us write ∆(v) = λ when v ∈ Mλ. Then, by (6.9), we have

∆(anv) = ∆(a) + ∆(v) − n − 1. (6.10)

In other words, for d,n ∈ Z and λ ∈ C,

ρn(Vd )Mλ ⊂ Mλ+d−n−1,

where ρn denotes the n-th action of V onM.
A weight module M is called an ordinary module (or just a module) if the

weight spaces are finite-dimensional and the real part of the conformal weight
in every coset in C/Z is bounded below. That is, for any coset in C/Z, there
exists a representative λ such that⊕

n∈Z
Mλ+n =Mλ ⊕Mλ+1 ⊕ · · · and dimMλ+n < ∞ (n ∈ Z).

The adjoint module V is an ordinary module by the conditions (1)–(3).
If M is a simple ordinary module, then there exists a complex number λ,

called the lowest conformal weight ofM, such that

M =Mλ ⊕Mλ+1 ⊕ · · · with Mλ , 0,

and the whole spaceM is generated byMλ as a module over V.

Note 6.4. 1. For ordinary modules, we may consider the graded dimensions
and the conformal characters (cf. Section 1.6.5). 2. Assume thatM has a gener-
alized eigenspace decomposition with respect to L0 and write ∆(v) = λ when v
is in the generalized eigenspace of conformal weight λ. Then (6.10) also holds
true for generalized eigenspaces.

1.6.2.3 N-Graded Modules
Let us set up an appropriate category of modules for a VOA to work with in
practice for representation theory.
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An N-graded module for a VOA (V,ω) is a weak moduleM equipped with
a grading of the form

M =
∞⊕
k=0

M(k) = M(0)
top

⊕M(1) ⊕M(2) ⊕ · · ·

satisfying the condition that, for all k ∈ N and d,n ∈ Z,

ρn(Vd )M(k) ⊂ M(k + d − n − 1).

A weak module is said to be N-gradable if there exists a grading that makes
it into an N-graded module. Note that a simple N-gradable module M can be
given an N-grading such that M is generated as a module over V by the top
subspaceM(0).
For example, a weight module M is N-gradable if the real part of the con-

formal weight in every coset in C/Z is bounded below. Indeed, such a module
is N-graded by

M(k) =
⊕
i∈I

Mλi+k, k = 0,1,2, · · · ,

where λi are the minimal representatives of the conformal weights modulo Z.
In particular, ordinary modules are N-gradable.
The category of N-graded modules is the category of which the objects are

N-graded modules and the morphisms are homomorphisms of modules over
the underlying vertex algebra V. Thus a morphism in this category need not
respect the gradings.
Note 6.5. An N-graded module is also called an admissible module in the
literatures, although the same term is used in a different sense for affine Kac–
Moody algebras.

1.6.2.4 Rationality, C2-Cofiniteness, and Regularity
Let us briefly describe conditions on a VOA and their consequences that guar-
antee finiteness or semisimplicity of module categories and play prominent
roles in representation theory of VOAs.

1. A VOA is said to be rational if any N-graded module is a direct sum of
simpleN-graded modules. In other words, the category ofN-graded module
is semisimple,
A rational VOA has only finitely many (isomorphism classes of) simple

N-gradable modules and they are ordinary.
2. A VOA (V,ω) is said to be C2-cofinite, if the following condition holds:

dimV/V(−2)V < ∞.
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A C2-cofinite VOA of CFT type has only finitely many simple weak mod-
ules and they are ordinary. Moreover, any weak module is N-gradable.

3. A VOA is said to be regular if any weak module is a direct sum of simple
ordinary modules.
A regular VOA is rational and C2-cofinite. If a VOA of CFT type is ra-

tional and C2-cofinite, then it is regular.

Since the Heisenberg VOA has infinitely many simple modules, it is neither ra-
tional nor C2-cofinite, so not regular either. The lattice VOAs associated with
positive-definite lattices, the affine VOAs associated with integrable represen-
tations of affine Kac–Moody algebras, and the VOAs associated with the Vira-
soro minimal models are known to be regular, hence rational and C2-cofinite.

1.6.2.5 Contragredient Modules
LetM be an ordinary module for a VOA (V,ω). By composition of the actions
given by (6.6), the transformation corresponding to z 7→ 1/z is found as

YM(a, z) 7→ YM(ezL1 (−z−2)L0 a, z−1).

We will use this to define the concept of the contragredient module.
To this end, consider the restricted dual ofM defined by

M′ =
⊕
λ∈C

M∗λ

whereM∗λ = HomC(Mλ,C) is the dual space. Denote the canonical pairing by

M′ ×M // C, (φ, v) 7→ 〈φ, v〉,

and the action of V onM′ by

〈YM′(a, z)φ, v〉 = 〈φ,YM(ezL1 (−z−2)L0 a, z−1)v〉.

Then M′ becomes an ordinary module for (V,ω), called the contragredient
module or the dual module ofM.

1.6.3 Simple N-Graded Modules
In this section, we will explain a way to develop representation theory of VOAs
in the category of N-graded modules. Recall that an N-graded module has the
shape

M = M(0)
top
⊕M(1) ⊕M(2) ⊕ · · · ,

where the grading is not necessarily given by the L0 eigenvalues.
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Since the actions of homogeneous elements ofV raise, preserve, or lower the
degrees, we can apply an analogue of “highest weight theory” to our categories.
Thus, to classify N-graded simple V-modules, we will classify the top sub-

space as a module over a certain algebra that induces actions preserving the
degree, called the zero-mode actions, and reconstruct the wholeM as a simple
quotient of the induced module.
Such an algebra can be universally constructed, denoted A(V), and called

Zhu’s algebra associated with the VOA (V,ω).

1.6.3.1 Lie Algebra of Fourier Modes
Let V be a vertex algebra andM a module over it. It follows from the commu-
tator formula (MC),

[am, bn ] =
∞∑
i=0

(
m
i

)
(a(i)b)m+n−i ,

that the actions of elements of V onM form a Lie subalgebra of EndM, called
the Lie algebra of Fourier modes onM.
Such a Lie algebra is actually the image of a universal one defined by taking

the commutator formula as the defining relation. Indeed, consider the space

V̂ = V ⊗ C[t, t−1 ],

and equip it with the bracket operation given by

[a ⊗ tm, b ⊗ tn ] =
∞∑
i=0

(
m
i

)
(a(i)b) ⊗ tm+n−i . (6.11)

Let T̂ denote the operator on V̂ defined by

T̂(a ⊗ tn) = (Ta) ⊗ tn + na ⊗ tn−1.

Then the bracket operation on V̂ induces a Lie algebra structure on the quotient

g(V) = V ⊗ C[t, t−1 ]/T̂(V ⊗ C[t, t−1 ])

and any moduleM over V can be regarded as a g(V)-module by

(a ⊗ tm) v = amv (a ∈ V, v ∈ M).

We will call the Lie algebra g(V) the Lie algebra of Fourier modes associated
with V, which covers the Lie algebra of Fourier modes on every module.
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1.6.3.2 Triangular Decomposition
Let (V,ω) be a VOA. For a homogeneous element a ∈ V and an integer n, let
Jn(a) denote the image of a ⊗ tn+∆(a)−1 in the quotient g(V):

Jn(a) = π(a ⊗ tn+∆(a)−1).

The definition of the Lie bracket (6.11) turns out to be

[Jm(a), Jn(b)] =
∞∑
i=0

(
m + ∆(a) − 1

i

)
Jm+n(a(i)b).

The action of Jn(a) on an N-graded module lowers the degree by n:

Jn(a) : M(k) // M(k − n).

The Lie algebra g(V) is Z-graded by the degree as

g(V) =
⊕
n

gn(V),

where gn(V) is the subspace of degree n:

gn(V) = Span {Jn(a) | a ∈ Vd (d ∈ Z)} .

We have the triangular decomposition

g(V) = g<0(V) ⊕ g0(V) ⊕ g>0(V),

where g<0(V) and g>0(V) are the sums of subspaces of negative and positive
degrees, respectively.
In particular, the action of an element of g0(V) is called the zero-mode action,

usually denoted o(a) for a homogeneous element a ∈ V. Thus

o(a) = J0(a) = a∆(a)−1 : M(k) // M(k),

where we have identified J0(a) in g0(V) with its action onM.

1.6.3.3 Zhu’s Algebra
For a VOA (V,ω), the Borcherds identity (M1) for modules reads, for
homogeneous elements a, b ∈ V,

∞∑
i=0

(
m + ∆(a) − 1

i

)
Jm+n+r (a(r+i)b)

=

∞∑
i=0
(−1)i

(
r
i

)
Jm+r−i(a)Jn+i(b)

−
∞∑
i=0
(−1)r+i

(
r
i

)
Jn+r−i(b)Jm+i(a).

(6.12)
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Since the top space M(0) of an N-graded module M is annihilated by g>0(V)
and preserved by g0(V), the relation (6.12) with (m,n,r) = (1,0,−1) reads

∞∑
i=0

(
∆(a)

i

)
o(a(i−1)b)

��
M(0) = o(a)o(b)

��
M(0)

and, with (m,n,r) = (1,1,−2),
∞∑
i=0

(
∆(a)

i

)
o(a(i−2)b)

��
M(0) = 0.

We take these relations as defining a universal algebra acting on the top space
M(0) for every N-graded moduleM.
We therefore define, for homogeneous a, b ∈ V, the elements a ∗ b and a ◦ b

by setting

a ∗ b =
∞∑
i=0

(
∆(a)

i

)
a(i−1)b, a ◦ b =

∞∑
i=0

(
∆(a)

i

)
a(i−2)b. (6.13)

Then it is not difficult to see that the operation ∗ induces a structure of an as-
sociative algebra on the quotient defined by the operation ◦ as

A(V) = V/V ◦ V.

The algebra A(V) thus obtained is called Zhu’s algebra. By abuse of notation,
we will denote the elements of A(V) by their representatives in V.
The top spaceM(0) becomes an A(V)-module by

A(V) ×M(0) // M(0), (a, v) 7→ o(a)v = J0(a)v,

since o(a ∗ b)
��
M(0) = o(a)o(b)

��
M(0) and o(a ◦ b)

��
M(0) = 0 holds by construction.

1.6.3.4 Zhu’s One-to-One Correspondence
Let g(V) = g<0(V) ⊕ g0(V) ⊕ g>0(V) be the Lie algebra of Fourier modes, and
consider the Lie subalgebra g≥0(V) = g0(V) ⊕ g>0(V). Note that the identity
map induces a surjection

π0 : g0(V) // A(V),

which sends the Lie bracket of g0(V) to the commutators in Zhu’s algebra.
For a simple N-graded V-moduleM = M(0) ⊕M(1) ⊕ · · · , the topM(0) is

seen to be an A(V)-module.
Conversely, for any simple A(V)-moduleW , regard it as a U(g0(V))-module

via the surjection π0 and further as a U(g≥0(V))-module by letting g>0(V) act
by 0, and consider the induced module:

M(W) = U(g(V)) ⊗U(g≥0(V))W .
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Then a simpleN-graded module for (V,ω) can be constructed as an appropriate
quotient ofM(W).
In this way, we arrive at the following result.

Theorem 6.6 (Zhu) There exists a one-to-one correspondence between the
isomorphism classes of simple N-gradable modules for a VOA (V,ω) and the
isomorphism classes of simple A(V)-modules.

Note 6.7. Zhu’s algebra plays an important role also in modular invariance of
conformal characters (cf. Section 1.6.5).

1.6.4 Fusion Rules
Let C be a commutative associative algebra and let L,M,N be submodules of
C. Then the multiplication on C restricts to a map

L ×M // N

satisfying properties coming from those of C; that is, (au)v = u(av)= a(uv) for
a ∈ C, u ∈ L, and v ∈ N. Let us now replace the submodules of C by arbitrary
modules and consider a map Y : L ×M // N satisfying

Y(au)v = Y(u)av = aY(u)v.

The first equality guarantees that Y induces a map L ⊗A M // N, which
becomes a homomorphism of modules over C by the second equality.
Such a map constructed for a triple of modules can be seen to motivate the

concept of an intertwining operator for a VOA. For example, for the lattice
VOA VL associated with an even lattice L and λ, µ ∈ L, consider the triple
Fλ,Fµ,Fλ+µ ofmodules for the HeisenbergVOAF0. Then the generating series
map Y (−, z) of VL restricts to a map

Fλ × Fµ // Fλ+µ((z)), (u, v) 7→ Y (u, z)v,

which is an intertwining operator for F0, and this generalizes to the case when
λ, µ are replaced by arbitrary elements of h∗.
The dimension of the space of intertwining operators is in fact a mathemat-

ical formulation of the concept of fusion rules originally considered in physics,
and the analogue of the tensor product is called the fusion product.
For a vector space V and an indeterminate z, consider series of the following

form with coefficients in V :

v(z) =
∑
α∈C

vαz−α−1.

The set of such series is denoted V{z}.
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1.6.4.1 Intertwining Operators
Let L,M,N be ordinary modules for a VOA (V,ω). An intertwining operator
of type

(
N

L M
)
is a linear map

Y(−, z) : L // Hom(M,N{z}), u 7→
[
v 7→ Y(u, z)v

]
such that the coefficients in the expansion

Y(u, z) =
∑
α

uαz−α−1

satisfy the following properties:

(I0) Local truncation. For any u ∈ L, v ∈ M, and α ∈ C,∑
n

z−α−n−1uα+nv ∈ N((z))z−α.

(I1) Borcherds identity. For all a ∈ V, u ∈ L, v ∈ M, p,r ∈ Z, and q ∈ C:
∞∑
i=0

(
p
i

)
(ar+iu)p+q−iv =

∞∑
i=0
(−1)i

(
r
i

)
ap+r−i(uq+iv)

−
∞∑
i=0
(−1)r+i

(
r
i

)
uq+r−i(ap+iv).

(IT) Translation. For all u ∈ L, v ∈ M, and α ∈ C,

(L−1u)αv = −αuα−1v.

For example, for L = V, the generating series YM(−, z) giving a module struc-
ture onM is an intertwining operator of type

(
M
VM

)
.

By (I1) with a = ω, the property (IT) turns out to be given by

L0(uαv) = (L0u)αv + uα(L0v) − (α + 1)uαv.

Therefore, (IT) is equivalent to the following: for homogeneous u ∈ L, v ∈ M,
and α ∈ C,

∆(uαv) = ∆(u) + ∆(v) − α − 1.

The Borcherds identity (I1) is stable under shifting the index q. Therefore,
if the coefficients ofY(u, z) satisfy (I1), then those ofY(u, z)z−β also satisfy it
for any scalar β, and this freedom is fixed by (IT).
Bymaking use of this freedom, in turn, the seriesY(u, z)v for simple ordinary

modules is turned to a series with integral powers by setting

Y◦(u, z)v = zλ+µ−νY(u, z)v, (6.14)
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where λ, µ, ν are the lowest conformal weights of L,M,N, respectively. Ex-
panding the modified series as

Y◦(u, z)v =
∑
n

Y◦n(u)v z−n−1,

we have Y◦n(u)M(m) ⊂ N(m + ∆(u) − n − 1), whereM(k) =Mµ+k and N(l) =
Nν+l are the homogeneous subspaces with respect to the associatedN-gradings.

Note 6.8. 1. The property (IT) is often called the L(−1)-derivative property in
the literatures. 2. The symbol

(
N

L M
)
exhibits that the intertwining operator is

contravariant in the lower entries L andM and covariant in the upper N.

1.6.4.2 Fusion Rules
LetL,M,N be ordinary modules for a VOA (V,ω). Then the set of intertwining
operators of type

(
N

L M
)
forms a vector space denoted

I
(
N

L M
)
=

{
intertwining operators of type

(
N

L M
) }
.

The dimension of this space is called the fusion rule, and usually denoted.

NN
L,M = dim I

(
N

L M
)
.

The fusion rules satisfy the following properties:

N N
LM = N N

ML = NM′
LN′,

whereM′ and N′ denote the contragredient modules.

1. The equality N N
LM = N N

ML holds by the actions corresponding to the skew-
symmetry. Indeed, we have an isomorphism ∗ : I

(
N

L M
)

// I
(
N

M L
)
sending

Y to Y∗ defined by

Y∗(v, z)u = ezL−1Y(u,−z)v

for u ∈ L and v ∈ M,
2. The equality N N

LM = NM′
LN′ holds by the contragredient actions. Indeed, we

have an isomorphism ′ : I
(
N

L M
)

// I
(
M′
L N′

)
sending Y to Y′ defined by

〈Y′(u, z)φ, v〉 = 〈φ,Y(ezL1 (−z2)−L0u, z−1)v〉

for u ∈ L, v ∈ M, and φ ∈ N′.

https://doi.org/10.1017/9781009338073.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009338073.002


122 Atsushi Matsuo

1.6.4.3 Fusion Products
Let us first note that we may equivalently formulate intertwining operators as
a map of the form

Y : L ⊗M // N{z}, u ⊗ v 7→ Y(u ⊗ v, z) = Y(u, z)v.

In the sequel, we will freely switch from one to the other.
For a pair L,M of ordinary modules for a VOA (V,ω), their fusion product

is a pair (L ⊠ M,YL⊠M
L,M ) of an ordinary module L ⊠ M and an intertwining

operator
YL⊠M
L,M : L ⊗M // L⊠M{z},

satisfying the following universal property:

For any ordinary module N for (V,ω) and any intertwining operator

Y : L ⊗M // N{z}

there exists a unique homomorphism ϕ : L⊠M // N of modules such that
the diagram

L ⊗M

YL⊠M
L,M

��

Y // N{z}

(L⊠M){z}
ϕ

99rrrrrrrrrr

commutes, where ϕ : (L ⊠M){z} // N{z} is the obvious map induced by
ϕ : L⊠M // N.

If the fusion product L⊠M exists, then, for any ordinary module N, the fusion
rule is given by

NN
L,M = dimHomV (L⊠M,N),

hence, under semisimplicity of the module category,

L⊠M =
⊕
W

NW
L,MW,

where the direct sum runs over the isomorphism classes of simple modules,
which we identify with their representatives.
Note 6.9. When the VOA is good enough, the fusion products satisfy associa-
tivity in an appropriate sense and, under semisimplicity of the module category,
the free abelian group generated by the simple modules becomes a commuta-
tive ring by the fusion product, called the fusion ring, for which the fusion rules
are the structure constants.
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1.6.4.4 Determination of fusion rules
Let L be a simple ordinary module for a VOA (V,ω). For homogeneous a ∈ V
and u ∈ L, consider the elements a ∗ u and a ◦ u given by the same formula as
(6.13). That is,

a ∗ u =
∞∑
i=0

(
∆(a)

i

)
ai−1u, a ◦ u =

∞∑
i=0

(
∆(a)

i

)
ai−2u.

Then, as in the case of Zhu’s algebra, the operation ∗ induces an action of Zhu’s
algebra A(V) on the quotient defined by ◦ as

A(L) = L/V ◦ L.

Moreover, the space A(L) admits a right action of A(V) induced by

u ∗ a =
∞∑
i=0

(
∆(a) − 1

i

)
ai−1u.

It is not difficult to see that A(L) becomes an A(V)-bimodule by the left and
the right operations ∗, which is called the Frenkel–Zhu bimodule.
Let L,M,N be simple ordinary modules with the lowest conformal weights

λ, µ, ν, respectively, and equip them with N-grading by, for k ∈ N,

L(k) = Lλ+k, M(k) =Mµ+k, N(k) = Nν+k .

For an intertwining operatorY of type
(
N

L M
)
, consider the following maps for

k ∈ N by taking the series Y◦(u, z) given by (6.14):

L(k) ×M(0) // N(0), (u, v) 7→ Y◦k−1(u)v.

Then it induces

π(Y) : A(L) ⊗A(V)M(0) // N(0),

giving rise to a map

π : I
(
N

L M
)

// HomA(V)(A(L) ⊗A(V)M(0),N(0)).

Theorem 6.10 (Frenkel–Zhu, Li) Let L,M,N be simple ordinary modules
for a VOA (V,ω). Then

dim I
(
N

L M
)
≤ dimHomA(V)(A(L) ⊗A(V)M(0),N(0)).

Moreover, if the VOA is rational, then the equality holds.
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1.6.4.5 Examples of Fusion Rules
Let us list some examples of fusion rules.

1. Heisenberg VOAs. Consider the Heisenberg algebra ĥ and the associated
vertex algebra V = F0, which is a VOA with the standard conformal vector
ω. Consider the Fock modules Fλ of charge λ ∈ h∗. The fusion rules among
them are described as follows: for λ, µ, ν ∈ h∗,

dim I
( Fν
Fλ Fµ

)
=

{
1 i f λ + µ = ν,
0 otherwise.

In terms of the fusion product, it is expressed as

Fλ ⊠ Fµ = Fλ+µ .

2. Lattice VOAs. For a positive-definite even lattice L, consider the lattice
VOA (VL ,ω) with ω the standard conformal vector. The simple ordinary
modules are classified by the cosets in L◦/L as

VL+λ =
⊕
µ∈L

Fλ+µ, (λ ∈ L◦),

and the fusion rules are described as, for representatives λ, µ of L◦/L,

VL+λ ⊠ VL+µ = VL+(λ+µ) .

3. Simple affine VOAs at integrable levels. Consider the simple affine VOA
(L(k,0),ω) associated with sl2 at level k = 1,2, · · · . The simple ordinary
modules are the module L(k, j) with spin j = 0,1/2,1, . . . , k/2. The fu-
sion rules are described as follows: for half integers i, j with 0 ≤ i, j ≤
k/2,

L(k, i)⊠ L(k, j) =
⊕
l

L(k, l),

where the sum is over the half integers l with 1 ≤ l ≤ k/2 satisfying
(1) |i − j | ≤ l ≤ i + j and i + j + l ∈ Z, and (2) i + j + l ≤ k.
The condition (1) is just the ordinary Clebsch–Gordan rules of decomposi-
tion of tensor products.

For example, if k = 1, then

L(1,0) ⊠ L(1,0) = L(1,0),
L(1,0) ⊠ L(1,1/2) = L(1,1/2),
L(1,1/2)⊠ L(1,0) = L(1,1/2),
L(1,1/2)⊠ L(1,1/2) = L(1,0).
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Compare the result with that for the lattice VOA VL associated with the
one-dimensional lattice of type A1, which is isomorphic to L(1,0).
The result is generalized to simple affineVOAs associatedwith integrable

representations of affine Kac–Moody algebras. See [96] for sl2, and [60] and
[97] for the general case.

4. Virasoro minimal models. Consider the simple Virasoro VOA L(1/2,0) of
central charge 1/2. The list of simple modules is

L(1/2,0),L(1/2,1/2),L(1/2,1/16),

and the fusion rules are described as

L(1/2,0) ⊠ L(1/2, h) = L(1/2, h) (h = 0,1/2,1/16),
L(1/2,1/2) ⊠ L(1/2,1/2) = L(1/2,0),
L(1/2,1/2) ⊠ L(1/2,1/16) = L(1/2,1/16),
L(1/2,1/16)⊠ L(1/2,1/16) = L(1/2,0) ⊕ L(1/2,1/2).

The other cases are obtained by the symmetry of fusion rules.
The results are generalized to the case of the Virasoro minimal models,

where the fusion rules are given by

L(cp,q, hk ,l)⊠ L(cp,q, hm,n) =
⊕
(r ,s)

L(cp,q, hr ,s),

where the sum is over the pairs (r, s) of integers with 1 ≤ r ≤ q − 1 and
1 ≤ s ≤ p − 1, up to identification (r, s) ∼ (q − r, p − s), satisfying the
following conditions:

(1) |k − m | < r < k + m and | l − n | < s < l + n.
(2) k + m + r ∈ 2Z + 1 and l + n + s ∈ 2Z + 1.
(3) k + m + r ≤ 2q and l + n + s ≤ 2p.

See Subsection 1.3.3.4 for the notations and [15] and [99] for details.
5. Fixed-point VOAs V+L . Let VL be the VOA associated with a positive-

definite even lattice L and V+L the vertex subalgebra of fixed-points by the
automorphism θ, a lift of (−1)-involution of L to VL .

For simplicity, consider the case when L is unimodular. Recall the
twisted module Vtw

L , which becomes an (untwisted) module for V+L and de-
composes into the direct sum of simple components Vtw,±

L . Now the list of
simple modules for V+L is

V+L , V−L , Vtw,+
L , Vtw,−

L .
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The fusion rules are
V−L ⊠ V−L = V+L , V

−
L ⊠ Vtw,±

L = Vtw,∓
L ,

Vtw,±
L ⊠ Vtw,±

L = V+L , V
tw,±
L ⊠ Vtw,∓

L = V−L .

See [27] for details.

1.6.5 Modular Invariance
LetM be a simple ordinary module for a VOA (V,ω) of central charge c. The
graded dimension with respect to the grading by conformal weight multiplied
by q−c/24 is called the conformal character ofM and denoted as.

chM(q) = q−c/24TrMqL0 = q−c/24
∞∑
n=0

qλ+n dimMλ+n,

where λ is the lowest conformal weight ofM. We are interested in the behavior
of the conformal characters as functions of τ, where q = e2π

√
−1τ , when M

varies over the ordinary simple modules.
For simple affine VOAsL(k,0) associated with integrable representations of

affine Kac–Moody algebras, the conformal characters agree with specialization
of the characters in the sense of Kac–Moody algebras, and they satisfy certain
modular transformation properties.
On the other hand, for the moonshine module V♮, the conformal character is

given by
J(τ) − 744 = q−1 + 196884q + · · · ,

where J(τ) is the elliptic modular function, which is certainly invariant under
modular transformations.
Such nice modular transformation properties can be uniformly described as

a consequence of a general fact, modular invariance of conformal characters,
which holds not only for conformal characters, but also for functions called
torus one-point functions under suitable conditions.
In this section, we will briefly describe the theory of modular invariance

established by Y. C. Zhu by combining ideas from conformal field theory in
physics with C2-cofiniteness and Zhu’s algebra.

1.6.5.1 Torus One-Point Functions
For a simple ordinary moduleM with the lowest conformal weight λ ∈ C for
a VOA (V,ω), consider the series in q = e2π

√
−1τ defined for a homogeneous

a ∈ V by

χM(a, τ) = q−c/24Tr o(a)qL0
��
M = q−c/24

∞∑
n=0

Tr o(a)
��
Mλ+n

qλ+n,
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where o(a) = a∆(a)−1 is the zero-mode action on the weight spacesMλ+n. This
series is called the one-point function (on the torus) associated withM at a ∈ V.
In particular, when the element a is the vacuum 1, the one-point function

agrees with the conformal character chM(q):

χM(1, τ) = chM(q) = q−c/24
∑
α∈C

dimMαqα.

Now assume that (V,ω) is rational; that is, the category ofN-graded modules
is semisimple. Then there are only finitely many isomorphism classes of simple
modules, sayM1, . . . ,Mn, which are ordinary.We are interested in the behavior
of the one-point functions

χM1 (a, τ), . . . , χMn (a, τ).

under transformations of weight k by the full modular group SL2(Z),

f (τ) 7→ (cτ + d)−k f
( aτ + b

cτ + d

)
,

where a, b, c, d ∈ Z and ad − bc = 1.

1.6.5.2 Eisenstein Series and Serre Derivative
In describing the properties of one-point functions as defined here, the Eisen-
stein series naturally arise.
For k ∈ N, let G2k(τ) denote the Eisenstein series in its q-expansion:

G2k(τ) = 2ζ(2k) +
2
(
2π
√
−1

)2k

(2k − 1)!

∞∑
n=1

σ2k−1(n)qn,

where ζ is the Riemann zeta function and σm(n) the sum of mth powers of
divisors of n. For k ≥ 2, the Eisenstein series is a modular form of weight 2k:

G2k

( aτ + b
cτ + d

)
= (cτ + d)2kG2k(τ).

For k = 2,3, we have

G4(τ) =
π4

45

(
1 + 240

∞∑
n=1

σ3(n)qn
)
, G6(τ) =

2π6

945

(
1 − 504

∞∑
n=1

σ5(n)qn
)
.

Consider the ring of modular forms C[G4(τ),G6(τ)], which is a Noetherian
ring. For k = 1, we have

G2(τ) =
π2

3

(
1 − 24

∞∑
n=1

σ1(n)qn
)
,
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whose transformation property is

G2

( aτ + b
cτ + d

)
= (cτ + d)2G2(τ) − 2π

√
−1c(cτ + d).

Although it is not a modular form, for a modular form f (τ) of weight k, the
Serre derivative

Dk f (τ) = (2π
√
−1) d

dτ
f (τ) + kG2(τ) f (τ)

becomes a modular form of weight k + 2.

1.6.5.3 Space of One-Point Functions
LetM be an ordinarymodule for a VOA (V,ω) and consider the associated one-
point function χM(−, τ). For homogeneous elements a, b ∈ V, the following
formulas hold by the axioms for vertex algebras and invariance of trace under
cyclic permutation of entries: for a, b ∈ V,

(1) χM(a[0]b, τ) = 0 ,

(2) χM(a[−2]b, τ) +
∞∑
k=2
(2k − 1)G2k(τ)χM(a[2k−2]b, τ) ,

(3) χM(L[−2]a, τ) = D∆[a] χM(a, τ) +
∞∑
k=2

G2k(τ)χM(L[2k−2]a, τ),

where a[n]b and L[n] are defined by

Y (e2π
√
−1zL0 a, e2π

√
−1z − 1)b =

∑
n

a[n]bz−n−1,

L[n] = (2π
√
−1)2(ω − (c/24)1)[n+1],

respectively, and D∆[a] χM(a, τ) is the Serre derivative with ∆[a] the conformal
weight of a with respect to L[0].
Here the assignment a 7→ Y (e2π

√
−1zL0 a, e2π

√
−1z−1) gives a newVOA struc-

ture onVwith the conformal vector ω̃ = (2π
√
−1)2(ω−(c/24)1), which is seen

to be achieved by a particular case of Huang’s formula (6.8) corresponding to a
coordinate on the cylinder, and this is where the factor q−c/24 of the conformal
character arises.
Now the properties (1), (2), and (3) do not depend on the choice of the

module M. We therefore take them as conditions on a functional χ(−, τ) on
V ⊗ C[G4(τ),G6(τ)] valued in series in q, and call such a functional an ab-
stract one-point function if it satisfies the conditions.
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Let Oq(V) be the C[G4(τ),G6(τ)]-submodule of V ⊗ C[G4(τ),G6(τ)] gen-
erated by the elements of the following form with a, b ∈ V:

a[0]b or a[−2]b +
∞∑
k=2
(2k − 1)G2k(τ)a[2k−2]b. (6.15)

Then an abstract one-point function χ(−, τ) induces a functional on the
quotient

V ⊗ C[G4(τ),G6(τ)]/Oq(V)

by (1) and (2).

1.6.5.4 Consequence of C2-Cofiniteness
Recall that a VOA (V,ω) is said to be C2-cofinite if the quotient V/V(−2)V is
finite-dimensional.
If (V,ω) is C2-cofinite, V ⊗ C[G4(τ),G6(τ)]/Oq(V) is a finitely generated
C[G4(τ),G6(τ)]-module, thus a Noetherian module since the ring C[G4(τ),G6
(τ)] is Noetherian. Therefore, for any a ∈ V, there exist s ∈ N and gi(τ) ∈
C[G4(τ),G6(τ)] such that

(L[−2])sa +
s−1∑
i=0

gi(τ)(L[−2])ia ∈ Oq(V).

After some algebra, the relation yields the following result.

Theorem 6.11 (Zhu) Let (V,ω) be a C2-cofinite VOA, χ(−, τ) a one-point
function and a ∈ V satisfy L[n]a = 0 for n > 0. Then, the value of the one-point
function at a ∈ V satisfies a differential equation of the form(

q
d

dq

)s
χ(a, τ) +

s−1∑
i=0

hi(τ)
(
q

d
dq

) i
χ(a, τ) = 0,

where hi(τ) ∈ C[G2(τ),G4(τ),G6(τ)].

Note 6.12. 1. Theorem 6.11 only guarantees existence of a differential equa-
tion, and finding it explicitly is a separate problem. 2. By the property (1) in the
preceding subsection, it follows that the result of Theorem 6.11 holds under a
weaker assumption. See [28] and [85].

1.6.5.5 Modular Invariance
Assume that (V,ω) isC2-cofinite. Then the values of one-point functions χ(a, τ)
at any a ∈ V satisfy a linear ordinary differential equation of regular singular
type for which q = 0 is a the only regular singular point, so the series solutions
at q = 0 converge. Therefore, one-point functions can be viewed as taking
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values in holomorphic functions of τ on the upper half-plane, and the space
of abstract one-point functions is invariant under the modular transformations
since the conditions that characterize it are modular invariant. Moreover, the
initial terms of one-point functions give rise to linear functionals F on Zhu’s
algebra A(V) satisfying F(a ∗ b) = F(b ∗ a).
Assume further that (V,ω) is rational. Then Zhu’s algebra A(V) is semisim-

ple, and the simple A(V)-modules are in one-to-one correspondence with the
top spaces of the simple ordinary modules. It then follows that the modular
invariant space of abstract one-point functions is spanned by the one-point
functions associated with simple ordinary modules.

Theorem 6.13 (Zhu, Dong-Li-Mason) Let (V,ω) be rational andC2-cofinite
and letM1, . . . ,Mn be the list of simple ordinary modules. Then, for any k ∈ N
and any element a ∈ V of weight k with respect to L[0], the series

χM1 (a, τ), . . . , χMn (a, τ) (6.16)

define holomorphic functions on the upper half-plane that span a vector space
invariant under the weight k action of the full modular group SL2(Z).

In other words, the transformation of χMi (a, τ) under a modular transfor-
mation of weight k becomes a linear combination of the functions (6.16) with
constant coefficients.
Note 6.14. When the VOA and the module category are good enough, the
matrix representing the modular transformation τ 7→ −1/τ is related to the
fusion rules by a famous formula called the Verlinde formula.
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Finding the automorphism group of a VOA is an interesting problem. See

Dong and Nagatomo [50] for AutVL and Shimakura [94] for AutV+L .

Epilogue

Let Λ be the Leech lattice, the unique even unimodular positive-definite lattice
of rank 24 without roots. Consider the lattice VOA VΛ with the standard con-
formal vector. It is a regular VOA of CFT type and the conformal character is
given by

chVΛ (q) = j(τ) − 720
= q−1 + 24 + 196884q + 21493760q2 + · · · .

In particular, the dimension of the degree 1 subspace is 24, which is nonzero.
SinceΛ is unimodular, the VOAVΛ is holomorphic, that is, the adjoint module
VΛ is the only simple module.
Consider the decomposition of VΛ under a lift θ of the (−1)-involution of

the lattice:
VΛ = V+Λ ⊕ V−Λ .

Then the fixed-point subVOA V+
Λ
is again of CFT type but with the degree 1

subspace now being 0. The VOA V+
Λ
is still regular, but not holomorphic, and

the list of simple modules

V+
Λ
, V−

Λ
, Vtw,+

Λ
, Vtw,−

Λ
,

where Vtw,±
Λ

are simple components of Vtw
Λ

as a V+
Λ
-module and let Vtw,+

Λ
be

the one with integral grading with respect to L0.
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Now the moonshine module V♮ is constructed as a module over V+
Λ
as

V♮ = V+
Λ
⊕ Vtw,+

Λ
,

of which the conformal character is given as described in the Introduction by

chV♮ (q) = j(τ) − 744
= q−1 + 0 + 196884q + 21493760q2 + · · · .

The moonshine module V♮ actually becomes a regular holomorphic VOA (cf.
[42], [47]), which is of CFT type with the degree 1 subspace now being 0.
Existence of a vertex algebra structure on V♮ that extends the structure of a

module over V+
Λ
is stated in [32] and its detailed proof by hard calculations,

heavily based on group theoretical consideration, is given in [1]. Alternatively,
note that V+

Λ
and Vtw,+

Λ
are closed under the fusion products as

Vtw,+
Λ

⊠ Vtw,+
Λ
= V+

Λ
,

the intertwining operators are series with integral powers in z, and the fusion
rules are at most one-dimensional. The vertex algebra structure on V♮ can ac-
tually be obtained by intertwining operators among V+

Λ
and Vtw,+

Λ
, multiplied

by appropriate constant scalar factors.
Nowadays, many constructions of V♮ are known. See [95] for a nice con-

struction from (V+√2E8
)⊗3 and [36] for constructions from VΛ . See [37] for gen-

eral theory of constructing vertex algebras by intertwining operators.

Let V be a VOA of CFT type with the degree 1 subspace being 0, such as
the moonshine module.

V = C1 ⊕ 0 ⊕ B ⊕ · · · .

Then the degree 2 subspace B satisfies

B(1)B ⊂ B, B(3)B ⊂ V0 = C1.

Let us equip B with a product and a bilinear form:

· : B × B // B, (a, b) 7→ a · b,
( | ) : B × B / / C, (a, b) 7→ (a |b),

in such a way that

a · b = a(1)b and (a |b)1 = a(3)b.
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It is easy to see that the axioms for vertex algebras and their consequences
imply, for all a, b, c ∈ B,

a · b = b · a, (a |b) = (b |a), and (a · b |c) = (a |b · c).

In other words, B is a commutative algebra with symmetric invariant bilinear
form, often called theGriess algebra of V. The Griess algebra B♮ of the moon-
shine module V♮ is the Griess–Conway algebra mentioned in the Introduction.
One of the specific features of V♮ is the existence of an Ising frame, often

called a Virasoro frame; that is, a full subVOA of a VOA isomorphic to a tensor
product of the simple Virasoro VOA L(1/2,0) of central charge 1/2 (cf. [49],
[43]). Here a subVOA of a VOA is said to be full if their conformal vectors
agree. The moonshine moduleV♮ inherits such a frame of length 48 fromV+

Λ
⊂

VΛ :

L(1/2,0) ⊗ · · · ⊗ L(1/2,0)
48 times

⊂ V+
Λ
.

In other words, the Griess–Conway algebra B♮ has a set of 48 Virasoro vectors
of central charge 1/2, orthogonal to each other in the sense that the correspond-
ing Virasoro actions commute, such that each generates a subVOA isomorphic
to L(1/2,0).
In general, let V be a VOA of CFT type with V1 = 0. Let e be a Virasoro

vector in the Griess algebra B of central charge 1/2; that is,

ω · e = e · e = 2e, (e |e) = 1
4
.

Such an e is called an Ising vector if it generates a subVOA Ve isomorphic to
L(1/2,0). Since L(1/2,0) is regular, V decomposes as

V = V(e,0) ⊕ V(e,1/2) ⊕ V(e,1/16), (2)

where V(e, h) denotes the sum of components isomorphic to L(1/2, h) for each
h = 0,1/2,1/16. Note that Ve itself is one of the simple components inV(e,0).
Consider the map

Y (−, z) : V // Hom(V,V((z))), a 7→ Y (a, z).

Then it induces an intertwining operator for the VOA L(1/2,0) for each triple
of appropriate simple components of V when multiplied by a rational power of
z depending on the triple. Consequently, the fusion rules for the Ising model
imply that the product operations of the vertex algebra V satisfy, for n ∈ Z,
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V(e,0) (n)V(e, h) ⊂ V(e, h) (h = 0,1/2,1/16),
V(e,1/2) (n)V(e,1/2) ⊂ V(e,0),
V(e,1/2) (n)V(e,1/16) ⊂ V(e,1/16),
V(e,1/16) (n)V(e,1/16) ⊂ V(e,0) ⊕ V(e,1/2),

which imply that the following map τe gives rise to an automorphism of the
whole VOA V (cf. [19] and [83]):

τe : V // V, τev =

{
v (v ∈ V(e,0) ⊕ V(e,1/2)),
−v (v ∈ V(e,1/16)).

This automorphism is called theMiyamoto involution in the literatures.
Now let a be the half of an Ising vector e in B. Then a is an idempotent of B

with squared norm 1/16:

a · a = a, (a |a) = 1
16
.

Consider the eigenspace with eigenvalue λ for the action of the idempotent a
on B by multiplication and write

B(a, λ) = {x ∈ B | a · x = λx} .

Then, since V is of CFT type with V1 = 0 and the highest weight vector of Ve

is the vacuum 1 ∈ V, we haveVe ∩B = Ce, and it follows that the other simple
components of V(e,0) can be chosen so that they intersect B with the span of
the highest weight vectors. Therefore, we have B(a,1) = Ca and

B = B(a,1) ⊕ B(a,0) ⊕ B(a,1/4) ⊕ B(a,1/32), (3)

where the eigenspaces are related to the decomposition (2) by

B(a,1) ⊕ B(a,0) = B ∩ V(e,0),
B(a,1/4) = B ∩ V(e,1/2), B(a,1/32) = B ∩ V(e,1/16).

Regarding the decomposition (3), the fusion rules turn out to be described by
Table 12. The information given to the idempotent a is strong enough to en-
sure that the structures of subalgebras generated by a pair of such idempotents
actually fall into nine types ([90], [62]) corresponding to the conjugacy classes
of the products of pairs of 2A involutions of the Monster (see [16]).
The properties of the idempotents a in the Griess algebra as here were ax-

iomatized in [16], and a general framework in dealing with such algebras was
formulated in [62] under the term axial algebras (cf. [80], [63] and [23]).
Let A be a commutative nonassociative algebra and consider a set of dis-

tinguished idempotents, called the axes. Assume that the actions of axes a by
multiplication are semisimple with eigenvalues from a fixed set Λ as
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Table 12 Ising fusion rules for axes

1 0 1/4 1/32

1 1 ∅ 1/4 1/32
0 ∅ 0 1/4 1/32
1/4 1/4 1/4 1,0 1/32
1/32 1/32 1/32 1/32 1,0,1/4

A =
⊕
λ∈Λ

A(a, λ),

for which the multiplication ofA obeys a prescribed set of fusion rules, recently
called a fusion law, which sends a pair (λ, µ) of eigenvalues in Λ to a subset
λ ∗ µ of Λ, in such a way that

A(a, λ)A(a, µ) ⊂
∑
ν∈λ∗µ

A(a, ν).

Since A is commutative, we may and do assume that the fusion rules are sym-
metric; that is, λ ∗ µ = µ ∗ λ for all λ, µ ∈ Λ. An axial algebra is an algebra
equipped with axes that satisfy the properties discussed here and generate the
algebra.
The concept of axial algebras was further generalized in [39] to a class of

algebras called axial decomposition algebras. These algebras have been exten-
sively studied in recent years with fruitful outcomes.
Let us finally recall that the moonshine module V♮ is of CFT type, regu-

lar, hence C2-cofinite, and holomorphic of central charge c = 24. Note that
the lattice VOAs associated with Niemeier lattices and many other VOAs also
satisfy the same properties. For recent progress on the classification of such
VOAs, initiated by Schellekens [91], see [98].
Let V be a VOA satisfying the properties listed. By Zhu’s theory of modular

invariance, the one-dimensional vector space spanned by the conformal charac-
ter chV(q) = χV(1, τ) is invariant undermodular transformations. After inspect-
ing the possible characters of the full modular group for the transformation, it
turns out that the conformal character itself is modular invariant and it must be
identical to the elliptic modular function j(τ) up to shifting the constant term
(cf. [25], [21]). In particular, the dimension of the degree 2 subspaceV2 of such
a VOA must be 196884.
Let a be any element of V that is homogeneous of conformal weight k with

respect to L[0], and consider the one-point function:
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χV(a, τ) = q−1
∞∑
n=0

Tr o(a)
��
Vn

qn.

Then it is also invariant under modular transformations, but now of weight k.
Moreover, if a is a singular vector with respect to the Virasoro actions, then
χV(a, τ) is a cusp form (cf. [48]), which is 0 if the weight is less than 12.
Let us apply this observation to the case with V1 = 0, when the conformal

character equals j(τ)−744 and the shape ofV agrees with that of themoonshine
module:

V = C1 ⊕ 0 ⊕ B ⊕ V3 ⊕ V4 ⊕ · · · .
dim 1 0 196884

Then the absence of cusp forms, as mentioned, combined with general proper-
ties of the VOA such as the Borcherds identity and their consequences, implies
the following trace formulae for the multiplication operators on the Griess al-
gebra B for up to five elements of B:

Tr o(a1) = 32814 (a1 |ω),
Tr o(a1)o(a2) = 4620 (a1 |a2) + 5084 (a1 |ω)(a2 |ω),

Tr o(a1)o(a2)o(a3) = 900 (a1 |a2 |a3) + 620Cyc(a1 |a2)(a3 |ω)
+ 744 (a1 |ω)(a2 |ω)(a3 |ω),

Tr o(a1)o(a2)o(a3)o(a4)
= 166 (a1a2 |a3a4) − 116 (a1a3 |a2a4) + 166 (a1a4 |a2a3)
+ 114Sym (a1 |a2 |a3)(a4 |ω) + 52Sym (a1 |a2)(a3 |a4)
+ 80Sym (a1 |a2)(a3 |ω)(a4 |ω) + 104 (a1 |ω)(a2 |ω)(a3 |ω)(a4 |ω),

Tr o(a1)o(a2)o(a3)o(a4)o(a5) = 30Cyc(a1a2 |a3 |a4a5) + · · · .

Note that for a ∈ B, the zero-mode action o(a) restricted to B agrees with
multiplication by a. See [79] for details and [67] for a recent application.
These formulae were originally obtained by S. P. Norton for the Griess–

Conway algebra B♮ in [87] by investigating detailed structures of the algebra
(cf. [38]).
The derivation of the formulae by modular invariance as described remark-

ably shows that such detailed properties of the algebra B♮ are revealed as a
consequence of general properties of the whole V♮ endowed with the structure
of a VOA, which is in accordance with the uniqueness of V♮ conjectured by I.
B. Frenkel et al. in [1] as mentioned in the Introduction.
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