VOL. 2 (1970), 267-274.

Extensions of finite nilpotent groups John Poland

If G is a finite group and P is a group-theoretic property, G will be called P-max-core if for every maximal subgroup M of G, M/M_G has property P where $M_G = \bigcap_{x \in G} (x^{-1}Mx)$ is the core of M in G. In a joint paper with John D. Dixon and A.H. Rhemtulla, we showed that if p is an odd prime and G is (p-nilpotent)-max-core, then G is p-solvable, and then using the techniques of the theory of solvable groups, we characterized nilpotent-max-core groups as finite nilpotent-by-nilpotent groups. The proof of the first result used John G. Thompson's p-nilpotency criterion and hence required $p \ge 2$. In this paper I show that supersolvable-max-core groups (and hence (2-nilpotent)-max-core groups) need not be 2-solvable (that is, solvable). Also I generalize the second result, among others, and characterize (p-nilpotent)-max-core groups (for p an odd prime) as finite nilpotent-by-(p-nilpotent) groups.

1. Introduction

If *H* is a subgroup of a group *G* then the core H_G of *H* is defined to be $\bigcap_{x \in G} (x^{-1}Hx)$. I will call H/H_G the core factor of *H*. *x* ϵ_G In a joint paper [4] with John D. Dixon and A.H. Rhemtulla, a finite group *G* was termed X-max-core, where X is a property (or class) of groups, if the core factors of the maximal subgroups of *G* all had property X

Received 19 January 1970. The author thanks the National Research Council of Canada and the Province of Ontario for continued support, and particularly the Canadian Mathematical Congress for a grant to attend the 1969 Summer Research Institute where this work was done.

John Poland

(or lay in X). In particular, the trivial-max-core groups are just the finite nilpotent groups. Thus the concept of X-max-core extends that of finite nilpotent; more precisely, if $\{1\} \in X$, the class of X-max-core groups is an extension of the class of all finite nilpotent groups. But there is another sense in which X-max-core groups may be considered as extensions of nilpotent groups. In our previous paper [4], we obtained two main results (both of which I wish to examine here).

RESULT A. If p is an odd prime and G is (p-nilpotent)-max-core, then G is p-solvable.

RESULT B. If F is a formation of nilpotent groups, then a finite group G is F-max-core if and only if G is a nilpotent-by-F group. (Recall that a formation F is a class of groups satisfying

(a) if $G \in F$ and $N \triangleleft G$ then $G/N \in F$, and

(b) if G/N_1 , $G/N_2 \in F$ then $G/(N_1 \cap N_2) \in F$.

By an X-by-Y group we mean a group G having a normal subgroup N in X with G/N in Y). Consequently, for some classes X, all X-max-core groups are extensions of nilpotent groups by X-groups.

It is a well-known result of 0.J. Schmidt (see [6], p. 280) that if a finite group has only nilpotent maximal subgroups then it is solvable. N. Itô has shown that the condition "nilpotent" may be weakened to "p-nilpotent", and B. Huppert has shown that "supersolvable" may be substituted for "nilpotent" too (see [6], pp. 434, 718). It follows directly from Result A above that nilpotent-max-core groups are solvable, which generalizes Schmidt's theorem. Two questions arise immediately: does Result A hold for p = 2, and can the condition "p-nilpotent" be replaced by "supersolvable"? I will answer both of these negatively here. (In [4] we showed "p-solvable" could not be replaced by "solvable".)

Result B was deduced from A by using the techniques of the theory of solvable groups - for, nilpotent-max-core groups are solvable. It is natural to ask whether, having A, B could be extended to formations of p-nilpotent groups (for p odd) in the usual manner in which many properties of solvable groups carry over to p-solvable groups. I will prove that the (p-nilpotent)-max-core groups are indeed precisely the finite nilpotent-by-(p-nilpotent) groups, but that there are formations F

268

of p-nilpotent groups for which the concepts of F-max-core and finite nilpotent-by-F do not coincide.

Throughout this paper, all groups considered will be finite. As in [4], sX and qX will denote respectively the classes of subgroups and quotients of X-groups.

2. The counterexample

Let p be a prime satisfying $p^2 \equiv 1 \pmod{16}$ - for example, p = 7. Let G = PGL(2, p) be the projective linear group, which is the central factor of the general linear group of all 2×2 nonsingular matrices over the field of p elements, and let S = PSL(2, p), the projective special linear group, be its (unique) subgroup of index 2.

PROPOSITION 1. If p is a prime satisfying $p^2 \equiv 1 \pmod{16}$ then PGL(2, p) is supersolvable-max-core and (2-nilpotent)-max-core but PGL(2, p) is not 2-solvable.

Proof. Since S is of even order and is simple ([6], p. 182), G is not 2-solvable, or in fact p-solvable for any prime p dividing the order of G. And since supersolvable groups are 2-nilpotent ([6], p. 716), the Proposition reduces to showing only that G is supersolvable-max-core. To do this, it will be shown that the subgroups H of S are of two types:

(type A) $l = H_0 < H_1 < \ldots < H_k = H$ is a characteristic series of H in which H_{i+1}/H_i is cyclic for $i = 0, 1, \ldots, k-l$,

(type B) $N_G(H) = N_S(H)$.

Then if M is a maximal subgroup of G, either M = S (so $M/M_G = 1$) or M contains, as a normal subgroup, $M \cap S$, of index $|M: M \cap S| = |MS: S| = |G: S| = 2$. But $M \cap S$ must be of one of the two types above, and because $M \cap S \triangleleft M$, it cannot be of type B. On the other hand if $M \cap S$ is of type A, then M is supersolvable and hence M/M_G is too.

Now the subgroups of PSL(2, p) are well-known ([6], p. 213), and when $p^2 \equiv 1 \pmod{16}$, the subgroups are either cyclic, dihedral, or a

John Poland

semidirect product of a (normal) p-cycle and a cyclic group of order dividing p - 1 (all of these are type A), or isomorphic to A_4 , A_5 or S_4 . L.E. Dickson has shown ([3], pp. 282, 285) that these latter subgroups are of type B, under the restrictions on p. Hence we are done.

A characterization of those (2-nilpotent)-max-core groups and supersolvable-max-core groups which are 2-solvable (and hence solvable by the Feit-Thompson theorem) is given in Theorem (4) of [4].

3. Some generalizations

In this Section I will generalize the results of Section 4 of [4] to π -soluble groups. Briefly (see [2] and [7]) a group G is π -soluble if, for a given set π of primes, the composition factors of G are either p-groups for $p \in \pi$, or π' -groups. G is π -nilpotent if it has a nilpotent Hall π -subgroup and a normal π -complement. The largest normal π -nilpotent subgroup of a group G is denoted $F^{\pi}(G)$. $F^{\pi}(G) = \bigcap_{p \in \pi} F^{p}(G)$

so ([6], p. 686) $F^{\pi}(G)$ may also be defined as $\cap C_{G}(H/K)$, the intersection taken for all composition factors which are *p*-groups for primes $p \in \pi$. A maximal subgroup of *G* of index a power of a prime $p \in \pi$ is called a *p*-maximal or π -maximal subgroup of *G*. In a π -soluble group every maximal subgroup has either π' -index or is π -maximal; the intersection of all the π -maximal subgroups of *G* is denoted $\Phi_{\pi}(G)$, the π -Frattini subgroup¹. If $O_{\pi}, (G)$ denotes the largest normal π' -subgroup of a π -soluble group *G* then $O_{\pi}, (G) \leq \Phi_{\pi}(G) \leq F^{\pi}(G)$, $F^{\pi}(G)/O_{\pi}, (G) = F(G/O_{\pi}, (G))$, $\Phi_{\pi}, (G)/O_{\pi}, (G) = \Phi(G/O_{\pi}, (G))$, and $F^{\pi}(G/N) = F^{\pi}(G)/N$ for all $N \leq \Phi_{\pi}(G)$, $N \leq G$.

In this context define the class $M(\pi, X)$ of all π -soluble groups *G* having $M/M_G \in X$ for all π -maximal subgroups *M* of *G*. It is now possible to state the generalizations of (5), and of (4), (6) and (8), of

270

 $^{^1~}$ I thank Dr Graham Chambers for his suggestion to use $~\Phi_{_{\rm T}}(G)~$ in place of $~\Phi(G)$.

[4] required. As the proofs follow precisely the lines laid out in [4], except for the obvious substitutions from the concepts and results summarized above, I omit them.

LEMMA 2. Let $\{N_1, \ldots, N_k\}$ be a set of normal subgroups of a π -soluble group G satisfying $\bigcap_{i=1}^{k} N_i \leq \Phi_{\pi}(G)$, and define F_i^{π} by $F_i^{\pi}(G/N_i)$. Then $\bigcap_{i=1}^{k} F_i^{\pi} = F^{\pi}(G)$. THEOREM 3. Let X = qX and let G be a π -soluble group. Then

(i) if $G/F^{\pi}(G) \in X$ then $G \in M(\pi, X)$, and

(ii) if $G \in M(\pi, X)$ and X is a formation, then $G/F^{\pi}(G) \in X$.

R. Baer has obtained a similar result ([1], p. 147): if X is a formation then $G/F^{\mathcal{P}}(G)$ is a *p*-solvable X-group if and only if whenever *M* is a maximal subgroup of *G* and $G/M_{\overline{G}}$ has a monolith of order divisible by *p*, then $M/M_{\overline{G}} \in X$ and *M* is *p*-maximal.

4. (p-nilpotent)-max-core

If X_1 and X_2 are classes of groups, denote by X_1X_2 the class of groups G having a normal subgroup $N \in X_1$ with $G/N \in X_2$; that is, the class of X_1 -by- X_2 groups. The following Proposition (a second generalization of (8) of [4]) provides, together with Theorem 3 above, sufficient information for a characterization of (p-nilpotent)-max-core groups.

PROPOSITION 4. Let X and Y be classes of groups, X = qX = sX, and Y = qY. Suppose that whenever $G/F(G) \in Y$ then G is Y-max-core. Then whenever $G/F(G) \in XY$, G is XY-max-core.

Proof. Suppose $G/F(G) \in XY$, and let M be a maximal subgroup of G. Since QX = X and QY = Y then Q(XY) = XY by an elementary application of the homomorphism theorems; therefore we may assume, without loss of generality, that $M_G = 1$. If $F(G) \neq 1$ then F(G)

complements M ([5], p. 219) so $M/M_G = M \simeq G/F(G) \in XY$, and we are done. On the other hand when F(G) = 1 then $G \in XY$. By our assumptions on Y, we may suppose that G contains a non-trivial normal subgroup N with $N \in X$ and $G/N \in Y$. As $N \neq 1$ but $M_G = 1$ then G = MN. Then $M/M \cap N \simeq MN/M = G/N \in Y$ and $M \cap N \in sX = X$, so $M/M_C = M \in XY$.

This result yields slightly more than a characterization of (*p*-nilpotent)-max-core groups:

THEOREM 5. Let π be a non-empty set of odd primes. Denote the class of all π' -groups by Z, and let Y be a formation of nilpotent π -groups and X be the π -nilpotent formation ZY. Then a group G is X-max-core if and only if $G/F(G) \in X$.

Proof. In the case that $G/F(G) \in X$, then by Result B, the conditions of Proposition 4 are satisfied and consequently G must be X-max-core.

Suppose now that G is X-max-core but $G/F(G) \notin X$, and let G be a minimal such counterexample.

- (a) If $1 \neq N \lhd G$, then $(G/N)/F(G/N) \in X$ by the minimality of G and the fact that quotients of X-max-core groups are again X-max-core.
- (b) G is π -soluble by Result B, and $G/F^{\pi}(G) \in X$ by Theorem 3 above.
- (c) G has a nontrivial normal π' -subgroup, for otherwise $F^{\pi}(G) = F(G)$ and so by (b) $G/F(G) \in X$ a contradiction.
- (d) $\Phi(G) = 1$, for $F(G/\Phi(G)) = F(G)/\Phi(G)$ ([6], p. 277), and so if $\Phi(G) \neq 1$ they by (a) $G/F(G) \in X$ a contradiction.
- (e) G has a monolith K (a unique minimal normal subgroup): for, if $1 \neq K_i \triangleleft G$ (i = 1, 2), $K_1 \cap K_2 = 1 = \Phi(G)$, then define $F_i \supseteq K_i$ by $F_i/K_i = F(G/K_i)$; by (a), $G/F_i \in X$ and by Lemma (5) of [4], $F_1 \cap F_2 = F(G)$; because X is a formation, then $G/F(G) \in X$ - a contradiction. (G is not simple, by (c).)

- (f) K is a π' -group by (c).
- (g) G contains a subgroup $M \in X$ such that G = MK: for, if $K \subseteq M$ for all maximal subgroups M of G then $K \subseteq \Phi(G)$, contradicting (d); hence there exists a maximal subgroup M of G such that $K \notin M$ and so G = MK; now if $M_G \notin 1$ then $K \subseteq M_G \subseteq M$, a contradiction, and so $M_G = 1$, and $M = M/M_G \in X$.
- (h) Hence $G/K = MK/K \simeq M/M \cap K \in QX = X$. By (f) K is a π' -group, and so $G \in ZY = X$. Then $G/F(G) \in QX = X a$ contradiction. The Theorem is proved.

Theorem 5 above immediately raises the conjecture that if X is a formation of p-nilpotent groups for some odd prime p, then G is X-max-core if and only if $G/F(G) \in X$. But this is not the case: let p > 3 and let X be the class of solvable p-nilpotent groups. The group $PSL(2, 3^p)$ has p'-order, has a non-trivial automorphism of order p induced from the automorphism of $GF(3^p)$, and has every subgroup solvable; its extension E by this automorphism is p-nilpotent and is obviously (solvable p-nilpotent)-max-core, but is not solvable. For p = 3 a similar construction using the Suzuki group $S_2(2^3)$ holds (see [&]). Similarly for the converse: let p > 3, let Y be the formation of (finite) direct products of $PSL(2, 3^p)$, and let X be the p-nilpotent formation VP where P is the class of all p-groups. The p-nilpotent group E constructed above is in S but E is not S-max-core. Again, for p = 3 use $S_p(2^3)$.

References

- [1] Reinhold Baer, "Classes of finite groups and their properties", *Illinois J. Math.* 1 (1957), 115-187.
- [2] Roger Carter and Trevor Hawkes, "The F-normalizers of a finite soluble group", J. Algebra 5 (1967), 175-202.

- [3] Leonard Eugene Dickson, Linear groups, with an exposition of the Galois field theory (Teubner, Leipzig, 1901; reprinted Dover, New York, 1958).
- [4] John D. Dixon, John Poland and A.H. Rhemtulla, "A generalization of hamiltonian and nilpotent groups", Math. Z. 112 (1969), 335-339.
- [5] Daniel Gorenstein, Finite groups (Harper and Row, New York, Evanston, London, 1968).
- [6] Bertram Huppert, Endliche Gruppen I (Springer-Verlag, Berlin, Heidelberg, New York, 1967).
- [7] H. Lausch, "Formations of *n*-soluble groups", J. Austral. Math. Soc.
 10 (1969), 241-250.
- [8] Michio Suzuki, "On a class of doubly transitive groups", Ann. of Math. (2) 75 (1962), 105-145.

Carleton University, Ottawa, Canada.