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Abstract

We consider a coupled, logistic predator–prey system with delay. Mainly, by choosing
the delay time τ as a bifurcation parameter, we show that Hopf bifurcation can occur as
the delay time τ passes some critical values. Based on the normal-form theory and the
centre manifold theorem, we also derive formulae to obtain the direction, stability and
the period of the bifurcating periodic solution at critical values of τ. Finally, numerical
simulations are investigated to support our theoretical results.
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1. Introduction
In the last few decades, the study of dynamical systems of population models has
received much attention by theoreticians and experimentalists. In order to observe
the effect of the past information on the system, a time delay is incorporated into
the population models. Among these models, the delayed predator–prey system has
an important role. Especially, the Hopf bifurcation of periodic solutions of delayed
systems has received great attention. In particular, the properties of periodic solutions
appearing through the Hopf bifurcations in delayed systems are of great interest
(see [1, 4, 7–18, 22] and the references therein). In 1973, May [15] first proposed
and briefly discussed the following delayed predator–prey system:

ẋ(t) = x(t)[r1 − a11x(t − τ) − a12y(t)],
ẏ(t) = y(t)[−r2 + a21x(t) − a22y(t)],

(1.1)

where x(t) and y(t) are the population densities of prey and predator at time t,
respectively; τ > 0 is the time delay of the prey to the growth of the species itself;
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r1 > 0 denotes the intrinsic growth rate of the prey and r2 > 0 denotes the death rate
of the predator; the parameters ai j (i, j = 1, 2) are all positive constants. System (1.1)
shows that in the absence of the predator species, the prey species is governed by
the well-known delay logistic equation ẋ(t) = x(t)[r1 − a11x(t − τ)] and the predator
species decreases in the absence of the prey species.

In many of these studies, the authors have mainly considered the boundedness of
the solutions, persistence, local and global stabilities of equilibria, and existence of
nonconstant periodic solutions.

In 2005, Song and Wei [19] worked on the dynamics of the system (1.1) by
considering the delay time τ as the bifurcation parameter, and obtained that the
positive equilibrium is asymptotically stable under certain conditions. However, it
is conditionally stable under some other conditions and Yan and Li [20] considered
the same delay time τ in the population density of the predator in the second equation
of system (1.1), namely,

ẋ(t) = x(t)[r1 − a11x(t − τ) − a12y(t)],
ẏ(t) = y(t)[−r2 + a21x(t) − a22y(t − τ)].

(1.2)

They found that the unique positive equilibrium of system (1.2) is no longer absolutely
stable and the switches from stability to instability and again back to stability
disappear. Moreover, by using the normal-form theory and the centre manifold
theorem, they obtained the properties of bifurcating periodic solutions.

In addition, Faria [3] studied the following system with two different discrete
delays:

ẋ(t) = x(t)[r1 − a11x(t) − a12y(t − τ1)],
ẏ(t) = y(t)[−r2 + a21x(t − τ2) − a22y(t)],

(1.3)

where τ1 ≥ 0 and τ2 > 0. Mainly, the author took τ2 as the bifurcation parameter to
analyze the stability of the interior positive equilibrium, and also obtained the existence
of the local Hopf bifurcation and the direction of the stability of bifurcating periodic
solutions from the Hopf bifurcation.

Furthermore, Yan and Zhang [21] combined the models (1.2) and (1.3) and
considered the following delayed predator–prey model with a single delay:

ẋ(t) = x(t)[r1 − a11x(t − τ) − a12y(t − τ)],
ẏ(t) = y(t)[−r2 + a21x(t − τ) − a22y(t − τ)].

(1.4)

In system (1.1), if we consider the time delay of the predator species to the growth
of the species itself and also the delay τ, then system (1.1) should be modified as the
following delayed predator–prey system:

ẋ(t) = x(t)[r1 − a11x(t) − a12y(t − τ)],
ẏ(t) = y(t)[−r2 + a21x(t) − a22y(t − τ)],

(1.5)

where τ > 0 is the feedback time delay of the predator species to the growth of the
species itself, r1 > 0 denotes the intrinsic growth rate of the prey and r2 > 0 denotes
the death rate of the predator.
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Our aim is to investigate the stability of the delayed predator–prey system (1.5) and
investigate how the delay time τ affects the dynamics of this system. To analyze the
system, first we study the local stability of the equilibrium point of the corresponding
characteristic equation of the system and obtain the general stability criteria involving
the time delay. Second, by choosing the delay τ as bifurcation parameter, we show that
the positive equilibrium loses its stability and the equation exhibits Hopf bifurcation.
Then, based on the approach of normal-form and centre manifold theory introduced
by Hassard et al. [6], we derive the formula for determining the properties of Hopf
bifurcation of the model. More specifically, it is shown that the Hopf bifurcation is
subcritical and the bifurcating periodic solutions are unstable under certain conditions.
Finally, to support these theoretical results, we illustrate by numerical simulations.

This paper is organized as follows. In Section 2, we first focus on the stability
and Hopf bifurcation of the positive equilibrium and, in Section 3, we determine the
direction and stability of Hopf bifurcation by using normal-form and central manifold
theory. In Section 4, numerical simulations are performed to support the stability
results. Finally, concluding remarks are presented in Section 5.

2. Stability analysis and Hopf bifurcation

Note that the system (1.5) has equilibria E1 = (0, 0), E2 = (r1/a11, 0), E3 =

(0,−r2/a22) and always has a unique positive equilibrium E∗ = (x∗, y∗), provided that
the condition

(H) r1a21 − r2a11 > 0

holds, where
x∗ =

r1a22 + r2a12

a11a22 + a12a21
, y∗ =

r1a21 − r2a11

a11a22 + a12a21
.

Under the hypothesis (H), and assuming u1(t) = x(t) − x∗ and u2(t) = y(t) − y∗, we can
rewrite (1.5) as the following equivalent system:

u̇1(t) = (u1(t) + x∗)[−a11u1(t) − a12u2(t − τ)],
u̇2(t) = (u2(t) + y∗)[a21u1(t) − a22u2(t − τ)].

(2.1)

The linearization of (2.1) at (0, 0) is

u̇1(t) = −a11x∗u1(t) − a12x∗u2(t − τ),
u̇2(t) = a21y∗u1(t) − a22y∗u2(t − τ).

(2.2)

Its characteristic equation is

λ2 + pλ + (qλ + s)e−λτ = 0, (2.3)

where p = a11x∗, q = a22y∗ and s = (a11a22 + a12a21)x∗y∗.
When there is no delay, that is, τ = 0, the corresponding characteristic equation

(2.3) reduces to
λ2 + pλ + qλ + s = 0,
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and the corresponding eigenvalues are λ1,2 = {−p − q ±
√

(p + q)2 − 4s}/2. Since
p = a11x∗, q = a22y∗ and s = (a11a22 + a12a21)x∗y∗ are positive constants, we first have
the following result for equation (2.3).

Lemma 2.1. The two roots λ1,2 = {−p − q ±
√

(p + q)2 − 4s}/2 of equation (2.3) with
τ = 0 have always negative real parts, that is, the equilibrium point (0, 0) for the
linearized system (2.2) with τ = 0 is asymptotically stable.

By the Hartman–Grobman theorem [5], since eigenvalues of the linearized system
(2.2) have nonzero real parts, the qualitative behaviour of solutions for the nonlinear
system (1.5) is the same as the linearized system (2.2) in a neighbourhood of the
equilibrium point E∗ = (x∗, y∗).

Now we investigate the distribution of roots of the transcendental equation (2.3),
since the stability of the point (0, 0) of the linear system (2.2) depends on the locations
of the roots of the characteristic equation (2.3). By the roots of λ2 + pλ + (qλ +

s)e−λτ = 0 and Lemma 2.1, there exists τ0 > 0 such that Reλ(τ) < 0 for τε [0, τ0).
Since a loss of asymptotic stability of (x∗, y∗) arises when Reλ(τ) = 0, we examine
whether there exists a τ∗ > 0 for which Reλ(τ∗) = 0, that is, we would like to know
when equation (2.3) has purely imaginary roots. In this section, we first obtain the
conditions of local stability of the equilibrium point.

Suppose that for τ = τ∗, we have λ = iω with ω > 0; then we have the following
result.

Lemma 2.2. For the system (2.1), transcendental equation (2.3) has one purely
imaginary root.

Proof. For τ = τ∗, let λ = iω be a root of equation (2.3) with ω real and without loss
of generality ω > 0. Then

(iω)2 + p(iω) + (q(iω) + s)e−(iω)τ = 0,

that is,
−ω2 + [i(qω) + s][cos(ωτ) − i sin(ωτ)] + ipω = 0.

Separating real and imaginary parts,

ω2 = qω sin(ωτ) + s cos(ωτ) and −pω = qω cos(ωτ) − s sin(ωτ),

which is equivalent to
ω4 + (p2 − q2)ω2 + s2 = 0.

Let ω2 = t; then
t2 + (p2 − q2)t + s2 = 0, (2.4)

which implies that this equation governs the possible values of τ and ω for which
λ2 + pλ + (qλ + s)e−λτ = 0 can have purely imaginary roots.
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Without loss of generality, we denote ω =
√

t and, solving the equation (2.4) for ω,

ω =

[
−(p2 − q2) +

√
(p2 − q2)2 + 4s2

2

]1/2

and

τk =
1
ω

arctan
( ps + qω2

ωs(1 − pq)

)
+
πk
ω
, k = 0, 1, 2, . . . ,

which completes the proof of the lemma. �

We denote

ω0 =

[
−(p2 − q2) +

√
(p2 − q2)2 + 4s2

2

]1/2

and suppose that λk(τ) = αk(τ) + iωk(τ) denotes the root of (2.3) near τ = τk satisfying
αk(τk) = 0 and ωk(τk) = ω0, k = 0, 1, 2, . . . . Then we have the following transversality
conditions.

Lemma 2.3. The following transversality conditions are satisfied.

d Reλk(τk)
dτ

> 0 for k = 0, 1, 2, . . . ,

that is, system (1.5) undergoes Hopf bifurcation at the positive equilibrium point
(x∗, y∗) for τ = τk, k = 0, 1, 2, . . ..

Proof. Differentiating the characteristic equation (2.3) with respect to τ,

2λ
dλ
dτ

+ q
[dλ
dτ

e−λτ − λe−λτ
(dλ

dτ
τ + λ

)]
+ p

dλ
dτ
− se−λτ

(dλ
dτ
τ + λ

)
= 0,

that is, (dλ
dτ

)−1
= −

τ

λ
+

2λ + qe−λτ + p
λe−λτ(qλ + s)

.

Thus,

Re
(dλ

dτ

)−1∣∣∣∣∣
λ=iω0

= Re
[
−
τk

iω0

]
+ Re

[ 2iω0 + qe−iω0τk + p
iω0e−iω0τk (qiω0 + s)

]
=

sp sin(ω0τk)
ω0(q2ω2

0 + s2)
> 0.

By using Rouche’s theorem [8], we observe that the transversality condition holds
and the conditions for Hopf bifurcation are satisfied at τ = τk, k = 0, 1, 2, . . . , which
completes the proof of the lemma. �

Summarizing the results above, we have the following theorem on stability and
Hopf bifurcation of system (1.5).
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Theorem 2.4. For system (1.5), the following hold:

(i) if τε[0, τ0), then the equilibrium point of system (1.5) is asymptotically stable;
(ii) if τ > τ0, then the equilibrium point (x∗, y∗) of system (1.5) is unstable;

(iii) if τ = τk (k = 0, 1, 2, . . .), then system (1.5) undergoes a Hopf bifurcation at the
equilibrium point (x∗, y∗).

Remark 2.5. It must be pointed out that Theorem 2.4 cannot determine the stability
and the direction of bifurcating periodic solutions. In the following section, we
investigate the stability of bifurcating periodic solutions by using the normal-form
theory and the centre manifold theorem due to Hassard et al. [6], and prove that the
Hopf bifurcation is subcritical and bifurcating periodic solutions are unstable.

3. Direction and stability of Hopf bifurcation

We study the direction and stability of Hopf bifurcation for which we obtain the
necessary conditions for bifurcating periodic solutions in Section 2. For determining
the direction and stability of bifurcating periodic solutions, we apply the normal-form
theory and the centre manifold theorem by Hassard et al. [6].

Throughout this section, we suppose that the system (1.5) undergoes Hopf
bifurcation at the positive equilibrium point (x∗, y∗) for τ = τk, and iω0 is the
corresponding purely imaginary root of the characteristic equation at the positive
equilibrium point (x∗, y∗). For the sake of simplicity, we use the notation iω for iω0
and t/τ for t.

We first consider the system (1.5) by the transformation

u1(t) = x(τt) − x∗, u2(t) = y(τt) − y∗, τ = τk + µ,

which is equivalent to the following functional differential equation (FDE) system in
C = C([−1, 0],R2):

u̇1(t) = τ(u1(t) + x∗)[−a11u1(t) − a12u2(t − 1)],
u̇2(t) = τ(u2(t) + y∗)[a21u1(t) − a22u2(t − 1)].

(3.1)

For φ = (φ1, φ2) ∈ C, the functions Lµ : C → R, f : R ×C → R are defined as

Lµφ = (τk + µ)
[
−a11x∗φ1(0) − a12x∗φ2(−1)
a21y∗φ1(0) − a22y∗φ2(−1)

]
and

f (µ, φ) =

[
−a11φ1(0)φ1(0) − a12φ1(0)φ2(−1)
a21φ2(0)φ1(0) − a22φ2(0)φ2(−1)

]
,

respectively. By the Riesz representation theorem [2], there exists a function η(θ, µ) of
bounded variation for θ ∈ [−1, 0], such that

Lµφ =

∫ 0

−1
dη(θ, 0)φ(θ) for φ ∈ C,
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where the bounded variation function η(θ, µ) can be chosen as

η(θ, µ) = (τk + µ)
[
−a11x∗ 0
a21y∗ 0

]
+ (τk + µ)

[
0−a12x∗

0 −a22y∗

]
.

For φ ∈ C1([−1, 0],R2), we define

A(µ)φ =


−

dφ(θ)
dθ

, θ ∈ [−1, 0),∫ 0

−1
dη(µ, s)φ(s), θ = 0

and

R(µ)φ =

{
0, θ ∈ [−1, 0),
f (µ, φ), θ = 0.

Then the system (3.1) is equivalent to
u̇t = A(µ)ut + R(µ)ut, (3.2)

where ut(θ) = u(t + θ) for θ ∈ [−1, 0). For ψ ∈ C1([−1, 0], (R2)∗), we define

A∗ψ(s) =


−

dψ(s)
ds

, s ∈ (0, 1],∫ 0

−1
dηT (t, 0)ψ(−t), s = 0

and a bilinear inner product

〈ψ(s), φ(θ)〉 = ψ̄(0)φ(0) −
∫ 0

−1

∫ θ

ξ=0
ψ̄(ξ − θ) dη(θ)φ(ξ) dξ,

where η(θ) = η(θ, 0). Then A(0) and A∗ are adjoint operators. Suppose that q(θ) and
q∗(s) are eigenvectors of A and A∗ corresponding to iωτk and −iωτk, respectively. Then
suppose that q(θ) = (1, α)T eiωτkθ is the eigenvector of A(0) corresponding to iωτk; then
A(0)q(θ) = iωτkq(θ). It follows from the definition of A(0), Lµφ and η(θ, µ) that

q(θ) = (1, α)T eiωτkθ,

where α = −iω/a11x∗ and q(0) = (1, α)T .
Similarly, let q∗(s) = D(β, 1)eiωτk s be the eigenvector of A∗ corresponding to −iωτk.

By definition of A∗,

q∗(s) = D(β, 1)eiωτk s = D
(
−

a22y∗e−iωτk − iω
−a12x∗

e−iωτk , 1
)
eiωτk s.

To satisfy 〈q∗(s), q(θ)〉 = 1, we need to evaluate the value of D. From the definition of
the bilinear inner product,

〈q∗(s), q(θ)〉= D̄(β, 1)(1, α)T −

∫ 0

−1

∫ θ

ξ=0
D̄(β, 1)e−

iωτk (ξ−θ)
dη(θ)(1, α)T eiωτkξ dξ

= D̄
{
α + β −

∫ 0

−1
(β, 1)θeiωτkθ dη(θ)(1, α)T

}
= D̄{α + β + τk(−a22αy∗)e−iωτk }.
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Thus, we can choose D̄ as

D̄ =
1

α + β + τk(−a22αy∗)e−iωτk
,

such that 〈q∗(s), q(θ)〉 = 1 and 〈q∗(s), q̄(θ)〉 = 0.
In the following, we use the theory by Hassard et al. [6] to compute the coordinates

describing the centre manifold C0 at µ = 0. We define

z(t) = 〈q∗, ut〉, W(t, θ) = ut − 2Rez(t)q(θ). (3.3)

On C0,

W(t, θ) = W(z(t), z̄(t), θ) = W20(θ)
z2

2
+ W11(θ)zz̄ + W02(θ)

z̄2

2
+ · · ·,

where z and z̄ are local coordinates for the centre manifold C0 in the directions of q
and q̄∗, respectively. Note that W is real if ut is real. We consider only real solutions.
For the solution ut ∈ C0, since µ = 0 and from (3.2),

ż = iωτkz + 〈q∗(θ), f (0,W(z, z̄, θ) + 2Rezq(θ))〉

= iωτkz + q̄∗(0) f0(z, z̄)

= iωτkz + g(z, z̄),

where

g(z, z̄) = q̄∗(0) f0(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄
2

+ · · ·. (3.4)

By using (3.3), we have ut(u1t(θ), u2t(θ)) = W(t, θ) + zq(θ) + zq(θ) and q(θ) =

(1, α)T eiωτkθ, and then

u1t(0) = z + z̄ + W (1)
20 (0)

z2

2
+ W (1)

11 (0)zz̄ + W (1)
02 (0)

z̄2

2
+ O(|(z, z̄)|3),

u2t(0) = zα + zα + W (2)
20 (0)

z2

2
+ W (2)

11 (0)zz̄ + W (2)
02 (0)

z̄2

2
+ O(|(z, z̄)|3),

u1t(−1) = ze−iωτkθ + z̄eiωτkθ + W (1)
20 (−1)

z2

2
+ W (1)

11 (−1)zz̄ + W (1)
02 (−1)

z̄2

2
+ O(|(z, z̄)|3),

u2t(−1) = zαe−iωτkθ + z̄ᾱeiωτkθ + W (2)
20 (−1)

z2

2
+ W (2)

11 (−1)zz̄ + W (2)
02 (−1)

z̄2

2
+ O(|(z, z̄)|3).

To simplify the notation, let

M = −
a11x∗ + iω

a12x∗
eiωτk and N = −

a22y∗e−iωτk − iω
−a12x∗

e−iωτk .
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Thus,

g(z, z̄) = DNτk

{
2(−a11 − a12Me−iωτk )

z2

2
+ 2(−a11 − a12Meiωτk )

z2

2
+ 2(−2a11 − a12Re

{
Meiωτk })zz

+ [W (1)
20 (0)(−2a11 − a12Meiωτk ) − a12[W (2)

20 (−1) + 2W (2)
11 (−1)]

+ W (1)
11 (0)(−2a12Me−iωτk − 4a11)}

zz2

2
+ · · ·

}
+ Dτk

{
2(a21 − a22Me−iωτk )M

z2

2
+ 2(a21 − a22Meiωτk )M

z2

2
+ 2(a21(M + M) − a22|M|2Re{eiωτk })zz
+ [W (2)

20 (0)(a21 − a22Meiωτk ) + 2W (2)
11 (0)(a21 − a22Me−iωτk )

+ a21[W (1)
20 (0)M + 2W (1)

11 (0)M]

− a22(W (2)
20 (−1)M + 2W (2)

11 (−1)M)]z2z + · · ·

}
.

By comparing the coefficients with the equation (3.4),

g20 =−2DNτk(a11 + a12Me−iωτk ) + 2Dτk(a21 − a22Me−iωτk )M,
g11 =−2DNτk(2a11 + a12Meiωτk ) + 2Dτk(2a21Re{M} − a22|M|2Re{eiωτk }),
g02 =−2DNτk(a11 + a12Meiωτk ) + 2Dτk(a21 − a22Meiωτk )M,

g21 =−DNτk[W (1)
20 (0)(2a11 + a12Meiωτk ) + a12(W (2)

20 (−1) + 2W (2)
11 (−1))

+ 2W (1)
11 (0)(a12Me−iωτk + 2a11)] + Dτk[W (2)

20 (0)(a21 − a22Meiωτk )

+ 2W (2)
11 (0)(a21 − a22Me−iωτk ) + a21(W (1)

20 (0)M + 2W (1)
11 (0)M)

− a22(W (2)
20 (−1)M + 2W (2)

11 (−1)M)].

Here

W20(θ) =
ig20

τkω
q(0)eiωτkθ +

iḡ02

3τkω
q̄(0)e−iωτkθ + E1e2iωτkθ,

W11(θ) =−
ig11

τkω
q(0)eiωτkθ +

iḡ11

τkω
q̄(0)e−iωτkθ + E2,

and E1 = (E(1)
1 , E(2)

1 ) ∈ R2 and E2 = (E(1)
2 , E(2)

2 ) ∈ R2 are constant vectors with

E(1)
1 =

1
A1

∣∣∣∣∣∣2(−a11 − a12Me−iωτk ) a12x∗e−2iωτk

2M(a21 − a22Me−iωτk ) 2iω + a22y∗e−2iωτk

∣∣∣∣∣∣ ,
E(2)

1 =
1
A1

∣∣∣∣∣∣2iω + a11x∗ a12x∗e−2iωτk

−a21y∗ 2iω + a22y∗e−2iωτk

∣∣∣∣∣∣ ,
where

A1 =

∣∣∣∣∣∣2wi + a11x∗ a12x∗e−2iwτk

−a21y∗ 2wi + a22y∗e−2iwτk

∣∣∣∣∣∣
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and

E(1)
2 =−a22

4a11 + 2a12Re(Meiwτk )
a11a22x∗ + a12a21x∗

− a12
4a21Re(M) − 2a22Re(eiwτk )|M|2

a11a22y∗ + a12a21y∗
,

E(2)
2 = a11

x∗

y∗
4a21Re(M) − 2a22Re(eiwτk )|M|2

a11a22x∗ + a12a21x∗
− a21

4a11 + 2a12Re(Meiwτk )
a11a22x∗ + a12a21x∗

.

We determine the following values to investigate the quantities of the bifurcating
periodic solution in the centre manifold at the critical value τk. For this purpose, we
express the gi j in terms of the parameters and delay, and then we evaluate the following
values:

c1(0) =
i

2ωτk

(
g20g11 − 2|g11|

2 −
|g02|

2

3

)
+

g21

2
,

µ2 = −
Re{c1(0)}
Re{λ′(τk)}

,

β2 = 2Re{c1(0)},

T2 = −
Im{c1(0)} + µ2Im{λ′(τk)}

ωτk
,

which are the quantities for determining the bifurcating periodic solutions in the centre
manifold at τk, so that µ2 determines the direction of Hopf bifurcation, and β2 and T2
state the stability of the bifurcating periodic solution and the period of the bifurcating
solution, respectively. Hence, we have the following result.

Theorem 3.1. The ratio µ2 determines the direction of Hopf bifurcation; if µ2 > 0,
then the Hopf bifurcation is supercritical and the bifurcating periodic solution exists
for τ > τ0 and, if µ2 < 0, then the Hopf bifurcation is subcritical and the bifurcating
periodic solution exists for τ < τ0. The value of β2 determines the stability of the
bifurcating periodic solution; the bifurcating periodic solution is stable if β2 < 0 and
unstable if β2 > 0. The ratio T2 determines the period of the bifurcating solution; the
period increases if T2 > 0 and decreases if T2 < 0.

4. Numerical simulations

We illustrate the numerical simulations to support our theorems that we obtained
in previous sections by using the MATLAB-DDE (delay differential equation) solver.
As a numerical example, we consider the following logistic predator–prey system (4.1)
with the parameters r1 = 1.5, r2 = 0.6, a11 = 0.7, a12 = 0.8, a21 = 0.45 and a22 = 0.006,
that is,

ẋ(t) = x(t)[1.5 − 0.7x(t) − 0.8y(t − τ)],
ẏ(t) = y(t)[−0.6 + 0.45x(t) − 0.006y(t − τ)],

(4.1)

which has a positive equilibrium E∗ = (x∗, y∗) = (1.3427, 0.7001). Following the
discussions from Section 2, we derive the formulae determining the direction of a
Hopf bifurcation and the stability of the bifurcating periodic solution at the critical
value τ.

https://doi.org/10.1017/S1446181116000055 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181116000055


[11] Bifurcation analysis of a logistic predator–prey system with delay 455

Figure 1. The trajectory of prey density x(t) versus time with the initial conditions x0 = 50, y0 = 25 and
τ = 3 < τ0.

We evaluate that

ω0 =

[
−(p2 − q2) +

√
(p2 − q2)2 + 4s2

2

]1/2
= 0.34227

and, hence, τ0 = 3.5813. So, by Theorem 2.4, the equilibrium point E∗ is
asymptotically stable when τ ∈ [0, τ0) = [0, 3.5813) and unstable when τ > 3.5813,
and also the Hopf bifurcation occurs at τ = τ0 = 3.5813, as is illustrated in the graphs
below.

By the theory of Hassard et al. [6], we may also determine the direction of the Hopf
bifurcation and the other properties of bifurcating periodic solutions for this numerical
example, which implies that

µ2 < 0, β2 > 0, T2 > 0.

Hence, the Hopf bifurcation of system (4.1) occurring at τ0 = 3.5813 is subcritical,
and the bifurcating periodic solution exists when τ crosses τ0 to the left; also, the
bifurcating periodic solution is unstable, which is illustrated in the figures below.

In the numerical simulations, the initial conditions are taken as (x0, y0) = (25, 10)
and the MATLAB-DDE solver is used to simulate the system (4.1). Figures 1–3 clearly
show that the equilibrium point E∗ is asymptotically stable when τ ∈ [0, 3.5813). We
first take τ = 3 < τ0 and, by graphing the density functions x(t) and y(t) in Figures 1
and 2, we verify that the equilibrium point E∗ is asymptotically stable for τ < τ0.

In Figure 3, again taking the delay parameter τ = 3 < τ0, we demonstrate the phase
portrait of prey density x(t) versus predator density y(t), which also illustrates the
asymptotic stability of the equilibrium point E∗ in two dimensions.
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Figure 2. The trajectory of predator density y(t) versus time with the initial conditions x0 = 50, y0 = 25
and τ = 3 < τ0.

Figure 3. The phase portrait of predator y(t) and prey x(t) densities with initial conditions x0 = 50 and
y0 = 25. The graph of the solution of the model (4.1) when τ = 3 < τ0, which shows that the equilibrium
point E∗ is asymptotically stable.

The numerical simulations for τ = 3.8 > τ0 that is sufficiently close to τ0 are shown
in Figures 4–6, and these graphs show that the bifurcating periodic solutions from the
equilibrium point E∗ occur and are unstable.

https://doi.org/10.1017/S1446181116000055 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181116000055


[13] Bifurcation analysis of a logistic predator–prey system with delay 457

Figure 4. The trajectory of prey density x(t) versus time t with the initial conditions x0 = 50, y0 = 25 and
τ = 3.8 > τ0.

Figure 5. The trajectory of predator density y(t) versus time t with the initial conditions x0 = 50, y0 = 25
and τ = 3.8 > τ0.

More importantly, in Figures 7 and 8, we construct the bifurcation diagrams for prey
and predator densities, respectively. We observe that the bifurcation diagrams allow
us to visualize changes in the behaviour of the system as the bifurcation parameter
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Figure 6. The phase portrait of predator density y(t) versus prey density x(t) for the same parameters
when τ = 3.8 > τ0, which shows that the periodic solutions are bifurcating from E∗.

Figure 7. Bifurcation diagram for prey density x(t) when the value of τ is from 2.5 to 4.

τ passes through the first critical value τ0. So, we can conclude that the numerical
simulations agree with analytical results on the impact of time delay for the stability
of the equilibrium point.
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Figure 8. Bifurcation diagram for predator density y(t) when the value of τ is from 2.5 to 4.

5. Conclusion
In this paper, we have investigated the local stability of the positive equilibrium

point (x∗, y∗) and Hopf bifurcation of a nonlinear predator–prey system with discrete
time delay τ. We have shown that if the condition (H) holds and τ ∈ [0, τ0), then the
positive equilibrium point (x∗, y∗) is asymptotically stable. When τ > τ0, the positive
equilibrium point (x∗, y∗) loses its stability, and the sequence of Hopf bifurcations
occurs at the positive equilibrium point if τ = τk (k = 0, 1, 2 . . .), that is, a family
of periodic orbits bifurcates from the positive equilibrium point (x∗, y∗). Also, the
direction of Hopf bifurcation and the stability of the bifurcating periodic orbits
are discussed by applying the normal-form theory and the centre manifold theorem
introduced by Hassard et al. [6]. Finally, the numerical examples verifying our
theoretical results are presented. For future studies, we would like to consider the same
model under the diffusion effect, which will be a PDE (partial differential equation)
model by incorporating the time delay into the system.
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