p-VARIATION OF VECTOR MEASURES WITH RESPECT TO BILINEAR MAPS

O. BLASCO and J. M. CALABUIG

(Received 13 February 2008)

Abstract

We introduce the spaces $V_{\mathfrak{B}}^{p}(X)$ (respectively $\mathcal{V}_{\mathfrak{B}}^{p}(X)$) of the vector measures $\mathfrak{F}: \Sigma \to X$ of bounded (p, \mathfrak{B}) -variation (respectively of bounded (p, \mathfrak{B}) -semivariation) with respect to a bounded bilinear map $\mathfrak{B}: X \times Y \to Z$ and show that the spaces $L_{\mathfrak{B}}^{p}(X)$ consisting of functions which are *p*-integrable with respect to \mathfrak{B} , defined in by Blasco and Calabuig ['Vector-valued functions integrable with respect to bilinear maps', *Taiwanese Math. J.* to appear], are isometrically embedded in $V_{\mathfrak{B}}^{p}(X)$. We characterize $\mathcal{V}_{\mathfrak{B}}^{p}(X)$ in terms of bilinear maps from $L^{p'} \times Y$ into Z and $V_{\mathfrak{B}}^{p}(X)$ as a subspace of operators from $L^{p'}(Z^*)$ into Y^* . Also we define the notion of cone absolutely summing bilinear maps in order to describe the (p, \mathfrak{B}) -variation of a measure in terms of the cone-absolutely summing norm of the corresponding bilinear map from $L^{p'} \times Y$ into Z.

2000 *Mathematics subject classification*: 28A25, 46G10, 47L05, 47B10. *Keywords and phrases*: bilinear maps, vector integration, vector measure, summing operators.

1. Notation and preliminaries

Throughout the paper *X* denotes a Banach space, (Ω, Σ, μ) a positive finite measure space, \mathcal{D}_E the set of all partitions of $E \in \Sigma$ into a finite number of pairwise disjoint elements of Σ of positive measure and $S_{\Sigma}(X)$ the space of simple functions, $\mathbf{s} = \sum_{k=1}^{n} x_k \mathbf{1}_{A_k}$, where $x_k \in X$, $(A_k)_k \in \mathcal{D}_{\Omega}$ and $\mathbf{1}_A$ denotes the characteristic function of the set $A \in \Sigma$. Also *Y* and *Z* denote Banach spaces over \mathbb{K} (\mathbb{R} or \mathbb{C}) and $\mathcal{B} : X \times Y \to Z$ a bounded bilinear map. We use the notation B_X for the closed unit ball of *X*, $\mathcal{L}(X, Y)$ for the space of bounded linear operators from *X* to *Y* and $X^* = \mathcal{L}(X, \mathbb{K})$.

For a vector measure $\mathcal{F}: \Sigma \to X$ we use the notation $|\mathcal{F}|$ and $||\mathcal{F}||$ for the nonnegative set functions $|\mathcal{F}|: \Sigma \to \mathbb{R}^+$ and $||\mathcal{F}||: \Sigma \to \mathbb{R}^+$ given by

$$|\mathcal{F}|(E) = \sup \left\{ \sum_{A \in \pi} \|\mathcal{F}(A)\|_X : \pi \in \mathcal{D}_E \right\}$$

The authors gratefully acknowledge support from Spanish Grants MTM2005-08350-C03-03 and MTN2004-21420-E. J. M. Calabuig was also supported by Generalitat Valenciana (project GV/2007/191). © 2009 Australian Mathematical Society 0004-9727/09 \$A2.00 + 0.00

and

$$\|\mathcal{F}\|(E) = \sup\{|\langle \mathcal{F}, x^* \rangle|(E) : x^* \in \mathbf{B}_{X^*}\},\$$

respectively. In the case of operator-valued measures $\mathcal{F}: \Sigma \to \mathcal{L}(Y, Z)$ we use $|||\mathcal{F}|||$ for the strong-variation defined by

$$|||\mathcal{F}|||(E) = \sup \left\{ \sum_{A \in \pi} ||\mathcal{F}(A)y||_Z : y \in \mathcal{B}_Y, \, \pi \in \mathcal{D}_E \right\}.$$

Given a norm τ defined on the space $Y \otimes_{\tau} X$ satisfying $||y \otimes x||_{\tau} \leq C ||y|| \cdot ||x||$ we write $Y \widehat{\otimes} X$ for its completion. In [1] Bartle introduced the notion of *Y*-semivariation of a vector measure $\mathcal{F} : \Sigma \to X$ with respect to τ by the formula

$$\beta_Y(\mathcal{F}, \tau)(E) = \sup \left\{ \left\| \sum_{A \in \pi} y_A \otimes \mathcal{F}(A) \right\|_{\tau} : y_A \in \mathcal{B}_Y, \, \pi \in \mathcal{D}_E \right\}$$

for every $E \in \Sigma$. This is an intermediate notion between the variation and semivariation, since for every $E \in \Sigma$ we clearly have

$$\|\mathcal{F}\|(E) \le \beta_Y(\mathcal{F}, \tau)(E) \le |\mathcal{F}|(E).$$

If $Y \widehat{\otimes}_{\varepsilon} X$ and $Y \widehat{\otimes}_{\pi} X$ stand for the injective and projective tensor norms, respectively, then we actually have

$$\|\mathcal{F}\|(E) = \beta_Y(\mathcal{F}, \varepsilon)(E) \le \beta_Y(\mathcal{F}, \tau)(E) \le \beta_Y(\mathcal{F}, \pi)(E) \le |\mathcal{F}|(E).$$

We refer the reader to [11] for a theory of integration of Y-valued functions with respect to X-valued measures of bounded Y-semivariation initiated by Jefferies and Okada and to [3] for the study of this notion in the particular cases $X = L^{p}(\mu)$, $Y = L^{q}(\nu)$ and τ the norm in the space of vector-valued functions $L^{p}(\mu, L^{q}(\nu))$.

We are going to use notions of \mathcal{B} -variation (or \mathcal{B} -semivariation) which allow us to obtain all of the previous cases for particular instances of bilinear maps.

Recall that, for 1 , the*p*-variation and*p* $-semivariation of a vector measure <math>\mathcal{F}$ are defined by

$$|\mathcal{F}|_{p}(E) = \sup\left\{ \left(\sum_{A \in \pi} \frac{\|\mathcal{F}(A)\|_{X}^{p}}{\mu(A)^{p-1}} \right)^{1/p} : \pi \in \mathcal{D}_{E} \right\}$$
(1.1)

and

$$\|\mathcal{F}\|_{p}(E) = \sup\left\{\left(\sum_{A \in \pi} \frac{|\langle \mathcal{F}(A), x^{*} \rangle|^{p}}{\mu(A)^{p-1}}\right)^{1/p} : x^{*} \in \mathcal{B}_{X^{*}}, \pi \in \mathcal{D}_{E}\right\}.$$
 (1.2)

We use $V^p(X)$ and $\mathcal{V}^p(X)$ to denote the Banach spaces of vector measures for which $|\mathcal{F}|_p(\Omega) < \infty$ and $||\mathcal{F}||_p(\Omega) < \infty$, respectively.

The limiting case p = 1 corresponds to $\|\mathcal{F}\|_1(E) = |\mathcal{F}|(E)$ and $\|\mathcal{F}\|_1(E) = \|\mathcal{F}\|(E)$. For $p = \infty V^{\infty}(X) = \mathcal{V}^{\infty}(X)$ is given by vector measures satisfying the

property that there exists C > 0 such that $||\mathcal{F}(A)|| \le C\mu(A)$ for any $A \in \Sigma$ and the ∞ -variation of a measure is defined by

$$\|\mathcal{F}\|_{\infty}(E) = \sup\left\{\frac{\|\mathcal{F}(A)\|_{X}}{\mu(A)} : A \in \Sigma, \ A \subset E, \ \mu(A) > 0\right\}.$$
 (1.3)

We use $L^0(X)$ and $L^0_{\text{weak}}(X)$ to denote the spaces of strongly and weakly measurable functions with values in X and write $L^p(X)$ and $L^p_{\text{weak}}(X)$ for the space of functions in $L^0(X)$ and $L^0_{\text{weak}}(X)$ such that $||f|| \in L^p$ and $\langle f, x^* \rangle \in L^p$ for every $x^* \in X^*$, respectively. As usual for $1 \le p \le \infty$ the conjugate index is denoted by p', that is 1/p + 1/p' = 1.

For each $f \in L^p(X)$, $1 \le p \le \infty$, one can define a vector measure

$$\mathcal{F}_f(E) = \int_E f \, d\mu, \quad E \in \Sigma$$

which is of bounded *p*-variation and $|\mathcal{F}_f|_p(\Omega) = ||f||_{L^p(X)}$. On the other hand, the converse depends on the Radon–Nikodým property (RNP), that is, given 1 ,*X*has the RNP if and only if for any*X* $-valued measure <math>\mathcal{F}$ of bounded *p*-variation there exists $f \in L^p(X)$ such that $\mathcal{F} = \mathcal{F}_f$.

For general Banach spaces $X, V^{\infty}(X)$ can be identified with the space of operators $\mathcal{L}(L^1, X)$ by means of the map $\mathcal{F} \to T_{\mathcal{F}}$ where

$$T_{\mathcal{F}}(\mathbf{1}_E) = \mathcal{F}(E), \quad E \in \Sigma,$$

and for $1 the space <math>V^p(X)$ can be identified (isometrically) with the space $\Lambda(L^{p'}, X)$, formed by the cone absolutely summing operators from $L^{p'}$ into X with the π_1^+ norm (see [14, 2]). We refer the reader to [9, 8, 11, 14] for the notions appearing in the paper and the basic concepts about vector measures and their variations.

Quite recently the authors started studying the spaces of *X*-valued functions which are *p*-integrable with respect to a bounded bilinear map $\mathcal{B}: X \times Y \to Z$, that is, functions *f* satisfying the condition $\mathcal{B}(f, y) \in L^p(Z)$ for all $y \in Y$. Some basic theory was developed and applied to different examples (see [4, 5, 6]). Note that the use of certain bilinear maps, such as

$$\mathcal{B}: X \times \mathbb{K} \to X,$$
 given by $\mathcal{B}(x, \lambda) = \lambda x,$ (1.4)

$$\mathcal{D}: X \times X^* \to \mathbb{K},$$
 given by $\mathcal{D}(x, x^*) = \langle x, x^* \rangle,$ (1.5)

$$\mathcal{D}_1: X^* \times X \to \mathbb{K},$$
 given by $\mathcal{D}_1(x^*, x) = \langle x, x^* \rangle,$ (1.6)

 $\pi_Y : X \times Y \to X \widehat{\otimes} Y, \qquad \text{given by } \pi_Y(x, y) = x \otimes y, \qquad (1.7)$ $\widehat{\mathbb{O}}_Y : X \times f_*(X, Y) \to Y \qquad \text{given by } \widehat{\mathbb{O}}_Y(x, T) = T(x) \qquad (1.8)$

$$\mathcal{O}_Y : X \times \mathcal{L}(X, Y) \to Y, \quad \text{given by } \mathcal{O}_Y(x, T) = T(x), \quad (1.8)$$

$$\mathcal{O}_{Y,Z}: \mathcal{L}(Y, Z) \times Y \to Z, \quad \text{given by } \mathcal{O}_{Y,Z}(T, y) = T(y)$$
(1.9)

have been around for many years and have been used in different aspects of vectorvalued functions, but a systematic study for general bilinear maps was started in [4] and used, among other things, to extend the results on boundedness from $L^p(Y)$ to $L^p(Z)$ of operator-valued kernels by Girardi and Weiss [10] to the case where $K: \Omega \times \Omega' \to X$ is measurable and the integral operators are defined by

$$T_K(f)(w) = \int_{\Omega'} \mathcal{B}(K(w, w'), f(w')) d\mu'(w').$$

The reader is also referred to [6] for some versions of Hölder's inequality in this setting.

We require some notation and definitions from the previous papers. We write $\Phi_{\mathcal{B}}: X \to \mathcal{L}(Y, Z)$ and $\Psi_{\mathcal{B}}: Y \to \mathcal{L}(X, Z)$ for the bounded linear operators defined by $\Phi_{\mathcal{B}}(x) = \mathcal{B}_x$ and $\Psi_{\mathcal{B}}(y) = \mathcal{B}^y$ where \mathcal{B}_x and \mathcal{B}^y are given by $\mathcal{B}_x(y) = \mathcal{B}^y(x) = \mathcal{B}(x, y)$.

A bounded bilinear map $\mathcal{B}: X \times Y \to Z$ is called admissible (see [4]) if $\Phi_{\mathcal{B}}$ is injective. Throughout the paper we always assume that \mathcal{B} is admissible. However, a stronger condition will also be required for some results: a Banach space X is said to be (Y, Z, \mathcal{B}) -normed if there exists k > 0

$$\|x\|_X \le k \|\mathcal{B}_x\|_{\mathcal{L}(Y,Z)}, \quad x \in X.$$

The bounded bilinear maps (1.4)–(1.9) provide examples of \mathcal{B} -normed spaces.

As in [4] we write $\mathcal{L}^p_{\mathcal{B}}(X)$ for the space of functions $f: \Omega \to X$ with $\mathcal{B}(f, y) \in L^0(Z)$ for any $y \in Y$ and such that

$$||f||_{\mathcal{L}^{p}_{\mathcal{B}}(X)} = \sup\{||\mathcal{B}(f, y)||_{L^{p}(Z)} : y \in B_{Y}\} < \infty,$$

and we use the notation $L^p_{\mathcal{B}}(X)$ for the space of functions $f \in \mathcal{L}^p_{\mathcal{B}}(X)$ for which there exists a sequence of simple functions $(\mathbf{s}_n)_n \in \mathcal{S}_{\Sigma}(X)$ such that $\mathbf{s}_n \to f$ almost everywhere and $\|\mathbf{s}_n - f\|_{\mathcal{L}^p_{\mathcal{B}}(X)} \to 0$. In such a case, we write $\|f\|_{L^p_{\mathcal{B}}(X)}$ instead of $\|f\|_{\mathcal{L}^p_{\mathcal{B}}(X)}$ and $\|f\|_{L^p_{\mathcal{B}}(X)} = \lim_{n\to\infty} \|\mathbf{s}_n\|_{L^p_{\mathcal{B}}(X)}$.

In particular, for the examples \mathcal{B} and \mathcal{D} we have that $\mathcal{L}_{\mathcal{B}}^{p}(X) = L^{p}(X)$ and $\mathcal{L}_{\mathcal{D}}^{p}(X) = L_{\text{weak}}^{p}(X)$. In addition $L_{\mathcal{B}}^{p}(X) = L^{p}(X)$ and $L_{\mathcal{D}}^{p}(X)$ coincides with the space of Pettis *p*-integrable functions $\mathcal{P}^{p}(X)$ (see [13, p. 54], for the case p = 1).

Observe that, for any \mathcal{B} , $L^p(X) \subseteq L^p_{\mathcal{B}}(X)$ and the inclusion can be strict (see [8, p. 53], for the case $\mathcal{B} = \mathcal{D}$). Regarding the connection between $L^p_{\mathcal{B}}(X)$ and $L^p_{\text{weak}}(X)$ it was shown that X is (Y, Z, \mathcal{B}) -normed if and only if $L^p_{\mathcal{B}}(X) \subseteq L^p_{\text{weak}}(X)$ with continuous inclusion.

Owing to this fact, if $f \in L^1_{\mathcal{B}}(X)$ for some (Y, Z, \mathcal{B}) -normed space X, then for each $E \in \Sigma$ there exists a unique element of X, denoted by $\int_E^{\mathcal{B}} f d\mu$, verifying

$$\int_{E} \mathcal{B}(f, y) \, d\mu = \mathcal{B}\left(\int_{E}^{\mathcal{B}} f \, d\mu, y\right), \quad \forall y \in Y.$$

This allows us to define the vector measure

$$\mathcal{F}_{f}^{\mathcal{B}}(E) = \int_{E}^{\mathcal{B}} f \, d\mu, \quad E \in \Sigma.$$

We consider the notion of (p, \mathcal{B}) -variation which fits with the theory allowing us to show that the (p, \mathcal{B}) -variation of \mathcal{F}_f coincides with its norm $||f||_{L^p_{\infty}(X)}$.

The rest of this paper is divided into three sections. In Section $\frac{1}{2}$ we introduce the notion of B-variation, B-semivariation of a vector measure and study their connection with the classical notions. We prove that for (Y, Z, \mathcal{B}) -normed spaces the \mathcal{B} -semivariation is equivalent to the semivariation and that the Y-semivariation considered by Bartle coincides the \mathcal{B} -variation for a particular bilinear map \mathcal{B} . Of particular interest is the observation that any vector measure with values in $X = L^{1}(\mu)$ is of bounded \mathcal{B} -variation for every \mathcal{B} whenever Z is a Hilbert space. We also show in this section that the measure $\mathcal{F}_{f}^{\mathcal{B}}$ is μ -continuous and $\|\mathcal{F}_{f}^{\mathcal{B}}\|_{\mathcal{B}}(\Omega) = \|f\|_{L^{1}_{\infty}(X)}$. In Section 3 the natural notion of (p, B)-semivariation is introduced. Starting with the case $p = \infty$ we describe, for $1 , the space of measures with bounded <math>(p, \mathcal{B})$ semivariation as bounded bilinear maps from $L^{p'} \times Y \to Z$. In Section 4 we deal with the notion of (p, \mathcal{B}) -variation of a vector measure. Several characterizations are presented and the new notion of 'cone absolutely summing bilinear map' from $L \times Y \rightarrow Z$, where L is a Banach lattice, is introduced. This allow us to describe the (p, \mathcal{B}) -variation of a vector measure as the norm of the corresponding bilinear map from $L^{p'} \times Y$ into Z in this class.

Throughout the paper $\mathcal{F}: \Sigma \to X$ always denotes a vector measure, $\mathcal{B}: X \times Y \to Z$ is admissible and, for each $y \in Y$, $\mathcal{B}(\mathcal{F}, y)$ denotes the *Z*-valued measure $\mathcal{B}(\mathcal{F}, y)(E) = \mathcal{B}(\mathcal{F}(E), y)$.

2. Variation and semivariation with respect to bilinear maps

DEFINITION 2.1. Let $E \in \Sigma$. We define the \mathbb{B} -variation of \mathcal{F} on the set E by

$$\begin{aligned} \mathcal{F}|_{\mathcal{B}}(E) &= \sup\{|\mathcal{B}(\mathcal{F}, y)|(E) : y \in \mathbf{B}_Y\} \\ &= \sup\left\{\sum_{A \in \pi} \|\mathcal{B}(\mathcal{F}(A), y)\|_Z : \pi \in \mathcal{D}_E, \ y \in \mathbf{B}_Y\right\}. \end{aligned}$$

We say that \mathcal{F} has bounded \mathcal{B} -variation if $|\mathcal{F}|_{\mathcal{B}}(\Omega) < \infty$.

DEFINITION 2.2. Let $E \in \Sigma$. We define the *B*-semivariation of \mathcal{F} on the set *E* by

$$\begin{split} \|\mathcal{F}\|_{\mathcal{B}}(E) &= \sup\{\|\mathcal{B}(\mathcal{F}, y)\|(E) : y \in \mathbf{B}_Y\}\\ &= \sup\{|\langle \mathcal{B}(\mathcal{F}, y), z^*\rangle|(E) : y \in \mathbf{B}_Y, z^* \in \mathbf{B}_{Z^*}\}\\ &= \sup\left\{\sum_{A \in \pi} |\langle \mathcal{B}(\mathcal{F}(A), y), z^*\rangle| : \pi \in \mathcal{D}_E, y \in \mathbf{B}_Y, z^* \in \mathbf{B}_{Z^*}\right\}. \end{split}$$

We say that \mathcal{F} has bounded \mathcal{B} -semivariation if $\|\mathcal{F}\|_{\mathcal{B}}(\Omega) < \infty$.

REMARK 2.3. Let \mathcal{F} be a vector measure and $E \in \Sigma$. Then:

- (a) $|\mathcal{F}|_{\mathcal{B}}(E) \leq ||\mathcal{B}|| \cdot |\mathcal{F}|(E);$
- (b) $\|\mathcal{F}\|_{\mathcal{B}}(E) \leq \|\mathcal{B}\| \cdot \|\mathcal{F}\|(E);$
- (c) $\sup\{\|\mathcal{B}(\mathcal{F}(C), y)\| : y \in \mathbf{B}_Y, E \supseteq C \in \Sigma\} \approx \|\mathcal{F}\|_{\mathcal{B}}(E).$

In particular any measure has bounded B-semivariation for any B.

We can easily describe the \mathcal{B} -variation and \mathcal{B} -semivariation of vector measures for the bilinear maps given in (1.4)–(1.9). The following results are elementary and left to the reader.

PROPOSITION 2.4. Let \mathcal{F} be a vector measure and $E \in \Sigma$. Then:

(a) $|\mathcal{F}|_{\mathcal{B}}(E) = |\mathcal{F}|(E) \text{ and } ||\mathcal{F}||_{\mathcal{B}}(E) = ||\mathcal{F}||(E);$

- (b) $|\mathcal{F}|_{\mathcal{D}}(E) = ||\mathcal{F}||_{\mathcal{D}}(E) = ||\mathcal{F}||(E);$
- (c) $|\mathcal{F}|_{\mathcal{D}_{1}}(E) = ||\mathcal{F}||_{\mathcal{D}_{1}}(E) = ||\mathcal{F}||(E);$

(d) $|\mathcal{F}|_{\pi_Y}(E) = |\mathcal{F}|(E) \text{ and } \|\mathcal{F}\|_{\pi_Y}(E) = \|\mathcal{F}\|(E) \text{ (see Proposition 2.7);}$

- (e) $|\mathcal{F}|_{\mathcal{O}_{V}}(E) = \sup\{|T\mathcal{F}|(E): T \in \mathbf{B}_{\mathcal{L}(Y,Z)}\} \text{ and } \|\mathcal{F}\|_{\mathcal{O}_{V}}(E) = \|\mathcal{F}\|(E);$
- (f) $\|\mathcal{F}\|_{\mathcal{O}_{Y,Z}}^{-1}(E) = \|\|\mathcal{F}\|\|(E) \text{ and } \|\mathcal{F}\|_{\mathcal{O}_{Y,Z}}(E) = \|\mathcal{F}\|(E).$

The notion of B-normed space can be described in terms of vector measures.

PROPOSITION 2.5. Let $\mathcal{B}: X \times Y \to Z$ be an admissible bounded bilinear map. Then X is (Y, Z, \mathcal{B}) -normed if and only if for any vector measure $\mathcal{F}: \Sigma \to X$ there exist $C_1, C_2 > 0$ such that

$$C_1 \|\mathcal{F}\|(E) \le \|\mathcal{F}\|_{\mathcal{B}}(E) \le C_2 \|\mathcal{F}\|(E)$$

for all $E \in \Sigma$.

PROOF. Obviously $||\mathcal{F}||_{\mathcal{B}}(E) \leq ||\mathcal{B}|| \cdot ||\mathcal{F}||(E)$ for any $E \in \Sigma$. Assume that X is (Y, Z, \mathcal{B}) -normed. Then we have that

$$\begin{split} \|\mathcal{F}\|(E) &= \sup \left\{ \left\| \sum_{A \in \pi} \varepsilon_A \mathcal{F}(A) \right\|_X : \pi \in \mathcal{D}_E, \, \varepsilon_A \in \mathbf{B}_{\mathbb{K}} \right\} \\ &\leq k \sup \left\{ \left\| \mathcal{B}_{\sum_{A \in \pi} \varepsilon_A \mathcal{F}(A)} \right\|_{\mathcal{L}(Y,Z)} : \pi \in \mathcal{D}_E, \, \varepsilon_A \in \mathbf{B}_{\mathbb{K}} \right\} \\ &= k \sup \left\{ \left\| \sum_{A \in \pi} \varepsilon_A \mathcal{B}(\mathcal{F}(A), \, y) \right\|_Z : \pi \in \mathcal{D}_E, \, \varepsilon_A \in \mathbf{B}_{\mathbb{K}}, \, y \in \mathbf{B}_Y \right\} \\ &= k \|\mathcal{F}\|_{\mathcal{B}}(E). \end{split}$$

Conversely, for each $x \in X$ select the measure $\mathcal{F}_x(A) = x\mu(A)\mu(\Omega)^{-1}$ and observe that $\|\mathcal{F}_x\|(\Omega) = \|x\|$ and $\|\mathcal{F}_x\|_{\mathcal{B}}(\Omega) = \|\mathcal{B}_x\|$. \Box

We use \mathcal{B}^* for the 'adjoint' bilinear map from $X \times Z^*$ to Y^* , that is $(\mathcal{B}^*)_x = (\mathcal{B}_x)^*$ or

$$\mathcal{B}^*: X \times Z^* \to Y^*$$
, given by $\langle y, \mathcal{B}^*(x, z^*) \rangle = \langle \mathcal{B}(x, y), z^* \rangle$.

Note that $\mathcal{B}^* = \mathcal{D}$, $\mathcal{D}_1^* = \mathcal{B}$, $(\pi_Y)^* = \widetilde{\mathcal{O}}_{Y^*}$ and $(\mathcal{O}_{Y,Z})^*(T, z^*) = \mathcal{O}_{Z^*,Y^*}(T^*, z^*)$. Let us prove that the \mathcal{B} -semivariation and the \mathcal{B}^* -semivariation always coincide.

PROPOSITION 2.6. We have $\|\mathcal{F}\|_{\mathcal{B}}(E) = \|\mathcal{F}\|_{\mathcal{B}^*}(E)$ for all $E \in \Sigma$.

PROOF. Let us take $E \in \Sigma$. Then

$$\begin{split} \|\mathcal{F}\|_{\mathcal{B}}(E) &= \sup\left\{\sum_{A\in\pi} |\langle \mathcal{B}(\mathcal{F}(A), y), z^*\rangle| : \pi \in \mathcal{D}_E, y \in \mathcal{B}_Y, z^* \in \mathcal{B}_{Z^*}\right\} \\ &= \sup\left\{\sum_{A\in\pi} |\langle y, \mathcal{B}^*(\mathcal{F}(A), z^*)\rangle| : \pi \in \mathcal{D}_E, y \in \mathcal{B}_Y, z^* \in \mathcal{B}_{Z^*}\right\} \\ &= \sup\left\{\left\|\sum_{A\in\pi} \varepsilon_A \langle y, \mathcal{B}^*(\mathcal{F}(A), z^*)\rangle\right| : \pi \in \mathcal{D}_E, y \in \mathcal{B}_Y, z^* \in \mathcal{B}_{Z^*}, \varepsilon_A \in \mathcal{B}_{\mathbb{K}}\right\} \\ &= \sup\left\{\left\|\sum_{A\in\pi} \varepsilon_A \mathcal{B}^*(\mathcal{F}(A), z^*)\right\|_{Y^*} : \pi \in \mathcal{D}_E, z^* \in \mathcal{B}_{Z^*}, \varepsilon_A \in \mathcal{B}_{\mathbb{K}}\right\} \\ &= \sup\left\{\sum_{A\in\pi} |\langle \mathcal{B}^*(\mathcal{F}(A), z^*), y^{**}\rangle| : \pi \in \mathcal{D}_E, y^{**} \in \mathcal{B}_{Y^{**}}, z^* \in \mathcal{B}_{Z^*}\right\} \\ &= \|\mathcal{F}\|_{\mathcal{B}^*}(E). \ \Box$$

PROPOSITION 2.7. Let τ be a norm in $Y \otimes X$ with $||y \otimes x||_{\tau} = ||y|| ||x||$ for all $y \in Y$ and $x \in X$. Define $\tau_Y : X \times Y \to Y \widehat{\otimes}_{\tau} X$ given by $(x, y) \to y \otimes x$. Then, for each $E \in \Sigma$,

$$\beta_Y(\mathcal{F}, \tau)(E) \approx |\mathcal{F}|_{(\tau_Y)^*}(E).$$

PROOF. Taking into account that $Y \widehat{\otimes}_{\pi} X \subseteq Y \widehat{\otimes}_{\tau} X$, then $(Y \widehat{\otimes}_{\tau} X)^*$ can be regarded as a subspace of the space of bounded operators $\mathcal{L}(Y, X^*)$. Moreover $||T|| \leq ||T||_{(Y \widehat{\otimes}_{\tau} X)^*}$ for any $T \in (Y \widehat{\otimes}_{\tau} X)^*$, where the duality is given by

$$\left\langle T, \sum_{j=1}^{k} y_j \otimes x_j \right\rangle = \sum_{j=1}^{k} \langle x_j, T(y_j) \rangle.$$

From [3, Theorem 2.1], we have

$$\beta_Y(\mathcal{F},\tau)(E) \approx \sup\{|T\mathcal{F}|(E): T \in \mathcal{L}(Y,X^*), \|T\|_{(Y\widehat{\otimes}_\tau X)^*} \le 1\}.$$

Hence,

$$\beta_Y(\mathcal{F},\tau)(E) \approx \sup\{|(\tau_Y)^*(\mathcal{F},T)|(E): T \in \mathcal{L}(Y,X^*), \|T\|_{(Y\widehat{\otimes}_\tau X)^*} \le 1\}. \qquad \Box$$

Of course vector measures need not be of bounded \mathcal{B} -variation for a general \mathcal{B} (it suffices to take \mathcal{B} such that $|\mathcal{F}|_{\mathcal{B}} = |\mathcal{F}|$), but there are cases where this happens to be true owing to the geometrical properties of the spaces under consideration.

PROPOSITION 2.8. Let $X = L^1(v)$ for some σ -finite measure v and let Z = H be a Hilbert space. Then any vector measure $\mathcal{F} : \Sigma \to L^1(v)$ is of bounded \mathcal{B} -variation for any bounded bilinear map $\mathcal{B} : L^1(v) \times Y \to H$ and any Banach space Y.

PROOF. Recall first that Grothendieck theorem (see [7]) establishes that there exists a constant $\kappa_G > 0$ such that any operator from $L^1(\nu)$ to a Hilbert space *H* satisfies

$$\sum_{n=1}^{N} \|T(\phi_n)\|_H \le \kappa_G \|T\| \sup \left\{ \left\| \sum_{n=1}^{N} \varepsilon_n \phi_n \right\|_{L^1(\nu)} : \varepsilon_n \in \mathcal{B}_{\mathbb{K}} \right\}$$

for any finite family of functions $(\phi_n)_n$ in $L^1(\nu)$.

If $\mathcal{F}: \Sigma \to L^1(\nu)$ is a vector measure and π a partition, one has that $\|\sum_{A \in \pi} \varepsilon_A \mathcal{F}(A)\|_{L^1(\nu)} \leq \|\mathcal{F}\|(\Omega)$. Hence, $\mathcal{B}^y \in \mathcal{L}(L1(\eta), H)$ for any $y \in Y$, so one obtains

$$\sum_{A \in \pi} \|\mathcal{B}^{y}(\mathcal{F}(A))\|_{Z} \leq \kappa_{G} \cdot \|\mathcal{B}^{y}\| \cdot \|\mathcal{F}\|(\Omega).$$

Therefore, one concludes that $|\mathcal{F}|_{\mathcal{B}}(\Omega) \leq \kappa_G \cdot ||\mathcal{F}||(\Omega)$.

Recall that a vector measure $\mathcal{F}: \Sigma \to X$ is called μ -continuous if $\lim_{\mu(E)\to 0} \|\mathcal{F}\|(E) = 0$.

THEOREM 2.9. Let X be (Y, Z, \mathcal{B}) -normed and $f \in L^1_{\mathcal{B}}(X)$. Then

$$\mathfrak{F}_{f}^{\mathfrak{B}}: \Sigma \to X, \text{ given by } \mathfrak{F}_{f}^{\mathfrak{B}}(E) = \int_{E}^{\mathfrak{B}} f \, d\mu$$
 (2.1)

is a μ -continuous vector measure of bounded \mathbb{B} -variation. Moreover, $|\mathfrak{F}_{f}^{\mathcal{B}}|_{\mathfrak{B}}(\Omega) = \|f\|_{L^{1}_{\infty}(X)}$.

PROOF. It was shown (see [4, Theorem 1]) that functions in $L^1_{\mathcal{B}}(X)$ are Pettis integrable and $\int_E^{\mathcal{B}} f d\mu$ coincides with the Pettis integral. Hence, $\mathcal{F}_f^{\mathcal{B}}$ defines a vector measure.

Using now that, for each $y \in Y$, the vector measure $\mathcal{B}(\mathcal{F}_f^{\mathcal{B}}, y)$ has density $\mathcal{B}(f, y)$ that belongs to $L^1(Z)$, one obtains that, for any $E \in \Sigma$,

$$|\mathcal{B}(\mathcal{F}_f, y)|(E) = \int_E \|\mathcal{B}(f, y)\|_Z \, d\mu.$$

Thus, $|\mathcal{F}_{f}^{\mathcal{B}}|_{\mathcal{B}}(\Omega) = ||f||_{L^{1}_{\mathcal{B}}(X)}$. It remains to show that $\mathcal{F}_{f}^{\mathcal{B}}$ is μ -continuous. Let us fix $\varepsilon > 0$ and select, using that $f \in L^{1}_{\mathcal{B}}(X)$, a simple function *s* such that $||f - s||_{L^{1}_{\mathcal{B}}(X)} \le \varepsilon$. Thus,

p-variation of vector measures

$$\begin{split} \|\mathcal{F}_{f}^{\mathcal{B}}(E)\|_{X} &\leq \left\|\int_{E}^{\mathcal{B}}(f-s)\,d\mu\right\|_{X} + \left\|\int_{E}^{\mathcal{B}}s\,d\mu\right\|_{X} \\ &= \left\|\int_{E}^{\mathcal{B}}(f-s)\,d\mu\right\|_{X} + \left\|\int_{E}s\,d\mu\right\|_{X} \\ &\leq k \|\mathcal{B}_{\int_{E}^{\mathcal{B}}(f-s)\,d\mu}\|_{\mathcal{L}(Y,Z)} + \left\|\int_{E}s\,d\mu\right\|_{X} \\ &\leq k \sup\left\{\int_{E}\|\mathcal{B}(f-s,y)\|_{Z}\,d\mu: y\in \mathbf{B}_{Y}\right\} + \left\|\int_{E}s\,d\mu\right\|_{X} \\ &\leq k\varepsilon + \left\|\int_{E}s\,d\mu\right\|_{X}. \end{split}$$

We have the conclusion just taking limits when $\mu(E) \to 0$ and $\varepsilon \to 0^+$.

COROLLARY 2.10. Let X is (Y, Z, \mathcal{B}) -normed and $f \in L^1_{\mathcal{B}}(X)$. If $\int_E^{\mathcal{B}} f \, d\mu = 0$ for all $E \in \Sigma$, then f = 0 almost everywhere in Ω .

3. Measures of bounded (**p**, **B**)-semivariation.

Extending the notion for $\mathcal{B} = \mathcal{B}$, we say that a vector measure $\mathcal{F} : \Sigma \to X$ is (\mathcal{B}, μ) continuous if $\lim_{\mu(E)\to 0} \|\mathcal{F}\|_{\mathcal{B}}(E) = 0$. Clearly both concepts coincide for \mathcal{B} -normed
spaces.

DEFINITION 3.1. We say that \mathcal{F} has *bounded* (∞, \mathcal{B}) -*semivariation* if there exists C > 0 such that

$$|\langle \mathcal{B}(\mathcal{F}(A), y), z^* \rangle| \le C \cdot ||y|| \cdot ||z^*|| \cdot \mu(A), \quad y \in Y, z^* \in Z^*, A \in \Sigma.$$
(3.1)

The space of such measures is denoted by $\mathcal{V}^{\infty}_{\mathcal{B}}(X)$ and we set

$$\begin{aligned} \|\mathcal{F}\|_{\mathcal{V}^{\infty}_{\mathcal{B}}(X)} &= \inf\{C : \text{ satisfying (3.1)}\}\\ &= \sup\left\{\frac{|\langle \mathcal{B}(\mathcal{F}(A), y), z^*\rangle|}{\mu(A)} : y \in B_Y, z^* \in B_{Z^*}, A \in \Sigma, \, \mu(A) > 0\right\}. \end{aligned}$$

Observe that every vector measure \mathcal{F} belonging to $\mathcal{V}^{\infty}_{\mathcal{B}}(X)$ is (\mathcal{B}, μ) -continuous and it has bounded \mathcal{B} -variation. Also note that \mathcal{F} has bounded (∞, \mathcal{B}) -semivariation if and only if one of the following holds:

$$\begin{split} \|\mathcal{B}(\mathcal{F}(A), y)\| &\leq C \|y\|\mu(A), \qquad y \in Y, \, A \in \Sigma, \\ \|\mathcal{F}\|_{\mathcal{B}}(A) &\leq C \mu(A), \qquad A \in \Sigma \end{split}$$

[9]

or

420

$$|\mathcal{F}|_{\mathcal{B}}(A) \leq C\mu(A), \quad A \in \Sigma.$$

It is elementary to see, owing to the admissibility of \mathcal{B} , that $\|\mathcal{F}\|_{\mathcal{V}^{\infty}_{\mathcal{B}}(X)}$ is a norm.

Of course,

$$\begin{split} \|\mathcal{F}\|_{\mathcal{V}^{\infty}_{\mathcal{B}}(X)} &= \sup\{\|\mathcal{B}(\mathcal{F}, y)\|_{V^{\infty}(Z)} : y \in B_{Y}\}\\ &= \sup\left\{\frac{\|\mathcal{B}(\mathcal{F}(A), y)\|_{Z}}{\mu(A)} : y \in B_{Y}, A \in \Sigma\right\}\\ &= \sup\left\{\frac{\|\mathcal{F}\|_{\mathcal{B}}(A)}{\mu(A)} : A \in \Sigma\right\}\\ &= \sup\left\{\frac{|\mathcal{F}|_{\mathcal{B}}(A)}{\mu(A)} : A \in \Sigma\right\}. \end{split}$$

PROPOSITION 3.2. We have $\mathcal{F} \in \mathcal{V}^{\infty}_{\mathcal{B}}(X)$ if and only if there exists a bounded bilinear map $\mathcal{B}_{\mathcal{F}}: L^1 \times Y \to Z$ such that

$$\mathcal{B}_{\mathcal{F}}(\mathbf{1}_A, y) = \mathcal{B}(\mathcal{F}(A), y), \quad A \in \Sigma, y \in Y.$$

Moreover, $\|\mathcal{B}_{\mathcal{F}}\| = \|\mathcal{F}\|_{\mathcal{V}^{\infty}_{\mathcal{B}}(X)}$.

PROOF. Assume that $\mathfrak{F} \in \mathcal{V}^{\infty}_{\mathcal{B}}(X)$. Define $\mathfrak{B}_{\mathfrak{F}}$ on simple functions by the formula

$$\mathcal{B}_{\mathcal{F}}\left(\sum_{k=1}^{n}\alpha_{k}\mathbf{1}_{A_{k}}, y\right) = \sum_{k=1}^{n}\alpha_{k}\mathcal{B}(\mathcal{F}(A_{k}), y).$$

Observe that

$$\left\|\mathcal{B}_{\mathcal{F}}\left(\sum_{k=1}^{n}\alpha_{k}\mathbf{1}_{A_{k}}, y\right)\right\|_{Z} \leq \|\mathcal{F}\|_{\mathcal{V}_{\mathcal{B}}^{\infty}(X)}\|y\|\sum_{k=1}^{n}|\alpha_{k}|\mu(A_{k}).$$

This allows us to extend the bilinear map to $L^1 \times Y \to Z$ with norm $||\mathcal{B}_{\mathcal{F}}|| \le ||\mathcal{F}||_{\mathcal{V}^{\infty}_{\mathcal{B}}(X)}$. Conversely, one has

$$\|\mathcal{B}(\mathcal{F}(A), y)\|_{Z} \le \|\mathcal{B}_{\mathcal{F}}\| \cdot \|y\| \cdot \|\mathbf{1}_{A}\|_{L^{1}},$$

which gives $\|\mathcal{F}\|_{\mathcal{V}^{\infty}_{\mathcal{B}}(X)} \leq \|\mathcal{B}_{\mathcal{F}}\|.$

We use the notation $Bil(L^1 \times Y, Z)$ for the space of bounded bilinear maps with its natural norm.

COROLLARY 3.3. We have that $\mathcal{V}^{\infty}_{\mathcal{B}}(X)$ is isometrically embedded in $\operatorname{Bil}(L^1 \times Y, Z)$. In the case $\mathcal{B} = \mathcal{O}_{Y,Z}$ we have

$$\mathcal{V}^{\infty}_{\mathcal{O}_{Y,Z}}(\mathcal{L}(Y, Z)) = \operatorname{Bil}(L^1 \times Y, Z).$$

Let $L^{\infty}_{\mathcal{B}}(X)$ stand for the space of measurable functions $f: \Omega \to X$ such that $\mathcal{B}(f, y) \in L^{\infty}(Z)$ for all $y \in Y$ and write

$$||f||_{L^{\infty}_{\mathcal{B}}(X)} = \sup\{||\mathcal{B}(f, y)||_{L^{\infty}(Z)} : y \in \mathbf{B}_{Y}\}.$$

Note that $L^{\infty}_{\mathcal{B}}(X) \subseteq L^{1}_{\mathcal{B}}(X)$ and $|\mathcal{B}(\mathcal{F}^{\mathcal{B}}_{f}, y)|(A) = \int_{A}^{\mathcal{B}} ||\mathcal{B}(f, y)|| d\mu$ for any set $A \in \Sigma$. In particular, if $f \in L^{\infty}_{\mathcal{B}}(X)$, then the measure $\mathcal{F}^{\mathcal{B}}_{f} \in \mathcal{V}^{\infty}_{\mathcal{B}}(X)$ and $||\mathcal{F}^{\mathcal{B}}_{f}||_{\mathcal{V}^{\infty}_{\mathcal{B}}(X)} = ||f||_{L^{\infty}_{\mathcal{B}}(X)}$.

PROPOSITION 3.4. The following are equivalent:

- (a) X is (Y, Z, \mathcal{B}) -normed;
- (b) $\mathcal{V}^{\infty}_{\mathcal{B}}(X) = V^{\infty}(X);$
- (c) there exists k > 0 such that $\|\mathcal{F}_{f}^{\mathcal{B}}\|_{V^{\infty}(X)} \le k \|f\|_{L^{\infty}_{\mathcal{B}}(X)}$ for any $f \in L^{\infty}_{\mathcal{B}}(X)$.

PROOF. (a) \implies (b) We always have $V^{\infty}(X) \subseteq \mathcal{V}^{\infty}_{\mathcal{B}}(X)$. Assume that X is (Y, Z, \mathcal{B}) -normed and $\mathcal{F} \in \mathcal{V}^{\infty}_{\mathcal{B}}(X)$. Note that

$$\|\mathcal{F}(A)\| \le k \|\mathcal{B}_{\mathcal{F}(A)}\| \le k \|\mathcal{F}\|_{\mathcal{V}^{\infty}_{\mathcal{B}}(X)} \mu(A).$$

(b) \implies (c) Let $f \in L^{\infty}_{\mathcal{B}}(X)$. Clearly,

$$\|\mathcal{F}_{f}^{\mathcal{B}}\|_{\mathcal{V}^{\infty}(X)} \leq k \|\mathcal{F}_{f}^{\mathcal{B}}\|_{\mathcal{V}^{\infty}_{\mathcal{B}}(X)} = k \|f\|_{L^{\infty}_{\mathcal{B}}(X)}.$$

(c) \implies (a) Let us take $f_x = x \mathbf{1}_{\Omega}$ for a given $x \in X$ and observe that $\mathcal{F}_{f_x}^{\mathcal{B}}(A) = x \mu(A)$ for all $A \in \Sigma$. Note that $\|f_x\|_{L^{\infty}_{\mathcal{B}}(X)} = \|\mathcal{B}_x\|$ and $\|\mathcal{F}_{f_x}^{\mathcal{B}}\|_{V^{\infty}(X)} = \|x\|$. \Box

DEFINITION 3.5. Let $1 \le p < \infty$. We say that \mathcal{F} has bounded (p, \mathcal{B}) -semivariation if

$$\begin{split} \|\mathcal{F}\|_{\mathcal{V}_{\mathcal{B}}^{p}(X)} &= \sup \left\{ \left(\sum_{A \in \pi} \frac{|\langle \mathcal{B}(\mathcal{F}(A), y), z^{*} \rangle|^{p}}{\mu(A)^{p-1}} \right)^{1/p} : y \in \mathcal{B}_{Y}, \\ z^{*} \in \mathcal{B}_{Z^{*}}, \, \pi \in \mathcal{D}_{\Omega} \right\} < \infty. \end{split}$$

The space of such measures is denoted by $\mathcal{V}^p_{\mathcal{B}}(X)$.

We have the equivalent formulation

$$\begin{aligned} \|\mathcal{F}\|_{\mathcal{V}_{\mathcal{B}}^{p}(X)} &= \sup\{\|\mathcal{B}(\mathcal{F}, y)\|_{\mathcal{V}^{p}(Z)} : y \in B_{Y}\}\\ &= \sup\{\|\langle \mathcal{B}(\mathcal{F}, y), z^{*}\rangle\|_{\mathcal{V}^{p}} : y \in B_{Y}, z^{*} \in B_{Z^{*}}\}.\end{aligned}$$

Let us start with the following description.

PROPOSITION 3.6. Let $1 . Then <math>\mathcal{F} \in \mathcal{V}^p_{\mathcal{B}}(X)$ if and only if there exists a bounded bilinear map $\mathcal{B}_{\mathcal{F}}: L^{p'} \times Y \to Z$ such that

$$\mathcal{B}_{\mathcal{F}}(\mathbf{1}_A, y) = \mathcal{B}(\mathcal{F}(A), y), \quad A \in \Sigma, y \in Y.$$

Moreover, $\|\mathcal{B}_{\mathcal{F}}\| = \|\mathcal{F}\|_{\mathcal{V}^p_{\mathcal{B}}(X)}$.

PROOF. Assume that $\mathfrak{F} \in \mathcal{V}_{\mathcal{B}}^{p}(X)$. As above define $\mathcal{B}_{\mathcal{F}}$ on simple functions by the formula

$$\mathcal{B}_{\mathcal{F}}\left(\sum_{k=1}^{n}\alpha_{k}\mathbf{1}_{A_{k}}, y\right) = \sum_{k=1}^{n}\alpha_{k}\mathcal{B}(\mathcal{F}(A_{k}), y).$$

We use that

$$\begin{split} \|\mathcal{F}\|_{\mathcal{V}_{\mathcal{B}}^{p}(X)} &= \sup \bigg\{ \bigg| \sum_{A \in \pi} \frac{\langle \mathcal{B}(\mathcal{F}(A), y), z^{*} \rangle \gamma_{A}}{\mu(A)^{1/p'}} \bigg| : y \in \mathcal{B}_{Y}, z^{*} \in \mathcal{B}_{Z^{*}}, \\ \pi \in \mathcal{D}_{\Omega}, \ (\gamma_{A})_{A} \in \mathcal{B}_{\ell p'} \bigg\} \\ &= \sup \bigg\{ \bigg\| \sum_{A \in \pi} \mathcal{B}(\mathcal{F}(A), y) \beta_{A} \bigg\|_{Z} : y \in \mathcal{B}_{Y}, \pi \in \mathcal{D}_{\Omega}, \sum_{A \in \pi} \beta_{A} \mathbf{1}_{A} \in \mathcal{B}_{L^{p'}} \bigg\} \\ &= \sup \bigg\{ \bigg\| \mathcal{B}_{\mathcal{F}} \bigg(\sum_{A \in \pi} \beta_{A} \mathbf{1}_{A}, y \bigg) \bigg\|_{Z} : y \in \mathcal{B}_{Y}, \pi \in \mathcal{D}_{\Omega}, \sum_{A \in \pi} \beta_{A} \mathbf{1}_{A} \in \mathcal{B}_{L^{p'}} \bigg\}. \end{split}$$

Hence, using the density of simple functions we extend to $L^{p'}$ and $||\mathcal{B}_{\mathcal{F}}|| \le ||\mathcal{F}||_{\mathcal{V}^p_{\mathcal{B}}(X)}$. The converse also follows from the previous formula.

It is known that $\mathcal{V}^p(X) = \mathcal{L}(L^{p'}, X)$ (see [12]). The next result is the analogue in the bilinear setting.

COROLLARY 3.7. Let $1 . Then <math>\mathcal{V}^p_{\mathcal{B}}(X)$ is isometrically embedded in $\operatorname{Bil}(L^{p'} \times Y, Z)$. In the case $\mathcal{B} = \mathcal{O}_{Y,Z}$ we have

$$\mathcal{V}^p_{\mathcal{O}_{Y,Z}}(\mathcal{L}(Y, Z)) = \operatorname{Bil}(L^{p'} \times Y, Z).$$

PROPOSITION 3.8. Let $\mathcal{B}: X \times Y \to Z$ be an admissible bounded bilinear map and $1 . Then X is <math>(Y, Z, \mathcal{B})$ -normed if and only if the space $\mathcal{V}^p_{\mathcal{B}}(X)$ is continuously contained into $\mathcal{V}^p(X)$.

[12]

PROOF. Assume that X is (Y, Z, \mathcal{B}) -normed. Then

$$\begin{split} \|\mathcal{F}\|_{\mathcal{V}^{p}(X)} &= \sup \left\{ \left\| \sum_{A \in \pi} \frac{\langle \mathcal{F}(A), x^{*} \rangle \gamma_{A}}{\mu(A)^{1/p'}} \right\| : x^{*} \in \mathcal{B}_{X^{*}}, \pi \in \mathcal{D}_{\Omega}, \ (\gamma_{A})_{A} \in \mathcal{B}_{\ell^{p'}} \right\} \\ &= \sup \left\{ \left\| \sum_{A \in \pi} \frac{\mathcal{F}(A) \gamma_{A}}{\mu(A)^{1/p'}} \right\|_{X} : \pi \in \mathcal{D}_{\Omega}, \ (\gamma_{A})_{A} \in \mathcal{B}_{\ell^{p'}} \right\} \\ &\leq k \sup \left\{ \left\| \mathcal{B}_{\sum \frac{\mathcal{F}(A) \gamma_{A}}{\mu(A)^{1/p'}}} \right\|_{\mathcal{L}(Y,Z)} : \pi \in \mathcal{D}_{\Omega}, \ (\gamma_{A})_{A} \in \mathcal{B}_{\ell^{p'}} \right\} \\ &= k \sup \left\{ \left\| \sum_{A \in \pi} \mathcal{B}\left(\frac{\mathcal{F}(A) \gamma_{A}}{\mu(A)^{1/p'}}, y\right) \right\|_{Z} : y \in \mathcal{B}_{Y}, \pi \in \mathcal{D}_{\Omega}, \ (\gamma_{A})_{A} \in \mathcal{B}_{\ell^{p'}} \right\} \\ &= k \sup \left\{ \left(\sum_{A \in \pi} \frac{\|\mathcal{B}(\mathcal{F}(A), y)\|^{p}}{\mu(A)^{p-1}} \right)^{1/p} : y \in \mathcal{B}_{Y}, \pi \in \mathcal{D}_{\Omega}, \right\} \\ &= k \|\mathcal{F}\|_{\mathcal{V}^{p}_{\mathcal{B}}(X)}. \end{split}$$

For the converse consider the vector measure $\mathcal{F}_x : \Sigma \to X$ given by $\mathcal{F}_x(A) = x\mu(A)\mu(\Omega)^{-1}$ for each $x \in X$. Note that $\|\mathcal{F}_x\|_{\mathcal{V}^p(X)} = \|x\|$ and $\|\mathcal{F}_x\|_{\mathcal{V}^p_{\mathcal{B}}(X)} = \|\mathcal{B}_x\|$.

4. Measures of bounded (**p**, **B**)-variation

DEFINITION 4.1. We say that \mathcal{F} has *bounded* (p, \mathcal{B}) *-variation* if

$$\|\mathcal{F}\|_{\mathbf{V}_{\mathcal{B}}^{p}(X)} = \sup\left\{\left(\sum_{A \in \pi} \frac{\|\mathcal{B}(\mathcal{F}(A), y)\|_{Z}^{p}}{\mu(A)^{p-1}}\right)^{1/p} : y \in \mathcal{B}_{Y}, \pi \in \mathcal{D}_{\Omega}\right\} < \infty.$$

The space of such measures is denoted by $V_{\mathcal{B}}^{p}(X)$.

It is clear that the norm in the vector space $V^p_{\mathcal{B}}(X)$ is also given by the expressions

$$\begin{split} \|\mathcal{F}\|_{\mathbf{V}_{\mathcal{B}}^{p}(X)} &= \sup\{\|\mathcal{B}(\mathcal{F}, y)\|_{\mathbf{V}^{p}(Z)} : y \in \mathbf{B}_{Y}\}\\ &= \sup\left\{\left\|\sum_{A \in \pi} \frac{\mathcal{B}(\mathcal{F}(A), y)}{\mu(A)} \mathbf{1}_{A}\right\|_{L^{p}(Z)} : y \in \mathbf{B}_{Y}, \, \pi \in \mathcal{D}_{\Omega}\right\}\\ &= \sup\left\{\left\|\sum_{A \in \pi} \frac{\mathcal{F}(A)}{\mu(A)} \mathbf{1}_{A}\right\|_{L^{p}_{\mathcal{B}}(X)} : \pi \in \mathcal{D}_{\Omega}\right\}. \end{split}$$

REMARK 4.2. For p = 1 and $p = \infty$ this corresponds to $|\mathcal{F}|_{\mathcal{B}}(\Omega)$ and $||\mathcal{F}||_{\mathcal{V}^{\infty}_{\mathcal{B}}(X)}$. Hence, we define $V^{\infty}(X) = \mathcal{V}^{\infty}(X)$.

It is clear that $V_{\mathcal{B}}^{p}(X) \subseteq \mathcal{V}_{\mathcal{B}}^{p}(X)$ and $\|\mathcal{F}\|_{\mathcal{V}_{\mathcal{B}}^{p}(X)} \leq \|\mathcal{F}\|_{V_{\mathcal{B}}^{p}(X)}$. On the other hand, since

$$|\mathcal{F}|_{\mathcal{B}}(E) \leq \|\mathcal{F}\|_{\mathbf{V}_{\mathcal{B}}^{p}(X)} \|\mathbf{1}_{E}\|_{L^{p'}}, \quad E \in \Sigma,$$

one sees that if $\mathcal{F} \in V_{\mathcal{B}}^{p}(X)$ then \mathcal{F} has bounded \mathcal{B} -variation and it is (\mathcal{B}, μ) -continuous.

REMARK 4.3. Using the inclusions $L^q(X) \subseteq L^p(X)$ for $1 \le p \le q \le \infty$ one also has

$$\mathbf{V}^{\infty}_{\mathcal{B}}(X) \subseteq \mathbf{V}^{q}_{\mathcal{B}}(X) \subseteq \mathbf{V}^{p}_{\mathcal{B}}(X)$$

and

$$\|\mathcal{F}\|_{\operatorname{V}^p_{\operatorname{\mathcal{B}}}(X)} \leq \mu(\Omega)^{1/q-1/p} \|\mathcal{F}\|_{\operatorname{V}^q_{\operatorname{\mathcal{B}}}(X)} \leq \mu(\Omega)^{1/q} \|\mathcal{F}\|_{\operatorname{V}^\infty_{\operatorname{\mathcal{B}}}(X)}$$

Let us find different equivalent formulations for the norm in $V_{\mathcal{B}}^{p}(X)$.

PROPOSITION 4.4. We have

$$\|\mathcal{F}\|_{V_{\mathcal{B}}^{p}(X)} = \sup \left\{ \sum_{A \in \pi} \|\mathcal{B}(\mathcal{F}(A), \beta_{A} y)\|_{Z} : y \in B_{Y}, \pi \in \mathcal{D}_{\Omega}, \\ \sum_{A \in \pi} \beta_{A} \mathbf{1}_{A} \in B_{L^{p'}} \right\}.$$

$$(4.1)$$

$$\|\mathcal{F}\|_{\mathbf{V}_{\mathcal{B}}^{p}(X)} = \sup \left\{ \left\| \sum_{A \in \pi} \mathcal{B}^{*}(\mathcal{F}(A), z_{A}^{*}) \right\|_{Y^{*}} : y \in \mathbf{B}_{Y}, \pi \in \mathcal{D}_{\Omega}, \\ \sum_{A \in \pi} z_{A}^{*} \mathbf{1}_{A} \in \mathbf{B}_{L^{p'}(Z^{*})} \right\}.$$

$$(4.2)$$

PROOF. Given a partition $\pi \in \mathcal{D}_{\Omega}$, $\alpha_A \in \mathbb{R}$ and $\beta_A = (\alpha_A/\mu(A)^{1/p'})$ one has that the simple function $g = \sum_{A \in \pi} \beta_A \mathbf{1}_A$ satisfies $\|g\|_{L^{p'}} = \|(\alpha_A)_{A \in \pi}\|_{\ell^{p'}}$. Therefore,

$$\begin{split} \|\mathcal{F}\|_{\mathcal{V}_{\mathcal{B}}^{p}(X)} &= \sup \left\{ \left\| \left(\left\| \mathcal{B}\left(\frac{\mathcal{F}(A)}{\mu(A)^{1/p'}}, y \right) \right\|_{Z} \right)_{A \in \pi} \right\|_{\ell^{p}} : y \in B_{Y}, \pi \in \mathcal{D}_{\Omega} \right\} \\ &= \sup \left\{ \sum_{A \in \pi} \left\| \mathcal{B}\left(\frac{\mathcal{F}(A)}{\mu(A)^{1/p'}}, y \right) \right\|_{Z} |\alpha_{A}| : y \in B_{Y}, \pi \in \mathcal{D}_{\Omega}, (\alpha_{A})_{A \in \pi} \in B_{\ell^{p'}} \right\} \\ &= \sup \left\{ \sum_{A \in \pi} \left\| \mathcal{B}\left(\mathcal{F}(A) \frac{\alpha_{A}}{\mu(A)^{1/p'}}, y \right) \right\|_{Z} : y \in B_{Y}, \pi \in \mathcal{D}_{\Omega}, (\alpha_{A})_{A \in \pi} \in B_{\ell^{p'}} \right\} \\ &= \sup \left\{ \sum_{A \in \pi} \left\| \mathcal{B}\left(\mathcal{F}(A), \beta_{A} y \right) \right\|_{Z} : y \in B_{Y}, \pi \in \mathcal{D}_{\Omega}, \sum_{A \in \pi} \beta_{A} \mathbf{1}_{A} \in B_{L^{p'}} \right\}. \end{split}$$

We obtain (4.2) from the duality $(\ell^1(Z))^* = \ell^{\infty}(Z^*)$ and (4.1). Indeed,

$$\begin{split} \|\mathcal{F}\|_{\mathbf{V}_{\mathcal{B}}^{p}(X)} &= \sup \left\{ \sum_{A \in \pi} \|\mathcal{B}(\mathcal{F}(A), \beta_{A} y)\|_{Z} : y \in \mathbf{B}_{Y}, \pi \in \mathcal{D}_{\Omega}, \\ &\sum_{A \in \pi} \beta_{A} \mathbf{1}_{A} \in \mathbf{B}_{L^{p'}} \right\} \\ &= \sup \left\{ \left| \sum_{A \in \pi} \langle \mathcal{B}(\mathcal{F}(A), \beta_{A} y), z_{A}^{*} \rangle \right| : y \in \mathbf{B}_{Y}, \pi \in \mathcal{D}_{\Omega}, z_{A}^{*} \in \mathbf{B}_{Z^{*}}, \\ &\sum_{A \in \pi} \beta_{A} \mathbf{1}_{A} \in \mathbf{B}_{L^{p'}} \right\} \\ &= \sup \left\{ \left| \sum_{A \in \pi} \langle y, \mathcal{B}^{*}(\mathcal{F}(A), \beta_{A} z_{A}^{*}) \rangle \right| : y \in \mathbf{B}_{Y}, \pi \in \mathcal{D}_{\Omega}, z_{A}^{*} \in \mathbf{B}_{Z^{*}}, \\ &\sum_{A \in \pi} \beta_{A} \mathbf{1}_{A} \in \mathbf{B}_{L^{p'}} \right\} \\ &= \sup \left\{ \left\| \sum_{A \in \pi} \mathcal{B}^{*}(\mathcal{F}(A), z_{A}^{*}) \right\|_{Y^{*}} : \pi \in \mathcal{D}_{\Omega}, \sum_{A \in \pi} z_{A}^{*} \mathbf{1}_{A} \in \mathbf{B}_{L^{p'}(Z^{*})} \right\}. \quad \Box \right\} \end{split}$$

Let us give a characterization of the vector measures in the space $V_{\mathcal{B}}^p(X)$ using only scalar-valued functions $\{\varphi_y \mid y \in B_Y\} \subseteq L^p$.

THEOREM 4.5. We have $\mathfrak{F} \in V_{\mathfrak{B}}^{p}(X)$ if and only if there exist $0 \leq \varphi_{y} \in L^{p}$ for each $y \in Y$ such that:

(a) $\sup\{\|\varphi_y\|_{L^p}: y \in \mathbf{B}_Y\} < \infty; and$

(b) $\|\mathcal{B}(\mathcal{F}(E), y)\| \leq \int_{F} \varphi_{y} d\mu$ for every $y \in Y$ and $E \in \Sigma$.

Moreover, $\|\mathcal{F}\|_{V_{\infty}^{p}(X)} = \sup\{\|\varphi_{y}\|_{L^{p}} : y \in B_{Y}\}.$

PROOF. Let $\mathcal{F} \in V_{\mathcal{B}}^p(X)$. Then we have that $\mathcal{B}(\mathcal{F}, y) \in V^p(Z)$ for all $y \in B_Y$ and $|\mathcal{B}(\mathcal{F}, y)|$ is a nonnegative μ -continuous measure that has bounded variation. Using the Radon–Nikodým theorem there exists a nonnegative integrable function φ_y such that for all $E \in \Sigma$

$$|\mathcal{B}(\mathcal{F}, y)|(E) = \int_{E} \varphi_{y} \, d\mu. \tag{4.3}$$

In fact φ_{y} can be chosen belonging to L^{p} and verifying that

$$\|\varphi_{\mathbf{y}}\|_{L^p} = \|\mathcal{B}(\mathcal{F}, \mathbf{y})\|_{\mathbf{V}^p(Z)}.$$

Then, for every $E \in \Sigma$ and $y \in B_Y$,

$$\|\mathcal{B}(\mathcal{F}(E), y)\| \le |\mathcal{F}|_{\mathcal{B}}(E) = \sup\{|\mathcal{B}(\mathcal{F}, y)|(E) : y \in B_Y\}$$
$$= \sup\left\{\int_E \varphi_y \, d\mu : y \in B_Y\right\}$$

and we obtain the result.

Conversely observe that using Hölder's inequality we have that

$$\|\mathcal{B}(\mathcal{F}(E), y)\| \leq \int_{E} \varphi_{y} \, d\mu \leq \left(\int_{E} \varphi_{y}^{p} \, d\mu\right)^{1/p} \mu(E)^{1/p'}$$

for all $E \in \Sigma$ and $y \in B_Y$. Hence, for every $\pi \in \mathcal{D}_{\Omega}$

$$\sum_{A\in\pi} \frac{\|\mathcal{B}(\mathcal{F}(A), y)\|^p}{\mu(A)^{p-1}} \leq \int_{\Omega} \varphi_y^p \, d\mu.$$

This shows that $\mathcal{F} \in V_{\mathcal{B}}^{p}(X)$ and $\|\mathcal{F}\|_{V_{\mathcal{B}}^{p}(X)} \leq \sup\{\|\varphi_{y}\|_{L^{p}} : y \in B_{Y}\}.$

Let us now see the analogue to Theorem 2.9 in the cases 1 .

THEOREM 4.6. Assume X is (Y, Z, \mathcal{B}) -normed and $1 . If <math>f \in L^p_{\mathcal{B}}(X)$ then $\mathcal{F}^{\mathcal{B}}_f \in V^p_{\mathcal{B}}(X)$ and $\|\mathcal{F}^{\mathcal{B}}_f\|_{V^p_{\mathcal{B}}(X)} = \|f\|_{L^p_{\mathcal{B}}(X)}$.

PROOF. Let us take $f \in L^p_{\mathcal{B}}(X)$. From Theorem 2.9 one know that $\mathcal{F}^{\mathcal{B}}_f: \Sigma \to X$ is a vector measure of bounded variation. Now, for each $y \in Y$, $\mathcal{B}^y \mathcal{F}^{\mathcal{B}}_f: \Sigma \to Z$ is a vector measure verifying that

$$\mathcal{B}^{y}\mathcal{F}_{f}^{\mathcal{B}}(E) = \mathcal{B}(\mathcal{F}_{f}^{\mathcal{B}}(E), y) = \mathcal{B}\left(\int_{E}^{\mathcal{B}} f \, d\mu, y\right) = \int_{E} \mathcal{B}(f, y) \, d\mu, \quad E \in \Sigma.$$

Therefore

$$\|f\|_{L^{p}_{\mathcal{B}}(X)} = \sup\{\|\mathcal{B}(f, y)\|_{L^{p}(Z)} : y \in B_{Y}\} = \sup\{\|\mathcal{B}(\mathcal{F}^{\mathcal{B}}_{f}, y)\|_{V^{p}(Z)} : y \in B_{Y}\}$$
$$= \|\mathcal{F}^{\mathcal{B}}_{f}\|_{V^{p}_{\mathcal{B}}(X)}.$$

COROLLARY 4.7. If X is (Y, Z, \mathcal{B}) -normed, then $L^p_{\mathcal{B}}(X)$ is isometrically contained in $V^p_{\mathcal{B}}(X)$.

From the definition one clearly has the following interpretations of $V_{\mathcal{B}}^{p}(X)$ as operators:

$$V^{p}_{\mathcal{B}}(X)$$
 is isometrically embedded in $\mathcal{L}(Y, V^{p}(Z))$ by composition, that is $\mathcal{F} \to \Phi_{\mathcal{F}}(y) = \mathbb{B}^{y} \mathcal{F}.$

Let us see other processes that generate operators from vector measures: given a vector measure $\mathcal{F}: \Sigma \to X$ and a bounded bilinear map $\mathcal{B}: X \times Y \to Z$ we can consider the operators $T_{\mathcal{F}}^{\mathcal{B}}$ or $S_{\mathcal{F}}^{\mathcal{B}}$ defined on *Y*-valued simple functions $s = \sum_{k=1}^{n} y_k \mathbf{1}_{A_k}$ or Z^* -valued simple functions $t = \sum_{k=1}^{n} z_k^* \mathbf{1}_{A_k}$, respectively, by

$$T_{\mathcal{F}}^{\mathcal{B}}(s) = \sum_{k=1}^{n} \mathcal{B}(\mathcal{F}(A_k), y_k)$$

426

and

$$S_{\mathcal{F}}^{\mathcal{B}}(t) = \sum_{k=1}^{n} \mathcal{B}^{*}(\mathcal{F}(A_{k}), z_{k}^{*}).$$

Observe that actually $S_{\mathcal{F}}^{\mathcal{B}} = T_{\mathcal{F}}^{\mathcal{B}^*}$.

THEOREM 4.8. Let $1 . Then <math>V^p_{\mathcal{B}}(X)$ is continuously contained into $\mathcal{L}(L^{p'}\widehat{\otimes}Y, Z)$.

PROOF. Let $\mathcal{F} \in V_{\mathcal{B}}^{p}(X)$. Consider the linear operator $T_{\mathcal{F}}^{\mathcal{B}}$ defined on *Y*-valued simple functions and with values in *Z*. Note that for any partition π , $\phi = \sum_{A \in \pi} \alpha_A \mathbf{1}_A$ and $y \in Y$

$$\|T_{\mathcal{F}}^{\mathcal{B}}(\phi \otimes y)\|_{Z} \leq \sum_{A \in \pi} \|\mathcal{B}(\mathcal{F}(A), \alpha_{A}y)\|_{Z}.$$

Using (4.1) and the definition of projective tensor product one obtains $||T_{\mathcal{F}}^{\mathcal{B}}|| \leq ||\mathcal{F}||_{V_{\mathcal{F}}^{p}(X)}$.

THEOREM 4.9. Let $1 . Then <math>V^p_{\mathcal{B}}(X)$ is isometrically embedded into $\mathcal{L}(L^{p'}(Z^*), Y^*)$.

PROOF. Let $\mathcal{F} \in V_{\mathcal{B}}^{p}(X)$. Consider the linear operator $S_{\mathcal{F}}^{\mathcal{B}}$ from the space of Z^* -valued simple functions into Y^* . Note that for any partition π

$$\left\|S_{\mathcal{F}}^{\mathcal{B}}\left(\sum_{A\in\pi}z_{A}^{*}\mathbf{1}_{A}\right)\right\|_{Y^{*}}=\left\|\sum_{A\in\pi}\mathcal{B}^{*}(\mathcal{F}(A),z_{A}^{*})\right\|_{Y^{*}}.$$

Using (4.2) and the density of simple functions in $L^{p'}(Z^*)$ one obtains $\|S_{\mathcal{F}}^{\mathcal{B}}\| = \|\mathcal{F}\|_{V_{\mathcal{D}}^{p}(X)}$.

Note that $V_{\mathcal{B}}^{p}(X) \subseteq \mathcal{V}_{\mathcal{B}}^{p}(X)$ and, from Corollary 3.7, $\mathcal{V}_{\mathcal{B}}^{p}(X)$ is embedded in $\operatorname{Bil}(L^{p'} \times Y, Z)$. Hence, $V_{\mathcal{B}}^{p}(X)$ is continuously contained in $\operatorname{Bil}(L^{p'} \otimes Y, Z)$ by means of the mapping $\mathcal{F} \to \mathcal{B}_{\mathcal{F}}: L^{p'} \times Y \to Z$ given by

$$\mathcal{B}_{\mathcal{F}}(s, y) = \sum_{k=1}^{n} \mathcal{B}(\mathcal{F}(A_k), \alpha_k y)$$

where $s = \sum_{k=1}^{n} \alpha_k \mathbf{1}_{A_k}$. Let us find which special class of bilinear maps represents elements in $V_{\mathcal{B}}^p(X)$.

In the case of $Y = \mathbb{K}$ the corresponding operators would correspond to the class of cone absolutely summing operators.

427

[17]

DEFINITION 4.10. Let *L* be a Banach lattice, *Y* and *Z* be Banach spaces and \mathcal{U} : $L \times Y \rightarrow Z$ be a bounded bilinear map. We say that \mathcal{U} is *cone absolutely summing* if there exists C > 0 such that

$$\sup\left\{\sum_{n=1}^{N} \|\mathcal{U}(\varphi_n, y)\|_{Z} : y \in \mathbf{B}_Y\right\} \le C \sup\left\{\sum_{n=1}^{N} |\langle \varphi_n, \psi \rangle| : \psi \in \mathbf{B}_{L^*}\right\}$$

for any finite family $(\varphi_n)_n$ of positive elements in L.

We denote by $\Lambda(L \times Y, Z)$ the space of such bilinear maps and we endow the space with the norm $\pi^+(\mathcal{U})$ given by the infimum of the constants satisfying the above inequality.

THEOREM 4.11. If $\mathcal{F} \in V^p_{\mathcal{B}}(X)$, then $\mathcal{B}_{\mathcal{F}} \in \Lambda(L^{p'} \times Y, Z)$ and $\|\mathcal{F}\|_{V^p_{\mathcal{B}}(X)} = \pi^+(\mathcal{B}_{\mathcal{F}}).$

PROOF. Given $\mathcal{F} \in V^p_{\mathcal{B}}(X)$, then $\mathcal{B}_{\mathcal{F}}: L^{p'} \times Y \to Z$ is bounded. Let us show that $\mathcal{B}_{\mathcal{F}} \in \Lambda(L^{p'} \times Y, Z)$ and $\pi^+(\mathcal{B}_{\mathcal{F}}) = \|\mathcal{F}\|_{V^p_{\mathcal{B}}(X)}$.

From Theorem 4.5 there exists $0 \le \varphi_y \in \tilde{L}^p$ such that

$$\|\mathcal{F}\|_{\mathbf{V}^p_{\mathcal{B}}(X)} = \sup\{\|\varphi_y\|_{L^p} : y \in \mathbf{B}_Y\}$$

and

$$\|\mathcal{B}_{\mathcal{F}}(\mathbf{1}_A, y)\| \leq \int_{\Omega} \mathbf{1}_A \varphi_y \, d\mu, \quad A \in \Sigma.$$

Using linearity and density of simple functions one also extends to

$$\|\mathcal{B}_{\mathcal{F}}(\psi, y)\| \leq \int_{\Omega} \psi \varphi_{y} \, d\mu,$$

for any $0 \le \psi \in L^{p'}$ and $y \in Y$.

Now, given a finite family $0 \le \psi_n \in L^{p'}$ and $y \in Y$, we can write

$$\begin{split} \sum_{n=1}^{N} \|\mathcal{B}_{\mathcal{F}}(\psi_n, y)\| &\leq \sum_{n=1}^{N} \int_{\Omega} \psi_n \varphi_y \, d\mu \\ &= \sum_{n=1}^{N} \|\varphi_y\|_{L^p} \Big\langle \psi_n, \frac{\varphi_y}{\|\varphi_y\|_{L^p}} \Big\rangle d\mu \\ &\leq \|\mathcal{F}\|_{V_{\mathcal{B}}^p(X)} \sup \bigg\{ \sum_{n=1}^{N} |\langle \psi_n, \varphi \rangle| : \varphi \in \mathcal{B}_{L^p} \bigg\} \end{split}$$

This shows that $\pi^+(\mathcal{B}_{\mathcal{F}}) \leq \|\mathcal{F}\|_{V^p_{\mathcal{B}}(X)}$.

On the other hand, given a partition π , a sequence $(\alpha_A)_A \in \ell^{p'}$ and denoting $\psi_A = (|\alpha_A|/\mu(A)^{1/p'})\mathbf{1}_A$ one can apply the condition of cone absolutely summing

bilinear map to obtain

$$\begin{split} &\sum_{A \in \pi} \left\| \mathcal{B}\left(\frac{\mathcal{F}(A)}{\mu(A)^{1/p'}}, \alpha_A y\right) \right\|_{Z} = \sum_{A \in \pi} \|\mathcal{B}_{\mathcal{F}}(\psi_A, y)\|_{Z} \\ &\leq \pi^+(\mathcal{B}_{\mathcal{F}}) \|y\| \sup \left\{ \sum_{A \in \pi} \int_{\Omega} \psi_A |\varphi| \, d\mu : \varphi \in \mathcal{B}_{L^p} \right\} \\ &= \pi^+(\mathcal{B}_{\mathcal{F}}) \|y\| \sup \left\{ \sum_{A \in \pi} \frac{|\alpha_A|}{\mu(A)^{1/p'}} \int_A |\varphi| \, d\mu : \varphi \in \mathcal{B}_{L^p} \right\} \\ &\leq \pi^+(\mathcal{B}_{\mathcal{F}}) \|y\| \sup \left\{ \sum_{A \in \pi} |\alpha_A| \left(\int_A |\varphi|^p \right)^{1/p} \, d\mu : \varphi \in \mathcal{B}_{L^p} \right\} \\ &\leq \pi^+(\mathcal{B}_{\mathcal{F}}) \cdot \|y\| \cdot \|(\alpha_A)_A\|_{\ell^{p'}}. \end{split}$$

Now (4.1) allows us to conclude that $\|\mathcal{F}\|_{V_{\mathcal{P}}^{p}(X)} \leq \pi^{+}(\mathcal{B}_{\mathcal{F}}).$

COROLLARY 4.12. We have that $V^{p}_{\mathcal{B}}(X)$ is isometrically embedded in $\Lambda(L^{p'} \times Y, Z)$.

References

- [1] R. G. Bartle, 'A general bilinear vector integral', *Studia Math.* 15 (1956), 337–352.
- [2] O. Blasco, 'Positive *p*-summing operators, vector measures and tensor products', *Proc. Edinburgh Math. Soc.* (2) 31(2) (1988), 179–184.
- [3] _____, 'Remarks on the semivariation of vector measures with respect to Banach spaces', Bull. Austral. Math. Soc. 75(3) (2007), 469–480.
- [4] O. Blasco and J. M. Calabuig, 'Vector-valued functions integrable with respect to bilinear maps', *Taiwanese Math. J.* to appear.
- [5] _____, 'Fourier analysis with respect to bilinear maps', Acta Math. Sinica to appear.
- [6] _____, 'Hölder inequality for functions integrable with respect to bilinear maps', Math. Scan. 102 (2008), 101–110.
- [7] J. Diestel, H. Jarchow and A. Tonge, *Absolutely Summing Operators*, Cambridge Studies in Advanced Mathematics, 43 (Cambridge University Press, Cambridge, 1995).
- [8] J. Diestel and J. J. Uhl Jr, Vector Measures, Mathematical Surveys, 15 (American Mathematical Society, Providence, RI, 1977), xiii+322 pp.
- [9] N. Dinculeanu, Vector Measures, International Series of Monographs in Pure and Applied Mathematics, 95 (Pergamon Press, Oxford/VEB Deutscher Verlag der Wissenschaften, Berlin, 1967).
- [10] M. Girardi and L. Weis, 'Integral operators with operator-valued kernels.', J. Math. Anal. Appl. 290(1) (2004), 190–212.
- B. Jefferies and S. Okada, 'Bilinear integration in tensor products', *Rocky Mountain J. Math.* 28(2) (1998), 517–545.
- [12] R. S. Phillips, 'On linear transformations', Trans. Amer. Math. Soc. 48(290) (1940), 516–541.
- [13] R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer Monographs in Mathematics (Springer, London, 2002).
- [14] H. H. Schaefer, Banach Lattices and Positive Operators, Die Grundlehren der mathematischen Wissenschaften, 215 (Springer, Heidelberg, 1974).

O. BLASCO, Department of Mathematics, Universitat de València, Burjassot 46100 (València), Spain e-mail: oscar.blasco@uv.es

J. M. CALABUIG, Department of Applied Mathematics, Universitat Politècnica de València, València 46022, Spain e-mail: jmcalabu@mat.upv.es