p-VARIATION OF VECTOR MEASURES WITH RESPECT TO BILINEAR MAPS

O. BLASCO and J. M. CALABUIG

(Received 13 February 2008)

Abstract

We introduce the spaces $\mathrm{V}_{\mathcal{B}}^{p}(X)$ (respectively $\mathcal{V}_{\mathcal{B}}^{p}(X)$) of the vector measures $\mathcal{F}: \Sigma \rightarrow X$ of bounded (p, \mathcal{B})-variation (respectively of bounded (p, \mathcal{B})-semivariation) with respect to a bounded bilinear map $\mathcal{B}: X \times Y \rightarrow Z$ and show that the spaces $L_{\mathcal{B}}^{p}(X)$ consisting of functions which are p-integrable with respect to \mathcal{B}, defined in by Blasco and Calabuig ['Vector-valued functions integrable with respect to bilinear maps', Taiwanese Math. J. to appear], are isometrically embedded in $\mathrm{V}_{\mathcal{B}}^{p}(X)$. We characterize $V_{\mathcal{B}}^{p}(X)$ in terms of bilinear maps from $L^{p^{\prime}} \times Y$ into Z and $\mathrm{V}_{\mathcal{B}}^{p}(X)$ as a subspace of operators from $L^{p^{\prime}}\left(Z^{*}\right)$ into Y^{*}. Also we define the notion of cone absolutely summing bilinear maps in order to describe the (p, \mathcal{B})-variation of a measure in terms of the cone-absolutely summing norm of the corresponding bilinear map from $L^{p^{\prime}} \times Y$ into Z.

2000 Mathematics subject classification: 28A25, 46G10, 47L05, 47B10.
Keywords and phrases: bilinear maps, vector integration, vector measure, summing operators.

1. Notation and preliminaries

Throughout the paper X denotes a Banach space, (Ω, Σ, μ) a positive finite measure space, \mathcal{D}_{E} the set of all partitions of $E \in \Sigma$ into a finite number of pairwise disjoint elements of Σ of positive measure and $\mathcal{S}_{\Sigma}(X)$ the space of simple functions, $\mathbf{s}=\sum_{k=1}^{n} x_{k} \mathbf{1}_{A_{k}}$, where $x_{k} \in X,\left(A_{k}\right)_{k} \in \mathcal{D}_{\Omega}$ and $\mathbf{1}_{A}$ denotes the characteristic function of the set $A \in \Sigma$. Also Y and Z denote Banach spaces over $\mathbb{K}(\mathbb{R}$ or $\mathbb{C})$ and $\mathcal{B}: X \times Y \rightarrow Z$ a bounded bilinear map. We use the notation B_{X} for the closed unit ball of $X, \mathcal{L}(X, Y)$ for the space of bounded linear operators from X to Y and $X^{*}=\mathcal{L}(X, \mathbb{K})$.

For a vector measure $\mathcal{F}: \Sigma \rightarrow X$ we use the notation $|\mathcal{F}|$ and $\|\mathcal{F}\|$ for the nonnegative set functions $|\mathcal{F}|: \Sigma \rightarrow \mathbb{R}^{+}$and $\|\mathcal{F}\|: \Sigma \rightarrow \mathbb{R}^{+}$given by

$$
|\mathcal{F}|(E)=\sup \left\{\sum_{A \in \pi}\|\mathcal{F}(A)\|_{X}: \pi \in \mathcal{D}_{E}\right\}
$$

[^0]and
$$
\|\mathcal{F}\|(E)=\sup \left\{\left|\left\langle\mathcal{F}, x^{*}\right\rangle\right|(E): x^{*} \in \mathrm{~B}_{X^{*}}\right\},
$$
respectively. In the case of operator-valued measures $\mathcal{F}: \Sigma \rightarrow \mathcal{L}(Y, Z)$ we use $\|\mathcal{F}\|$ for the strong-variation defined by
$$
\|\mathcal{F}\|(E)=\sup \left\{\sum_{A \in \pi}\|\mathcal{F}(A) y\|_{Z}: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{E}\right\} .
$$

Given a norm τ defined on the space $Y \otimes_{\tau} X$ satisfying $\|y \otimes x\|_{\tau} \leq C\|y\| \cdot\|x\|$ we write $Y \widehat{\otimes} X$ for its completion. In [1] Bartle introduced the notion of Y-semivariation of a vector measure $\mathcal{F}: \Sigma \rightarrow X$ with respect to τ by the formula

$$
\beta_{Y}(\mathcal{F}, \tau)(E)=\sup \left\{\left\|\sum_{A \in \pi} y_{A} \otimes \mathcal{F}(A)\right\|_{\tau}: y_{A} \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{E}\right\}
$$

for every $E \in \Sigma$. This is an intermediate notion between the variation and semivariation, since for every $E \in \Sigma$ we clearly have

$$
\|\mathcal{F}\|(E) \leq \beta_{Y}(\mathcal{F}, \tau)(E) \leq|\mathcal{F}|(E)
$$

If $Y \widehat{\otimes}_{\varepsilon} X$ and $Y \widehat{\otimes}_{\pi} X$ stand for the injective and projective tensor norms, respectively, then we actually have

$$
\|\mathcal{F}\|(E)=\beta_{Y}(\mathcal{F}, \varepsilon)(E) \leq \beta_{Y}(\mathcal{F}, \tau)(E) \leq \beta_{Y}(\mathcal{F}, \pi)(E) \leq|\mathcal{F}|(E) .
$$

We refer the reader to [11] for a theory of integration of Y-valued functions with respect to X-valued measures of bounded Y-semivariation initiated by Jefferies and Okada and to [3] for the study of this notion in the particular cases $X=L^{p}(\mu)$, $Y=L^{q}(v)$ and τ the norm in the space of vector-valued functions $L^{p}\left(\mu, L^{q}(\nu)\right)$.

We are going to use notions of \mathcal{B}-variation (or \mathcal{B}-semivariation) which allow us to obtain all of the previous cases for particular instances of bilinear maps.

Recall that, for $1<p<\infty$, the p-variation and p-semivariation of a vector measure \mathcal{F} are defined by

$$
\begin{equation*}
|\mathcal{F}|_{p}(E)=\sup \left\{\left(\sum_{A \in \pi} \frac{\|\mathcal{F}(A)\|_{X}^{p}}{\mu(A)^{p-1}}\right)^{1 / p}: \pi \in \mathcal{D}_{E}\right\} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\mathcal{F}\|_{p}(E)=\sup \left\{\left(\sum_{A \in \pi} \frac{\left|\left\langle\mathcal{F}(A), x^{*}\right\rangle\right|^{p}}{\mu(A)^{p-1}}\right)^{1 / p}: x^{*} \in \mathrm{~B}_{X^{*}}, \pi \in \mathcal{D}_{E}\right\} \tag{1.2}
\end{equation*}
$$

We use $\mathrm{V}^{p}(X)$ and $\mathcal{V}^{p}(X)$ to denote the Banach spaces of vector measures for which $|\mathcal{F}|_{p}(\Omega)<\infty$ and $\|\mathcal{F}\|_{p}(\Omega)<\infty$, respectively.

The limiting case $p=1$ corresponds to $\|\mathcal{F}\|_{1}(E)=|\mathcal{F}|(E)$ and $\|\mathcal{F}\|_{1}(E)$ $=\|\mathcal{F}\|(E)$. For $p=\infty \mathrm{V}^{\infty}(X)=\mathcal{V}^{\infty}(X)$ is given by vector measures satisfying the
property that there exists $C>0$ such that $\|\mathcal{F}(A)\| \leq C \mu(A)$ for any $A \in \Sigma$ and the ∞-variation of a measure is defined by

$$
\begin{equation*}
\|\mathcal{F}\|_{\infty}(E)=\sup \left\{\frac{\|\mathcal{F}(A)\|_{X}}{\mu(A)}: A \in \Sigma, A \subset E, \mu(A)>0\right\} . \tag{1.3}
\end{equation*}
$$

We use $L^{0}(X)$ and $L_{\text {weak }}^{0}(X)$ to denote the spaces of strongly and weakly measurable functions with values in X and write $L^{p}(X)$ and $L_{\text {weak }}^{p}(X)$ for the space of functions in $L^{0}(X)$ and $L_{\text {weak }}^{0}(X)$ such that $\|f\| \in L^{p}$ and $\left\langle f, x^{*}\right\rangle \in L^{p}$ for every $x^{*} \in X^{*}$, respectively. As usual for $1 \leq p \leq \infty$ the conjugate index is denoted by p^{\prime}, that is $1 / p+1 / p^{\prime}=1$.

For each $f \in L^{p}(X), 1 \leq p \leq \infty$, one can define a vector measure

$$
\mathcal{F}_{f}(E)=\int_{E} f d \mu, \quad E \in \Sigma
$$

which is of bounded p-variation and $\left|\mathcal{F}_{f}\right|_{p}(\Omega)=\|f\|_{L^{p}(X)}$. On the other hand, the converse depends on the Radon-Nikodým property (RNP), that is, given $1<p \leq \infty$, X has the RNP if and only if for any X-valued measure \mathcal{F} of bounded p-variation there exists $f \in L^{p}(X)$ such that $\mathcal{F}=\mathcal{F}_{f}$.

For general Banach spaces $X, \mathrm{~V}^{\infty}(X)$ can be identified with the space of operators $\mathcal{L}\left(L^{1}, X\right)$ by means of the map $\mathcal{F} \rightarrow T_{\mathcal{F}}$ where

$$
T_{\mathcal{F}}\left(\mathbf{1}_{E}\right)=\mathcal{F}(E), \quad E \in \Sigma
$$

and for $1<p<\infty$ the space $\mathrm{V}^{p}(X)$ can be identified (isometrically) with the space $\Lambda\left(L^{p^{\prime}}, X\right)$, formed by the cone absolutely summing operators from $L^{p^{\prime}}$ into X with the π_{1}^{+}norm (see [14, 2]). We refer the reader to $[9,8,11,14]$ for the notions appearing in the paper and the basic concepts about vector measures and their variations.

Quite recently the authors started studying the spaces of X-valued functions which are p-integrable with respect to a bounded bilinear map $\mathcal{B}: X \times Y \rightarrow Z$, that is, functions f satisfying the condition $\mathcal{B}(f, y) \in L^{p}(Z)$ for all $y \in Y$. Some basic theory was developed and applied to different examples (see [4, 5, 6]). Note that the use of certain bilinear maps, such as

$$
\begin{array}{ll}
\mathcal{B}: X \times \mathbb{K} \rightarrow X, & \text { given by } \mathcal{B}(x, \lambda)=\lambda x, \\
\mathcal{D}: X \times X^{*} \rightarrow \mathbb{K}, & \text { given by } \mathcal{D}\left(x, x^{*}\right)=\left\langle x, x^{*}\right\rangle, \\
\mathcal{D}_{1}: X^{*} \times X \rightarrow \mathbb{K}, & \text { given by } \mathcal{D}_{1}\left(x^{*}, x\right)=\left\langle x, x^{*}\right\rangle \\
\pi_{Y}: X \times Y \rightarrow X \widehat{\otimes} Y, & \text { given by } \pi_{Y}(x, y)=x \otimes y, \\
\widetilde{\mathcal{O}}_{Y}: X \times \mathcal{L}(X, Y) \rightarrow Y, & \text { given by } \widetilde{\mathcal{O}}_{Y}(x, T)=T(x), \\
\mathcal{O}_{Y, Z}: \mathcal{L}(Y, Z) \times Y \rightarrow Z, & \text { given by } \mathcal{O}_{Y, Z}(T, y)=T(y) \tag{1.9}
\end{array}
$$

have been around for many years and have been used in different aspects of vectorvalued functions, but a systematic study for general bilinear maps was started in [4]
and used, among other things, to extend the results on boundedness from $L^{p}(Y)$ to $L^{p}(Z)$ of operator-valued kernels by Girardi and Weiss [10] to the case where $K: \Omega \times \Omega^{\prime} \rightarrow X$ is measurable and the integral operators are defined by

$$
T_{K}(f)(w)=\int_{\Omega^{\prime}} \mathcal{B}\left(K\left(w, w^{\prime}\right), f\left(w^{\prime}\right)\right) d \mu^{\prime}\left(w^{\prime}\right)
$$

The reader is also referred to [6] for some versions of Hölder's inequality in this setting.

We require some notation and definitions from the previous papers. We write $\Phi_{\mathcal{B}}: X \rightarrow \mathcal{L}(Y, Z)$ and $\Psi_{\mathcal{B}}: Y \rightarrow \mathcal{L}(X, Z)$ for the bounded linear operators defined by $\Phi_{\mathcal{B}}(x)=\mathcal{B}_{x}$ and $\Psi_{\mathcal{B}}(y)=\mathcal{B}^{y}$ where \mathcal{B}_{x} and \mathcal{B}^{y} are given by $\mathcal{B}_{x}(y)=\mathcal{B}^{y}(x)$ $=\mathcal{B}(x, y)$.

A bounded bilinear map $\mathcal{B}: X \times Y \rightarrow Z$ is called admissible (see [4]) if $\Phi_{\mathcal{B}}$ is injective. Throughout the paper we always assume that \mathcal{B} is admissible. However, a stronger condition will also be required for some results: a Banach space X is said to be (Y, Z, \mathcal{B})-normed if there exists $k>0$

$$
\|x\|_{X} \leq k\left\|\mathcal{B}_{x}\right\|_{\mathcal{L}_{(Y, Z)}, \quad x \in X}
$$

The bounded bilinear maps (1.4)-(1.9) provide examples of \mathcal{B}-normed spaces.
As in [4] we write $\mathcal{L}_{\mathcal{B}}^{p}(X)$ for the space of functions $f: \Omega \rightarrow X$ with $\mathcal{B}(f, y)$ $\in L^{0}(Z)$ for any $y \in Y$ and such that

$$
\|f\|_{\mathcal{L}_{\mathcal{B}}^{p}(X)}=\sup \left\{\|\mathcal{B}(f, y)\|_{L^{p}(Z)}: y \in \mathrm{~B}_{Y}\right\}<\infty
$$

and we use the notation $L_{\mathcal{B}}^{p}(X)$ for the space of functions $f \in \mathcal{L}_{\mathcal{B}}^{p}(X)$ for which there exists a sequence of simple functions $\left(\mathbf{s}_{n}\right)_{n} \in \mathcal{S}_{\Sigma}(X)$ such that $\mathbf{s}_{n} \rightarrow f$ almost everywhere and $\left\|\mathbf{s}_{n}-f\right\|_{\mathcal{L}_{\mathcal{B}}^{p}(X)} \rightarrow 0$. In such a case, we write $\|f\|_{L_{\mathcal{B}^{p}(X)}}$ instead of $\|f\|_{\mathcal{L}_{\mathcal{B}}^{p}(X)}$ and $\|f\|_{L_{\mathcal{B}}^{p}(X)}=\lim _{n \rightarrow \infty}\left\|\mathbf{s}_{n}\right\|_{L_{\mathcal{B}}^{p}(X)}$.

In particular, for the examples \mathcal{B} and \mathcal{D} we have that $\mathcal{L}_{\mathcal{B}}^{p}(X)=L^{p}(X)$ and $\mathcal{L}_{\mathcal{D}}^{p}(X)=L_{\text {weak }}^{p}(X)$. In addition $L_{\mathcal{B}}^{p}(X)=L^{p}(X)$ and $L_{\mathcal{D}}^{p}(X)$ coincides with the space of Pettis p-integrable functions $\mathcal{P}^{p}(X)$ (see [13, p. 54], for the case $p=1$).

Observe that, for any $\mathcal{B}, L^{p}(X) \subseteq L_{\mathcal{B}}^{p}(X)$ and the inclusion can be strict (see [8, p. 53], for the case $\mathcal{B}=\mathcal{D})$. Regarding the connection between $L_{\mathcal{B}}^{p}(X)$ and $L_{\text {weak }}^{p}(X)$ it was shown that X is (Y, Z, \mathcal{B})-normed if and only if $L_{\mathcal{B}}^{p}(X) \subseteq L_{\text {weak }}^{p}(X)$ with continuous inclusion.

Owing to this fact, if $f \in L_{\mathcal{B}}^{1}(X)$ for some (Y, Z, \mathcal{B})-normed space X, then for each $E \in \Sigma$ there exists a unique element of X, denoted by $\int_{E}^{\mathcal{B}} f d \mu$, verifying

$$
\int_{E} \mathcal{B}(f, y) d \mu=\mathcal{B}\left(\int_{E}^{\mathcal{B}} f d \mu, y\right), \quad \forall y \in Y
$$

This allows us to define the vector measure

$$
\mathcal{F}_{f}^{\mathcal{B}}(E)=\int_{E}^{\mathcal{B}} f d \mu, \quad E \in \Sigma
$$

We consider the notion of (p, \mathcal{B})-variation which fits with the theory allowing us to show that the (p, \mathcal{B})-variation of \mathcal{F}_{f} coincides with its norm $\|f\|_{L_{\mathcal{B}}^{p}(X)}$.

The rest of this paper is divided into three sections. In Section 2 we introduce the notion of \mathcal{B}-variation, \mathcal{B}-semivariation of a vector measure and study their connection with the classical notions. We prove that for (Y, Z, \mathcal{B})-normed spaces the \mathcal{B}-semivariation is equivalent to the semivariation and that the Y-semivariation considered by Bartle coincides the \mathcal{B}-variation for a particular bilinear map \mathcal{B}. Of particular interest is the observation that any vector measure with values in $X=L^{1}(\mu)$ is of bounded \mathcal{B}-variation for every \mathcal{B} whenever Z is a Hilbert space. We also show in this section that the measure $\mathcal{F}_{f}^{\mathcal{B}}$ is μ-continuous and $\left\|\mathcal{F}_{f}^{\mathcal{B}}\right\|_{\mathcal{B}}(\Omega)=\|f\|_{L_{\mathcal{B}}{ }^{1}(X)}$. In Section 3 the natural notion of (p, \mathcal{B})-semivariation is introduced. Starting with the case $p=\infty$ we describe, for $1<p \leq \infty$, the space of measures with bounded (p, \mathcal{B}) semivariation as bounded bilinear maps from $L^{p^{\prime}} \times Y \rightarrow Z$. In Section 4 we deal with the notion of (p, \mathcal{B})-variation of a vector measure. Several characterizations are presented and the new notion of 'cone absolutely summing bilinear map' from $L \times Y \rightarrow Z$, where L is a Banach lattice, is introduced. This allow us to describe the (p, \mathcal{B})-variation of a vector measure as the norm of the corresponding bilinear map from $L^{p^{\prime}} \times Y$ into Z in this class.

Throughout the paper $\mathcal{F}: \Sigma \rightarrow X$ always denotes a vector measure, $\mathcal{B}: X$ $\times Y \rightarrow Z$ is admissible and, for each $y \in Y, \mathcal{B}(\mathcal{F}, y)$ denotes the Z-valued measure $\mathcal{B}(\mathcal{F}, y)(E)=\mathcal{B}(\mathcal{F}(E), y)$.

2. Variation and semivariation with respect to bilinear maps

Definition 2.1. Let $E \in \Sigma$. We define the \mathcal{B}-variation of \mathcal{F} on the set E by

$$
\begin{aligned}
|\mathcal{F}|_{\mathcal{B}}(E) & =\sup \left\{|\mathcal{B}(\mathcal{F}, y)|(E): y \in \mathrm{~B}_{Y}\right\} \\
& =\sup \left\{\sum_{A \in \pi}\|\mathcal{B}(\mathcal{F}(A), y)\|_{Z}: \pi \in \mathcal{D}_{E}, y \in \mathrm{~B}_{Y}\right\} .
\end{aligned}
$$

We say that \mathcal{F} has bounded \mathcal{B}-variation if $|\mathcal{F}|_{\mathcal{B}}(\Omega)<\infty$.
Definition 2.2. Let $E \in \Sigma$. We define the \mathcal{B}-semivariation of \mathcal{F} on the set E by

$$
\begin{aligned}
\|\mathcal{F}\|_{\mathcal{B}}(E) & =\sup \left\{\|\mathcal{B}(\mathcal{F}, y)\|(E): y \in \mathrm{~B}_{Y}\right\} \\
& =\sup \left\{\left|\left\langle\mathcal{B}(\mathcal{F}, y), z^{*}\right\rangle\right|(E): y \in \mathrm{~B}_{Y}, z^{*} \in \mathrm{~B}_{Z^{*}}\right\} \\
& =\sup \left\{\sum_{A \in \pi}\left|\left\langle\mathcal{B}(\mathcal{F}(A), y), z^{*}\right\rangle\right|: \pi \in \mathcal{D}_{E}, y \in \mathrm{~B}_{Y}, z^{*} \in \mathrm{~B}_{Z^{*}}\right\} .
\end{aligned}
$$

We say that \mathcal{F} has bounded \mathcal{B}-semivariation if $\|\mathcal{F}\|_{\mathcal{B}}(\Omega)<\infty$.

REmark 2.3. Let \mathcal{F} be a vector measure and $E \in \Sigma$. Then:
(a) $|\mathcal{F}|_{\mathcal{B}}(E) \leq\|\mathcal{B}\| \cdot|\mathcal{F}|(E)$;
(b) $\|\mathcal{F}\|_{\mathcal{B}}(E) \leq\|\mathcal{B}\| \cdot\|\mathcal{F}\|(E)$;
(c) $\sup \left\{\|\mathcal{B}(\mathcal{F}(C), y)\|: y \in \mathrm{~B}_{Y}, E \supseteq C \in \Sigma\right\} \approx\|\mathcal{F}\|_{\mathcal{B}}(E)$.

In particular any measure has bounded \mathcal{B}-semivariation for any \mathcal{B}.
We can easily describe the \mathcal{B}-variation and \mathcal{B}-semivariation of vector measures for the bilinear maps given in (1.4)-(1.9). The following results are elementary and left to the reader.
Proposition 2.4. Let \mathcal{F} be a vector measure and $E \in \Sigma$. Then:
(a) $|\mathcal{F}|_{\mathcal{B}}(E)=|\mathcal{F}|(E)$ and $\|\mathcal{F}\|_{\mathcal{B}}(E)=\|\mathcal{F}\|(E)$;
(b) $|\mathcal{F}|_{\mathcal{D}}(E)=\|\mathcal{F}\|_{\mathcal{D}}(E)=\|\mathcal{F}\|(E)$;
(c) $|\mathcal{F}|_{\mathcal{D}_{1}}(E)=\|\mathcal{F}\|_{\mathcal{D}_{1}}(E)=\|\mathcal{F}\|(E)$;
(d) $|\mathcal{F}|_{\pi_{Y}}(E)=|\mathcal{F}|(E)$ and $\|\mathcal{F}\|_{\pi_{Y}}(E)=\|\mathcal{F}\|(E)$ (see Proposition 2.7);
(e) $|\mathcal{F}|_{\tilde{\mathcal{O}}_{Y}}(E)=\sup \left\{|T \mathcal{F}|(E): T \in \mathrm{~B}_{\mathcal{L}(Y, Z)}\right\}$ and $\|\mathcal{F}\|_{\tilde{\mathcal{O}}_{Y}}(E)=\|\mathcal{F}\|(E)$;
(f) $\quad|\mathcal{F}|_{\mathcal{O}_{Y, Z}}(E)=\|\mathcal{F}\| \|(E)$ and $\|\mathcal{F}\|_{\mathcal{O}_{Y, Z}}(E)=\|\mathcal{F}\|(E)$.

The notion of \mathcal{B}-normed space can be described in terms of vector measures.
Proposition 2.5. Let $\mathcal{B}: X \times Y \rightarrow Z$ be an admissible bounded bilinear map. Then X is (Y, Z, \mathcal{B})-normed if and only if for any vector measure $\mathcal{F}: \Sigma \rightarrow X$ there exist $C_{1}, C_{2}>0$ such that

$$
C_{1}\|\mathcal{F}\|(E) \leq\|\mathcal{F}\|_{\mathcal{B}}(E) \leq C_{2}\|\mathcal{F}\|(E)
$$

for all $E \in \Sigma$.
Proof. Obviously $\|\mathcal{F}\|_{\mathcal{B}}(E) \leq\|\mathcal{B}\| \cdot\|\mathcal{F}\|(E)$ for any $E \in \Sigma$. Assume that X is (Y, Z, \mathcal{B})-normed. Then we have that

$$
\begin{aligned}
\|\mathcal{F}\|(E) & =\sup \left\{\left\|\sum_{A \in \pi} \varepsilon_{A} \mathcal{F}(A)\right\|_{X}: \pi \in \mathcal{D}_{E}, \varepsilon_{A} \in \mathrm{~B}_{\mathbb{K}}\right\} \\
& \leq k \sup \left\{\left\|\mathcal{B}_{\sum_{A \in \pi} \varepsilon_{A} \mathcal{F}(A)}\right\|_{\mathcal{L}(Y, Z)}: \pi \in \mathcal{D}_{E}, \varepsilon_{A} \in \mathrm{~B}_{\mathbb{K}}\right\} \\
& =k \sup \left\{\left\|\sum_{A \in \pi} \varepsilon_{A} \mathcal{B}(\mathcal{F}(A), y)\right\|_{Z}: \pi \in \mathcal{D}_{E}, \varepsilon_{A} \in \mathrm{~B}_{\mathbb{K}}, y \in \mathrm{~B}_{Y}\right\} \\
& =k\|\mathcal{F}\|_{\mathcal{B}}(E) .
\end{aligned}
$$

Conversely, for each $x \in X$ select the measure $\mathcal{F}_{x}(A)=x \mu(A) \mu(\Omega)^{-1}$ and observe that $\left\|\mathcal{F}_{x}\right\|(\Omega)=\|x\|$ and $\left\|\mathcal{F}_{x}\right\|_{\mathcal{B}}(\Omega)=\left\|\mathcal{B}_{x}\right\|$.

We use \mathcal{B}^{*} for the 'adjoint' bilinear map from $X \times Z^{*}$ to Y^{*}, that is $\left(\mathcal{B}^{*}\right)_{x}=\left(\mathcal{B}_{x}\right)^{*}$ or

$$
\mathcal{B}^{*}: X \times Z^{*} \rightarrow Y^{*}, \text { given by }\left\langle y, \mathcal{B}^{*}\left(x, z^{*}\right)\right\rangle=\left\langle\mathcal{B}(x, y), z^{*}\right\rangle
$$

Note that $\mathcal{B}^{*}=\mathcal{D}, \mathcal{D}_{1}^{*}=\mathcal{B},\left(\pi_{Y}\right)^{*}=\widetilde{\mathcal{O}}_{Y^{*}}$ and $\left(\mathcal{O}_{Y, Z}\right)^{*}\left(T, z^{*}\right)=\mathcal{O}_{Z^{*}, Y^{*}}\left(T^{*}, z^{*}\right)$.
Let us prove that the \mathcal{B}-semivariation and the \mathcal{B}^{*}-semivariation always coincide.
Proposition 2.6. We have $\|\mathcal{F}\|_{\mathcal{B}}(E)=\|\mathcal{F}\|_{\mathcal{B}^{*}}(E)$ for all $E \in \Sigma$.
Proof. Let us take $E \in \Sigma$. Then

$$
\begin{aligned}
& \|\mathcal{F}\|_{\mathcal{B}}(E)=\sup \left\{\sum_{A \in \pi}\left|\left\langle\mathcal{B}(\mathcal{F}(A), y), z^{*}\right\rangle\right|: \pi \in \mathcal{D}_{E}, y \in \mathrm{~B}_{Y}, z^{*} \in \mathrm{~B}_{Z^{*}}\right\} \\
& \quad=\sup \left\{\sum_{A \in \pi}\left|\left\langle y, \mathcal{B}^{*}\left(\mathcal{F}(A), z^{*}\right)\right\rangle\right|: \pi \in \mathcal{D}_{E}, y \in \mathrm{~B}_{Y}, z^{*} \in \mathrm{~B}_{Z^{*}}\right\} \\
& \quad=\sup \left\{\left|\sum_{A \in \pi} \varepsilon_{A}\left\langle y, \mathcal{B}^{*}\left(\mathcal{F}(A), z^{*}\right)\right\rangle\right|: \pi \in \mathcal{D}_{E}, y \in \mathrm{~B}_{Y}, z^{*} \in \mathrm{~B}_{Z^{*}}, \varepsilon_{A} \in \mathrm{~B}_{\mathbb{K}}\right\} \\
& \quad=\sup \left\{\left\|\sum_{A \in \pi} \varepsilon_{A} \mathcal{B}^{*}\left(\mathcal{F}(A), z^{*}\right)\right\|_{Y^{*}}: \pi \in \mathcal{D}_{E}, z^{*} \in \mathrm{~B}_{Z^{*}}, \varepsilon_{A} \in \mathrm{~B}_{\mathbb{K}}\right\} \\
& \quad=\sup \left\{\sum_{A \in \pi}\left|\left\langle\mathcal{B}^{*}\left(\mathcal{F}(A), z^{*}\right), y^{* *}\right\rangle\right|: \pi \in \mathcal{D}_{E}, y^{* *} \in \mathrm{~B}_{Y^{* *}}, z^{*} \in \mathrm{~B}_{Z^{*}}\right\} \\
& \quad=\|\mathcal{F}\|_{\mathcal{B}^{*}}(E) .
\end{aligned}
$$

Proposition 2.7. Let τ be a norm in $Y \otimes X$ with $\|y \otimes x\|_{\tau}=\|y\|\|x\|$ for all $y \in Y$ and $x \in X$. Define $\tau_{Y}: X \times Y \rightarrow Y \widehat{\otimes}_{\tau} X$ given by $(x, y) \rightarrow y \otimes x$. Then, for each $E \in \Sigma$,

$$
\beta_{Y}(\mathcal{F}, \tau)(E) \approx|\mathcal{F}|_{\left(\tau_{Y}\right)^{*}}(E)
$$

Proof. Taking into account that $Y \widehat{\otimes}_{\pi} X \subseteq Y \widehat{\otimes}_{\tau} X$, then $\left(Y \widehat{\otimes}_{\tau} X\right)^{*}$ can be regarded as a subspace of the space of bounded operators $\mathcal{L}\left(Y, X^{*}\right)$. Moreover $\|T\| \leq\|T\|_{\left(Y \widehat{\otimes}_{\tau} X\right)^{*}}$ for any $T \in\left(Y \widehat{\otimes}_{\tau} X\right)^{*}$, where the duality is given by

$$
\left\langle T, \sum_{j=1}^{k} y_{j} \otimes x_{j}\right\rangle=\sum_{j=1}^{k}\left\langle x_{j}, T\left(y_{j}\right)\right\rangle .
$$

From [3, Theorem 2.1], we have

$$
\beta_{Y}(\mathcal{F}, \tau)(E) \approx \sup \left\{|T \mathcal{F}|(E): T \in \mathcal{L}\left(Y, X^{*}\right),\|T\|_{\left(Y \widehat{\otimes}_{\tau} X\right)^{*}} \leq 1\right\}
$$

Hence,

$$
\beta_{Y}(\mathcal{F}, \tau)(E) \approx \sup \left\{\left|\left(\tau_{Y}\right)^{*}(\mathcal{F}, T)\right|(E): T \in \mathcal{L}\left(Y, X^{*}\right),\|T\|_{\left(Y \widehat{\otimes}_{\tau} X\right)^{*}} \leq 1\right\}
$$

Of course vector measures need not be of bounded \mathcal{B}-variation for a general \mathcal{B} (it suffices to take \mathcal{B} such that $|\mathcal{F}|_{\mathcal{B}}=|\mathcal{F}|$), but there are cases where this happens to be true owing to the geometrical properties of the spaces under consideration.

Proposition 2.8. Let $X=L^{1}(\nu)$ for some σ-finite measure v and let $Z=H$ be a Hilbert space. Then any vector measure $\mathcal{F}: \Sigma \rightarrow L^{1}(\nu)$ is of bounded \mathcal{B}-variation for any bounded bilinear map $\mathcal{B}: L^{1}(v) \times Y \rightarrow H$ and any Banach space Y.

Proof. Recall first that Grothendieck theorem (see [7]) establishes that there exists a constant $\kappa_{G}>0$ such that any operator from $L^{1}(v)$ to a Hilbert space H satisfies

$$
\sum_{n=1}^{N}\left\|T\left(\phi_{n}\right)\right\|_{H} \leq \kappa_{G}\|T\| \sup \left\{\left\|\sum_{n=1}^{N} \varepsilon_{n} \phi_{n}\right\|_{L^{1}(\nu)}: \varepsilon_{n} \in \mathcal{B}_{\mathbb{K}}\right\}
$$

for any finite family of functions $\left(\phi_{n}\right)_{n}$ in $L^{1}(\nu)$.
If $\mathcal{F}: \Sigma \rightarrow L^{1}(\nu)$ is a vector measure and π a partition, one has that $\left\|\sum_{A \in \pi} \varepsilon_{A} \mathcal{F}(A)\right\|_{L^{1}(\nu)} \leq\|\mathcal{F}\|(\Omega)$. Hence, $\mathcal{B}^{y} \in \mathcal{L}(L 1(\eta), H)$ for any $y \in Y$, so one obtains

$$
\sum_{A \in \pi}\left\|\mathcal{B}^{y}(\mathcal{F}(A))\right\|_{Z} \leq \kappa_{G} \cdot\left\|\mathcal{B}^{y}\right\| \cdot\|\mathcal{F}\|(\Omega)
$$

Therefore, one concludes that $|\mathcal{F}|_{\mathcal{B}}(\Omega) \leq \kappa_{G} \cdot\|\mathcal{F}\|(\Omega)$.
Recall that a vector measure $\mathcal{F}: \Sigma \rightarrow X$ is called μ-continuous if $\lim _{\mu(E) \rightarrow 0}$ $\|\mathcal{F}\|(E)=0$.

Theorem 2.9. Let X be (Y, Z, \mathcal{B})-normed and $f \in L_{\mathcal{B}}^{1}(X)$. Then

$$
\begin{equation*}
\mathcal{F}_{f}^{\mathcal{B}}: \Sigma \rightarrow X, \text { given by } \mathcal{F}_{f}^{\mathcal{B}}(E)=\int_{E}^{\mathcal{B}} f d \mu \tag{2.1}
\end{equation*}
$$

is a μ-continuous vector measure of bounded \mathcal{B}-variation. Moreover, $\left|\mathcal{F}_{f}^{\mathcal{B}}\right|_{\mathcal{B}}(\Omega)$ $=\|f\|_{L_{\mathcal{B}}^{1}(X)}$.

Proof. It was shown (see [4, Theorem 1]) that functions in $L_{\mathcal{B}}^{1}(X)$ are Pettis integrable and $\int_{E}^{\mathcal{B}} f d \mu$ coincides with the Pettis integral. Hence, $\mathcal{F}_{f}^{\mathcal{B}}$ defines a vector measure.

Using now that, for each $y \in Y$, the vector measure $\mathcal{B}\left(\mathcal{F}_{f}^{\mathcal{B}}, y\right)$ has density $\mathcal{B}(f, y)$ that belongs to $L^{1}(Z)$, one obtains that, for any $E \in \Sigma$,

$$
\left|\mathcal{B}\left(\mathcal{F}_{f}, y\right)\right|(E)=\int_{E}\|\mathcal{B}(f, y)\|_{Z} d \mu
$$

Thus, $\left|\mathcal{F}_{f}^{\mathcal{B}}\right|_{\mathcal{B}}(\Omega)=\|f\|_{L_{\mathcal{B}}^{1}(X)}$. It remains to show that $\mathcal{F}_{f}^{\mathcal{B}}$ is μ-continuous. Let us fix $\varepsilon>0$ and select, using that $f \in L_{\mathcal{B}}^{1}(X)$, a simple function s such that $\|f-s\|_{L_{\mathcal{B}}^{1}(X)}$ $\leq \varepsilon$. Thus,

$$
\begin{aligned}
\left\|\mathcal{F}_{f}^{\mathcal{B}}(E)\right\|_{X} & \leq\left\|\int_{E}^{\mathcal{B}}(f-s) d \mu\right\|_{X}+\left\|\int_{E}^{\mathcal{B}} s d \mu\right\|_{X} \\
& =\left\|\int_{E}^{\mathcal{B}}(f-s) d \mu\right\|_{X}+\left\|\int_{E} s d \mu\right\|_{X} \\
& \leq k\left\|\mathcal{B} \int_{E}^{\mathcal{B}}(f-s) d \mu\right\| \mathcal{L}(Y, Z)+\left\|\int_{E} s d \mu\right\|_{X} \\
& \leq k \sup \left\{\int_{E}\|\mathcal{B}(f-s, y)\|_{Z} d \mu: y \in \mathrm{~B}_{Y}\right\}+\left\|\int_{E} s d \mu\right\|_{X} \\
& \leq k \varepsilon+\left\|\int_{E} s d \mu\right\|_{X} .
\end{aligned}
$$

We have the conclusion just taking limits when $\mu(E) \rightarrow 0$ and $\varepsilon \rightarrow 0^{+}$.

Corollary 2.10. Let X is (Y, Z, \mathcal{B})-normed and $f \in L_{\mathcal{B}}^{1}(X)$. If $\int_{E}^{\mathcal{B}} f d \mu=0$ for all $E \in \Sigma$, then $f=0$ almost everywhere in Ω.

3. Measures of bounded (p, \mathcal{B})-semivariation.

Extending the notion for $\mathcal{B}=\mathcal{B}$, we say that a vector measure $\mathcal{F}: \Sigma \rightarrow X$ is (\mathcal{B}, μ) continuous if $\lim _{\mu(E) \rightarrow 0}\|\mathcal{F}\|_{\mathcal{B}}(E)=0$. Clearly both concepts coincide for \mathcal{B}-normed spaces.

Definition 3.1. We say that \mathcal{F} has bounded (∞, \mathcal{B})-semivariation if there exists $C>0$ such that

$$
\begin{equation*}
\left|\left\langle\mathcal{B}(\mathcal{F}(A), y), z^{*}\right\rangle\right| \leq C \cdot\|y\| \cdot\left\|z^{*}\right\| \cdot \mu(A), \quad y \in Y, z^{*} \in Z^{*}, A \in \Sigma . \tag{3.1}
\end{equation*}
$$

The space of such measures is denoted by $\mathcal{V}_{\mathcal{B}}^{\infty}(X)$ and we set

$$
\begin{aligned}
\|\mathcal{F}\|_{\nu_{\mathcal{B}}^{\infty}(X)} & =\inf \{C: \text { satisfying }(3.1)\} \\
& =\sup \left\{\frac{\left|\left\langle\mathcal{B}(\mathcal{F}(A), y), z^{*}\right\rangle\right|}{\mu(A)}: y \in \mathrm{~B}_{Y}, z^{*} \in \mathrm{~B}_{Z^{*}}, A \in \Sigma, \mu(A)>0\right\} .
\end{aligned}
$$

Observe that every vector measure \mathcal{F} belonging to $\mathcal{V}_{\mathcal{B}}^{\infty}(X)$ is (\mathcal{B}, μ)-continuous and it has bounded \mathcal{B}-variation. Also note that \mathcal{F} has bounded (∞, \mathcal{B})-semivariation if and only if one of the following holds:

$$
\begin{aligned}
\|\mathcal{B}(\mathcal{F}(A), y)\| & \leq C\|y\| \mu(A), & & y \in Y, A \in \Sigma, \\
\|\mathcal{F}\|_{\mathcal{B}}(A) & \leq C \mu(A), & & A \in \Sigma
\end{aligned}
$$

or

$$
|\mathcal{F}|_{\mathcal{B}}(A) \leq C \mu(A), \quad A \in \Sigma
$$

It is elementary to see, owing to the admissibility of \mathcal{B}, that $\|\mathcal{F}\| \nu_{\mathcal{B}}^{\infty}(X)$ is a norm.
Of course,

$$
\begin{aligned}
\|\mathcal{F}\| \nu_{\mathcal{B}}^{\infty}(X) & =\sup \left\{\|\mathcal{B}(\mathcal{F}, y)\|_{\mathrm{v}^{\infty}(Z)}: y \in \mathrm{~B}_{Y}\right\} \\
& =\sup \left\{\frac{\|\mathcal{B}(\mathcal{F}(A), y)\|_{Z}}{\mu(A)}: y \in \mathrm{~B}_{Y}, A \in \Sigma\right\} \\
& =\sup \left\{\frac{\|\mathcal{F}\|_{\mathcal{B}}(A)}{\mu(A)}: A \in \Sigma\right\} \\
& =\sup \left\{\frac{|\mathcal{F}|_{\mathcal{B}}(A)}{\mu(A)}: A \in \Sigma\right\} .
\end{aligned}
$$

Proposition 3.2. We have $\mathcal{F} \in \mathcal{V}_{\mathcal{B}}^{\infty}(X)$ if and only if there exists a bounded bilinear map $\mathcal{B}_{\mathcal{F}}: L^{1} \times Y \rightarrow Z$ such that

$$
\mathcal{B}_{\mathcal{F}}\left(\mathbf{1}_{A}, y\right)=\mathcal{B}(\mathcal{F}(A), y), \quad A \in \Sigma, y \in Y
$$

Moreover, $\left\|\mathcal{B}_{\mathcal{F}}\right\|=\|\mathcal{F}\| \nu_{\mathcal{B}}^{\infty}(X)$.
Proof. Assume that $\mathcal{F} \in \mathcal{V}_{\mathcal{B}}^{\infty}(X)$. Define $\mathcal{B}_{\mathcal{F}}$ on simple functions by the formula

$$
\mathcal{B}_{\mathcal{F}}\left(\sum_{k=1}^{n} \alpha_{k} \mathbf{1}_{A_{k}}, y\right)=\sum_{k=1}^{n} \alpha_{k} \mathcal{B}\left(\mathcal{F}\left(A_{k}\right), y\right)
$$

Observe that

$$
\left\|\mathcal{B}_{\mathcal{F}}\left(\sum_{k=1}^{n} \alpha_{k} \mathbf{1}_{A_{k}}, y\right)\right\|_{Z} \leq\|\mathcal{F}\| \mathcal{V}_{\mathfrak{B}}^{\infty}(X)\|y\| \sum_{k=1}^{n}\left|\alpha_{k}\right| \mu\left(A_{k}\right) .
$$

This allows us to extend the bilinear map to $L^{1} \times Y \rightarrow Z$ with norm $\left\|\mathcal{B}_{\mathcal{F}}\right\|$ $\leq\|\mathcal{F}\| \nu_{\mathcal{B}}^{\infty}(X)$. Conversely, one has

$$
\|\mathcal{B}(\mathcal{F}(A), y)\|_{z} \leq\left\|\mathcal{B}_{\mathcal{F}}\right\| \cdot\|y\| \cdot\left\|\mathbf{1}_{A}\right\|_{L^{1}}
$$

which gives $\|\mathcal{F}\| \nu_{\mathcal{B}}^{\infty}(X) \leq\left\|\mathcal{B}_{\mathcal{F}}\right\|$.
We use the notation $\operatorname{Bil}\left(L^{1} \times Y, Z\right)$ for the space of bounded bilinear maps with its natural norm.

Corollary 3.3. We have that $\mathcal{V}_{\mathcal{B}}^{\infty}(X)$ is isometrically embedded in $\operatorname{Bil}\left(L^{1} \times Y, Z\right)$. In the case $\mathcal{B}=\mathcal{O}_{Y, Z}$ we have

$$
\mathcal{V}_{\mathcal{O}_{Y, Z}}^{\infty}(\mathcal{L}(Y, Z))=\operatorname{Bil}\left(L^{1} \times Y, Z\right)
$$

Let $L_{\mathcal{B}}^{\infty}(X)$ stand for the space of measurable functions $f: \Omega \rightarrow X$ such that $\mathcal{B}(f, y) \in L^{\infty}(Z)$ for all $y \in Y$ and write

$$
\|f\|_{L_{\mathcal{B}}^{\infty}(X)}=\sup \left\{\|\mathcal{B}(f, y)\|_{L^{\infty}(Z)}: y \in \mathrm{~B}_{Y}\right\}
$$

Note that $L_{\mathcal{B}}^{\infty}(X) \subseteq L_{\mathcal{B}}^{1}(X)$ and $\left|\mathcal{B}\left(\mathcal{F}_{f}^{\mathcal{B}}, y\right)\right|(A)=\int_{A}^{\mathcal{B}}\|\mathcal{B}(f, y)\| d \mu$ for any set $A \in \Sigma$. In particular, if $f \in L_{\mathcal{B}}^{\infty}(X)$, then the measure $\mathcal{F}_{f}^{\mathcal{B}} \in \mathcal{V}_{\mathcal{B}}^{\infty}(X)$ and $\left\|\mathcal{F}_{f}^{\mathcal{B}}\right\| \nu_{\mathfrak{B}}^{\infty}(X)=\|f\|_{L_{\mathfrak{B}}^{\infty}(X)}$.

PROPOSITION 3.4. The following are equivalent:

(a) X is (Y, Z, \mathcal{B})-normed;
(b) $\quad \mathcal{V}_{\mathcal{B}}^{\infty}(X)=V^{\infty}(X)$;
(c) there exists $k>0$ such that $\left\|\mathcal{F}_{f}^{\mathcal{B}}\right\|_{V^{\infty}(X)} \leq k\|f\|_{L_{\mathcal{B}}^{\infty}(X)}$ for any $f \in L_{\mathcal{B}}^{\infty}(X)$.

Proof. (a) \Longrightarrow (b) We always have $V^{\infty}(X) \subseteq \mathcal{V}_{\mathcal{B}}^{\infty}(X)$. Assume that X is (Y, Z, \mathcal{B}) normed and $\mathcal{F} \in \mathcal{V}_{\mathcal{B}}^{\infty}(X)$. Note that

$$
\|\mathcal{F}(A)\| \leq k\left\|\mathcal{B}_{\mathcal{F}(A)}\right\| \leq k\|\mathcal{F}\| \nu_{\mathcal{B}}^{\infty}(X), \mu(A)
$$

(b) \Longrightarrow (c) Let $f \in L_{\mathcal{B}}^{\infty}(X)$. Clearly,

$$
\left\|\mathcal{F}_{f}^{\mathcal{B}}\right\|_{\mathrm{V}^{\infty}(X)} \leq k\left\|\mathcal{F}_{f}^{\mathcal{B}}\right\|\left\|_{\mathcal{B}}^{\infty}(X)=k\right\| f \|_{L_{\mathcal{B}}^{\infty}(X)} .
$$

(c) \Longrightarrow (a) Let us take $f_{x}=x \mathbf{1}_{\Omega}$ for a given $x \in X$ and observe that $\mathcal{F}_{f_{x}}^{\mathcal{B}}(A)$ $=x \mu(A)$ for all $A \in \Sigma$. Note that $\left\|f_{x}\right\|_{L_{\mathcal{B}}^{\infty}(X)}=\left\|\mathcal{B}_{x}\right\|$ and $\left\|\mathcal{F}_{f_{x}}^{\mathcal{B}}\right\|_{\mathrm{V}^{\infty}(X)}=\|x\|$.

Definition 3.5. Let $1 \leq p<\infty$. We say that \mathcal{F} has bounded (p, \mathcal{B})-semivariation if

$$
\begin{aligned}
&\|\mathcal{F}\|_{\mathcal{V}_{\mathcal{B}}^{p}(X)}= \sup \left\{\left(\sum_{A \in \pi} \frac{\left|\left\langle\mathcal{B}(\mathcal{F}(A), y), z^{*}\right\rangle\right|^{p}}{\mu(A)^{p-1}}\right)^{1 / p}: y \in \mathrm{~B}_{Y}\right. \\
&\left.z^{*} \in \mathrm{~B}_{Z^{*}}, \pi \in \mathcal{D}_{\Omega}\right\}<\infty
\end{aligned}
$$

The space of such measures is denoted by $\mathcal{V}_{\mathcal{B}}^{p}(X)$.
We have the equivalent formulation

$$
\begin{aligned}
\|\mathcal{F}\|_{\mathcal{V}_{\mathcal{B}}^{p}(X)} & =\sup \left\{\|\mathcal{B}(\mathcal{F}, y)\| \mathcal{V}^{p}(Z)\right. \\
& \left.=\sup \left\{\left\|\left\langle\mathcal{B}(\mathcal{F}, y), z^{*}\right\rangle\right\| \mathcal{V}_{Y}\right\}: y \in \mathrm{~B}_{Y}, z^{*} \in \mathrm{~B}_{Z^{*}}\right\} .
\end{aligned}
$$

Let us start with the following description.

Proposition 3.6. Let $1<p<\infty$. Then $\mathcal{F} \in \mathcal{V}_{\mathcal{B}}^{p}(X)$ if and only if there exists a bounded bilinear map $\mathcal{B}_{\mathcal{F}}: L^{p^{\prime}} \times Y \rightarrow Z$ such that

$$
\mathcal{B}_{\mathcal{F}}\left(\mathbf{1}_{A}, y\right)=\mathcal{B}(\mathcal{F}(A), y), \quad A \in \Sigma, y \in Y
$$

Moreover, $\left\|\mathcal{B}_{\mathcal{F}}\right\|=\|\mathcal{F}\|_{\mathcal{V}_{\mathcal{B}}^{p}(X)}$.
Proof. Assume that $\mathcal{F} \in \mathcal{V}_{\mathcal{B}}^{p}(X)$. As above define $\mathcal{B}_{\mathcal{F}}$ on simple functions by the formula

$$
\mathcal{B}_{\mathcal{F}}\left(\sum_{k=1}^{n} \alpha_{k} \mathbf{1}_{A_{k}}, y\right)=\sum_{k=1}^{n} \alpha_{k} \mathcal{B}\left(\mathcal{F}\left(A_{k}\right), y\right)
$$

We use that

$$
\begin{aligned}
\|\mathcal{F}\|_{\mathcal{V}_{\mathcal{B}}^{p}(X)}= & \sup \left\{\left|\sum_{A \in \pi} \frac{\left\langle\mathcal{B}(\mathcal{F}(A), y), z^{*}\right\rangle \gamma_{A}}{\mu(A)^{1 / p^{\prime}}}\right|: y \in \mathrm{~B}_{Y}, z^{*} \in \mathrm{~B}_{Z^{*}},\right. \\
& \left.\pi \in \mathcal{D}_{\Omega},\left(\gamma_{A}\right)_{A} \in \mathrm{~B}_{\ell p^{\prime}}\right\} \\
= & \sup \left\{\left\|\sum_{A \in \pi} \mathcal{B}(\mathcal{F}(A), y) \beta_{A}\right\|_{Z}: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega}, \sum_{A \in \pi} \beta_{A} \mathbf{1}_{A} \in \mathrm{~B}_{L^{p^{\prime}}}\right\} \\
= & \sup \left\{\left\|\mathcal{B}_{\mathcal{F}}\left(\sum_{A \in \pi} \beta_{A} \mathbf{1}_{A}, y\right)\right\|_{Z}: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega}, \sum_{A \in \pi} \beta_{A} \mathbf{1}_{A} \in \mathrm{~B}_{L^{p^{\prime}}}\right\} .
\end{aligned}
$$

Hence, using the density of simple functions we extend to $L^{p^{\prime}}$ and $\left\|\mathcal{B}_{\mathcal{F}}\right\| \leq\|\mathcal{F}\|_{\mathcal{V}_{\mathcal{B}}^{p}(X)}$. The converse also follows from the previous formula.

It is known that $\mathcal{V}^{p}(X)=\mathcal{L}\left(L^{p^{\prime}}, X\right)$ (see [12]). The next result is the analogue in the bilinear setting.

Corollary 3.7. Let $1<p<\infty$. Then $\nu_{\mathcal{B}}^{p}(X)$ is isometrically embedded in $\operatorname{Bil}\left(L^{p^{\prime}} \times Y, Z\right)$. In the case $\mathcal{B}=\mathcal{O}_{Y, Z}$ we have

$$
\mathcal{V}_{\mathcal{O}_{Y, Z}}^{p}(\mathcal{L}(Y, Z))=\operatorname{Bil}\left(L^{p^{\prime}} \times Y, Z\right)
$$

Proposition 3.8. Let $\mathcal{B}: X \times Y \rightarrow Z$ be an admissible bounded bilinear map and $1<p<\infty$. Then X is (Y, Z, \mathcal{B})-normed if and only if the space $\mathcal{V}_{\mathcal{B}}^{p}(X)$ is continuously contained into $\nu^{p}(X)$.

Proof. Assume that X is (Y, Z, \mathcal{B})-normed. Then

$$
\begin{aligned}
\|\mathcal{F}\| \mathcal{V}^{p}(X) & =\sup \left\{\left|\sum_{A \in \pi} \frac{\left\langle\mathcal{F}(A), x^{*}\right\rangle \gamma_{A}}{\mu(A)^{1 / p^{\prime}}}\right|: x^{*} \in \mathrm{~B}_{X^{*}}, \pi \in \mathcal{D}_{\Omega},\left(\gamma_{A}\right)_{A} \in \mathrm{~B}_{\ell p^{\prime}}\right\} \\
& =\sup \left\{\left\|\sum_{A \in \pi} \frac{\mathcal{F}(A) \gamma_{A}}{\mu(A)^{1 / p^{\prime}}}\right\|_{X}: \pi \in \mathcal{D}_{\Omega},\left(\gamma_{A}\right)_{A} \in \mathrm{~B}_{\ell p^{\prime}}\right\} \\
& \leq k \sup \left\{\| \mathcal{B}_{\left.\sum \frac{\mathcal{F}(A) \gamma_{A}}{\mu(A)^{/ p^{\prime}}} \|_{\mathcal{L}(Y, Z)}: \pi \in \mathcal{D}_{\Omega},\left(\gamma_{A}\right)_{A} \in \mathrm{~B}_{\ell p^{\prime}}\right\}}\right. \\
& =k \sup \left\{\left\|\sum_{A \in \pi} \mathcal{B}\left(\frac{\mathcal{F}(A) \gamma_{A}}{\mu(A)^{1 / p^{\prime}}}, y\right)\right\|_{Z}: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega},\left(\gamma_{A}\right)_{A} \in \mathrm{~B}_{\ell p^{\prime}}\right\} \\
& =k \sup \left\{\left(\sum_{A \in \pi} \frac{\|\mathcal{B}(\mathcal{F}(A), y)\|^{p}}{\mu(A)^{p-1}}\right)^{1 / p}: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega},\right\} \\
& =k\|\mathcal{F}\|_{\mathcal{V}_{\mathcal{B}}^{p}(X)} .
\end{aligned}
$$

For the converse consider the vector measure $\mathcal{F}_{x}: \Sigma \rightarrow X$ given by $\mathcal{F}_{x}(A)$ $=x \mu(A) \mu(\Omega)^{-1}$ for each $x \in X$. Note that $\left\|\mathcal{F}_{x}\right\| \mathcal{V P}^{p}(X)=\|x\|$ and $\left\|\mathcal{F}_{x}\right\|_{\nu_{\mathcal{B}}^{p}(X)}$ $=\left\|\mathcal{B}_{x}\right\|$.

4. Measures of bounded ($\boldsymbol{p}, \mathcal{B}$)-variation

Definition 4.1. We say that \mathcal{F} has bounded (p, \mathcal{B})-variation if

$$
\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)}=\sup \left\{\left(\sum_{A \in \pi} \frac{\|\mathcal{B}(\mathcal{F}(A), y)\|_{Z}^{p}}{\mu(A)^{p-1}}\right)^{1 / p}: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega}\right\}<\infty
$$

The space of such measures is denoted by $\mathrm{V}_{\mathcal{B}}^{p}(X)$.
It is clear that the norm in the vector space $\mathrm{V}_{\mathcal{B}}^{p}(X)$ is also given by the expressions

$$
\begin{aligned}
\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)} & =\sup \left\{\|\mathcal{B}(\mathcal{F}, y)\|_{\mathrm{V}^{p}(Z)}: y \in \mathrm{~B}_{Y}\right\} \\
& =\sup \left\{\left\|\sum_{A \in \pi} \frac{\mathcal{B}(\mathcal{F}(A), y)}{\mu(A)} \mathbf{1}_{A}\right\|_{L^{p}(Z)}: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega}\right\} \\
& =\sup \left\{\left\|\sum_{A \in \pi} \frac{\mathcal{F}(A)}{\mu(A)} \mathbf{1}_{A}\right\|_{L_{\mathcal{B}^{p}(X)}}: \pi \in \mathcal{D}_{\Omega}\right\} .
\end{aligned}
$$

REMARK 4.2. For $p=1$ and $p=\infty$ this corresponds to $|\mathcal{F}|_{\mathcal{B}}(\Omega)$ and $\|\mathcal{F}\| \nu_{\mathcal{B}}^{\infty}(X)$. Hence, we define $\mathrm{V}^{\infty}(X)=\mathcal{V}^{\infty}(X)$.

It is clear that $\mathrm{V}_{\mathcal{B}}^{p}(X) \subseteq \mathcal{V}_{\mathcal{B}}^{p}(X)$ and $\|\mathcal{F}\|_{\mathcal{\nu}_{\mathcal{B}}^{p}(X)} \leq\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)}$.
On the other hand, since

$$
|\mathcal{F}|_{\mathcal{B}}(E) \leq\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)}\left\|\mathbf{1}_{E}\right\|_{L^{p^{\prime}}}, \quad E \in \Sigma
$$

one sees that if $\mathcal{F} \in \mathrm{V}_{\mathcal{B}}^{p}(X)$ then \mathcal{F} has bounded \mathcal{B}-variation and it is (\mathcal{B}, μ) continuous.

REMARK 4.3. Using the inclusions $L^{q}(X) \subseteq L^{p}(X)$ for $1 \leq p \leq q \leq \infty$ one also has

$$
\mathrm{V}_{\mathcal{B}}^{\infty}(X) \subseteq \mathrm{V}_{\mathcal{B}}^{q}(X) \subseteq \mathrm{V}_{\mathcal{B}}^{p}(X)
$$

and

$$
\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)} \leq \mu(\Omega)^{1 / q-1 / p}\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{q}(X)} \leq \mu(\Omega)^{1 / q}\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{\infty}(X)}
$$

Let us find different equivalent formulations for the norm in $\mathrm{V}_{\mathcal{B}}^{p}(X)$.

Proposition 4.4. We have

$$
\begin{align*}
\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)}= & \sup \left\{\sum_{A \in \pi}\left\|\mathcal{B}\left(\mathcal{F}(A), \beta_{A} y\right)\right\|_{Z}: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega},\right. \\
& \left.\sum_{A \in \pi} \beta_{A} \mathbf{1}_{A} \in \mathrm{~B}_{L^{p^{\prime}}}\right\} . \tag{4.1}\\
\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)}= & \sup \left\{\left\|\sum_{A \in \pi} \mathcal{B}^{*}\left(\mathcal{F}(A), z_{A}^{*}\right)\right\|_{Y^{*}}: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega},\right. \\
& \left.\sum_{A \in \pi} z_{A}^{*} \mathbf{1}_{A} \in \mathrm{~B}_{L^{p^{\prime}}\left(Z^{*}\right)}\right\} . \tag{4.2}
\end{align*}
$$

Proof. Given a partition $\pi \in \mathcal{D}_{\Omega}, \alpha_{A} \in \mathbb{R}$ and $\beta_{A}=\left(\alpha_{A} / \mu(A)^{1 / p^{\prime}}\right)$ one has that the simple function $g=\sum_{A \in \pi} \beta_{A} \mathbf{1}_{A}$ satisfies $\|g\|_{L^{p^{\prime}}}=\left\|\left(\alpha_{A}\right)_{A \in \pi}\right\|_{\ell p^{\prime}}$. Therefore,

$$
\begin{aligned}
& \|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)}=\sup \left\{\left\|\left(\left\|\mathcal{B}\left(\frac{\mathcal{F}(A)}{\mu(A)^{1 / p^{\prime}}}, y\right)\right\|_{Z}\right)_{A \in \pi}\right\|_{\ell}: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega}\right\} \\
& \quad=\sup \left\{\sum_{A \in \pi}\left\|\mathcal{B}\left(\frac{\mathcal{F}(A)}{\mu(A)^{1 / p^{\prime}}}, y\right)\right\|_{Z}\left|\alpha_{A}\right|: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega},\left(\alpha_{A}\right)_{A \in \pi} \in \mathrm{~B}_{\ell p^{p^{\prime}}}\right\} \\
& \quad=\sup \left\{\sum_{A \in \pi}\left\|\mathcal{B}\left(\mathcal{F}(A) \frac{\alpha_{A}}{\mu(A)^{1 / p^{\prime}}}, y\right)\right\|_{Z}: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega},\left(\alpha_{A}\right)_{A \in \pi} \in \mathrm{~B}_{\ell p^{\prime}}\right\} \\
& \quad=\sup \left\{\sum_{A \in \pi}\left\|\mathcal{B}\left(\mathcal{F}(A), \beta_{A} y\right)\right\|_{Z}: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega}, \sum_{A \in \pi} \beta_{A} \mathbf{1}_{A} \in \mathrm{~B}_{L^{p^{\prime}}}\right\} .
\end{aligned}
$$

We obtain (4.2) from the duality $\left(\ell^{1}(Z)\right)^{*}=\ell^{\infty}\left(Z^{*}\right)$ and (4.1). Indeed,

$$
\begin{aligned}
\|\mathcal{F}\|_{V_{\mathcal{B}}^{p}(X)}= & \sup \left\{\sum_{A \in \pi}\left\|\mathcal{B}\left(\mathcal{F}(A), \beta_{A} y\right)\right\|_{Z}: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega},\right. \\
& \left.\sum_{A \in \pi} \beta_{A} \mathbf{1}_{A} \in \mathrm{~B}_{L^{p^{\prime}}}\right\} \\
= & \sup \left\{\left|\sum_{A \in \pi}\left\langle\mathcal{B}\left(\mathcal{F}(A), \beta_{A} y\right), z_{A}^{*}\right\rangle\right|: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega}, z_{A}^{*} \in \mathrm{~B}_{Z^{*}},\right. \\
& \left.\sum_{A \in \pi} \beta_{A} \mathbf{1}_{A} \in \mathrm{~B}_{L^{p^{\prime}}}\right\} \\
= & \sup \left\{\left|\sum_{A \in \pi}\left\langle y, \mathcal{B}^{*}\left(\mathcal{F}(A), \beta_{A} z_{A}^{*}\right)\right\rangle\right|: y \in \mathrm{~B}_{Y}, \pi \in \mathcal{D}_{\Omega}, z_{A}^{*} \in \mathrm{~B}_{Z^{*}},\right. \\
= & \left.\left.\sup \left\{\| \sum_{A \in \pi} \beta_{A} \mathbf{1}_{A} \in \mathrm{~B}_{L^{p^{\prime}}}\right\}, \mathcal{F}(A), z_{A}^{*}\right) \|_{Y^{*}}: \pi \in \mathcal{D}_{\Omega}, \sum_{A \in \pi} z_{A}^{*} \mathbf{1}_{A} \in \mathrm{~B}_{L^{p^{\prime}}\left(Z^{*}\right)}\right\} .
\end{aligned}
$$

Let us give a characterization of the vector measures in the space $\mathrm{V}_{\mathcal{B}}^{p}(X)$ using only scalar-valued functions $\left\{\varphi_{y} \mid y \in \mathrm{~B}_{Y}\right\} \subseteq L^{p}$.
THEOREM 4.5. We have $\mathcal{F} \in \mathrm{V}_{\mathcal{B}}^{p}(X)$ if and only if there exist $0 \leq \varphi_{y} \in L^{p}$ for each $y \in Y$ such that:
(a) $\sup \left\{\left\|\varphi_{y}\right\|_{L^{p}}: y \in \mathrm{~B}_{Y}\right\}<\infty$; and
(b) $\|\mathcal{B}(\mathcal{F}(E), y)\| \leq \int_{E} \varphi_{y} d \mu$ for every $y \in Y$ and $E \in \Sigma$.

Moreover, $\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}^{p}(X)}}=\sup \left\{\left\|\varphi_{y}\right\|_{L^{p}}: y \in \mathrm{~B}_{Y}\right\}$.
Proof. Let $\mathcal{F} \in \mathrm{V}_{\mathcal{B}}^{p}(X)$. Then we have that $\mathcal{B}(\mathcal{F}, y) \in \mathrm{V}^{p}(Z)$ for all $y \in \mathrm{~B}_{Y}$ and $|\mathcal{B}(\mathcal{F}, y)|$ is a nonnegative μ-continuous measure that has bounded variation. Using the Radon-Nikodým theorem there exists a nonnegative integrable function φ_{y} such that for all $E \in \Sigma$

$$
\begin{equation*}
|\mathcal{B}(\mathcal{F}, y)|(E)=\int_{E} \varphi_{y} d \mu \tag{4.3}
\end{equation*}
$$

In fact φ_{y} can be chosen belonging to L^{p} and verifying that

$$
\left\|\varphi_{y}\right\|_{L^{p}}=\|\mathcal{B}(\mathcal{F}, y)\|_{\mathrm{V}^{p}(Z)}
$$

Then, for every $E \in \Sigma$ and $y \in \mathrm{~B}_{Y}$,

$$
\begin{aligned}
\|\mathcal{B}(\mathcal{F}(E), y)\| & \leq|\mathcal{F}|_{\mathcal{B}}(E)=\sup \left\{|\mathcal{B}(\mathcal{F}, y)|(E): y \in \mathrm{~B}_{Y}\right\} \\
& =\sup \left\{\int_{E} \varphi_{y} d \mu: y \in \mathrm{~B}_{Y}\right\}
\end{aligned}
$$

and we obtain the result.

Conversely observe that using Hölder's inequality we have that

$$
\|\mathcal{B}(\mathcal{F}(E), y)\| \leq \int_{E} \varphi_{y} d \mu \leq\left(\int_{E} \varphi_{y}^{p} d \mu\right)^{1 / p} \mu(E)^{1 / p^{\prime}}
$$

for all $E \in \Sigma$ and $y \in \mathrm{~B}_{Y}$. Hence, for every $\pi \in \mathcal{D}_{\Omega}$

$$
\sum_{A \in \pi} \frac{\|\mathcal{B}(\mathcal{F}(A), y)\|^{p}}{\mu(A)^{p-1}} \leq \int_{\Omega} \varphi_{y}^{p} d \mu
$$

This shows that $\mathcal{F} \in \mathrm{V}_{\mathcal{B}}^{p}(X)$ and $\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)} \leq \sup \left\{\left\|\varphi_{y}\right\|_{L^{p}}: y \in \mathrm{~B}_{Y}\right\}$.
Let us now see the analogue to Theorem 2.9 in the cases $1<p<\infty$.
TheOrem 4.6. Assume X is (Y, Z, \mathcal{B})-normed and $1<p<\infty$. If $f \in L_{\mathcal{B}}^{p}(X)$ then $\mathcal{F}_{f}^{\mathcal{B}} \in \mathrm{V}_{\mathcal{B}}^{p}(X)$ and $\left\|\mathcal{F}_{f}^{\mathcal{B}}\right\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)}=\|f\|_{L_{\mathcal{B}}^{p}(X)}$.
Proof. Let us take $f \in L_{\mathcal{B}}^{p}(X)$. From Theorem 2.9 one know that $\mathcal{F}_{f}^{\mathcal{B}}: \Sigma \rightarrow X$ is a vector measure of bounded variation. Now, for each $y \in Y, \mathcal{B}^{y} \mathcal{F}_{f}^{\mathcal{B}}: \Sigma \rightarrow Z$ is a vector measure verifying that

$$
\mathcal{B}^{y} \mathcal{F}_{f}^{\mathcal{B}}(E)=\mathcal{B}\left(\mathcal{F}_{f}^{\mathcal{B}}(E), y\right)=\mathcal{B}\left(\int_{E}^{\mathcal{B}} f d \mu, y\right)=\int_{E} \mathcal{B}(f, y) d \mu, \quad E \in \Sigma
$$

Therefore

$$
\begin{aligned}
\|f\|_{L_{\mathcal{B}}^{p}(X)} & =\sup \left\{\|\mathcal{B}(f, y)\|_{L^{p}(Z)}: y \in \mathrm{~B}_{Y}\right\}=\sup \left\{\left\|\mathcal{B}\left(\mathcal{F}_{f}^{\mathcal{B}}, y\right)\right\|_{\mathrm{V}^{p}(Z)}: y \in \mathrm{~B}_{Y}\right\} \\
& =\left\|\mathcal{F}_{f}^{\mathcal{B}}\right\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)}
\end{aligned}
$$

Corollary 4.7. If X is (Y, Z, \mathcal{B})-normed, then $L_{\mathcal{B}}^{p}(X)$ is isometrically contained in $\mathrm{V}_{\mathcal{B}}^{p}(X)$.

From the definition one clearly has the following interpretations of $\mathrm{V}_{\mathcal{B}}^{p}(X)$ as operators:

$$
\begin{aligned}
& \mathrm{V}_{\mathcal{B}}^{p}(X) \text { is isometrically embedded in } \mathcal{L}\left(Y, \mathrm{~V}^{p}(Z)\right) \text { by composition, that is } \\
& \mathcal{F} \rightarrow \Phi_{\mathcal{F}}(y)=\mathcal{B}^{y} \mathcal{F} .
\end{aligned}
$$

Let us see other processes that generate operators from vector measures: given a vector measure $\mathcal{F}: \Sigma \rightarrow X$ and a bounded bilinear map $\mathcal{B}: X \times Y \rightarrow Z$ we can consider the operators $T_{\mathcal{F}}^{\mathcal{B}}$ or $S_{\mathcal{F}}^{\mathcal{B}}$ defined on Y-valued simple functions $s=\sum_{k=1}^{n} y_{k} \mathbf{1}_{A_{k}}$ or Z^{*}-valued simple functions $t=\sum_{k=1}^{n} z_{k}^{*} \mathbf{1}_{A_{k}}$, respectively, by

$$
T_{\mathcal{F}}^{\mathcal{B}}(s)=\sum_{k=1}^{n} \mathcal{B}\left(\mathcal{F}\left(A_{k}\right), y_{k}\right)
$$

and

$$
S_{\mathcal{F}}^{\mathcal{B}}(t)=\sum_{k=1}^{n} \mathcal{B}^{*}\left(\mathcal{F}\left(A_{k}\right), z_{k}^{*}\right)
$$

Observe that actually $S_{\mathcal{F}}^{\mathcal{B}}=T_{\mathcal{F}}^{\mathcal{B}^{*}}$.
THEOREM 4.8. Let $1<p<\infty$. Then $\mathrm{V}_{\mathcal{B}}^{p}(X)$ is continuously contained into $\mathcal{L}\left(L^{p^{\prime}} \widehat{\otimes} Y, Z\right)$.

Proof. Let $\mathcal{F} \in \mathrm{V}_{\mathcal{B}}^{p}(X)$. Consider the linear operator $T_{\mathcal{F}}^{\mathcal{B}}$ defined on Y-valued simple functions and with values in Z. Note that for any partition $\pi, \phi=\sum_{A \in \pi} \alpha_{A} \mathbf{1}_{A}$ and $y \in Y$

$$
\left\|T_{\mathcal{F}}^{\mathcal{B}}(\phi \otimes y)\right\|_{Z} \leq \sum_{A \in \pi}\left\|\mathcal{B}\left(\mathcal{F}(A), \alpha_{A} y\right)\right\|_{Z}
$$

Using (4.1) and the definition of projective tensor product one obtains $\left\|T_{\mathcal{F}}^{\mathcal{B}}\right\|$ $\leq\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)}$.

THEOREM 4.9. Let $1<p<\infty$. Then $\mathrm{V}_{\mathcal{B}}^{p}(X)$ is isometrically embedded into $\mathcal{L}\left(L^{p^{\prime}}\left(Z^{*}\right), Y^{*}\right)$.

Proof. Let $\mathcal{F} \in \mathrm{V}_{\mathcal{B}}^{p}(X)$. Consider the linear operator $S_{\mathcal{F}}^{\mathcal{B}}$ from the space of Z^{*}-valued simple functions into Y^{*}. Note that for any partition π

$$
\left\|S_{\mathcal{F}}^{\mathcal{B}}\left(\sum_{A \in \pi} z_{A}^{*} \mathbf{1}_{A}\right)\right\|_{Y^{*}}=\left\|\sum_{A \in \pi} \mathcal{B}^{*}\left(\mathcal{F}(A), z_{A}^{*}\right)\right\|_{Y^{*}}
$$

Using (4.2) and the density of simple functions in $L^{p^{\prime}}\left(Z^{*}\right)$ one obtains $\left\|S_{\mathcal{F}}^{\mathcal{B}}\right\|$ $=\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)}$.

Note that $\mathrm{V}_{\mathcal{B}}^{p}(X) \subseteq \mathcal{V}_{\mathcal{B}}^{p}(X)$ and, from Corollary 3.7, $\mathcal{V}_{\mathcal{B}}^{p}(X)$ is embedded in $\operatorname{Bil}\left(L^{p^{\prime}} \times Y, Z\right)$. Hence, $\mathrm{V}_{\mathcal{B}}^{p}(X)$ is continuously contained in $\operatorname{Bil}\left(L^{p^{\prime}} \otimes Y, Z\right)$ by means of the mapping $\mathcal{F} \rightarrow \mathcal{B}_{\mathcal{F}}: L^{p^{\prime}} \times Y \rightarrow Z$ given by

$$
\mathcal{B}_{\mathcal{F}}(s, y)=\sum_{k=1}^{n} \mathcal{B}\left(\mathcal{F}\left(A_{k}\right), \alpha_{k} y\right)
$$

where $s=\sum_{k=1}^{n} \alpha_{k} \mathbf{1}_{A_{k}}$. Let us find which special class of bilinear maps represents elements in $\mathrm{V}_{\mathcal{B}}^{p}(X)$.

In the case of $Y=\mathbb{K}$ the corresponding operators would correspond to the class of cone absolutely summing operators.

Definition 4.10. Let L be a Banach lattice, Y and Z be Banach spaces and \mathcal{U} : $L \times Y \rightarrow Z$ be a bounded bilinear map. We say that \mathcal{U} is cone absolutely summing if there exists $C>0$ such that

$$
\sup \left\{\sum_{n=1}^{N}\left\|\mathcal{U}\left(\varphi_{n}, y\right)\right\|_{Z}: y \in \mathrm{~B}_{Y}\right\} \leq C \sup \left\{\sum_{n=1}^{N}\left|\left\langle\varphi_{n}, \psi\right\rangle\right|: \psi \in \mathrm{B}_{L^{*}}\right\}
$$

for any finite family $\left(\varphi_{n}\right)_{n}$ of positive elements in L.
We denote by $\Lambda(L \times Y, Z)$ the space of such bilinear maps and we endow the space with the norm $\pi^{+}(\mathcal{U})$ given by the infimum of the constants satisfying the above inequality.
THEOREM 4.11. If $\mathcal{F} \in \mathrm{V}_{\mathcal{B}}^{p}(X)$, then $\mathcal{B}_{\mathcal{F}} \in \Lambda\left(L^{p^{\prime}} \times Y, Z\right)$ and $\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)}=$ $\pi^{+}\left(\mathcal{B}_{\mathcal{F}}\right)$.
Proof. Given $\mathcal{F} \in \mathrm{V}_{\mathcal{B}}^{p}(X)$, then $\mathcal{B}_{\mathcal{F}}: L^{p^{\prime}} \times Y \rightarrow Z$ is bounded. Let us show that $\mathcal{B}_{\mathcal{F}} \in \Lambda\left(L^{p^{\prime}} \times Y, Z\right)$ and $\pi^{+}\left(\mathcal{B}_{\mathcal{F}}\right)=\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}^{p}(X)}}$.

From Theorem 4.5 there exists $0 \leq \varphi_{y} \in \mathcal{L}^{p}$ such that

$$
\|\mathcal{F}\|_{\mathfrak{V}_{\mathcal{B}}^{p}(X)}=\sup \left\{\left\|\varphi_{y}\right\|_{L^{p}}: y \in \mathrm{~B}_{Y}\right\}
$$

and

$$
\left\|\mathcal{B}_{\mathcal{F}}\left(\mathbf{1}_{A}, y\right)\right\| \leq \int_{\Omega} \mathbf{1}_{A} \varphi_{y} d \mu, \quad A \in \Sigma
$$

Using linearity and density of simple functions one also extends to

$$
\left\|\mathcal{B}_{\mathcal{F}}(\psi, y)\right\| \leq \int_{\Omega} \psi \varphi_{y} d \mu
$$

for any $0 \leq \psi \in L^{p^{\prime}}$ and $y \in Y$.
Now, given a finite family $0 \leq \psi_{n} \in L^{p^{\prime}}$ and $y \in Y$, we can write

$$
\begin{aligned}
\sum_{n=1}^{N}\left\|\mathcal{B}_{\mathcal{F}}\left(\psi_{n}, y\right)\right\| & \leq \sum_{n=1}^{N} \int_{\Omega} \psi_{n} \varphi_{y} d \mu \\
& =\sum_{n=1}^{N}\left\|\varphi_{y}\right\|_{L^{p}}\left\langle\psi_{n}, \frac{\varphi_{y}}{\left\|\varphi_{y}\right\|_{L^{p}}}\right\rangle d \mu \\
& \leq\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}^{p}(X)}} \sup \left\{\sum_{n=1}^{N}\left|\left\langle\psi_{n}, \varphi\right\rangle\right|: \varphi \in \mathrm{B}_{L^{p}}\right\} .
\end{aligned}
$$

This shows that $\pi^{+}\left(\mathcal{B}_{\mathcal{F}}\right) \leq\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)}$.
On the other hand, given a partition π, a sequence $\left(\alpha_{A}\right)_{A} \in \ell^{p^{\prime}}$ and denoting $\psi_{A}=\left(\left|\alpha_{A}\right| / \mu(A)^{1 / p^{\prime}}\right) \mathbf{1}_{A}$ one can apply the condition of cone absolutely summing
bilinear map to obtain

$$
\begin{aligned}
& \sum_{A \in \pi}\left\|\mathcal{B}\left(\frac{\mathcal{F}(A)}{\mu(A)^{1 / p^{\prime}}}, \alpha_{A} y\right)\right\|_{Z}=\sum_{A \in \pi}\left\|\mathcal{B}_{\mathcal{F}}\left(\psi_{A}, y\right)\right\|_{Z} \\
& \quad \leq \pi^{+}\left(\mathcal{B}_{\mathcal{F}}\right)\|y\| \sup \left\{\sum_{A \in \pi} \int_{\Omega} \psi_{A}|\varphi| d \mu: \varphi \in \mathrm{B}_{L^{p}}\right\} \\
& \quad=\pi^{+}\left(\mathcal{B}_{\mathcal{F}}\right)\|y\| \sup \left\{\sum_{A \in \pi} \frac{\left|\alpha_{A}\right|}{\mu(A)^{1 / p^{\prime}}} \int_{A}|\varphi| d \mu: \varphi \in \mathrm{B}_{L^{p}}\right\} \\
& \quad \leq \pi^{+}\left(\mathcal{B}_{\mathcal{F}}\right)\|y\| \sup \left\{\sum_{A \in \pi}\left|\alpha_{A}\right|\left(\int_{A}|\varphi|^{p}\right)^{1 / p} d \mu: \varphi \in \mathrm{B}_{L^{p}}\right\} \\
& \quad \leq \pi^{+}\left(\mathcal{B}_{\mathcal{F}}\right) \cdot\|y\| \cdot\left\|\left(\alpha_{A}\right)_{A}\right\|_{\ell p^{\prime}} .
\end{aligned}
$$

Now (4.1) allows us to conclude that $\|\mathcal{F}\|_{\mathrm{V}_{\mathcal{B}}^{p}(X)} \leq \pi^{+}\left(\mathcal{B}_{\mathcal{F}}\right)$.

COROLLARY 4.12. We have that $\mathrm{V}_{\mathcal{B}}^{p}(X)$ is isometrically embedded in $\Lambda\left(L^{p^{\prime}} \times\right.$ Y, Z).

References

[1] R. G. Bartle, 'A general bilinear vector integral', Studia Math. 15 (1956), 337-352.
[2] O. Blasco, 'Positive p-summing operators, vector measures and tensor products', Proc. Edinburgh Math. Soc. (2) 31(2) (1988), 179-184.
[3] ——'Remarks on the semivariation of vector measures with respect to Banach spaces', Bull. Austral. Math. Soc. 75(3) (2007), 469-480.
[4] O. Blasco and J. M. Calabuig, 'Vector-valued functions integrable with respect to bilinear maps', Taiwanese Math. J. to appear.
[5] _-, 'Fourier analysis with respect to bilinear maps', Acta Math. Sinica to appear.
[6] -, 'Hölder inequality for functions integrable with respect to bilinear maps', Math. Scan. 102 (2008), 101-110.
[7] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, 43 (Cambridge University Press, Cambridge, 1995).
[8] J. Diestel and J. J. Uhl Jr, Vector Measures, Mathematical Surveys, 15 (American Mathematical Society, Providence, RI, 1977), xiii+322 pp.
[9] N. Dinculeanu, Vector Measures, International Series of Monographs in Pure and Applied Mathematics, 95 (Pergamon Press, Oxford/VEB Deutscher Verlag der Wissenschaften, Berlin, 1967).
[10] M. Girardi and L. Weis, 'Integral operators with operator-valued kernels.', J. Math. Anal. Appl. 290(1) (2004), 190-212.
[11] B. Jefferies and S. Okada, 'Bilinear integration in tensor products', Rocky Mountain J. Math. 28(2) (1998), 517-545.
[12] R. S. Phillips, 'On linear transformations', Trans. Amer. Math. Soc. 48(290) (1940), 516-541.
[13] R. A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer Monographs in Mathematics (Springer, London, 2002).
[14] H. H. Schaefer, Banach Lattices and Positive Operators, Die Grundlehren der mathematischen Wissenschaften, 215 (Springer, Heidelberg, 1974).
O. BLASCO, Department of Mathematics, Universitat de València, Burjassot 46100 (València), Spain
e-mail: oscar.blasco@uv.es
J. M. CALABUIG, Department of Applied Mathematics, Universitat Politècnica de València, València 46022, Spain e-mail: jmcalabu@mat.upv.es

[^0]: The authors gratefully acknowledge support from Spanish Grants MTM2005-08350-C03-03 and MTN2004-21420-E. J. M. Calabuig was also supported by Generalitat Valenciana (project GV/2007/191).
 (C) 2009 Australian Mathematical Society 0004-9727/09 \$A2.00 +0.00

