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Abstract. We study the growth rate of stars in dense star clusters
by stellar collisions. Our analytic calculations are in good agreement
with direct N-body simulations with up to 65536 stars performed on the
GRAPE family of computers. We find that star clusters with a half mass
relaxation time ~ 20 Myr are dominated by stellar collisions. The first
collision occurs at the moment of core collapse. The collision dominated
phase last until the cluster dissolves in the tidal field of the Galaxy or mass
loss by stellar evolution arrests core collapse. The majority of collisions
occur with the same star resulting in the uncontrolled growth of a super
massive object. This object can grow up to rv 0.08% of the mass of the
entire star cluster. This mass ratio is comparable to the ratio of the mass
of Galactic bulges to their central black hole. Star clusters which are
older than about 4 Myr and with a half mass relaxation time ~ 80 Myr
are expected to contain the remnant of a phase of uncontrolled growth in
their cores.

1. Introduction

Using Chandra, Matsumoto & Tsuru (2001) recently discovered nine bright X-
ray sources in the irregular galaxy M82. Their brightest source (No.7 in their
Table 1) has a luminosity of 9 x 1040ergs-1 , which corresponds to an Eddington
luminosity of a rv 700 M0 compact object. A follow-up with Chandra in 2001
(Matsumoto & Tsuru) revealed that the source had varied by more than an
order of magnitude on a time scale of a few weeks. They concluded that the
bright X-ray source is therefore probably a single black hole with a mass of at
least 700 M0 .

An optical follow-up in the infrared (J, H, and K'-bands) with the CISCO
instrument on the giant SUBARU telescope revealed a star cluster with an
estimated mass of a few 106 M0 on a position consistent with the X-ray location
of the intermediate mass black hole (Harashima, et al. 2001). This star cluster
appears to be very young ( ~ 10Myr) as it is extremely blue and expanding
shells of molecular gas were discovered in its surrounding (Matsushita et al.
2000), typical for a star forming region. Matsushita et al (2000) estimate that
the environment has an age of a few million years.
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Many more unusually bright X-ray point sources are discovered in the An-
tenna Galaxy (NGC 4038/4039) by Fabbiano et al. (2001) with Chandra. They
conclude that these sources may be ~ 100 M0 accreting black holes. Being an
interacting pair of Galaxies, the Antennae are full of young star clusters with
characteristics similar to those found in M82 (Mengel et al. 2001). It is not clear
yet whether the X-ray sources and the Antennaes' star clusters are associated.

In this paper we study the possibility of forming a massive compact object
in a star cluster, hereby assuming that the bright X-ray sources are indeed
intermediate mass black holes, as is suggested by Matsumoto & Tsuru (2001).
In fact, as explained below, it is quite natural to expect a rv 103 M0 black hole
in a million M0 star cluster.

2. Uncontrolled growth of a massive object in a dense star cluster

2.1. Core collapse and the first collision

A star cluster is a self gravitating group of stars. As long as stellar evolution
is relatively unimportant the dynamical evolution of a cluster is dominated by
two body relaxation, with characteristic time scale (Spitzer, 1987)

(

r3 ) 1/2 N
trlx == GM 8ln A . (1)

Here G is the gravitational constant, M is the total mass of the cluster, N ==
M/{m) is the number of stars and r is the characteristic radius of the cluster.
The coulomb logarithm InA ~ In(0.4N) == 0(10). In convenient units the two
body relaxation time becomes

(
r ) 3/2 ( M ) 1/2 ([M ])

trlx ~ 1.9[Myr] (pc] [M
8

] (m) (InA)-l (2)

The dynamical evolution of the star cluster drives it into a state of core
collapse (Bettwieser & Sugimoto 1984). In an isolated cluster where all stars
have the same mass core collapse happens at about tcc ~ 15trlx (Cohn 1980).

Realistic cluster stars, however, have a range in masses generally from
mmin ~ 0.1 M0 to mmax ~ 100 M0 and a mean mass (m) rv 0.35 M0 (Salpter
1935) to about 0.65 M0 (Scalo 1986). In the early evolution of the cluster, mas-
sive stars sink to the cluster center by the interaction with other stars. A star
with mass m sinks from an initial distance ri to the cluster center in a dynamical
friction time scale (Binney & Tremaine 1987)

(3)

Here v is the velocity dispersion of the cluster stars. We can rewrite Eq.3 in
terms of trlx

(4)
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Here we assumed that the star with mass m was born at distance r from the
cluster center.

In a multi mass system core collapse is initiated by the time it takes for the
most massive stars to reach the cluster center. This process takes place on a
dynamical friction time scale (Eq.4). In a star cluster where most massive stars
are rv 100 (m) core collapse occurs at about

tee == 15tdf(mmax == 100 (m)) ~ 0.15 trlx (5)

This number, of course, it taken in the limit where stellar evolution is unimpor-
tant, i.e.: where stellar mass loss is negligible and the most massive stars survive
until they reach the cluster center.

The collapse of the cluster core may initiate physical collisions between
stars. The product of the first collision is likely to be among the most massive
stars, which is in the cluster core. This star is therefore likely to experience
subsequent collisions, resulting in a collision runaway (see Portegies Zwart et al.
1999).

The maximum mass that can be grown in a dense star cluster if all collisions
happen with the same star is

dm, A(

-;It == JVeoll(m)eoll. (6)

Here Neoll and (m)eoll are the average collision rate and the average mass in-
crease per collision.

2.2. The collision rate Neoll

The change in total energy of a star cluster during one half mass relaxation time
is of the order of 10%, regardless of the number of stars or of the structure of
the star cluster (Goodman 1987). Following Makino & Hut (1990) this energy
is solely produced by binary heating; partly in the form of scattering products
which remain bound to the system and, partially in the form of potential energy
removed from the system by scattering products which escape from the system
(Hut & Inagaki 1985). Makino & Hut (1990) argue, based on an equal mass
system, that a binary deposits of the order of 102kT in binary single star scat-
tering. This term originates from the minimum binding energy of a binary that
can eject itself following a strong encounter. The formation rate of binaries via
three-body encounters is then

(7)

The above argument is based on an analysis performed for a cluster with
equal mass points. In a star cluster with a range in stellar masses, binaries
generally form from stars which are more massive than average. After repeated
exchange interactions the binary consists of two of the most massive stars in
the cluster. Conservation of linear momentum during encounters with lower
mass incoming stars makes it harder to eject the binary, as it only receives a
relatively small recoil velocity. The binary has therefore to be much harder
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~ 103kT before it can eject itself following a strong encounter with another star
(see Portegies Zwart & McMillan 2000).

Taking the sizes of stars into account it is then quite likely that such a hard
binary experiences a collision rather than being ejected. An strong encounter
between a single star and a hard binary generally results in a resonant interac-
tion. Three stars remain in resonance until at least one of the stars has escaped
or a collision reduces the three body system to a stable binary. For harder bina-
ries it becomes increasingly more likely that a collision occurs instead of ejection
(Pokman, Portegies Zwart & Rasio 2001, in preparation). In the calculations of
Portegies Zwart et al. (1999) most binaries experience a collision at a binding
energy of about 102kT, which is smaller than the binding energy required for
the ejection of the binary. The collision rate per half mass relaxation time is
then comparable to the three body binary formation rate

x r -3 NJVcoll ~ 10 ftc-.
trlx

(8)

Here we introduce ftc ~ 1 the fraction of dynamically formed binaries that leads
to a collision. Note that Eq.8 is only valid in the limit where stellar evolution
is relatively unimportant.

The most massive star in the cluster is typically member of the interacting
binary and therefore dominates the collision rate. Subsequent collision causes
the runaway to grow in mass, making it progressively harder to eject the star
from the cluster. The star which experiences the first collision is therefore likely
to keep participating in subsequent collisions. The majority of collisions then
involve one selected object; the runaway merger. This object is generally selected
by its high mass and by its proximity to the cluster center.

2 ..3. The average mass increase per collision

The average mass increase per collision depends on the characteristics the mass
function in the cluster core. A lower limit for stars which participate in collisions
can be derived from the amount of mass segregation in the cluster. Inverting
Eq.4 results in an estimate for the minimum mass of a star which has reached
the cluster core in time t due to dynamical friction

(
[Myr]) ( r )3/2 ( M )1/2 -1

mdf == 1.9[M8 ] -t- [pc] [M(')] (InA) (9)

Dynamical friction causes the mass function in the cluster core to becomes
flatter with time, since the time scale at which a star with mass m segregates
to the cluster core is inversely proportional to m (see Eq.4). A cluster with
a Salpeter (dN(m) ex m-2.35dm) initial mass function will have a flatter mass
function (dN(m) ex m-1. 35dm) in the core for stars more massive than mdf. The
mass function for the lower mass stars is not so strongly affected (see Fregeaux,
Joshi, Portegies Zwart & Rasio 2001, in preparation). Integrating the mass
segregated mass function from a minimum of mdf (we ignore the upper limit)
results in the mean mass in the core of

(m)coll ~ 3.9mdf (10)
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For clarity we ignored the stars with a mass < mdf, which are dynamically not
very important (Fregeaux et al. 2001)

Substitution of the relaxation time (Eq.l) into Eq.9 and Eq. 10 results in
a mass increase per collisions of

(m)coll ~ 3.9 trl
x (m) In A

t
(11)

2.4. Lifetime of a cluster in a tidal field

A star cluster embedded in an external potential evaporates quickly. Portegies
Zwart et al (2001a) studies the evolution of young compact star clusters within
rv 200 pc of the Galactic center. Calculations are performed using direct N-body
integration on the GRAPE-4, including the effects of both stellar and binary
evolution and the external influence of the Galaxy. The mass of their model
clusters decreases almost linear with time as

M == M o (1 __t ) .
tdisr

(12)

Here M o is the mass of the star cluster at birth and tdisr is the clusters' disruption
time. Portegies Zwart et al (2001a) find tdisr ~ 0.3ttrx, with ttrx is the relaxation
time at the tidal radius (ttrx > trlx).

Adopting M == N(m) throughout the cluster lifetime we can rewrite Eq.12
in terms of the number of stars in the cluster. Substitution of Eqs. 16 and 11 in
Eq.6 gives

dm;
dt

8 x 10-4 N (m) InA
t

4 (1 1)8 x 10- M oInA - - -
t tdisr

(13)

integration from t == tcc to t == tdisr results in

4 [(tdisr) tcc ]m, == mseed + 8 x 10- Mi, In A In - + -. - 1
tcc tdlsr

(14)

Here mseed is the seed mass of the star which initiates the uncontrolled growth
and is likely to be one of the most massive stars in the cluster. Since tcc ~ 0.15trlx
and tdisr ~ 0.3ttrx Eq 14 reduces to

(15)

Here the 'Y~ In ttrx/trlx + 0.5trlx/ttrx - 0.3 == 0(1).

3. Results of N-body simulations

The development of the GRAPE family of special purpose computers makes
it relatively straight forward to test and tune the above model with N-body
calculations. Portegies Zwart et al. (2001 in preparation) summarize the results
of a larger series of detailed N-body calculations to study core collapse and the
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collision rate in dense star clusters with up to 65536 stars. Their simulations
were performed using the starlab software environment (see Portegies Zwart et
al. 2001b) running on the GRAPE-6 (Makino & Ebisuzaki 1997). To support
their findings further we perform a series of simulations with 104 stars with the
same software and hardware.

3.1. Core collapse

In out isolated star clusters (three calculations) with 104 single points with the
same mass in a Plummer distribution core collapse occurs at tee ~ 15.2±0.1 trlx.
This result is consistent with earlier calculations of e.q., Cohn (1980) and Makino
(1996). Doubling the mass of 20% of the stars reduced the core collapse time to
tee ~ 7.2trlx· Making 20% of the stars 10 and 100 times more massive reduces
the time of core collapse further to tee ~ 1.4 trlx and tee ~ 0.16 trlx, respectively.

The more realistic models of Portegies Zwart et al. (1999) with 6144 and
12288 single stars taken from a Scalo (1986) initial mass function include mass
loss from stellar evolution. Core collapse in their models occurred at tee ~

0.19±0.08trlx. The slightly later collapse compared to the model with 104 point
masses may be attributed to stellar mass loss, which tends to delay core collapse.

3.2. Collision rate

Relaxing the assumption of point masses to stellar size introduced collision in
the models. In all calculations the first collisions occur near the time of core
collapse. When stars are given an unrealistically larger size (100 times larger
than at zero-age) the first collision occur slightly (about 5%) before deep core
collapse.

The first star to experience a collision is generally one of the most massive
stars in the cluster; this star may then become the designated target for further
collisions. In models with an initial relaxation time greater than about 30 Myr
the designated target explodes in a supernova before it experiences runaway
growth. The collision rate in these clusters is considerable smaller than for
clusters with a smaller relaxation time (see Fig. 1). This is quite consistent with
our earlier estimates. The disruption of the cluster generally terminates the
uncontrolled growth.

The number of collisions in the simulation of Portegies Zwart et al. (2001,
in preparation) ranges from 0 to 24 for star clusters with up to 65536 stars (see
their table 2). Fig. 1 gives the collision rate Neoll per star per million years as
a function of the initial relaxation time. The solid line in Fig. 1 a fit to the
measurements and can be described with

-4 NNeoll == 2.2 x 10 -.
trlx

(16)

The increase in mass per collision of the models of Portegies Zwart et al.
(1999; 2001) is consistent (within a factor of two) with the results of Eq.11.
In figure 2 we present the maximum mass of the runaway collision product as
function of the initial mass of the star cluster. The results are consistent with
the theoretical model presented in Eq.14.
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Figure 1. Collision rate leoH == NeoH/Ntlast as function of the initial relax-
ation time for all models of Portegies Zwart et al 2001, see their table 2. The
open circles give the results of systems which are isolated from the Galactic
potential (see Portegies Zwart et al 1999). Vertical bars represent Poissonian
one-a errors. The solid line is a least squares fit to the data (see Eq. 16). The
strong reduction in the collision rate for cluster with an initial relaxation time
trlx ;2: 30 Myr is probably real.

4. Discussion

Early core collapse in dense star clusters may initiate a phase of uncontrolled
growth. This leads to an object of r-;» 0.08 % of the total cluster mass. We
tentatively ignore the state of this object, which could be a black hole or a
star. If the object is a Helium or Hydrogen burning star, it may collapse into
a compact object when it exhausts its central fuel. The amount of mass lost
in the supernova explosion and whether the compact object receives a velocity
kick are important for the further evolution of the collision runaway. A detailed
parameter study of the details concerning the supernova are beyond the scope
of this paper. The basis of our analysis, however, is simple and robust to quite
substantial perturbations.

We will now discuss the circumstances for which uncontrolled growth is
prevented or terminated at an early stage. At the end of this section we briefly
discuss the application of uncontrolled growth to the formation of super massive
black holes in the bulges of galaxies.

4.1. Early termination of the collision runaway

Early termination of uncontrolled growth occurs when stellar mass loss starts to
drive the expansion of the star cluster or when the star cluster is disrupted by
external influences.

A star cluster in orbit around the Galactic center is subject to dynamical
friction, much in the same way as dynamical friction drives the massive stars to
the cluster center. This causes the cluster to spiral to the Galactic center, where
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(17)

it is destroyed (see Gerhard 2001). However, since the potential of the Galaxy
is somewhat different than the clusters internal potential we have to re-derive
the dynamical friction time scale.

The frictional drag force due to dynamical friction is (equation [7-26] in
Binney & Tremaine, 1987)

F = 47rInA~:~2PG(r) [erf(X) _ ~e-X2rl,

Here erf is the error function and X == vG/V'ia ~ 0.5, with a is the one-
dimensional velocity dispersion of the stars around the Galactic center. Evalu-
ating the right-hand side with X ~ 0.5 results in erf(X) - ~ exp(-X2

) ~ 0.1.

Substitution of the mass of the Galaxy within the clusters' orbit at a dis-
tance R ( :s 200 pc) from Mezger et al. (1999)

6 ( R ) 1.2MG(R) = 4.25 x 10 [pc] [M0 ] (18)

and its derivative, local Galactic density (see Portegies Zwart et al. 2001)

PG ~ 4.06 X 105 RG -1.8 M0 pc-3 (19)

in Eq. 17 results in

F - -6 8 1016 In AG
2
M (20)

- . x VG2RO.8 •

Following Binney & Tremaine (1987), assuming that angular momentum is con-
served (L == RVG) and that dL/dt == F R/M we can integrate Eq. 20 with respect
to time, which results in

(21)

tgdf
V 3 R1.8

8.5 X 10-
18

In~G2M

3.6 X 10
3 C:J 1.8 (k~~-1 )3 (~ ) [yr]

For clarity we assumed In A == 16.
Substitution of Eqs.18 and vG2 == GMG/R in Eq.21 results in the time

scale for dynamical friction

(
R )2.1 (M )

tgdf ~ 8700 Ipc ;; [Myr] (22)

(23)

For clusters which segregate in the Galactic center before they dissipate the
maximum mass of the uncontrolled growing star can be calculated by substitu-
tion of tdisr == tgdf in Eq. 14. This expression then becomes a function of

R 2.1

tgdrltcc ~ 7.3 X 10
4

(r M)3/2

Equating tgdf == tee results in a maximum distance to the Galactic center for
which core collapse occurs R ~ 0.05 (rM)O.71.
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4.2. Prevention of the runaway

Uncontrolled growth can only occur when stellar evolution is relatively unimpor-
tant compared to the dynamical evolution of the cluster. Stellar mass loss has
the tendency to heat the cluster, by loss of potential energy. This easily reverses
a collapsing core into an expanding core. Especially if one bears in mind that
the most massive stars, which dominate the dynamics of the cluster core are
also the first stars to lose a lot of mass in a stellar wind or a supernova. The
prevention of core collapse then also prevents the initiation of the first collisions
and a reversal of core collapse terminates the collision runaway.

As a rule of thumb we argue that uncontrolled growth can be prevented
when the time scale for the most massive stars to segregate to the cluster center
exceeds the lifetime of that star.

The main-sequence lifetime for stars more massive than ~ 30 Mev is a
rather flat function of mass tms ~ 21m-0.42 Myr. The time scale for dynamical
friction, on the other hand tdf ~ trlx(m)m- 1. The star cluster has therefore to
experience core collapse before the most massive star reaches the cluster center,
i.e., tcc ~ 0.15trlx ~ t ms(100Mev) rv 3 Myr. Runaway growth can therefore be
prevented in star clusters with an initial relaxation time trlx ~ 20 Myr.

In Fig. 1 star clusters with an initial relaxation time trlx ~ 20 Myr still follow
Eq.16. This is a result of the limited number of stars in these simulations, which
causes the most massive stars to be somewhat less massive than 100 Mev.

4.3. Application to massive black holes

A star cluster formed at a distance of ~ 30 pc from the Galactic center can spiral
in the Galactic center by dynamical friction before it is disrupted by the tidal
field of the Galaxy (see Gerhard 2001). Only the densest star clusters survive
until they reach the Galactic center. These clusters are prone to uncontrolled
growth and produce a massive compact object. Upon arrival in the Galactic
center the star cluster dissolves and leaves its central black hole behind. The
black holes deposited by other in-spiraling star clusters may then merge to form a
super massive black hole. Ebisuzaki et al. (2001) propose that such an evolution
may explain the presence of the central black hole in the Milky way galaxy.

One of the great advantages of the model is that it explains the bulge and
the presence of a massive black hole. The mass of the star cluster and its
black hole are than related in a similar way as the bulge to its massive black
hole. Galactic bulges, however, are expected to have a slightly smaller ratio of
bulge-mass to black-hole mass than star clusters; not all star clusters produce a
black hole and not all star clusters survive until the optimum black hole mass
is reached. We expect, however, that the relation between the black hole mass
and that of the bulge remains valid (see Eq. 16).

Figure 2 shows the relation between the black hole mass as function of the
bulge mass for Seyfert galaxies and quasars. The expression derived in sect 2.
and the results of our N-body calculations (sect. 3.) are also included. The solid
and dashed lines (Eq.14) fit well through the N-body calculations and encloses
the area of the measured black hole mass-bulge masses. On the way it passes
though two measured black holes, the one in M82 and the upper limit for the
globular cluster M15.
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Figure 2. The mass after a period of uncontrolled growth as a function of
the mass of the star cluster. The solid line gives m; = 30+8x 10-4Min M /M0
(see Eq.6). For cluster with M ~ 107 M0 this line is extended as a dashed
line. The bottom dashed line shows O.Olmr . The five error bars to the left
give the results of the direct N-body calculations from Portegies Zwart et
al. (2001). The data are averages of the models presented in their Table 2;
from left to right: 4k stars (models KML101, KML111 and KMLl12), 6k
(model 6k6X10), 12k (models RxW4 and 12k6X10), 14k (model KML144)
and 64k (model N64R6r36). The down pointed arrow gives the upper limit
for the mass of a compact object in the Globular cluster M15 (van der Marel,
2001) and the error bar to the right gives the mass estimate for the compact
object associated with Chandra source #7 in the irregular Galaxy of M82
(Matsumoto & Tsuru 1999). The Milky-way is presented by the asterisk
using the bulge mass from Dwek (et al. 1995) and the black hole mass from
Eckart & Genzel (1997) and Ghez (2000). Bullets and triangles (upper right)
represent the bulge masses and measured black hole mass of Seyfert galaxies
and Quasars, respectively (both from Wandel 1999; 2001). The dotted lines
gives the range in solutions to a least squares fits to the bullets and triangles
(Wandel 2001).

5. Conclusions

We study the uncontrolled growth of a single star in a dense star cluster using
a combination of complementary approaches. Our semi-analytic analysis is sup-
ported by detailed N-body calculations in which the effects of stellar evolution,
stellar dynamics, binary evolution and the perturbing effect of a background
potential are self consistently taken into account.

Star clusters with an initial relaxation time trlx ~ 20 Myr experiences a
phase of uncontrolled growth. In this phase a single seed star grows to a mass
of about 0.08% of the total mass of the star cluster.

The first collision occurs at the moment the core of the star cluster collapses.
This happens at about 0.15 trlx but not later than about 4 Myr. The star which
experiences the first collision becomes the designated target for further collisions,
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initiating the uncontrolled growth. The growth phase is terminated by 1) the
disruption of the cluster in the tidal field of the Galaxy (at t ~ 0.3ttrx) or when
the core collapse is arrested by the onset of copious mass loss from its evolving
stellar population (after about 20 Myr).

A star cluster can survive for longer than 0.3 ttrx if, for example, it was
not initially filling its potential (Jacobi) surface in the tidal field of the Galaxy.
(An example is R 136, the dense star cluster in the 30 Doradus region in the
Large Machelanic cloud.) Such a cluster will, as described above, go though a
phase of runaway growth but recovers after stellar mass loss drives the expansion
of the cluster. From an observational point of view the cluster goes through
three very distinct phases: a pre collapse phase until 0.15 trlx, a phase of deep
core collapse (from 0.15trlx to about 20Myr) followed by an expansion phase
leading to the disruption of the cluster. During core collapse the cluster expands
causing the relaxation time to increase by a factor of 4 (see Portegies Zwart et al.
2001). A cluster in the last phase will be observable with a current relaxation
time ~ 80 Myr. The clearest indication of its previous phase of core collapse
and runaway growth is the presence of a central compact object with a mass
~ 0.08% of the initial cluster mass. The cluster may also be relatively poor in
low mass compact objects (stellar mass black holes and neutron stars) as these
are consumed in the runaway growth phase.

Star clusters with trlx ~ 20 Myr do not experience a phase of runaway
growth as core collapse is prevented by mass loss from the most massive stars.
These clusters may experience core collapse well after rv 100 Myr when stellar
evolution slows down again. This later core collapse, however, does not lead
to a phase of uncontrolled growth. As a bonus, our simple model explains the
relation between the mass of a galactic bulge and its black hole.
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