NOTE ON WEAK DIMENSION OF ALGEBRAS

R. K. MARKANDA

(Received 30 January 1968)

Let Λ be a K-algebra over a commutative ring K. Harada [5] has introduced the notion of weak dimension of algebras Λ (denoted by w. dim Λ) analogous to the dimension of algebras in Cartan and Eilenberg [3].

In case Λ is semiprimary algebra over a field K with radical N such that $(\Lambda/N:K) < \infty$ then dim $\Lambda = w$. dim Λ .

We prove here some results for w. dim Λ , analogous to the results proved in Eilenberg [4] for dim Λ .

Throughout this note, unless stated otherwise, we shall assume that K is a commutative ring, Λ is a K-algebra which is K-flat and Γ is a regular K-algebra. We first notice that

(1) $H_n(\Lambda, B \otimes_{\Gamma} C) \cong Tor_n^{\Lambda \otimes \Gamma^*}(C, B)$

for $({}_{A}B_{\Gamma}, {}_{\Gamma}C_{A})$.

This follows from [5, (*) of § 1] on replacing (A, Γ, Σ) by (A, A^*, Γ) . Imposing further conditions on K, A, Γ we deduce, rather easily, from (1) a few results some of which we use for the proofs of our main results viz. Theorems 1 and 2.

COROLLARY 1. If Λ is a K-algebra with K regular then

w. gl. dim $\Lambda \leq w$. dim Λ .

COROLLARY 2. If Λ is K-flat and regular then

w. gl. dim Λ = w. dim Λ .

From Corollaries 1 and 2 one obtains Theorem 1 of [5] as

COROLLARY 3. Let Λ be a K-algebra and K be regular. Then w. dim $\Lambda = 0$ if and only if Λ^e is regular.

COROLLARY 4. If Λ is K-flat and Γ is regular then

l. w. $\dim_{\Lambda \otimes \Gamma^*} \Gamma \leq w.$ gl. $\dim \Lambda \otimes \Gamma^* \leq w.$ dim Λ .

COROLLARY 5. Let Λ be K-flat and $\Gamma = \Lambda/I$, where I is a two sided ideal of Λ , be regular. Then

$$H_n(\Lambda, C) \cong \operatorname{Tor}_n^{\Lambda \otimes \Gamma^*}(C, \Gamma).$$

194

LEMMA 1. [1, Lemma 6]. Let Λ be an arbitrary ring, I a nilpotent right ideal in Λ and T a (covariant or contravariant) half-exact functor defined for all right Λ -modules. If $T(\Lambda) = 0$ for each right Λ -module Λ such that $\Lambda I = 0$ then T = 0.

Now we give sufficient conditions under which the inequalities in Corollary 4 become equalities.

THEOREM 1. Let Λ be K-flat and $\Gamma = \Lambda/I$ be regular where I is a two sided nilpotent ideal in Λ . Then

l. w.
$$\dim_{\Lambda \otimes \Gamma^*} \Gamma = w.$$
 gl. $\dim \Lambda \otimes \Gamma^* = w.$ dim Λ .

PROOF. Assume that l.w. $\dim_{A \otimes \Gamma^*} \Gamma = n$. By Corollary 5, we have $H_{n+1}(\Lambda, C) = 0$ for all right $\Lambda \otimes \Gamma^*$ -modules C. Now the exact sequence

$$\Lambda \otimes I^* \to \Lambda \otimes \Lambda^* \stackrel{\varphi}{\to} \Lambda \otimes \Gamma^* \to 0$$

and I nilpotent imply that kernel φ is nilpotent. Hence, by Lemma 1, we have $H_{n+1}(\Lambda, C) = 0$ for all $\Lambda \otimes \Lambda^*$ -modules C, i.e. w. dim $\Lambda \leq n$. Hence the theorem follows.

COROLLARY 6. Let Λ be a semiprimary algebra over a field K and $(\Lambda/N:K) < \infty$ where N is the radical of Λ . Then

$$\dim \Lambda = 1. \text{ gl. } \dim \Lambda \otimes \Gamma^* = 1. \dim_{\Lambda \otimes \Gamma^*} \Gamma$$

where $\Gamma = \Lambda / N$.

REMARK. Theorem 1 of [4] is a particular case of this Corollary.

We now make three further assumptions (i) K regular (ii) $\Gamma \otimes \Gamma^*$ regular and (iii) ΓK -projective.

With these assumptions we prove

THEOREM 2. Let Λ be a K-algebra and $\Gamma = \Lambda/I$, where I is a two sided nilpotent ideal in Λ , be K-projective. If K and $\Gamma \otimes \Gamma^*$ are regular then w. dim $\Lambda = 1$. w. dim_{Λ} $\Gamma = n$ where n is the smallest integer such that $\operatorname{Tor}_{n+1}^{\Lambda}(\Gamma, \Gamma) = 0$. If no such integer exists, then we take $n = \infty$.

For the proof of this theorem we need the following

LEMMA 2. Let Λ be a K-algebra and $\Gamma = \Lambda/I$ be a K-projective algebra. If $\Gamma \otimes \Gamma^*$ is regular then

$$\operatorname{Tor}_{n}^{A \otimes \Gamma^{*}}(C, A) \cong C \otimes_{\Gamma \otimes \Gamma^{*}} \operatorname{Tor}_{n}^{A}(\Gamma, A)$$

for $({}_{A}A_{\Gamma}, {}_{\Gamma}C_{\Gamma})$.

PROOF. Consider the natural isomorphism

$$C \otimes_{A \otimes \Gamma^*} A \cong C \otimes_{\Gamma \otimes \Gamma^*} (\Gamma \otimes_A A).$$

Let X be a $\Lambda \otimes \Gamma^*$ -projective resolution of A. Since Γ is K-projective, it follows that X is a Λ -projective resolution of A. Since $\Gamma \otimes \Gamma^*$ is regular, $\otimes_{\Gamma \otimes \Gamma^*}$ is an exact functor and therefore replacing A by X and passing to homology, we get

$$\operatorname{Tor}_{n+1}^{A\otimes\Gamma^*}(C,A)\cong C\otimes_{\Gamma\otimes\Gamma^*}\operatorname{Tor}_{n+1}^A(\Gamma,A).$$

COROLLARY 8. Let Λ and Γ be as in Lemma 2. If further Λ is K-flat and Γ is regular then $H_{n+1}(\Lambda, C) \cong C \otimes_{\Gamma \otimes \Gamma^{\bullet}} \operatorname{Tor}_{n+1}^{\Lambda}(\Gamma, \Gamma)$.

PROOF. Take $A = \Gamma$ in Lemma 2.

PROOF OF THE THEOREM 2. We know that $n \leq 1$. w. dim_A Γ . Since K is regular, by Corollary 1, we have l. w. dim_A $\Gamma \leq w$. dim Γ . By Corollary 3, K and $\Gamma \otimes \Gamma^*$ are regular give w. dim $\Gamma = 0$ and therefore by Corollary 2, Γ is regular. Thus by Corollary 8, we have $H_{n+1}(\Lambda, C) = 0$ for all two sided Γ -modules C. The exact sequence

$$I \otimes \Lambda^* + \Lambda \otimes I^* \to \Lambda \otimes \Lambda^* \stackrel{\varphi}{\to} \Gamma \otimes \Gamma^* \to 0$$

and I nilpotent imply that kernel of φ is nilpotent. Then by Lemma 1, we have $H_{n+1}(\Lambda, C) = 0$ for all two sided Λ -modules C, i.e. w. dim $\Lambda \leq n$. Hence the result.

COROLLARY 9. Let Λ be a semiprimary algebra over a field K. Let $\Gamma = \Lambda/N$ be of finite degree over K and $\Gamma \otimes \Gamma^*$ be semisimple. Then

$$\dim \Lambda = 1. \dim_{\Lambda} \Gamma = \text{gl.} \dim \Lambda.$$

REMARK. Theorem 2 of [4] is a particular case of this Corollary.

References

- Auslander, M., 'On dimension of modules and algebras III', Nagoya Math. J., 9 (1955), 67-77.
- [2] Auslander, M., 'On dimension of modules and algebras VI', Nagoya Math. J. 11 (1957), 61-65.
- [3] Cartan, H. and Eilenberg, S., Homological algebra (Princeton University Press), 1956.
- [4] Eilenberg, S., 'Algebras of cohomologically finite dimension', Commentrii Math. Helv. 28 (1954), 310-319.
- [5] Harada, M., 'The weak dimension of algebras and its applications', J. Inst. Poly. Osaka City Univ., Vol. 9, No. 2 (1958), 47-58.

Centre for Advance Study and Research in Mathematics Panjab University Chandigarh-14, India