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Abstract
In this paper, we consider the problem of contact parameters (slippage and sinkage) estimation for multi-modal
robot locomotion on granular terrains. To describe the contact events in the same framework for robots operated at
different modes (e.g., wheel, leg), we propose a unified description of contact parameters for multi-modal robots.
We also provide a parameter estimation method for multi-modal robots based on CNN and DWT (discrete wavelet
transformation) techniques and verify its effectiveness over different types of granular terrains. Besides motion
modes, this paper also considers the influence of slope angles and the robot’s handing angles over contact param-
eters. Through comparison and analysis of the prediction results, our method can not only effectively predict the
contact parameters of multi-modal robot locomotion on a granular medium (better than 96% accuracy) but also
achieves the same or better performance when compared to other (direct) contact measurement methods designed
for individual motion modes, that is, single-modal robots such as quadruped robots and mars rovers. Our proposed
unified contact parameter estimation method can be useful for studying the interaction mechanics between multi-
modal robots and granular terrains as well as terrain classification tasks due to its superior sensitivity which is
analyzed in the experiments.

1. Introduction
The granular medium is a typical terrain that appears on some planet surfaces, especially the Mars and
lunar surfaces. This type of terrain usually consists of gravel, dust, and other materials. It is deformable
and has fluid-like properties [1], and these special characteristics could lead the robot to excessive sink-
age (losing mobility) and slippage (falling down or difficult to localize). To overcome these challenges,
conducting an in-depth study of the robot-terrain contact process and interaction characteristics is nec-
essary. Slippage and sinkage are the two main phenomena during robot-terrain interaction [2]. Thus, it
is important to characterize these two phenomena using proper parameters, which will be very useful
for modeling and control of robot-terrain contact problems.

Mobile robots that work in a granular medium environment have different forms [3], for example,
wheeled vehicles (i.e., rovers), walking robots (e.g., quadruped and hexapod robots), and hybrid wheel-
leg robots. It is obvious that the form of contact interaction is strictly related to the robot’s locomotion
modality, that is, its motion mode. The sinkage for all motion modes can be represented by a distance or
displacement value. However, it is unfortunate that the definition of slippage varies with robot motion
mode. The movement of a vehicle depends on the wheel rotation; its slippage is represented by the slip
ratio [4]. Some wheeled robots may move in a distinct peristaltic manner [5]; their slippages can be
expressed in terms of distance. The walking robot’s movement depends on the switching of supporting
feet; its slippage is represented by a distance as well [6]. For a hybrid wheel-leg robot (e.g., the robot
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Figure 1. Our framework for terrain contact parameter estimation process for hybrid wheel-leg mobile
robots. (a) This paper studies three types of motion modalities: driving-wheel mode, locked-wheel foot
mode, and planar foot mode. We use DWT to process the sensor signals to reduce the scale of raw
data and feed them into a trained CNN, as shown in (b). We can compare the predicted results with the
experiment ground truth, as shown in (c).

shown in Fig. 1), its actual locomotion modality depends on the motion mode of each wheel-leg module,
whose exact motion mode dictates the corresponding slippage definitions. An extreme case is that the
robot shown in Fig. 1 operates two of its limbs in foot mode and the other two in the wheel mode. In this
case, it is hard to estimate or control the contact state of the limbs in various motion modes, because of the
different contact parameter definitions. We would like to adopt a unified contact parameter definition
for different motion modalities, so that we can provide a unified measurement or evaluation standard
for hybrid wheel-leg robots, which often have better mobility and adaptability to various working
scenes [7].

2. Related works
There are many studies on contact parameter estimation for robot-terrain interactions. The traditional
estimation methods are to use wheel-terrain or foot-terrain interaction models [8–10]. To extract the
contact parameter, these model-based methods often need to inversely solve the physical contact model
or terramechanics model using a large amount of experiment data. These methods have two major prob-
lems: (a) the wheel/foot-terrain contact model can be very complicated, making it very challenging to
model the entire contact process in detail; (b) uncertainties introduced by the terrain’s physical proper-
ties will have a significant effect on the results, as discussed in ref. [8]. Moreover, these studies mostly
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focus on estimating the parameters when the contact process reaches a stable state, while the description
of dynamic processes, such as making and breaking contact, is very limited in the literature.

Some researches use other methods such as machine learning and image processing to investigate
the contact process [11]. For wheeled robots, a variety of learning methods have been used for slippage
estimation, as summarized in ref. [12]. Ref. [13] classifies the slippage into three categories (high slip,
moderate slip, and low slip) to predict possible slip states. This obviously is a rough estimation. The
studies on non-model-based sinkage estimation mostly use vision methods [14] (some scholars also use
LiDAR), which focus on real-time detection of wheel sinkage [15]. However, these vision-based methods
are sensitive to light, terrain, obstacles, and many other factors. There are also some strict constraints on
the pose of the installed camera. So, we need a robust method (preferably using intrinsic sensors) that
can give detailed quantitative results that can be used to control the multi-modal hybrid robot.

For walking robots, contact parameter estimation usually is part of the entire robot state estimation
procedure. Ref. [16] uses IMU (inertia measurement unit) data to estimate the robot slippage and sink-
age. Other sensors such as the F/T sensors can also be used for robot state estimation, as shown in ref.
[17]. However, these methods may cause mobility or safety issues when traveling over soft granular
terrain. This is because the robots have already moved onto the soft soil when the contact parameter is
estimated. In this case, the robots may sink or even fall over. So, we need to separate out the contact
estimation process and estimate possible contact parameters before the robot moves to soft terrain, and
our method can meet these requirements well. An example is shown in ref. [18]; we can use our method
by the remote articulated wheeled bevameter to detect the contact parameters. Furthermore, these meth-
ods only focus on the start and terminal states while ignoring the contact information during the contact
process. Actually, these ignoring information is very important for the study of the contact surface prop-
erties [19]. Ref. [20] uses the intermediate results of terrain perception and classification to estimate the
contact parameters. However, this indirect method will cause uncertainties to accumulate.

To mitigate these problems, we propose to use the intrinsic IMU and force sensors that are installed
on the distal end of the wheel/foot module (as shown in Fig. 1) to directly estimate the contact param-
eters. To this end, we propose a unified wheel-terrain contact parameterization approach to represent
the (dynamic) contact process. Then, we can use unified parameters to control or describe the hybrid
robot motion. As the main idea is to use the intrinsic sensor signals to describe the contact process, we
can effectively mitigate the influence of environmental factors (e.g., illumination, occlusion). The main
contributions are as follows:

• We propose a unified contact parameters that can describe the dynamic phenomena of contact
event for hybrid robots.

• Based on our unified parameters, we develop an estimation algorithm using DWT and CNN,
achieving very high prediction accuracy. Using only intrinsic signals, this method is very robust
in different environmental conditions, as demonstrated by our experiments.

• Compared to other methods, we show that the proposed method can get the same or even better
performance. Furthermore, our method can not only estimate the dynamic contact process but
also can be sensitive enough to measure small slippage and sinkage.

The remainder of this paper is organized as follows. Section 3 introduces our test facility and hybrid
wheel-leg module. Section 4 presents the methods for data processing. Section 5 verifies our methods
via experimental results. Section 6 shows the conclusion and future work.

3. Experimental setup
As the purpose of this paper is to estimate the contact parameters for the multi-modal robot locomotion
on deformable granular terrains, we need to collect these contact parameters (i.e., slippage and sinkage)
first. As these parameters are related to the interaction forms (i.e., the robot motion mode), the terrain
condition (e.g., slope, and terrain types), and robot states (e.g., velocity, load, and moving direction), we
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Figure 2. The experimental testbed consists of a wheel-leg test module and a robot-terrain adjustment
system. We use a computer for data acquisition and actuator controls.

need a testbed to meet these conditions to collect a representative dataset. In the following subsections,
we will introduce a multi-freedom testbed to collect interaction data, and the testbed is equipped with a
wheel/foot module that can automatically switch its motion modes.

3.1. Testbed for robot-terrain interaction
In order to collect robot-terrain contact data, we build a multi-DoF (degree of freedom) testbed. The
lightweight testbed is shown in Fig. 2. It includes two parts: a hybrid wheel-leg test module and a
robot-terrain adjustment system. The adjustment system includes a linear motion module, a yaw motion
module, and an adaptive tilt module. The hybrid wheel-leg test module can be operated at three motion
modes: driving-wheel mode, locked-wheel mode, and planar foot mode, as shown in Fig. 1.

As shown in Fig. 2, the robot-terrain adjustment system is 1.2 m × 0.8 m × 0.8 m (height×
length×width). To acquire more scenarios of wheel/foot-terrain contact events, we can adjust the yaw
motion module to change the movement direction of the wheel-leg test module. This is an important
factor for wheel/foot-terrain contact parameter, as discussed in ref. [21]. The linear motion module can
move the wheel-leg module with a velocity that equals the robot’s forward velocity. The terrain slope
angle α (α ⊆ [−20◦, 20◦]), which is measured by the inclinometer, can be adjusted by the linear stage.
During test, we can manually loosen the terrain and level its surface, ensuring the uniformity of the
terrain medium among multiple experiments. We use two Realsense D435i cameras to record details of
the wheel/foot-terrain interaction process and use two AprilTags to measure the contact parameters of
the wheel-leg module. As shown in Fig. 3, one AprilTag is mounted on the center of the wheel’s side
surface, while the other one is mounted on the F/T sensor. There is another USB camera recording the
entire experiment.

This wheel-leg module uses a 5-DOF series linkage design, with the last joint driving the wheel,
as shown in Fig. 3. All joints are powered by high-quality Dynamixel servos. By adjusting the pose of
robot joints, we can switch the test module between two-foot shapes: planar foot and locked-wheel foot.
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Figure 3. Three motion modes in our experiments. The wheel-leg module can switch between planar
foot configuration (a) and wheel model configuration (b); the latter can be operated as the driving-wheel
mode or locked-wheel mode (c).

Figure 4. Four types of granular medium selected for our experiments.

The F/T sensor (SRI M3813D, frequency:200 HZ) can acquire the contact forces between the wheel/foot
and granular medium. We also attach an IMU (WIT-HWT 906, frequency:400 HZ) on the wheel to
record signals during the contact process.

3.2. Granular medium selection
Four types of granular medium are selected for our contact experiments, as shown in Fig. 4. We select
desert sand because deserts and beaches are the most common terrain with a granular medium in nature.
This sand’s granularity is not uniform, and its particle size is ranging from 0.25 to 0.6 mm. In order to
study the effect of different particle sizes on contact estimation, we also choose two other kinds of sand:
the garnet sand with a particle size around 0.25 mm, and the quartz sand with a particle size around
1.5 mm. Moreover, we also select millet as an extremely granular medium, due to its special character-
istics of uniform particle size and smooth surface. These properties would cause a great challenge to
field rovers because excessive sinkage and slippage often cause mission failure [22].

4. Methodology
4.1. Slippage and sinkage definition
In order to describe the robot-terrain contact process of the hybrid wheel-leg mobile robots in a unified
manner, we provide a unified contact parameterization, as shown in Fig. 5. We analyze the dynamic
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Figure 5. Explanation of the three contact states defined for the multi-modal hybrid wheel-leg robot.
The green arrow indicates the order of the motion sequences during the contact process. The wheel-leg
module’s color depth indicates the movement order, that is, the deeper color represents the most recent
position.

contact processes corresponding to the three locomotion modalities: driving-wheel, locked-wheel foot,
and planar foot. For each motion modality, the contact process during one gait period T can be described
by three contact states:

(1) State 1: The state that the wheel or foot makes its first contact with the terrain surface.
(2) State 2: The state when the supporting force of the wheel/foot along the gravity direction reaches

its maximum value for the first time.
(3) State 3: For planar foot or locked-wheel foot modes, this represents the state when the foot breaks

contact with the terrain and the supporting force becomes zero. Note that some portion of the foot
may be still below the ground level of the terrain due to the plastic deformation during the contact
process, as shown in Fig. 5. For driving-wheel mode, this state represents the end of a typical motion
period T .

For both foot modes, the entire motion period T equals to the period of one walking gait. For the
driving-wheel mode, it is difficult to define a gait time similar to that of a legged robot, because the
wheel maintains contact with the terrain during movement (continuous process). In order to ensure that
the driving-wheel mode can also experience the three-state process during the movement period T , we
choose T = 6π/ω. We can also select other values for T as long as T > Tmin = 4π/ω. Note that most
legged robots may use point foot, its contact process and parameterization are similar to those of the
planar or locked-wheel foot.

As shown in Fig. 5, we use h to represent the sinkage, which refers to the distance perpendicular
to the terrain between state 1 and state 2. d1 denotes the distance between state 1 and state 2 which is
parallel to the terrain surface, and the used time is t1. d2 denotes the distance between state 2 and state
3 which is parallel to terrain surface too, and the used time is t2.{

Dx = wrtx − dx , x ⊆ {1, 2}
H = h

(1)

where Dx is the slippage, and H is the sinkage. r is the wheel’s radius (r = 0.07 m), and ω is the angular
velocity. We define the contact time period t during a gait period T . In other words, t1 + t2 = t. In the
Eq. (1), when the subscript x = 1, we call D1 “transitional slippage.” Transitional slippage represents
the slip process from state 1 to state 2. During this process, the wheel-leg module gradually acquires
enough support force form the terrain, successfully achieving the stable standing state. It is an gradual
stabilization process, so it is referred to as transitional slippage. When x = 2, we call D2 “stable slip-
page.” Stable slippage represents the slip process while the leg module working as a supporting leg
during period t2 (from state 2 to state 3), that is, the phase when the supporting force is stable, as shown
in Fig. 6(b). For the driving-wheel mode, the supporting force is stable during this period, so we can
also treat the driving wheel as a supporting wheel.

Most of the literature studies pay more attention to the information about stable slippage, for example,
in the field of planetary exploration and terrain-vehicle interactions. In these researches (e.g., ref. [23]),
people often use slip ratio to describe the slippage of a driving wheel:
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Figure 6. The controller that regulates the wheel/foot motion for experiments. (a) The initial setup
for typical driving-wheel or locked-wheel modes. The planar foot mode will have a similar setup. (b)
Motion sequence of the locked-wheel foot mode. The planar foot mode will have a similar sequence. (c)
Motion sequence of the driving-wheel mode. In fig. (b) and fig. (c), A is the starting state (note: not state
1), B is state 2, C is state 3. A → B → C is the planned reference trajectory of the wheel/foot motion
(initial state: H = L) using kinematics, without knowing the geometry of the terrain profile. During the
actual experiment, the wheel/foot first executes this reference trajectory; however, when the wheel/foot
makes contact with the terrain and the actual supporting force Fd reaches the prescribed threshold Fg

(i.e., point B′), we need to use Algorithm 1 to replan the trajectory with H replaced with Hnow. The new
trajectory is A′ → B′ → C′.

s = 1 − V

rω
(2)

s = 1 − Vt2

rωt2

= 1 − d2

D2 + d2

(3)

where V is the linear velocity of the wheel-leg module, s is the unitless slip ratio. The slip ratio s and
the slippage D2 in Eq. (1) are equivalent; their conversion is shown in Eq. (3).

Unfortunately, there is little literature about transitional slippage, which is as important as stable
slippage for contact event research. For example, the transitional slippage is highly dependent on the
granular medium if the motion mode is fixed, so that it is useful for terrain classification problem.
Here, our unified contact parameterization approach covers both transitional slippage and stable slip-
page, thereby providing a solid foundation to study the dynamic contact process of wheel-leg-terrain
interactions.

4.2. Motion controller
During the data collection process, we need to change the motion modality of the hybrid wheel-leg robot
and control its motion during each motion mode. For each mode, our control variables are the forward
velocity V , and the supporting force Fg of the wheel/foot module.

Figure 6(a) shows the initial state of wheel-leg module. l is an constant value (l = 0.10 m) that rep-
resents the initial distance from the wheel/foot center to the terrain surface along the gravity direction.
L represents the maximum distance that the wheel-leg module can reach in the gravity direction.
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Algorithm 1 Motion Control Algorithm
Input: V , Fg

Output: {tnext, Jnext(θ )}
1: Get the initial state: H = L and V , flag = 0
2: Read:{tnow, Jnow(θ ), Fd}
3: if Fd ≥ Fg & flag = 0 then
4: H = Hnow, flag = 1
5: end if
6: {tnow, V , H, Jnow(θ )} → inverse kinematics → {tnext, V , H, Jnext(θ )}
7: if tnext ⊆ [t1, t] & flag == 1 then
8: Drive robot:{tnext, Jnext(θ )} → PID controller{Fg, Fd} → {tnext, J

′
next(θ )}

9: else
10: Drive robot: {tnext, Jnext(θ )}
11: end if
12: if tnext ≤ T then
13: Go to step 2
14: end if

Algorithm 1 outlines the detailed control strategy. It is worth noting that the kinematics in Algorithm 1
will be different for different motion modes. Jnow(θ ) is the joint angles at the sampling time, and tnow is the
system time during sampling. Jnext(θ ) is the target joint angles that can be calculated using kinematics,
and tnext is the system time when the robot joints begin the next action. Fg is the excepted supporting
force, and Fd is the actual supporting force measured by the F/T sensor. Hnow is the distance along the
gravity direction when the wheel-leg module’s supporting force satisfies Fd ≥ Fg & flag = 0. We use
PID control to keep the wheel/foot supporting force at the desired level, that is, Fd = Fg. Note that phase
A is not state 1 defined in Fig. 5. It is our initial experiment setup that is used to simplify control logic.
This does not affect the data collection process.

Following Algorithm 1, the controller firstly collects the information of recent joint angle Jnow(θ )
and supporting force Fd. The controller needs to detect if supporting force Fd reaches threshold Fg.
If Fd ≥ Fg, the controller sets the distance Hnow as H which is largest distance the robot can reach in
the gravity direction, and flag = 1. Then, the controller calculates robot joint angle Jnext(θ ) for the next
step action based on robotic inverse kinematics. If flag does not equal 1 or time t does not in support
phase [t1, t], the controller just drives robot by Jnext(θ ). Otherwise, the controller drives the robot with
Jnext(θ ) while using a PID function to keep Fd near the threshold Fd. The controller would continue the
above process during entire motion period T . The final motion trajectories for different robotic modes
are shown in Fig. 6(b)(c).

4.3. Dataset collection
In this paper, we collect two datasets: the normal medium dataset (Nm-dataset) and the extreme medium
dataset (Em-dataset). Both datasets are collected on our experiment platform shown in Fig. 3. The
Nm-dataset contains 9 groups of data, each of which is a combination of terrain medium (desert sand,
quartz sand, and garnet sand) and motion modes. The Em-dataset contains 3 sub-datasets, each of which
corresponds to one specific motion mode.

In order to explore multiple experiment scenarios such as slope ascending and descending, we test
5 slope angles {−10◦, −5◦, 0◦, 5◦, 10◦}. We can adjust the terrain slope angle by controlling the pitch
angle of the small sandbox using linear stage actuators. Various studies (e.g., ref. [21]) have shown
that the movement direction during wheel/foot-terrain contact will directly affect energy consumption
and contact states. So we control the yaw motion actuator shown in Fig. 3 and select four directions
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{0◦, 30◦, 60◦, 90◦}. In each experiment, the control variables are the linear velocity (driving-wheel mode:
0.05 m/s ∼ 0.2 m/s; foot modes: 0 m/s ∼ 0.3 m/s) and the load (25.5 N ∼ 60 N) of the wheel/foot.

The total impacts of the Nm-dataset include two parts. The first part is the contact data for the locked-
wheel foot and planar foot modes. We consider these two motion modes and four motion directions
over three types of terrains, whose inclination can be set at five slope angles. For each combination,
we measure 10 contacts. Hence, the first part contains 1200 impacts. The second part is the contact
data for the driving-wheel mode. The test scenarios are similar to those of the first part, except that we
cannot perform the 10◦ and −10◦ inclination angle experiments. The main reason is that the wheel-
leg module’s reachable space in the gravity direction is limited, so that the control variable Fg cannot
be stabilized in the driving-wheel mode if the slope angle is too large. The second part contains 360
impacts.

For the Em-dataset, the range of control variable Fg and the slope angle are different from the Nm-
dataset. Recall that the special characteristics of extreme granular medium (millet) will cause excessive
slippage and sinkage, we have to limit Fg in 22.5 N ∼ 32 N range (about half of other terrain values).
This extreme medium dataset contains three slope angles {−5◦, 0◦, 5◦}, as the driving-wheel mode
will not work in 10◦ and −10◦ inclinations using our facility, as discussed above. The total impacts
are 360.

For each impact, we need to record the interaction signals (synchronized by software synchronization)
and the motion sequence images of the test module. The interaction signals consist of two parts. The
first part is the signals collected by the force sensor, and they are the 3-axis force and 3-axis torque. The
second part is the signals collected by the IMU, and they are the 3-axis velocity and 3-axis acceleration.
The above signals are the input of our learning model, and annotations are contact parameters, and these
parameters are measured by the camera (calculated by Eq. (1)).

4.4. Feature selection
Different from refs. [24] and [25], we extract the contact information from the IMU and F/T signals in
this part manually. Firstly, we detect the z-axis force signal during each impact experiment and mark
the interaction time (the time for entering and breaking the terrain) manually. Then, we use the marked
interaction time to extract the interaction signals from all the signals collected by the sensors as all the
signals are collected through software synchronization. Compared to the method used in refs. [24] and
[25], the interaction signals segmented manually have higher confidence.

Taking the time domain and frequency domain information into consideration for feature selection
process, discrete wavelet transformation (DWT) is more suitable for processing discretely sampled sen-
sor signals than other techniques (for feature selection in this situation, as discussed in ref. [26]). We
use MATLAB Discrete Wavelet Transform Toolbox and select daubechies wavelet with four vanishing
moments (db4) to process the signal. To reduce the size of selected features, we need to choose the
appropriate number of decomposition levels for DWT. Generally, as the decomposition level increases,
the number of features selected from the extracted signal decreases. In this paper, we have chosen to use
five levels of decomposition. Corresponding to each segmentation signal processed by DWT, we select
the detail coefficients (features) and linearly regroup these parameters.

We list the number of features for each signal in Table I. Each number in Table I is the features we got
from the DWT processing for each impart signal. It is obvious that the feature numbers are different for
different motion modes, so we select the largest number of the features as N to regroup the matrix with
size of M ∗ N. Based on the Table I, the N equals 852. The M refers to the signal channels and equals
12 (3 forces+ 3 torque+ 3 velocity +3 acceleration). The problem with regrouping the matrix is that
the numbers of signals for motion modes are different. To solve this problem, we add 0 in the selected
features of the signals to make sure they are as big as the feature numbers of the biggest one (N = 852),
so that we can get the matrix (M ∗ N). As shown in Fig. 7, we collect multiple signals during a single
contact process. We try to process every signal using DWT and regroup the features into a matrix, so
that our CNN network can use these features to estimate the contact parameters.
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Table I. Feature numbers selected through signals.

Sensor signal

Motion modes Force Torque F/T IMU Total
Planar foot 180 180 360 360 720
Wheel/foot 182 182 364 364 728
Wheel 426 426 852 852 1704

Figure 7. The feature selection process of multiple F/T and IMU sensor signals (all signals are
synchronized). This process contains three parts: segmentation, DWT, and regrouping.

Figure 8. The pipeline of the network for contact parameter estimation. The input is the feature
matrix created in feature selection section, and the output is three contact parameters, that is, sinkage,
transitional slippage, and stable slippage.

4.5. Regression
Inspired by ref. [12], we select CNN for contact data regression because it is simpler but useful for
this problem. Our network structure is shown in Fig. 8. As the feature information between IMU and
F/T is complementary, we divide the feature matrix into two parts, that is, the IMU part and F/T part,
and use two sub-pipelines to handle them. For each sub-pipeline, the matrix is reshaped and processed
by the convolutional and fully connected layer. We combine the output of the two sub-pipelines and
use a fully connected layer to get the three contact parameters, that is, sinkage, transitional slippage,
and stable slippage. The Conv block in Fig. 8 consists of two convolutional layers and pooling layers.
For detail information, please see Table II. We use the L2 loss function (squared error) to calculate the
loss function in our network, and the loss function is shown in Eq. (4). The H represents the actual
sinkage of the ground truth, while the Ĥ represents the estimated sinkage by our network. The Di
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Table II. The layers and parameters in the Conv block are in Fig. 8.

Layer Conv2-1 ReLU-2 MaxPool2d-3
Output shape [16, 71, 71] [16, 71, 71] [16, 35, 35]
Parameters 160 0 0

Layer Conv2d-4 ReLU-5 MaxPool2d-6

Output shape [32, 35, 35] [32, 35, 35] [32, 17, 17]
Parameters 4, 640 0 0

Figure 9. The contact parameters for planar foot mode on four types of granular terrains, which are
color-coded using shaded squares (blue: quartz sand, green: garnet sand, orange: desert sand, yellow:
millet). For each terrain, that is, each color-coded square, we use the transparency value of each tall
rectangle to represent different slope angles. Each rectangle (combination of slope angle and terrain
type) contains results corresponding to four different heading angles.

represents the two instances of ground truth slippages, and the D̂i represents the estimated two slippages
by our network.

� = (H − Ĥ)2 +
2∑

i=1

(Di − D̂i)
2 (4)

One net is trained for three granular terrains (shown in Fig. 5) to estimate the contact parameters,
and one net is trained to evaluate the movement capability of three motion modes on extreme granular
medium (millet). We build the network based on the Machine Learning Toolbox on MATLAB-2021b.
We use Statistics Toolbox and Machine Learning Toolbox to train the network using 80% of the data of
each dataset with 5-fold cross-validation, while the other 20% data is used for validation [26].

5. Experimental results and discussions
5.1. Nm-dataset results
Figure 9 shows the contact parameters for planar foot mode on four types of granular terrains. From the
figure, we see that the sinkage and slippage contact parameters and their variation tendencies are different
for different terrain types and different slope angles. These observations indicate that the terrain medium
classification and contact parameter prediction problems are solvable using learning algorithms based
on our unified definition.
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Figure 10. The typical motion trajectories for the locked-wheel mode (first row), planar foot mode
(second row), and wheel mode (third row). The granular medium is desert sand, the slope angle is 10◦

(5◦ for wheel mode), and the heading angle is 0◦. The motion sequence of trajectories is from lift to right,
while the three contact states are marked in the figure.

Figure 11. The three blue lines refer to the test module trajectory measured on the same condition
(desert sand, 5◦ slope, motion direction is 30◦, heading angle is 0◦).

As shown in Fig. 9, during the contact process of planar foot on four types of terrains, both the stable
slippage and sinkage are smaller than the transitional slippage. Specifically, Fig. 10 shows the typical
motion trajectories and three states from a set of experiments corresponding to the planar foot mode,
locked-wheel foot, and driving-wheel mode. Similar conclusion can be drawn for the other two motion
modes. One can refer to our dataset for more details.

The three states (defined in Fig. 5) are the key points during the robot-terrain contact process, and
related parameters in our definition are influenced by the robot motion modes. So we use the contact
parameters to estimate the robot wheel/foot trajectory during the interaction. In Fig. 11, We draw the
true trajectories (the blue lines) of three motion modes, and the trajectories are measured by the fixed
Realsense D435i(2) camera (see Fig. 2). As the test module moves along the linear direction, the depth
values of the trajectory in the z direction (D435i-2 coordinate system) are nearly the same. So that we
can think that the test module moves in the x − y plane, and we show the trajectories in Fig. 11. The red
lines are the estimated trajectories, and they are calculated by the polynomial fitting method. As shown
in Fig. 11, the estimated trajectories can represent the true one, and the mean errors of the positions
(selected in the trajectory for polynomial fitting) between the estimated trajectories and ground truth are
1.28e − 04m for the planar foot, 4.46e − 05m for the locker wheel foot, and 3.68e − 05m for the driving
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Table III. The average prediction accuracy for two datasets and mixture terrain.

Motion mode Definition Nm-dataset Em-dataset Mixture terrain
Transitional slippage 0.986 0.982 0.973

Planar foot Stable slippage 0.992 0.979 0.971
Sinkage 0.997 0.992 0.984

Transitional slippage 0.975 0.967 0.968
Wheel/foot Stable slippage 0.984 0.971 0.964

Sinkage 0.982 0.982 0.978

Transitional slippage 0.972 0.962 0.963
Wheel Stable slippage 0.995 0.963 0.980

Sinkage 0.993 0.971 0.989

Figure 12. The prediction accuracy of three motion modes over three types of terrains. The figure
arrangement and color code are similar to Fig. 9.

wheel. So, the estimated trajectories can be useful to handle the robot state estimation problems. This
is another potential use of our definition and method for contact parameter estimation.

For contact parameter estimation, we assume that the predicted results are acceptable if the difference
between the predicted parameter and the ground truth is less than a 1 mm threshold. The network we
trained has great accuracy for contact parameter prediction. As shown in Fig. 12, it achieves an average
accuracy better than 96%. For more details about prediction accuracy, please see Table III (left). The
results show that our method is accurate enough to estimate the contact parameter on different granular
mediums. This method is also robust enough to predict contact parameter for different wheel-leg-terrain
contact scenes on the same medium. Obviously, the prediction accuracy of the driving-wheel mode is
much stable than other two motion modes in our Nm-dataset. The reason is that the movement of the
driving-wheel mode is the simplest one among all three motion modes. For the driving-wheel mode,
the percentage of the steady-state (i.e., the supporting force and friction of the driving wheel remains
constant) duration over the entire motion period T is large. This helps to reduce the measurement error.
In contrast, for the other two motion modes, the wheel/foot is almost in constant motion with varying
contact forces, which often cause large measurement error in the sensor signals. This makes accurate
estimation of the contact parameter challenging.

5.2. Em-dataset results
The contact parameters of three motion modes on extreme granular medium are shown in Table IV. The
contact parameters are much larger than those of grit medium as shown in Fig. 9. This is because the
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Table IV. The average contact parameters for three motion modes in extreme granular
medium. Case: slope angle is 0◦.

Definition Planar foot (m) Wheel/foot (m) Wheel (m)
Transitional slippage 0.021 0.043 0.051
Stable slippage 0.012 0.032 0.043
Sinkage 0.007 0.027 0.034

millet grain has a rounder shape and smoother surface. Moreover, its density is lower than the sands,
making it more fluid-like. The slippage and sinkage of the driving-wheel mode are larger than those of
the other two motion modes. This can be explained as follows:

• For the planar foot mode, its terrain contact area is larger than those of the other two motion
modes. Hence, under the same load, it has the smallest contact pressure, which results in smallest
slippage and sinkage.

• In the driving-wheel mode, the wheel keeps rotating, thereby continuously cutting the terrain
that lies along the motion direction. This phenomenon will increase the fluidity of the medium,
resulting in larger slippage and sinkage than the locked-wheel mode.

Although the measured slippage/sinkage is large on this medium, the accuracy of our CNN estimation
network remains very high as Table III shows. Our net shows more predicting accuracy for the planar
foot mode than the other two modes. The reason is that the planner foot mode has a large contact area
and low contact pressure, which leads to smaller slippage and sinkage (with little fluctuation) than the
other modes. The excellent performance (low sinkage and slippage) of the planar foot mode indicates
that we should select the planar foot mode over other motion modes when traveling over the extreme
granular medium.

5.3. Evaluation results
In order to evaluate the generalization capability of our model, we designed a test experiment for new
terrain. The new terrain consists of a mixture of quartz sand and garnet sand, the mixture ratio is 2:3.
One of the main characteristics of deformable granular terrains is the distribution of particle sizes in the
medium, and this is the criteria for selecting the type of medium when designing experiments. Thus, the
property of this new terrain is different from the four terrains in our dataset.

We collect 10 impacts for each motion mode on this terrain with three slope angles, that is, 0◦, −5◦,
and 5◦. The total contact numbers are 3 × 1 × 3 × 10 = 90 (modes×terrain×slopes×impacts). We use
our pre-trained network to estimate contact parameters and compare with ground truth. The results
are shown in Table III. The average prediction accuracy for mixed terrain (unknown terrain) is higher,
indicating the efficient generalization ability of our model. Therefore, our method can be applied to
real-world environments and is applicable to other unfamiliar granular material terrains.

5.4. Comparisons
In this subsection, we provide three comparisons to show the efficiency of our definitions and method.
We compared our definition with the others’ definition of slippage for wheeled robot (in Section 5.4.1)
and footed robot (in Section 5.4.2). We also compared our method with other’s work which is used to
estimate the slippage of the wheeled robot and show the result in Section 5.4.3.

5.4.1. Comparison of wheeled robot
We compare the difference of slip ratios calculated using two definitions: the standard slip ratio defi-
nition (see ref. [15]) in the automotive area and our proposed slippage definition, as shown in Fig. 13.
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Figure 13. Comparison of slip ratios under two different definitions (driving vehicle field). The red
marks and line indicate that the slip ratios are calculated by measuring the parameters required for the
definition (Eq. (2)). The blue marks and line are the slip ratio calculated by Eq. (3), and the necessary
parameters are measured based on our definition (Eq. (1)).

Figure 14. Comparison of slip ratios under two different definitions (walking robot field). For the Miller
dataset, we lack the data in terrain when the slope angles are −10◦ and 10◦, and assume its prediction
accuracy equals 1.

The results show that our method is robust enough to estimate the contact parameters for driving vehi-
cles. For the three types of sands, the differences between these two slippage definitions are limited;
in particular, the difference is negligible for small slope angles. For extreme granular medium (millet),
there will be some differences (less than 0.05). The reason is that the strong fluidity of the millet medium
will affect parameter measurement accuracy.

5.4.2. Comparison of footed robot
We also compare our method with the slippage estimation method for quadruped robots (see ref. [25]).
The reference is a kinematic method. In order to get along with the reference, we use our method to
estimate the slippage which equals to “d1 − d2” and is different from Fig. 12. Fig. 14 shows the predic-
tion accuracy of the two methods. In the sandy terrain, our method performs better than the reference.
Furthermore, our method can not only detect the transitional slippage and stable slippage but also be
sensitive to the small slippage, which cannot be handled by the reference.

5.4.3. Comparison of estimation method
To evaluate the efficiency of our method for contact parameter estimation, we compared our method with
ref. [27]. For the network used in ref. [27], the input of its network are longitudinal velocity, slip angle,
steering angle, vertical force, and wheel rotation speed, and the output is the longitudinal slippage. To
train this network using our dataset, we set the longitudinal velocity as the linear velocity. The slip angle
equals our heading angle, and the steering angle equals zero. The vertical force is the force calculated
by F/T sensor’s data. We provide an evaluation standard called L2 distance (Dist) in this comparison,
and Dist is Euclidean distance between the predicted parameter and ground truth.

We only used the wheeled mode data to train and test both networks (ours and references) as ref. [27]
is designed for wheeled robots only. The comparison results are listed in Table V. The results in this
table are average values of Dist during testing process. Our method can achieve better performance than
ref. [27], which means that our method can estimate the contact parameters with smaller errors than ref.
[27] (even double the performance for transitional slippage).
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Table V. The results of Dist for two methods.

Method Transitional slippage (m) Stable slippage (m) Sinkage (m)
Raffaele. [27] 0.000962 0.000813 0.0000773
Our method 0.000526 0.000679 0.000517

6. Conclusion and future work
In this paper, to describe the contact events in a unified framework for hybrid wheel-leg robots, we
propose a unified description of contact parameters for multi-modal locomotion. We use DWT to process
sensor signals and feed them into a CNN, which is trained using data acquired from a customized test
bench, to estimate the unified contact parameters. We achieve more than 96% accuracy in parameter
estimation, validating the effectiveness of our method. In the future, we plan to predict the complete
motion trajectory of the wheel/foot with our estimated contact parameters (slippage and sinkage) and
use them for robot state estimation tasks.
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