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1. Introduction. Probabilistic group theory is one of the oldest areas in group
theory. It has been the centre of attention to many authors and it is studied in many
directions. Among various kinds of probabilities defined to date, one can refer to the
work of Gustafson [6] who initiated studying the commutativity degree of elements
of a finite group. This concept can be generalized and modified in many directions.
Two subgroups H and K of G permutes if HK = KH. Hence, by changing the role
of elements to subgroups in a finite group, one can obtain a modification of the
commutativity degree of a finite group.

Let L(G) be the lattice of all subgroups of G. Then, the subgroup permutability
degree of G is the proportion of the number of all ordered pairs (H, K) of subgroups
of G by |L(G)|2. In other words,

spd(G) = |{(H, K) ∈ L(G) × L(G) : HK = KH}|
|L(G)|2 .

Tărnăuceanu in [10] introduces the subgroup permutability degree of a finite
group and computes it for some classes of finite groups, namely dihedral groups D2n,
generalized quaternion 2-groups Q2n , quasi-dihedral groups QD2n (n ≥ 4) and modular
p-groups Mpn (n ≥ 3). These groups together with the abelian groups �pn × �p present
all finite p-groups, which have a cyclic maximal subgroup. In [11], he also gives many
open problems concerning the subgroup permutability degree and its generalizations.

The subgroup permutability degree of finite groups has a close relationship to
the problem of counting the number of factorizations of finite groups. We recall some
terminologies. A finite group G is factorized if G = AB for some subgroups A and B of
G and this factorization is proper if A and B are proper subgroups of G. The number of
all possible factorizations of G is called the factorization number of G and is denoted by
F2(G). The factorization of groups has been the focus of much research in such a way
that how the structure of a group is influenced by the structure of subgroups in a given
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factorization. On the other hand, determination of all factorizations of a given finite
group has been the interest of many authors, which helps to get, as a consequence, a
better understanding of the factorizations. We remark that the factorizations of a large
variety of finite simple groups are known and we may refer the reader to [1, 4, 5, 8, 12].

The subgroup permutability degree and factorization numbers are connected
through the following formula:

spd(G) = 1
|L(G)|2

∑
H∈L(G)

F2(H). (1)

We intend to compute the subgroup permutability degree of the finite simple
groups PSL(2, pn). To end this, it is necessary to know the structure of subgroups of
these groups, which is well-known and is stated in the following celebrated theorem of
Dickson.

THEOREM 1.1 [7, Hauptsatz II.8.27](Dickson). Any subgroup of PSL(2, pn) is
isomorphic to one of the following families of groups:
(1) Elementary abelian p-groups;
(2) Cyclic group of order m, where m is a divisor of (pn ± 1)/d and d = gcd(p − 1, 2);
(3) Dihedral group of order 2m, where m is as defined in (2);
(4) Alternating group A4 if p > 2, or p = 2 and n ≡ 0 (mod 2);
(5) Symmetric group S4 if p2n ≡ 1 (mod 16);
(6) Alternating group A5 if p = 5 or p2n ≡ 1 (mod 5);
(7) A semi-direct product of an elementary abelian p-group of order pm and a cyclic

group of order k, where k is a divisor of pm − 1 and pn − 1;
(8) The group PSL(2, pm) if m is a divisor of n, or the group PGL(2, pm) if 2m is a

divisor of n.

Also, it is necessary to mention the following prominent structural result
concerning the projective special linear groups over finite fields, which we will use
frequently in the sequel.

THEOREM 1.2 [7, Satz II.8.5]. If G = PSL(2, pn), then there exists subgroups H, K
and L of G such that

G =
⋃
g∈G

Hg ∪
⋃
g∈G

Kg ∪
⋃
g∈G

Lg,

H is a Sylow p-subgroup of G, which is elementary abelian of order pn, K is cyclic of
order (pn − 1)/d and L is cyclic of order (pn + 1)/d, where d = gcd(p − 1, 2). Moreover
[G : NG(H)] = pn + 1, [G : NG(K)] = pn(pn + 1)/2 and [G : NG(L)] = pn(pn − 1)/2.

Note that in the above theorem, for H, K and L we have NG(NG(H)) = NG(H),
NG(NG(K)) = NG(K) and NG(NG(L)) = NG(L). In what follows, the centre of SL(2, pn)
is denoted by Z.

2. Factorization numbers of subgroups of PSL(2, pn). According to equation (1),
to compute the subgroup permutability degree of the group PSL(2, pn), it is enough to
compute the factorization number and the size of isomorphism classes of its subgroups.
We first give the factorization number of all subgroups except those of type (7) in
Theorem 1.1, which is computed by the authors in [9].
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THEOREM 2.1 [9]. If G = �n is a cyclic group, then

F2(G) =
m∏

i=1

(2αi + 1),

where n = pα1
1 . . . pαm

m .

The authors [9] gave the following recursive formula for the factorization number
of finite elementary abelian p-groups.

F2(�n
p) =

(
n∑

i=0

[
n
i

]
p

)2

−
n−1∑
i=0

[
n
i

]
p
F2(�i

p),

where [
n
i

]
p

= (pn − 1) · · · (p − 1)
(pi − 1) · · · (p − 1)(pn−i − 1) · · · (p − 1)

is the number of subgroups of �n
p of order pi. The number

[n
i

]
p is called a Gaussian

binomial integer. Here, we will use a better formula obtained by the second author.

THEOREM 2.2 [3]. If G = �n
p is an elementary abelian p-group, then

F2(G) =
∑

0≤i+j≤n

pij
[

n
i, j

]
p
,

where [
n

i, j

]
p

= (pn − 1) · · · (p − 1)
(pi − 1) · · · (p − 1)(pj − 1) · · · (p − 1)(pn−i−j − 1) · · · (p − 1)

is a Gaussian trinomial integer.

THEOREM 2.3 [9]. Let G = D2n be a dihedral group. Then,

F2(G) =
{

φn + 2δn, n odd,

φn + 2φ n
2
+ 2δn, n even,

where

φn =
m∏

i=1

(
2

pαi+1
i − 1
pi − 1

− 1
)

and

δn =
m∏

i=1

(
αi + pαi+1

i − 1
pi − 1

)

for n = pα1
1 . . . pαm

m .
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THEOREM 2.4 [9]. Let G = PSL(2, pn) be a projective special linear group. Then,

F2(G) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2|L(G)| + 2pn(p2n − 1) − 1, p = 2, n > 1,

2|L(G)| + pn(p2n − 1) − 1, p > 2 and (pn − 1)/2 is odd,

pn �= 3, 7, 11, 19, 23, 59,

2|L(G)| − 1, p > 2 and (pn − 1)/2 is even,

pn �= 5, 9, 29

and

F2(G) = 17, 27, 237, 1141, 2033, 4935, 17223, 48261, 68799, 780695

if

pn = 2, 3, 5, 7, 9, 11, 19, 23, 29, 59,

respectively.

THEOREM 2.5 [9]. Let G = PGL(2, pn) (p > 2) be a projective general linear group
and M be the unique subgroup of G isomorphic to PSL(2, pn). Then,

F2(G) =
{

3pn(p2n − 1) + 4|L(G)| − 2|L(M)| − 3, n even or p ≡ 1 (mod 4),

4pn(p2n − 1) + 4|L(G)| − 2|L(M)| − 3, n odd and p ≡ 3 (mod 4)

if pn > 29 and

F2(G) = 177, 1103, 3083, 4919, 15549, 14529, 31093, 58429, 111567, 99527,

144297, 192349

if

pn = 3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29,

respectively.

In the remainder of this section, we shall compute the factorization number of
subgroups of type (7) in Theorem 1.1. To prove Theorem 2.6, we need to fix some
notations. Let F be a field and E ⊆ F . Then, the subfield generated by E is denoted
by (E), and we use E+ and E× for an additive and multiplicative subgroup of E,
respectively. Also, the notations E ≤ F , E+ ≤ F+ and E× ≤ F× indicate that E is a
subfield of F , E is an additive subgroup of F and E is a multiplicative subgroup of F ,
respectively. For a subgroup H of H and a subgroup K of K, the associated additive
and multiplicative subgroups E+

H and E×
H of H and K of F = GF(pn) are defined as

follows, respectively,

E+
H =

{
x ∈ F :

[
1 x
0 1

]
Z ∈ H

}

and

E×
K =

{
y ∈ F :

[
y 0
0 y−1

]
Z ∈ K

}
.
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A vector space V over a field E is denoted by V/E. Moreover, if U ⊆ V and E ≤ F is
a subfield of F , then U/E ≤ V/E indicates that U is a subspace of V as vector spaces
over E.

The following numbers will be used in the next theorem.

�n(V, F ; E1, E2) =
∑

V=U1+U2
U1/E1≤V/E1
U2/E2≤V/E2

( |V |
|U1| · |V |

|U2|
)n

=
∑

V=U1+U2
U1/E1≤V/E1
U2/E2≤V/E2

|V |n
|U1 ∩ U2|n ,

where V is a vector space over the field F and E1, E2 are subfields of F .

THEOREM 2.6. Let S = H � K be a subgroup of PSL(2, pn), where H is an
elementary abelian p-group of order pm and K is a cyclic group whose order divides
pm − 1 and pn − 1. Then,

F2(S) =
∑

K=XY

�1
(
H,
(
E×2

K

)
;
(
E×2

X

)
,
(
E×2

Y

))
.

Proof. Since S is a subgroup of PSL(2, pn), its subgroups can be determined via
Theorem 1.1. Clearly, S has no subgroups of the form A5 and a nontrivial special
or general linear group as it is solvable. Suppose that S has a non-abelian dihedral
subgroup X . Then, X = 〈x〉 � 〈y〉 and x /∈ H for x is not a p-element. Hence, x ∈ Kh

for some h ∈ H. Since S/H is abelian we have [x, y] ∈ H. On the other hand, [x, y] ∈ Kh,
which implies that [x, y] = 1 is a contradiction. If S has an alternating subgroup X of
degree four, then X ′ ∼= �2 × �2 ≤ H. In particular, p = 2 and X is a group of type (7)
of Theorem 1.1. Also, if S has a symmetric subgroup X of degree four, then it has the
dihedral group of order eight as its subgroup, which contradicts our previous result.
Hence, a subgroup of S is an elementary abelian p-group, a cyclic group or a group of
type (7) in Theorem 1.1.

Let A and B be subgroups of S. Then, A = U � Xh1 and B = V � Y h2 , where
U ≤ H is elementary abelian of order pu (u ≥ 0), V ≤ H is elementary abelian of order
pv (v ≥ 0), X ≤ K is cyclic with order dividing gcd(pu − 1, pn − 1), Y ≤ K is cyclic with
order dividing gcd(pv − 1, pn − 1) and h1, h2 ∈ H.

If S = AB, then an arbitrary element hk of S can be written in the form uxh1vyh2 ,
where h ∈ H, k ∈ K , u ∈ U , v ∈ V , x ∈ X and y ∈ Y . From the equality hk = uxh1vyh2 ,
it follows that

ky−1x−1 = h−1uvh̃[h̃, x−h1 ][h1, x−1] ∈ H ∩ K = 1,

where h̃ = [h2, y−1]. Hence, H = UV and K = XY . A simple verification shows that
these latter conditions are also sufficient to assure that S = AB. Hence, the number
of factorizations of S equals the number of simultaneous factorizations H = UV and
K = XY, where U , V , X and Y satisfy the aforementioned properties. We shall count
such factorizations.

By Theorem 1.2, we may assume without loss of generality that H ⊆ H and K ⊆ K.
If H0 ≤ H and K0 ≤ K , then

H0 =
{[

1 x
0 1

]
Z : x ∈ E+

H0

}
and K0 =

{[
y 0

0 y−1

]
Z : x ∈ E×

K0

}
,
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where E+
H0

≤ F+ is an additive subgroup of F and E×
K0

≤ F× is a multiplicative subgroup
of F . Moreover, a simple verification shows that K0 ≤ NG(H0) if and only if E+

H0
=

E+
H0

E×2
K0

if and only if E+
H0

= E+
H0

(E×2
K0

) or equivalently E+
H0

is a vector space over the
field (E×2

K0
), where E×2

K0
denotes the group of all squares of E×

K0
.

Now, we construct all the factorization of the group S. Let K = XY be an arbitrary
factorization of K into subgroups X and Y . Then, H = UV is a factorization of H into
subgroups U and V such that X ⊆ NG(U) and Y ⊆ NG(V ) if and only if E+

H = E+
U + E+

V
and

E+
U

/
(E×2

X )
≤ E+

H

/
(E×2

X )
and

E+
V

/
(E×2

Y )
≤ E+

H

/
(E×2

Y )
.

On the other hand, the subgroups U and V together with conjugates of X and Y
contribute [H : U ] and [H : V ] distinct subgroups of the form U � Xh1 and V � Y h2

(h1, h2 ∈ H) giving rise to a factorization of S, respectively. Therefore, the number of
factorizations of S is

F2(S) =
∑

K=XY

�1
(
H,
(
E×2

K

)
;
(
E×2

X

)
,
(
E×2

Y

))
.

The proof is complete. �

3. The size of isomorphism classes of subgroups of PSL(2, pn). In this section, we
shall compute the size of isomorphism classes of subgroups of G = PSL(2, pn), which
enables us to calculate the subgroup permutability degree of G. If S is a subgroup of G,
then the size of isomorphism class of subgroups of G with representative S is denoted
by NS. As in the previous section, the size of isomorphism classes of all subgroups of
G except those of type (7) in Theorem 1.1 is known. Hence, we compute the size of
isomorphism class of subgroups of type (7) in Theorem 1.1.

LEMMA 3.1. If S = H � K is a subgroup of PSL(2, pn), where H is an elementary
abelian p-group of order pm and K is a cyclic group whose order divides pm − 1 and pn − 1,
then

NS = pn(pn + 1)
1

pmK l

( n
mK

l

)
pmK

,

where pmK = |(E×
K )| and m = mK l.

Proof. Without loss of generality, we assume that H ≤ H and K ≤ K. Let HK

be a minimal K-invariant subgroup of H and let |HK | = pmK . We show that Y =
{Hg

K : g ∈ K} forms a partition for H. Clearly, the elements of Y are pairwise disjoint
by minimality of HK . On the other hand, the number of conjugates of HK under
conjugation byK equals |K|/|C| = (pn − 1)/d|C|, in which C ≤ K and NG(HK ) = HC.
Then, C ⊇ K and |C| divide pmK − 1. Hence,

pn = |H| ≥
∣∣∣∣∣∣
⋃
g∈K

Hg
K

∣∣∣∣∣∣ = 1 + pn − 1
d|C| · (pmK − 1),
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which holds only if |C| = (pmK − 1)/d and Y forms a partition for H. In particular,
EC = (E×

K )×d and H is a disjoint union of some subgroups in Y . It is easy to see that
|H| = pmK l for some l ≥ 1.

A subset {Hg1
K , . . . ,Hgi

K} of X is said to be independent if |Hg1
K . . .Hgi

K | = pmK i. Let
IX and IY be the set of all l-element independent subsets of X and Y , where X is the
set of all subgroups in Y contained in H. It is easy to see that

|IX | =
l−1∏
i=0

(
pmK l − 1
pmK − 1

− pmK i − 1
pmK − 1

)

and

|IY | =
l−1∏
i=0

(
pn − 1

pmK − 1
− pmK i − 1

pmK − 1

)
.

Hence, the number of K-invariant subgroups of H of order pmK l equals

|IY |
|IX | = (pn − 1)(pn − pmK ) · · · (pn − pmK (l−1))

(pmK l − 1)(pmK l − pmK ) · · · (pmK l − pmK (l−1))

= (pn − 1)(pn−mK − 1) · · · (pn−mK (l−1) − 1)
(pmK l − 1)(pmK (l−1) − 1) · · · (pmK − 1)

= ((pmK )
n

mK − 1)((pmK )
n

mK
−1 − 1) · · · ((pmK )

n
mK

−l+1 − 1)
((pmK )l − 1)((pmK )l−1 − 1) · · · (pmK − 1)

= ((pmK )
n

mK − 1) · · · ((pmK ) − 1)

((pmK )l − 1) · · · ((pmK ) − 1)((pmK )
n

mK
−l − 1) · · · (pmK − 1)

.

Thus,

|IY |
|IX | =

( n
mK

l

)
pmK

.

Finally, since [G : NG(H)] = pn + 1, [HK : NHK(K)] = pn and [G : NHK(K)] = pn(pn +
1)/2, the subgroup K lies in the normalizer of two different conjugates of H. Therefore,

NS = |{(A, B) : A ∼= H, B ∼= K, B ≤ NG(A)}|
[S : NS(K)]

=
[G : NG(K)] · 2 · ( n

mK
l

)
pmK

|H|

=
pn(pn+1)

2 · 2 · ( n
mK
l

)
pmK

pmK l

= pn(pn + 1)
1

pmK l

( n
mK

l

)
pmK

.

The proof is complete. �
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Let Ni denote the number of subgroups of type (i) in Theorem 1.1. Invoking
Dickson’s results in [2] in conjunction with the previous lemma, we obtain the following
result.

LEMMA 3.2. The number of subgroups of G of a given type is

(1) N1 = (pn + 1)
∑n

m=1

(n
m

)
p,

(2) N2 = pn(pn+1)
2

(
τ
(

pn−1
d

)
− 1
)

+ pn(pn−1)
2

(
τ
(

pn+1
d

)
− 1
)

,

(3) N3 = 1
2 |G|

(
d

pn−1σ
(

pn−1
d

)
+ d

pn+1σ
(

pn+1
d

)
− 2
)

,

(4) N4 = 1
12 |G| if p > 2 and zero otherwise,

(5) N5 = 1
12 |G| if pn ≡ −1 (mod 8) and zero otherwise,

(6) N6 = 1
30 |G| if pn ≡ ±1 (mod 10) and zero otherwise,

(7) N7 = pn(pn + 1)
(∑

m|n αp,mβpm, n
m

− βp,n

)
,

(8) N8 = |G|
(∑

m|n
1

|PSL(2,pm)| +∑2m|n
1

|PGL(2,pm)|
)

,

where

αp,m = |{h : dh|pm − 1, dh � pk − 1, k < m, k|m}|

is the number of generators of the field GF(pm) in GF(pm)d and

βpm, n
m

= 1
pn

n
m∑

l=1

( n
m

l

)
pm

pml = 1
|V |

∑
0�=U≤V

|U|,

in which V = GF(pn)/GF(pm) is a vector space of dimension n/m over the field of order
pm.

Proof. The number N1 is simply obtained using Theorem 1.2 and the fact that
the number of subspaces of dimension m in a vector space of dimension n over a
field of order q equals

(n
m

)
q. The numbers N2, . . . ,N6 and N8 are given by Dickson in

[2, 260. pp. 285–286]. Hence, it is enough to compute the number of subgroups of type
(7).

By Lemma 3.1, the number of subgroups of type (7) equals

N7 = pn(pn + 1)
∑

1�=K≤K

n
mK∑
l=1

1
pmK l

( n
mK

l

)
pmK

= pn(pn + 1)
∑
K≤K

n
mK∑
l=1

1
pmK l

( n
mK

l

)
pmK

− t

= pn(pn + 1)
∑
x∈F×
d||x|

1
ϕ(|x|)

n
m〈x〉∑
l=1

1
pm〈x〉l

( n
m〈x〉

l

)
pm〈x〉

− t
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= pn(pn + 1)
∑
E≤F

∑
E=(x)
d||x|

1
ϕ(|x|)

n
m〈x〉∑
l=1

1
pm〈x〉l

( n
m〈x〉

l

)
pm〈x〉

− t

= pn(pn + 1)
∑
E≤F

⎛
⎜⎜⎝∑

E=(x)
d||x|

1
ϕ(|x|)

⎞
⎟⎟⎠
⎛
⎝

n
Ep∑

l=1

1
|E|l

( n
Ep

l

)
|E|

⎞
⎠− t,

where Ep = logp |E| and t = pn(pn + 1)
∑n

l=1
1
pl

(n
l

)
p. Now if E ≤ F and |E| = pm (m

divides n), then it is easy to see that

∑
E=(x)
d||x|

1
ϕ(|x|) = αp,m

and
n

Ep∑
l=1

1
|E|l

( n
Ep

l

)
|E|

=
n
m∑

l=1

1

(pm)
n
m −l

( n
m

n
m − l

)
pm

= 1
pn

n
m∑

l=1

( n
m

l

)
pm

(pm)l

= βpm, n
m
.

Moreover t = pn(pn + 1)βp,n and we have

N7 = pn(pn + 1)

⎛
⎝∑

m|n
αp,mβpm, n

m
− βp,n

⎞
⎠ .

�
A direct consequence of the above lemma is given in the following corollary.

COROLLARY 3.3. The number of subgroups of the group G is

|L(G)| = 1 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8.

Let L∗
i (G) be the set of representatives of isomorphism classes of subgroups of G

of type (i) in Theorem 1.1 and

N ′
i =

∑
S∈L∗

i (G)

NSF2(S)

for i = 1, . . . , 8. Then

THEOREM 3.4. The subgroup permutability degree of G = PSL(2, pn) is

spd(G) = 1 + N ′
1 + N ′

2 + N ′
3 + N ′

4 + N ′
5 + N ′

6 + N ′
7 + N ′

8

(1 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8)2
.
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Proof.

spd(G) = 1
|L(G)|2

∑
S∈L∗(G)

NSF2(S) = 1

(1 +∑8
i=1 Ni)2

(
1 +

8∑
i=1

N ′
i

)
,

as required. �
Problem 1. Give an explicit formula for the numbers αp,m.

Problem 2. Give an explicit formula for the numbers �n(V, F ; E1, E2). Is there a
closed formula for the special cases n = 0, 1?
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