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The average wave drag in unsteady motion is studied experimentally with force
measurements. Towing hulls of size L at sinusoidal speed, the mean drag is measured
for different amplitudes and frequencies of the fluctuating velocity, as well as different
Froude numbers F0 associated with the mean velocity V0 (F0 = V0/

√
gL). The wave drag

is reported to be either increased or decreased by velocity fluctuations depending on F0.
For small fluctuation amplitudes, this drag change is proportional to the square of the
amplitude. The effect is maximized for a resonance frequency identified as the Wehausen
frequency, which scales as

√
g/L times the inverse of the Froude number. All these results

are rationalized by developing an extension to Havelock’s theory.

Key words: surface gravity waves

1. Introduction

Most scientific literature on wave drag is dedicated to steady motion at the water interface
(Kelvin 1887; Havelock 1928; Tuck 1989; Raphaël & de Gennes 1996; Burghelea &
Steinberg 2002; Rabaud & Moisy 2013; Benzaquen, Darmon & Raphaël 2014) with many
applications to ship motion. However, there are situations where the speed is unsteady.
This is, for example, the case of animal (ducks, birds, etc.) and human swimming, and of
boats propelled with oars. Figure 1 illustrates the case of rowing where the unsteadiness
originates in a cyclic propulsion. The unsteady regime for wave drag has been studied
much less and was first addressed theoretically by Lunde (1951), whose work was used
by Lin, Paulling & Wehausen (1964) and later by Doctors & Sharma (1972). More
contributions have been made since (Grue & Palm 1985; Liu & Yue 1993; Palm &
Grue 1999), but few of them are experimental (Doctors, Day & Clelland 2008, 2010;
Day, Clelland & Doctors 2009). Our goal is to complete this set of works by exploring
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Figure 1. Example of unsteady regime associated with oar propulsion. (a) Men double sculls (Hugo
Boucheron and Matthieu Androdias; photo: D. Blin, French rowing federation (FFA)). The wake, visible on
the sides of the hull, is related to the velocity of the boat. (b) Evolution of the speed V of a double scull during
a few cycles, measured with FFA athletes. For more data on rowing, the reader is referred to Kleshnev (2016).

systematically the different regimes of unsteady wave drag, and to make the link with
theory.

In the case of elite rowing, it was pointed out by Day et al. (2011) that the difference
between winning a race and ranking in third or fourth position holds within 1 % of the
total race time. In this context, each drag contribution is critical and tuning down any
of them can bring a significant advantage to the racers. Rowing competitions are one of
those situations where the velocity fluctuates by approximately 20 % around the mean, as
illustrated in figure 1(b). What consequences does such a variation have on the magnitude
of the wave resistance?

In § 2 we describe our set-up and detail the experimental conditions, protocol and how
we process the data. Section 3 presents the experimental results. That is followed in § 4
by a discussion and some qualitative interpretations. Section 5 presents our theoretical
model for the estimation of the unsteady wave drag, which is used in § 6 to analyse the
experimental results.

2. Set-up and protocol

The set-up is presented in figure 2. The study is performed in a towing tank of 6 m × 2 m
filled with water to reach a depth h up to 25 cm (figure 2a). A NEMA34 stepper motor
allows control of the motion of a payload sliding on a straight rail that goes over the tank.
The payload hosts a force sensor that is connected to the hull through a support (figure 2b).
A rotary encoder is inserted on the axis of the motor in order to monitor the actual velocity
of the payload. Both signals are recorded at 4 kHz.

The total drag force on a hull of length L towed at a sinusoidal speed V(t) = V0(1 +
ε sin(2πft)) is recorded in order to investigate the effects of the fluctuation frequency f , of
the mean Froude number F0 = V0/

√
gL, of the fluctuation amplitude ε and of the water

depth h.
The hulls are defined by their waterplane, which is vertically extruded in order to form

the volume of the hull. The cross-section is an airfoil profile NACA0017 (figure 2d). The
motivation for choosing this shape is twofold: the round front enhances wave generation,
and the bulk drag coefficients of such profiles are well known and rather low. This allows
one to meet conditions where the wave drag is as large as possible with respect to the total
drag. In order to vary the Froude number, we change both the velocity and the hull size.
The three different hulls are presented in table 1. They have different lengths L but the

951 A15-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

59
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.592


Wave drag in unsteady motion

1.0

0.8

0.6

0.4

V 
(m

 s
–
1
)

0.2

0
4 6 8

t (s)

10

Measured

Hull

Winch

Rail

(a) (b)

(c) (d)

Force

sensor

Target

12

D

B

L

T

V

V

Figure 2. Experimental set-up. (a) Picture of a hull towed in the tank (F0 = 0.43). (b) Side view of the system.
(c) Payload velocity during an unsteady measurement. (d) three-dimensional model of the hull shape used in
the experiments, introducing its length L, maximum width B, height D and draught T .

Hull name F0 = V0√
gL

Shape L (m) B (m) D (m) h/L Fh,0 = V0/
√

gh

A 0.3 NACA0017 0.5 0.083 0.139 0.5 0.42
B 0.3 NACA0017 0.3 0.05 0.083 0.83 0.33
C 0.57 NACA0017 0.18 0.03 0.05 1.39 0.48

Table 1. Characteristics of the hulls used for the measurements of unsteady resistance (L is the length, B the
width and D the height).

same aspect ratios of L/D = 3.6 and L/B = 6. The draught is set at T = D/2 for all the
measurements.

In order to explore unsteady regimes, we tow the hulls at varying speed V(t). This
sinusoidal speed is set once the mean velocity is reached, which is achieved with a
constant-acceleration ramp. For a given hull, this sets the Froude number evolution as
F(t) = F0(1 + ε sin(2πft)). Our experiments are conducted varying the values of F0, f
and ε.

The resistance is studied for two values of the mean Froude number, namely F0 = 0.3
and F0 = 0.57, which correspond to very different situations for the steady wave drag, as
shown in § 3.1. The amplitude ε is varied between 0 % (constant speed) and 30 %. The
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Figure 3. Example of steady motion force recording for hull A towed at V0 = 0.664 m s−1 (F0 = 0.3). The
orange time window (P2) is avoided when computing the mean in order to minimize the influence of the initial
acceleration (more details in Appendix A).

range of tested frequencies goes from 0.4 to 3 Hz. The lower limit is imposed by the finite
size of our tank, while the higher limit comes from the maximum acceleration sustained
by the set-up.

2.1. The steady velocity limit
A force signal obtained for a steady velocity test is shown in figure 3, towing hull A at
F0 = 0.3. The data are filtered using a Butterworth lowpass filter of order 6, cutting at
10 Hz. The first and final humps at t = 4 s and t = 11.8 s respectively correspond to the
acceleration and deceleration of the hull, while the central part is the total drag force
at constant speed. The magnitude of the total resistance is extracted from the difference
between the value of the force ‘plateau’ and the value at rest, at the beginning of the
recording. The total drag force measured on the hull can be written in the following form:

Rtot = Rs+f + Rw + RI, (2.1)

where Rs+f refers to the skin and form drag in bulk flow, Rw is the wave resistance and RI
accounts for the inertial effects.

One can then compute the magnitude of Rw as Rtot − Rs+f − RI . Here RI is zero during
the constant-speed regime and Rs+f is measured on our hulls using a wind tunnel (see
Appendix B for details), so that we can compare the skin and form drag contribution to
the wave contribution in the total drag. This comparison is done in § 3.1.

2.2. Unsteady velocity
An example of force signal from unsteady velocity tests is shown in figure 4, towing hull
A at V0 = 0.664 m s−1 (i.e. F0 = 0.3) with f = 0.8 Hz and ε = 25 %. Inertial effects are
now involved, and dominate when the fluctuation frequency is increased. The magnitude of
the total resistance is extracted from the difference between the sensor value over a whole
number of periods and its value at rest. This period-wise average enables to eliminate the
inertial effects. We also compute the moving average over a whole number N of periods:
〈Rtot〉N (t) = (1/NT0)

∫ t+NT0
t Rtot(τ ) dτ , where T0 = 1/f . This quantity evolves towards a

constant value, which validates that our measurements correspond to a reliable permanent
regime. Details of this verification can be found in Appendix A.

For each data point, the measurements are repeated at least three times and the point we
plot is the average of the measurements. The error bar is taken as the standard deviation

951 A15-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

59
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.592


Wave drag in unsteady motion

–5

R to
t (

N
) 0

6

1/f

t0
4 8 10

t (s)

12 14

Figure 4. Example of a captured force signal filtered at 10 Hz, towing hull A at f = 0.8 Hz, F0 = 0.3, h =
25 cm. The computed mean force is 0.34 N in that case. The orange time window is avoided when computing
the mean in order to minimize the influence of the initial acceleration (more details in Appendix A).
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Figure 5. Experimental steady-speed drag coefficients versus the Froude number F0. (a) Total drag
coefficient Ctot

D,st = 2(Rtot,st/ρV2/3V2
0 ). (b) Wave drag coefficient Cw,st = 2((Rtot,st − Rs+f ,st)/ρV2/3V2

0 ).

of the repeated measurements for a point, divided by
√

n, where n is the number of
repetitions.

3. Experimental results

3.1. Steady-state resistance
The experimental drag coefficient of a hull of immersed volume V = γ LTB is taken as

Ctot
D,st = 2

Rtot,st

ρV2/3V2
0
, (3.1)

with Rtot,st the total drag measured on the hull at constant speed V0: Rtot,st = Rs+f ,st +
Rw,st. Parameter γ has no dimension and depends on the geometry of the hull; in our case
γ = 0.68. We plot Ctot

D,st for each hull in figure 5(a).
For hulls B and C, the evolution of the total drag coefficient with the Froude number

exhibits the typical hump of the wave resistance at F0 = 0.6. This shows that the wave
resistance is a major part of the measured force. Due to its length, hull A cannot be towed
at F0 > 0.6, but has the same behaviour for the available range of Froude numbers. Wind
tunnel measurements of Rs+f ,st (Appendix B) allow one to isolate more precisely the wave
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drag contribution in the total drag coefficient of figure 5(a). The wave drag coefficient is
defined as

Cw,st = 2
Rtot,st − Rs+f ,st

ρV2/3V2
0

. (3.2)

The evolution of Cw,st is shown in figure 5(b). The details of the calculation of the skin
drag Rs+f ,st are given in Appendix B. Figure 5 shows that the wave drag is dominant when
the experiment is run close to F0 = 0.6.

The collapse of curves near F0 = 0.3 underlines that depth effects (which should shift
the hump position, and its amplitude) are not relevant even for the longer hulls A and B.
This is confirmed by computing the value of tanh (kh), which appears in the relation of
dispersion of pure gravity waves in a fixed frame of reference:

ω2 = gk tanh (kh). (3.3)

For infinitely deep water, tanh (kh) is asymptotically equal to 1. Taking k = g/V2
0 , this

term is equal to 0.9996 for hull C (V0 = 0.76 m s−1), and even closer to 1 for hull B
(V0 = 0.52 m s−1) and hull A (V0 = 0.66 m s−1). This underlines that our experiments
belong to the infinite-depth limit.

3.2. Unsteady motion
In this section we present the mean total resistance of a hull following an unsteady motion
of the form V(t) = V0(1 + ε sin(2πft)). We start by varying f for a constant F0, and we
study the behaviour of the average of the force Rtot over N periods, denoted 〈Rtot〉 (t) =
(1/NT)

∫ t+NT
t Rtot(τ ) dτ , with N depending on the characteristics of the hull motion V0

and f .

3.2.1. Evolution of 〈Rtot〉 with f
With F0 = 0.3, and ε = 0.1, we vary the frequency of the unsteady motion. The evolution
of the resistance is shown in figure 6(a) for hull A. Similarly to Doctors et al. (2010), we
observe the presence of a hump of resistance for low-frequency oscillation (f < 1 Hz).
The peak in hull resistance is found at f = 0.7 Hz and reaches 1.1 times the steady motion
value (Rtot,st = 0.275 N obtained for ε = 0), then decays slowly while staying above Rtot,st.

For f > 2 Hz, there is roughly no more evolution of the force with the frequency. The
quasi-static (QS) estimation (detailed in § 4.1) provides a rough estimate of the order of
magnitude of the effect.

Fixing F0 = 0.57, which is a Froude number near the peak of our steady-state resistance
curve (figure 5), and varying f identically, gives the results presented in figure 6(b).
Interestingly, the hump is now going down by 4 % of the steady motion value, and we
observe a reduction of the total drag for f < 1 Hz. The effect decays rapidly as f is
increased, and 〈Rtot〉 seems to become much less sensitive to f for f > 1 Hz.

3.2.2. Evolution of 〈Rtot〉 with ε

The effect of the velocity fluctuation amplitude ε is shown in figure 7 for motions at F0 =
0.3 and F0 = 0.57. It is clear that a larger fluctuation amplitude corresponds to a higher
hump amplitude. The resistance for f > 1 Hz though, does not seem to be as much affected
by the magnitude of the fluctuation, and for f > 2 Hz, the curves obtained for different ε

gather within a few per cent away from the steady value.
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Figure 6. Mean total resistance of the hull for unsteady motions. (a) Hull A at F(t) = 0.3(1 +
(1/10) sin(2πft)), Rtot,st = 0.276 N. (b) Hull C at F(t) = 0.57(1 + (1/10) sin(2πft)), Rtot,st = 0.168 N. Each
red circle is the average over n ≥ 3 measurements at a given f . The error bars show the associated standard
deviation divided by

√
n. The blue line ‘QS’ is the quasi-static value of the wave resistance for the unsteady

motion. It is obtained with (4.1). The black dashed line ‘st’ shows the steady motion resistance, i.e. when ε = 0.
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√
L/g. This is obtained with hull A at F0 = 0.3

(Rtot,st = 0.275 N). The unsteady effect on the drag is a quadratic function of ε. The slope is larger when f
is close to the value corresponding to the red peak in figure 7 (roughly 0.65 Hz).

The sign change of the unsteady effect is further quantified: for a given ε at F0 = 0.3, the
unsteadiness increases the drag, while it reduces it at F0 = 0.57. The drag change is three
times larger in magnitude when F0 = 0.3. In both cases, the unsteady effects measured
at large fluctuation (ε = 30 %) induce a considerable change to the drag when compared
with the steady case (+61 % and −19 %).

In figure 8 we detail the evolution of the mean unsteady resistance as a function of ε, for
different values of f located in the humps of figure 7. The tendency is well described by a
quadratic dependence of the force on the fluctuation amplitude: 〈Rtot〉 /Rtot,st = 1 + αε2,
where α is shown to depend on the frequency.

4. Discussion: the quasi-static approach

4.1. Importance of f
Trying to understand the effect of the oscillation, we first estimate the QS value of the
total drag for the different Froude numbers F0. We compute it from the measured values
of Ctot

D,st in our constant-speed measurements:

Rtot
QS = f

1
2
ρLDV2

0

∫ 1/f

0
Ctot

D,st(V(t))(1 + ε sin(2πft))2 dt, (4.1)

with V(t) = V0(1 + ε sin(2πft). The graph of Ctot
D,st(V0)V2

0 versus F0 is shown in figure 9
in order to get a better grasp of the result of this integral for hull C. As V(t) changes,
the Froude number oscillates in the corresponding interval. The resulting evolution of
the integrand in (4.1) is shown by the arrows in the zoomed-in plot, where T0 = 1/f is
the period of the motion. Starting from F(t = 0) = 0.57, the system evolves according to
arrow 1 until the top speed is reached, then arrow 2, and finally arrow 3 before starting a
new period. The larger slope of arrow 3 when compared with arrow 1 makes it clear that
the result of the integral (4.1) should be smaller than the resistance for a constant F0 =
0.57. The result for each hull at ε = 10 % is shown by the blue line in figure 6(a,b). This
estimation indicates that the average resistance should be higher than the steady state when
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Figure 9. (a) Evolution of Ctot
D,stV

2
0 versus F0 for hull C at d = 0.5 and h = 25 cm. The central grey area

shows the ε = 10 % fluctuation interval around F0 = 0.57. The outer grey area covers the ε = 30 % interval.
Additional measurements are made over the fluctuation interval in order to estimate the QS value of the drag.
The red lines give an estimate on the slope of the curve on each side of the mean Froude number. (b) A
zoomed-in plot focusing on the F0 = 0.57 ± 10 % interval.

fluctuating around F0 = 0.3, and lower when F0 = 0.57, which is indeed the behaviour
observed experimentally (figure 7).

However, the QS description of the unsteady motion comes with an intrinsic caveat
when compared with our data: it does not depend on the frequency, which is in
contradiction with the experiments (figures 6 and 7). The dependence on the frequency
is described quantitatively in the model presented in § 5. Qualitatively, one should expect
the QS description to be accurate for vanishingly small values of f . Indeed, the smaller the
frequency, the lower the instantaneous acceleration, and the better the QS description. We
thus observe that in figure 6, the forces measured at the lowest non-zero values of f are in
agreement with the QS description. At high frequency, one can see the hull as, essentially,
going at steady speed. One way to picture this is to write the distance of the hull to the
origin in the frame moving at V0. This quantity reads x′(t) = ∫ t

0 V0ε sin(2πf τ) dτ : the hull
is at its farthest point when at half the period of fluctuation. Hence the length over which
the hull is oscillating in that frame is

	 = x′
(

1
2f

)
=
∫ 1/2f

0
V0ε sin(2πf τ) dτ = V0ε

πf
. (4.2)

This distance goes to zero for large f : the hull is asymptotically not moving at all in
the frame moving at V0. This is consistent with our observations in the high end of our
frequency interval, where the mean force decays towards the value measured for a constant
speed.

4.2. Experimental takeaways
Our study demonstrates that a fluctuating velocity impacts the total drag of an object
moving at the water surface, and that the effect can be an increase or a decrease depending
on the mean Froude number. In particular, we report drag reduction up to −20 % of the
total drag. It occurs near a specific frequency of oscillation, which depends on the Froude
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number. The amplitude of the fluctuation is a determinant factor in the magnitude of the
drag modification.

The effect of varying the velocity should also have an impact on the flow developing
underwater, around the hull. Based on the results presented in Appendix B, it seems
that the variational drag stems prominently from the wave contribution. This question
has received little attention in the past even though it has already been reported that
acceleration does have an effect on the viscous drag (Day et al. 2011). We thus assumed
that such effects, if they exist, were not perturbing our measurements.

5. Theoretical model

The model is based on the theory developed by Havelock (1928), considering a pressure
distribution moving at the interface between air and water. This approach makes it possible
to directly isolate the wave drag contribution and to keep the calculation quasi-analytical.
It recovers the main features of the wave drag and unsteady effects reported elsewhere
(Grue & Palm 1985; Liu & Yue 1993; Palm & Grue 1999).

5.1. Unsteady wave drag
To perturb the water surface we use a Lorentzian pressure distribution:

P(r) = P0b3

(b2 + ‖r‖2)3/2
, (5.1)

with P0 the pressure in the centre of the distribution, r the distance to the centre in the
horizontal plane and 2b the diameter of the distribution. We thus obtain (see Appendix C)
the commonly used expression of the wave resistance in Havelock’s model (Raphaël & de
Gennes 1996; Gierczak-Galle et al. 2020):

Rw(t) = −
∫ t

0
dτ

∫ ∞

0
dk

k3P2
0b4

2πρω
e−2bk sin [ω (k) (t − τ)] J1 [k {r0 (t) − r0 (τ )}] ex,

(5.2)

where J1 denotes the Bessel function of the first kind of order one. Here the disturbance is
moving along the x axis following a trajectory r0(t) and k is the Fourier space parameter
such that k2 = (k2

x + k2
y). From now on we consider a pulsating velocity around a mean

velocity V0 :

V(t) = V0 (1 + ε sin Ωt) , (5.3)

where ε is the amplitude of the velocity pulsation and Ω = 2πf the angular frequency of
pulsation. In order to define a wave drag coefficient Cw, we need to define a characteristic
velocity and surface. Here, we choose the mean velocity V0 as the characteristic velocity.
One can then compare the steady velocity case (ε = 0) with pulsating cases using
solely the drag coefficient. For the characteristic surface, following the work of Boucher
et al. (2018), we define a characteristic volume V using the equilibrium of the pressure
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disturbance with the gravity field:

ρgV =
∫ ∞

0
2πP(r)r dr. (5.4)

The instantaneous wave drag coefficient for an oscillatory motion is then

Cw(t̃) = Rw

ρV2/3V2
0

=
∫ ∞

0
dK

K5/2e−K

β4/3F2
0

×
∫ t̃

0
dU sin(

√
KU)J1

[
KF0

{
U + 2ε

Ω̃
sin Ω̃

(
t̃ − U

2

)
sin

Ω̃U
2

}]
, (5.5)

where L = 2b and
√

L/g are used as a characteristic length and time, F0 = V0/
√

gL
is the Froude number, K = 2bk is a non-dimensional wavenumber, t̃ = t

√
g/L is the

non-dimensional time, Ω̃ = Ω
√

L/g is the non-dimensional pulsation and β is a length
over draught aspect ratio arbitrarily defined as

β = (2π)5/4 4ρg	

P0
. (5.6)

Equation (5.5) can be integrated numerically once ε, F0 and Ω̃ are given. However, as t̃
appears in the Bessel function, it is rapidly tedious to compute. In the next sections, we
consider some assumptions to simplify the computations.

5.2. Steady velocity (ε = 0)
In this section, we first consider the simple case of constant velocity V(t) = V0, or ε = 0.
Equation (5.5) can be written in the form

Cw,st(t̃) =
∫ ∞

0
dK

K5/2e−K

β4/3F2
0

∫ t̃

0
dU sin(

√
KU)J1 [KF0U] , (5.7)

where the subscript st stands for steady. We display the evolution of Cw,st with time
for an impulse start in figure 10(a). The wave drag coefficient oscillates and converges
towards a constant value. The period of the oscillations can be measured for different
Froude numbers. The natural frequency is Ω̃r = 1/4F0 as shown in figure 10(b), and
is called the Wehausen frequency (Lin et al. 1964; Liu & Yue 1993), also defined by
τr = 2πfrV0/g = 1/4 (with our notations, τr = Ω̃rF0).

The asymptotic value of the wave drag coefficient can be evaluated by letting t̃ go to
infinity in (5.7) and it becomes

C∞
w,st (F0) = Cw,st(t̃ → ∞) = 1

β4/3F8
0

∫ ∞

1

ξ3/2e−ξ/F2
0√

ξ − 1
dξ. (5.8)

Figure 10(c) shows the evolution of the wave drag with the Froude number. This shape
is typical of wave drag coefficient evolution with Froude number (Chapman 1972; Tuck
1989).
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Figure 10. Steady velocity wave drag coefficient. (a) Time evolution of the wave drag coefficient for an
impulse start with F0 = F0,max defined in (c). (b) Natural frequency of oscillation observed in the impulse
start fitted to Ω̃r = 1/4F0. (c) Asymptotic value of the wave drag coefficient.

5.3. Quasi-static approach
Following our first discussion (§ 4), we start by accounting for the velocity fluctuations
with a QS approach. This means that we neglect the time of propagation of the waves
compared to the characteristic time of velocity fluctuations (Ω̃ 
 1). The wave drag is
then computed as

Fw,QS(t) = 1
2
ρV2/3C∞

w,st (F(t)) V2
0 (1 + ε sin Ωt)2 , (5.9)

where F(t) = F0(1 + ε sin Ωt) is the instantaneous Froude number. Using the present
definition of the instantaneous wave drag coefficient (see (5.5)), we define the QS wave
drag coefficient:

C∞
w,QS(t̃) = C∞

w,st
(F(t̃)

)
(1 + ε sin Ω̃ t̃)2. (5.10)

Assuming ε 
 1, we can expand the expression and write

C∞
w,QS(t̃) ≈ C∞

w,st (F0) + A0,QS (F0) ε2 + A1,QS (F0) ε sin Ω̃ t̃, (5.11)

where A0,QS(F0)ε
2 and A1,QS(F0)ε respectively stand for a correction to the mean wave

drag coefficient and the amplitude of oscillation of the wave drag coefficient. The term in
2Ω̃ is neglected here as we choose to keep only the first non-zero corrections to the mean
drag and power coefficients. Though A0 is a second-order term, it is the first correction to
the mean value. The expressions of A0 and A1 are given in Appendix D.

The shapes of A0,QS and A1,QS are displayed in figure 11. We use the maximum wave
drag coefficient value max[C∞

w,st] to re-scale the curves, and denote Ā = A/ max[C∞
w,st] in

figure 12 and in the rest of the document. It is worth noting that near the Froude number
of maximum wave drag coefficient (F0,max; see figure 10c), A0,QS becomes negative. The
velocity fluctuations thus lead to a reduction of the mean drag. If we consider a velocity
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Figure 11. The QS approach: evolution of the mean (black) and amplitude (blue) of the drag coefficient
correction term with the Froude number. Note that with a velocity fluctuation ε = 10 %, the figure gives the
percentage of correction to mean drag coefficient compared with the maximum wave drag coefficient. In both
cases, Ai = Ai/ max[C∞

w,st].

1.0

(a)

(b)

0.5

0.2

–0.2

0

0

0 5 10 15 20 25 30 35 40 45 50 55 60 65

t̃

C
w

(t)
C

w
–

C
w

,s
t

ε = 0 or Cw,st
ε = 10 %

Quasi-static

Figure 12. Evolution of the wave drag coefficient with velocity fluctuations for F0 = F0,max and Ω̃ = 3.
(a) Wave drag coefficient time evolution after an impulse start with ε = 0 (in black) or steady velocity and
ε = 10 % (in blue). (b) Difference from the steady case. The blue curve represents the difference between the
two curves of (a). The red curve shows the asymptotic regime with the QS approach.

fluctuation of ε = 10 %, figure 11 gives the relative correction in percentage terms. The
maximum reduction is −2.5 % near F0,max. This estimation is in good agreement with the
experimental observations of § 3 (−2.4 % difference between the ‘QS’ and ‘st’ values in
figure 6b).

For the amplitude, it appears in figure 11 that the force fluctuations are in phase with the
velocity fluctuations for F0 < 0.67. Above this value, the force fluctuations are in opposite
phase with the velocity fluctuations. This means that the vessel experiences a minimum
wave drag resistance at the maximum velocity.

5.4. General case
In order to describe the effects of the frequency, we relax the QS assumption and look
at the actual wave coefficient using (5.5). In figure 12(a), we display the instantaneous
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drag coefficient of the pulsating case with ε = 0.1, Ω̃ = 3 and F0 = F0,max and compare
it with the steady case (ε = 0). The velocity pulsations lead to fluctuations of the wave
drag coefficient around the steady case value. To further outline the impact of the
velocity fluctuations on the wave drag coefficient, we subtract from the case ε = 0.1 the
instantaneous solution for the steady case and compare it with the previous QS approach.
This is shown in figure 12(b). Clear differences appear between the exact solution and
the QS approach after a transitional regime. The amplitude of the wave drag coefficient
oscillations appears to be largely overestimated in the QS approach and the two curves
(blue and red in figure 12b) are out of phase.

To go further, we now expand (5.5) assuming ε 
 1. Keeping only the first non-zero
corrections, it becomes

Cw(t̃) ≈ Cw,st(t̃) + I2(t̃)ε2 + R{−ıeıΩ̃ t̃I1(t̃)}ε, (5.12)

where R denotes the real part and

I1
(
t̃
) =

∫ t̃

0
dU

∫ ∞

0
dK

K5/2e−K

2β4/3F2
0 Ω̃U

[e−ı
√

KU − eı
√

KU + eı(
√

K−Ω̃)U

− exp(−ı(
√

K + Ω̃)U)] × (J1 [KF0U] − KF0UJ2 [KF0U]) (5.13)

and

I2
(
t̃
) =

∫ t̃

0
dU

∫ ∞

0
dK

K7/2e−K

β4/3F0Ω̃2U
sin(

√
KU) sin2 Ω̃U

2

× (J2 [KF0U] − KF0UJ1 [KF0U]) . (5.14)

These two expressions reach an asymptotic regime letting t̃ go to infinity in the integral
term. Past the transitional regime observed in figure 12, we write〈

C∞
w
〉 ≈ C∞

w,st (F0) + A0(F0, Ω̃)ε2. (5.15)

The expression of A0 is detailed in Appendix E.

5.5. Phase diagram for the unsteady wave drag
The evolution of the normalized mean drag change due to unsteadiness A0 is depicted
in figure 13. The typical values of Ω̃ and F0 in sports and for some animals are also
shown with markers in figure 13. For all the reported values, the points are above the
natural frequency Ω̃r (dotted curve on the graph) observed in the impulse start with steady
velocity (see figure 10).

One notices that for a fixed Froude number near the Froude number of maximum wave
drag coefficient (F0,max), the mean drag correction is negative and tends to zero as Ω̃

increases. This is consistent with the idea that the wave field needs a significant time to
settle, and as the frequency of oscillation increases the waves do not have enough time
to transport information and momentum to infinity. Hence the wave field does not adapt
significantly over a period of oscillation.

Using the QS approach to estimate the mean propulsive force for a known mean velocity
can lead to significant errors. For the sake of the discussion we consider the case of a
single-scull rowing boat of length 	 = 2b = 8.1 m and cruising at a mean velocity of V0 =
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Figure 13. Mean wave drag correction as a function of F0 and Ω̃: the colourmap shows the evolution of A0

in two dimensions. There is a resonance at Ω̃ = Ω̃r = 1/4F0, the Wehausen frequency, marked with the black
dotted line. The red curve is plotted in the right-hand panel for a constant F0 = F0,max as a function of Ω̃ .
The blue (green) horizontal line is plotted in the bottom panel as a function of F0 for Ω̃ = 4 (Ω̃ = 0.5). When
Ω̃ → 0, the curve tends towards the QS approach. The points show typical values of Ω̃ and F0.

5.1 m s−1 (mean velocity for an Olympic race). The typical paddle rate is 31 cycles per
minute and the velocity fluctuations are of the order of ε = 20 %. The wave drag accounts
for approximately 8 % of the total drag of the boat. These values lead to F0 = 0.57 and
Ω̃ = 2.9. This is close to the vertical red line in figure 13. The QS approach will give
a reduction of the mean wave drag A0ε

2 = −10 %. If we use the value derived with our
method for the simplified boat, the actual reduction is A0ε

2 = −1 %. In this example it
would be better not to consider the velocity fluctuations for the evaluation of the mean
velocity using the mean force or mean power.

We now compare these theoretical predictions with the experiments of § 3.

6. Comparison with experiments and interpretation

6.1. Comparison between experiments and theory
We put our experimental and modelling results next to each other in figure 14. The two
values of the average Froude number F0 that were investigated experimentally are 0.3 and
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Figure 14. Comparison between our experiments and model predictions for unsteady motions at (a)
F0 = 0.3 (hull A, circles; hull B, diamonds) and (b) F0 = 0.57 (hull C). The dimensionless coefficient
A0 = (〈Cw〉 (Ω̃) − Cw,st)/max(Cw,st)ε

2 is plotted against the reduced frequency Ω̃ .

0.57. For both of them, the fluctuation frequency was varied, at fixed amplitude ε. This
means that the measured evolutions are described by moving vertically in the parameter
space of figure 13: one vertical path at fixed F0 = 0.3, the other at F0 = 0.57. The
predicted value of A0 along those paths is compared with our data in figure 14. In this
figure, the wave drag component was isolated using the data from Appendix B. Then the
definition of A0 from the previous section was used to compute its experimental value.

Overall, we observe in figure 14 a good qualitative agreement: the sign and the order
of magnitude of the resistance change are consistent between theory and experiments.
Again, the model only considers a pressure distribution and thus it is unlikely to lead to
quantitative agreement with data from measurements. A better agreement could probably
be reached from a refined theory such as that of Lunde (1951), with, however, the penalty
of not having analytical expressions such as the ones presented in Appendix E.

The data points from hull A present the nicest collapse when plotted as a function of A0,
because the size of this hull allowed the measured forces to largely overcome the parasitic
noise captured by the sensor.

It is clear that for each hull, the experiments at ε = 10 % are quite deviant from the rest
of the data. This originates from the fact that at such amplitudes, the drag difference with
the steady case is smaller, down to near our measurement resolution.

6.2. Geosimilar rescaling
The hulls used for our experiments are geometrically similar. Hence, provided that
finite-depth and finite-width effects are negligible, and that the skin friction is subtracted
adequately, the dimensionless wave resistance curves are expected to collapse on a single
curve for identical dimensionless test conditions, i.e. same values of F0, Ω̃ and ε. Our
data allow us to test this for hulls A and B, both travelling at F0 = 0.3, for two different
fluctuations. The result shown in figure 15 is a very good agreement between the data
series. This shows that the wave drag coefficient of geometrically similar vessels is indeed
identical, and that applying a three-dimensional scaling factor α to the hull dimensions
multiplies the wave drag by α2.
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Figure 15. Mean wave drag coefficient 〈Cw〉 = 〈Rw〉 /(0.5ρV2/3V2
0 ) as a function of the fluctuation

frequency, at F0 = 0.3. Hulls A and B differ by a geometric three-dimensional scaling factor of 5/3.

6.3. Interpretation
There are several length scales in our problem: the most immediate ones are the boat length
L and the wavelength λ of the generated waves. Starting back from the dispersion relation
in deep water ω2 = gk, and considering waves for which the phase speed cϕ = ω/k is
equal to V0, one gets that

λ = 2πV2
0/g = 2πLF2

0 . (6.1)

The ratio between L and λ is connected to the Froude number, which is a known feature of
steady wave drag.

The unsteadiness introduces a new length scale. It corresponds to the shortest distance
between two locations where the hull is moving at a same speed, during its sinusoidal
speed variation. We call it Λ and upon integrating V(t) over one period, one gets

Λ = V0/f . (6.2)

These lengths λ and Λ can be compared to understand that a resonance is happening
when the frequency of the velocity variation is tuned correctly (or poorly). Doing so, we
have that

λ

Λ
= 2πLF2

0
V0/f

= Ω̃F0. (6.3)

If we replot the data of figure 7 using this quantity for the x axis, we get the graph
shown in figure 16. The y axis has been changed to display the non-dimensional drag
modification due to unsteadiness, normalized by ε2: (〈Rtot〉 − Rtot,st)/Rtot,stε

2. The ε =
10 % series aside, all the experiments at fixed F0 boil down to an identical behaviour.
The obvious difference with the previous choice of x coordinate is that both humps are
now found at the same location on the axis. This observation supports the hypothesis of a
resonance, which would happen at a given value of λ/Λ, denoted F0Ω̃r.

For our experiments, in the case F0 = 0.3 we obtain maximum unsteady wave drag
〈Rtot〉 (Ω̃) − Rtot,st for 0.85 ≤ Ω̃ ≤ 0.99, which corresponds to λ/Λ between 0.25 and 0.3
(the green dashed line in figure 16 stands at λ/Λ = 0.28). In other words, experimentally
we have that Ω̃r ∝ 1/F0 with a factor of around 0.28. This dependency is recovered by
our model, with a factor of 0.25, as shown in figure 10(b). This value was also obtained
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Figure 16. Unsteady contribution to the wave drag normalized by ε2, for different amplitudes ε. Water depth
is 25 cm, and two Froude numbers are tested. Positive values: hull A, F0 = 0.3. The amplitude is varied from
ε = 10 % (light red) to ε = 30 % (dark red) by increments of 5 %. Negative values: hull C, F0 = 0.57. The
amplitude is varied from ε = 10 % (light blue) to ε = 30 % (blue) by increments of 10 %.

experimentally by Cleaver et al. (2013). As a comparison, Doctors et al. (2010) obtain a
value of F0Ω̃r, that they denote τ , between 0.23 and 0.24 for the peak resistance in a
similar situation. They are working with a 3 m long Wigley hull, in a 75.8 m long towing
tank. These experimental results are consistent with our model. The difference in the exact
value of the parameter is likely to come from experimental uncertainty associated with the
discretization of the frequency axis (typically three points to resolve the peak). This is
also consistent with theoretical predictions showing that a singularity occurs when the
parameter τ = F0Ω̃ = V02πf /g reaches the value of 1/4 (Grue & Palm 1985; Liu & Yue
1993; Palm & Grue 1999).

The effect can also be explained with the Wehausen frequency. The resonance is found
to happen precisely when Ω̃ is close or equal to the Wehausen frequency Ω̃r, which
corresponds to natural oscillations of the wave resistance after the system changes speed.
Since in our case the speed is constantly changing, this frequency is present in the system
at all times. When the system starts fluctuating at this same frequency, a resonance takes
place that amplifies the drag modification.

As for the change of the unsteady effect (being either an increase or a decrease of the
total drag), it seems to be contained in the QS description. When fluctuating around the
peak of the Cw(F0) curve (figure 10c), the resistance is smaller on average, as shown in
figure 9. The opposite effect takes place around F0 = 0.3. The work of Grue & Palm
(1985) explains the possible appearance of drag reduction through the existence of a wave
carrying negative energy away from the vessel.

7. Conclusion

Our experiments investigated unsteady motion resistance under various conditions. Placed
in a context where the wave drag was the most largely varying force, total drag force
measurements were performed on hulls moving at V(t) = V0(1 + ε sin(2πft)). The study
is in line with previous works on that problem (e.g. Grue & Palm 1985; Doctors et al.
2010) and new experimental results, as well as theoretical drag coefficients, are presented.

It was shown that the periodic velocity fluctuation has a different impact on the average
drag depending on the value of the Froude number F0 = V0/

√
gL. At F0 = 0.3, the
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average drag can be increased by the velocity fluctuations, up to a dramatic amount (near
60 %) when ε is large (typically 30 %). At F0 = 0.57, the average drag can be reduced by
the speed fluctuations, by up to 19 % when ε = 30 %. These effects were found maximal
in a frequency range around Ω̃ = 2πf

√
L/g ∼ 0.65 in the former case and Ω̃ ∼ 0.6 in the

latter. In both cases, the effect of unsteadiness on the average drag becomes negligible for
values of Ω̃ above 2.5. At given values of Ω̃ and F0, the average drag modification from
unsteadiness was shown to be proportional to ε2, the square of the velocity fluctuation
amplitude. The proposed understanding was the appearance of a resonance when the ratio
of the wavelength of the waves to that of the fluctuating motion reaches a theoretical value
of 1/4, measured to be around 0.28 here. Equivalently, this was when the forcing of the
speed fluctuation Ω̃ gets close to the natural frequency of oscillation of the wave resistance
in steady motion after an impulse start, known as the Wehausen frequency Ω̃r.

A theoretical description of the simplified problem based on an extension to Havelock’s
theory was proposed. Considering a Lorentzian pressure distribution moving at sinusoidal
speed at the surface of water, we obtained a phase diagram in (F0,Ω̃) for the average drag
coefficient modification due to the unsteadiness of the motion. The predictions of this
model compared qualitatively well with the experimental data, and the diagram allows
one to assess the importance of velocity fluctuations regarding the wave drag for a given
motion.

Concerning the application of the study to unsteady motion in sports, and especially
for rowing boats, our results showed that for a sinusoidal speed (taken as a first-order
approximation of the actual speed in rowing), there is no significant unsteady effect on the
wave drag at the values of F0Ω̃ encountered in races. The case of swimmers (smaller Ω̃ ,
closer to the region with unsteady effects) might actually be more interesting as a situation
where unsteady effects should be considered for optimizing performance.
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Appendix A. Validation of the unsteady measurements

Figure 17 shows the evolution of the moving average in unsteady motion for some
frequencies. The curve is either flat by the end of the tank, or decreasingly oscillating
around an asymptotic value. In the latter case, the asymptotic force was also estimated by
fitting the data. The forces measured this way fall within the error bars of the values we
obtained from averaging on a whole number of periods. This is an indication that merely
taking this average does not twist the data.
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Figure 17. (a) Examples of a moving average on the force signal, towing hull A at different frequencies. The
time window for the average is one period of the unsteady motion. The signals are plotted after a 10 Hz filtration.
Here F0 = 0.3, h = 25 cm. (b) Fitting the f = 1.4 Hz signal of (a) with a form Γ (t) = Rw + Rw,st cos(ω(t −
t0) + ϕ)(ω∞(t − t0))N . The free parameters are ω, ϕ and N.

Besides, the study of Doctors et al. (2008) allows a better understanding of such
oscillations. Following their work, we write that

Rw(t) = Rw,∞ + Rw,st cos(ω(t − t0) + ϕ)(2ω∞(t − t0))N, (A1)

with Rw,∞ the average resistance value, Rw,st the initial magnitude of the moving average
fluctuation, ω its pulsation, ω∞ = g/4V0 the Wehausen frequency and N < 0 a decay
exponent. The instant t0 corresponds to the end of the initial acceleration ramp, and we
perform the fit starting one period after t0. This expression is originally applied to the wave
resistance of a body reaching a constant speed U after an initial fixed acceleration ramp.
The analogy with our case is that the moving average should, since our motion is periodic,
behave similarly and reach towards a constant. In figure 17 we present two examples of
fits for moving averages. The fitted quantities from (A1) are the pulsation ω, the phase
ϕ and the decay exponent N. We recover values of N in the range of those described by
Doctors et al. (2008) (N between −0.9 and −0.5 depending on the initial acceleration,
for F0 = 0.3), which supports the idea that these oscillations are not an obstacle to the
evaluation of the mean resistance within the extent of the tank. The signal would become
constant if the tank was long enough, and the asymptotic value is well-enough estimated
by the average over several periods.

For the same reason, the average we make on steady-speed force signals does not start
immediately after the initial acceleration.
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D1

D4
D3

D2

(a) (b)

Figure 18. (a,b) Models used for the wind tunnel measurements. Heights D1 = 5 cm, D2 = 8.3 cm,
D3 = 14 cm, D4 = 25 cm. The length and width of the four models are L = 30 cm and B = 5 cm.

Appendix B. Skin friction Rs+f

This appendix presents measurements of the skin and form drag Rs+f in a wind tunnel.
These measurements were made using hulls of the same shape, NACA0017, with fixed

length L and varying height D (see figure 18). The values of D we used are those of the
three hulls A, B and C. We added an extra one of height 0.25 m in order to approach the
edgeless case limit. The force Rs+f is measured with a six-axis sensor, and the model is
placed facing the flow at zero angle of attack. The drag force can be written as the sum
of two contributions: Rs+f = Rbulk

s+f + Redges
s+f . The bulk contribution can be estimated with

XFoil (Drela 1989), which computes the drag coefficient Cbulk
D in a purely two-dimensional

case. In other words, the total drag reads

Rs+f = 1
2
ρLDCbulk

D (ReL)V2
0 + 1

2
ρBL(2Cedge

D (ReL))V2
0 ,

Rs+f = 1
2
ρLDCbulk

D (ReL)V2
0

(
1 + 2

B
D

Cedge
D

Cbulk
D

(ReL)

)
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (B1)

where Cedge
D is the drag coefficient associated with the presence of one edge. For a given

hull shape, this coefficient only depends on the Reynolds number ReL = V0L/ν.
We start with measuring the coefficient Cbulk

D in the wind tunnel. To do so, we subtract
the aerodynamic drag of a model of height D1 from that of a taller model of height D2 >

D1. Since the edges are identical for those models, the remaining contribution is that of a
virtually edgeless hull of height D∗ = D2 − D1:

Rs+f (D∗) = 1
2ρLD∗Cbulk

D (ReL)V2
0 . (B2)

Thus we can deduce the value of Cbulk
D (ReL) for the Reynolds numbers in the wind

tunnel. This is done with two pairs of hulls (D2, D1) such that D∗ is 11 and 17 cm. The
experimental bulk coefficients are shown in figure 19. They are expected to be identical
because the longitudinal sections of all the models are the same. The theoretical value
obtained from XFoil in a purely two-dimensional case is shown in black as a reference.
The large differences at low Reynolds numbers result from the sensitivity limit of the
sensor.
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Figure 19. Bulk drag coefficient of a NACA0017 measured in a wind tunnel. Values computed with XFoil for
the ideal two-dimensional (2-D) case are added as a reference.

0 0.5

0.2

0.4

0.6

1.0

0.8

1.0 1.5 2.0

ReL

T = 8.3 cm
T = 14 cm

2.5

(×105)

3.0

C
Ded

ge
/C

Dbu
lk

Figure 20. Edge drag coefficient of a NACA0017 normalized by the bulk drag coefficient, computed from
(B1).

The mean Reynolds numbers ReL for the hulls in the towing tank are: 3.3 × 105 for
hull A, 1.5 × 105 for hull B and 1.3 × 105 for hull C. Over this range of ReL, the values
of the bulk coefficient are plateauing above the ideal value. This is likely to be an effect
of the surface roughness, known to increase the minimum drag of symmetrical airfoils
(Chakroun, Al-Mesri & Al-Fahad 2004). We thus approximate the bulk drag coefficient to
a constant Cbulk

D = 0.0135 in this domain of ReL.
We now use (B1) to obtain the value of Cedge

D for each of our wind tunnel models. Again,
it should be identical across the models. In figure 20 we plot the ratio Cedge

D /Cbulk
D (ReL) for

the models that relate to the towing tank hulls. For hulls A, B and C we take from figure 20
that (Cedge

D /Cbulk
D )(ReL) = 0.88 constant (based on the T = 8.3 cm model, which has the

same B/D as the hulls) in the experimental range of ReL.
Using these results, it is possible to estimate the skin friction drag on the hulls in the

towing tank, including the edge effect from the bottom of the strut, using a modified
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drag coefficient:

Rs+f = 1
2ρLTCs+f V2

0 , (B3)

with

Cs+f = Cbulk
D

(
1 + B

T
Cedge

D

Cbulk
D

)
. (B4)

Compared with (B1), the coefficient 2 has disappeared since only one edge is in water, and
the draught T is now the relevant vertical length.

This study allows one to compare Rs+f and Rw. Doing so, we get that the wave drag
is dominant in the towing tank experiments only for hull C (78 % of the total drag). This
makes sense since these experiments are run at the peak of the wave drag coefficient curve
(see figure 5b). Hulls A and B are towed at F0 = 0.3, which corresponds to a much lower
value of Cw. Hence, despite the chosen hull shape, the wave drag is not dominant at steady
speed in those experiments (21 % for hull A, 37 % for hull B).

However, the qualitative predictions of our model still seem to hold for hull A, as can be
seen in figure 14. This is believed to come from the much stronger dependency of Cw on
the velocity (through F0) compared with Cs+f (through ReL).

Appendix C. Derivation of the wave resistance in Havelock’s model

An external Lorentzian pressure distribution, Pext(r, t), moves on the free surface along
the x axis with a velocity V(t) and generates a wake. The disturbance trajectory is given
by

r0(t) =
∫ t

0
dt′ V(t′)ex, (C1)

and the external pressure is considered undeformable such that

Pext (r, t) = P (r − r0(t)) , (C2)

where P(r) is the pressure field located at the initial time at the position r0 = 0. We call
ζ(r, t) the displacement of the free surface from its equilibrium position and assume small
perturbations. We neglect second-order terms in the fundamental equations. The flow of an
ideal, homogeneous, incompressible, infinitely deep fluid with a free surface z = ζ(x, y, t)
is then governed by the linearized Euler equations with boundary conditions:

∇ · u = 0, z ∈ ]−∞, ζ ] ,

∂tu + 1
ρ

∇p − g = 0, z ∈ ]−∞, ζ ] ,

p = Pext, z = ζ,

∂tζ + uh · ∇ζ − w = 0, z = ζ,

∂zϕ → 0, z → −∞,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(C3)

where u = {u, v, w} is the velocity field, g denotes the gravitational acceleration, p is the
pressure and uh = {u, v} is the horizontal velocity at the free surface. Capillary effects are
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neglected. We further consider the flow irrotational and u = ∇ϕ, where ϕ is the scalar
velocity potential. Injecting in the continuity equation, one has

�ϕ = 0. (C4)

The linearized Bernoulli equation is classically derived using the momentum equation:

∂tϕ + 1
ρ

p + gz = 0, ∀x. (C5)

Injecting in the surface boundary conditions, it becomes

∂t,tϕ + g∂zϕ + ∂t

(
Pext

ρ

)
= 0, at z = 0. (C6)

The free surface can then be deduced using the Bernoulli equation:

ζ = −1
g

(
∂tϕ + Pext

ρ

)
. (C7)

Keeping in mind the boundary condition at z → −∞ and (C4), we define the
two-dimensional Fourier transform ϕ̂(kx, ky) of the scalar velocity potential:

ϕ (x, y, z, t) =
∫

R2
dkx dky ϕ̂

(
kx, ky, t

)
exp

(
ıkxx + ikyy

)
ekz, (C8)

where k2 = (k2
x + k2

y). Taking the Fourier transform of (C6), it becomes

(
∂t,t + gk

)
ϕ̂ = − P̂

ρ
exp (ık · r0(t)) , (C9)

where P̂ is the Fourier transform of the external disturbance P(r). Applying the operator
(∂t,t + gk) to the Fourier transform of (C7), one can find the equation for the evolution of
ζ̂ :

∂t,tζ̂ + ω2ζ̂ = −k
P̂
ρ

exp (ık · r0(t)) , (C10)

where ω2 = gk is the dispersion relation in deep water. Assuming no disturbance at t = 0,
one gets a general solution for the surface elevation:

ζ̂
(
kx, ky, t

) = −
∫ t

0
dτ

kP̂
ρω

sin [ω (k) (t − τ)] exp (ık · r0(τ )) . (C11)

The instantaneous horizontal forces exerted on the surface, called hereafter wave drag, are
given by

Rw(t) = −
∫

R2
Pext∇ζ dx dy. (C12)

Using the properties of the Fourier transform, it becomes

Rw(t) =
∫ t

0

∫
R2

ık
∣∣∣P̂∣∣∣2 sin [ω (k) (t − τ)]

4π2ρω exp (ık · {r0(τ ) − r0(t)})k dkx dky dτ. (C13)
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This formula is valid for any pressure distribution moving on a surface. We now consider
a Lorentzian pressure distribution:

P(r) = P0b3(
b2 + ‖r‖2)3/2 , (C14)

where P0 is the pressure maximum and b a characteristic length of the perturbation. The
Fourier transform is

P̂(k) = P0b2e−bk. (C15)

Injecting the expression of P̂ into (C13) and integrating on a circle of radius k for a
trajectory along the x axis, r0(t) = r0(t)ex, one obtains

Rw(t) = −
∫ t

0
dτ

∫ ∞

0
dk

k3P2
0b4

2πρω
e−2bk sin [ω (k) (t − τ)] J1 [k {r0 (t) − r0 (τ )}] ex,

(C16)

which is the exact same equation as (5.2).

Appendix D. Expression of A0,QS and A1,QS

From (5.8) we get the asymptotic value of the wave drag coefficient:

C∞
w,st (F0) = Cw,st(t̃ → ∞) = 1

β4/3F8
0

∫ ∞

1

ξ3/2e−ξ/F2
0√

ξ − 1
dξ. (D1)

This can also be written in the form

C∞
w,st (F0) = e−1/2F2

0

2F8
0 β4/3

{
K0

(
1

2F2
0

)
+
(

1 + F2
0

)
K1

(
1

2F2
0

)}
, (D2)

where Ki denotes the Bessel function of the second kind of order i.
Similarly, the correction coefficients of the wave drag coefficient in the QS limit are

A0,QS (F0) = e−1/2F2
0

8F8
0 β4/3

{(
4 − 26F2

0 + 33F4
0

)
K0

(
1

2F2
0

)

+
(

4 − 22F2
0 + 13F4

0 + 6F6
0

)
K1

(
1

2F2
0

)}
, (D3)

A1,QS (F0) = e−1/2F2
0

2F10
0 β4/3

{(
2 − 5F2

0

)
K0

(
1

2F2
0

)

+
(

2 − 3F2
0 − 2F4

0

)
K1

(
1

2F2
0

)}
. (D4)
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Appendix E. Expression of A0

The expression of A0 is given by the limit for infinite time of I2. This yields

A0(F0, Ω̃) =
∫ ∞

0
dU

∫ ∞

0
dK

K7/2e−K

β4/3F0Ω̃2U
sin(

√
KU) sin2 Ω̃U

2

× (J2 [KF0U] − KF0UJ1 [KF0U]) . (E1)

Expanding the product, we can write

A0(F0, Ω̃) = J1,+ + J1,− − J2, (E2)

where

J1,± = 1

4F3
0 β4/3Ω̃2

∫ ∞

0
dK

K3/2e−K(
√

K ± Ω̃)3√
(F0K)2 − (

√
K ± Ω̃)2

Θ[(F0K)2 − (
√

K ± Ω̃)2], (E3)

J2 = 1

2F3
0 β4/3Ω̃2

∫ ∞

0
dK

K5/2e−K√
F2

0 K − 1
Θ(F2

0 K − 1), (E4)

where Θ is the Heaviside function.
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