ON EXPLICIT BOUNDS IN LANDAU'S THEOREM

J. A. JENKINS

1. The theorem of Landau in question may be stated in the form that if the function $F(Z)$ is regular for $|Z|<1$ and does not take the values 0 and 1 , while

$$
F(Z)=a_{0}+a_{1} Z+\ldots
$$

is its Taylor expansion about $Z=0$, then $\left|a_{1}\right|$ has a bound depending only on a_{0}. In fact $\left|a_{1}\right|$ has a bound depending only on $\left|a_{0}\right|$ and Hayman (1) gave the explicit bound

$$
\left|a_{1}\right| \leqslant 2\left|a_{0}\right|\left\{|\log | a_{0}| |+5 \pi\right\} .
$$

In a recent paper (2) I gave a simple method for obtaining explicit bounds in Schottky's Theorem and applied it also to improving the above bound to

$$
\left|a_{1}\right| \leqslant 2\left|a_{0}\right|\left\{|\log | a_{0}| |+7.77\right\} .
$$

Since writing that paper I have observed that by relatively small modifications of the argument that bound can still be substantially improved.
2. It is well known that, for a given a_{0}, the maximum value of $\left|a_{1}\right|$ is attained for the function $F_{0}(Z)$ mapping $|Z|<1$ onto the universal covering surface of the finite W-plane punctured at 0 and 1 and taking the value a_{0} at $Z=0$. Now $|Z|<1$ is mapped conformally onto $\Re z>0$ in such a way that if the mapping function is $Z=Z(z)$ and we set $F_{0}(Z(z))=f(z)$, then for a suitable branch of $\log f(z)$ the mapping

$$
w=\log f(z) \mp \pi i
$$

(where - or + is chosen according as $\Im a_{0} \geqslant 0$ or $\Im a_{0}<0$) carries the domain determined by the inequalities

$$
-\pi<\Im z<\pi, \Re z>0,\left|z-\frac{1}{2} \pi i\right|>\frac{1}{2} \pi,\left|z+\frac{1}{2} \pi i\right|>\frac{1}{2} \pi
$$

onto the strip

$$
-\pi<\Im w<\pi
$$

so that the boundary points $\pm \pi i$ correspond to themselves. Further, the boundary points of these domains at infinity in whose neighborhoods $\Re z, \Re w$ become large and positive correspond and the boundary point $z=0$ corresponds to the point at infinity in whose neighborhood $\Re w$ becomes large and negative. We denote the point in the z-plane corresponding to $Z=0$ by b. Moreover we set $\zeta=e^{-z}, \omega=e^{-w}$ and denote the corresponding mapping

[^0]between these planes by $\zeta=\phi(\omega)$ or $\omega=\psi(\zeta)$. The function $\phi(\omega)$ is regular and univalent for $|\omega|<1$ with $\phi^{\prime}(0)=1 / 16$.

Next we observe that, as was proved in (2, p. 80), in obtaining a bound of the form

$$
\left|a_{1}\right| \leqslant 2\left|a_{0}\right|\left\{|\log | a_{0}| |+K\right\},
$$

it is enough to confine ourselves to the situation $\left|a_{0}\right| \geqslant 1,\left|a_{0}-1\right| \geqslant 1$. Then we use distinct arguments according as $\left|a_{0}\right|$ is near 1 or bounded from 1.For $\left|a_{0}\right|$ near 1 we use the fact that under the mapping from the z-plane to the w-plane the half-plane $\Re z>\frac{1}{2} \pi$ is mapped into the w-plane slit along the half-infinite segments $\Im w=(2 n+1) \pi, \Re w \leqslant 0, n$ running through all integers. Comparing the inner radii of these domains with respect to b and its image with the derivative of the mapping function, namely $a_{1} / 2 a_{0} \Re b$, we get the bound (2, p. 81)

$$
\left|a_{1}\right| \leqslant 2\left(\left|a_{0}\right|\left|a_{0}-1\right|\right)^{\frac{1}{2}} \log \left|2 a_{0}-1+2\left\{a_{0}\left(a_{0}-1\right)\right\}^{\frac{1}{2}}\right| \Re b /\left(\Re b-\frac{1}{2} \pi\right) .
$$

Since the conditions $\left|a_{0}\right| \geqslant 1,\left|a_{0}-1\right| \geqslant 1$ imply $\Re b \geqslant \frac{1}{2} 3^{\frac{1}{2}} \pi$ we have for $\left|a_{0}\right|=t, t \geqslant 1$

$$
\begin{aligned}
\left|a_{1}\right| & \leqslant\left(3+3^{\frac{1}{2}}\right)\left|a_{0}\right|\left(1+t^{-1}\right)^{\frac{1}{2}} \log \left[2 t+1+2\left(t^{2}+t\right)^{\frac{1}{2}}\right] \\
& \leqslant 2\left|a_{0}\right|\left\{\log \left|a_{0}\right|+\Lambda(t)\right\}
\end{aligned}
$$

where

$$
\Lambda(t)=\frac{1}{2}\left(3+3^{\frac{1}{2}}\right)\left(1+t^{-1}\right)^{\frac{1}{2}} \log \left[2 t+1+2\left(t^{2}+t\right)^{\frac{1}{2}}\right]-\log t .
$$

Unlike the function $L(t)$ used previously the function $\Lambda(t)$ is not monotone increasing. However direct calculation shows that on the range $t \geqslant 1$ it first decreases to a minimum and from then on increases. Thus, on an interval $1 \leqslant t \leqslant t_{0}, \quad \Lambda(t)$ does not exceed the larger of $\Lambda(1)$ and $\Lambda\left(t_{0}\right)$. It proves advantageous to take the interval $1 \leqslant t \leqslant 1.84$. We readily find

$$
\Lambda(1)<5.90, \Lambda(1.84)<5.94
$$

Thus for $1 \leqslant t \leqslant 1.84, \Lambda(t) \leqslant 5.94$ and for $1 \leqslant\left|a_{0}\right| \leqslant 1.84$ we have

$$
\left|a_{1}\right| \leqslant 2\left|a_{0}\right|\left\{\log \left|a_{0}\right|+5.94\right\} .
$$

Now we apply to the function $\phi(\omega)$ instead of the bound previously used (2, p. 81) the result due to Robinson (3, p. 444)

$$
\left|\frac{d \zeta}{d \omega}\right| \geqslant 16|\zeta|^{2} \frac{1-|\omega|^{2}}{|\omega|^{2}}
$$

Using the fact that

$$
\phi^{\prime}\left(-a_{0}^{-1}\right)=-\frac{2 a_{0}^{2} \Re b}{a_{1} e^{b}}
$$

we get

$$
\left|a_{1}\right| \leqslant \frac{1}{8} e^{\Re \Re_{b}} \Re b \frac{\left|a_{0}\right|^{2}}{\left|a_{0}\right|^{2}-1} .
$$

Moreover (2, p. 79)

$$
e^{\mathfrak{R}_{b}} \leqslant 16\left|a_{0}\right|+8
$$

so

$$
\left|a_{1}\right| \leqslant\left(2\left|a_{0}\right|+1\right) \log \left(16\left|a_{0}\right|+8\right) \frac{\left|a_{0}\right|^{2}}{\left|a_{0}\right|^{2}-1}
$$

Then for $\left|a_{0}\right|=t, t>1$, we have

$$
\left|a_{1}\right| \leqslant 2\left|a_{0}\right|\left\{\log \left|a_{0}\right|+M(t)\right\}
$$

where

$$
M(t)=\left(t+\frac{1}{2}\right) t\left(t^{2}-1\right)^{-1} \log (16 t+8)-\log t
$$

Direct calculation shows that $M(t)$ is decreasing for $t>1$. Now $M(1.84)<5.93$. Thus for $\left|a_{0}\right| \geqslant 1.84$ we have

$$
\left|a_{1}\right| \leqslant 2\left|a_{0}\right|\left\{\log \left|a_{0}\right|+5.93\right\}
$$

Combining this with our previous estimate we have
Theorem 1. If $F(Z)$ is regular for $|Z|<1$, does not take the values 0 and 1 and has Taylor expansion about $Z=0$

$$
F(Z)=a_{0}+a_{1} Z+\ldots
$$

then

$$
\left|a_{1}\right| \leqslant 2\left|a_{0}\right|\left\{|\log | a_{0}| |+5.94\right\}
$$

As Hayman has remarked in his review of (2) (Mathematical Reviews, 16 (1955), 579) the value 5.94 cannot be replaced by 4.37 .

References

1. W. K. Hayman, Some remarks on Schottky's Theorem, Proc. Cambridge Phil. Soc., 43 (1947), 442-454.
2. J. A. Jenkins, On explicit bounds in Schottky's Theorem, Can. J. Math., 7 (1955), 76-82. 3. R. M. Robinson, Bounded univalent functions, Trans. Amer. Math. Soc., 52 (1942), 426-449.

University of Notre Dame

[^0]: Received August 10, 1955.

