SCALAR EXTENSION OF QUADRATIC LATTICES II

YOSHIYUKI KITAOKA

Let k be a totally real algebraic number field, $\mathfrak O$ the maximal order of k, and let L (resp. M) be a Z-lattice of a positive definite quadratic space U (resp. V) over the field Q of rational numbers. Suppose that there is an isometry σ from $\mathfrak OL$ onto $\mathfrak OM$. We have shown that the assumption implies $\sigma(L)=M$ in some cases in [2]. Our aim in this paper is to improve the results of [2]. In §1 we introduce the notion of E-type: Let L be a positive definite quadratic lattice over Z. If any minimal vector of $L\otimes M$ is of the form $x\otimes y$ ($x\in L,y\in M$) for any positive definite quadratic lattice M over Z, then we say that L is of E-type. Some sufficient conditions for E-type are given in §1 and they are applied to our aim in §2.

NOTATIONS. As usual Z (resp. Q) is the ring (resp. the field) of rational integers (resp. of rational numbers). By a positive definite quadratic lattice L over Z we mean a Z-lattice L of a positive definite quadratic space V over Q (rank $L = \dim V$). For a positive definite quadratic lattice L we denote min Q(x) by m(L) where Q is the quadratic form of L and x runs over non-zero elements of L, and we call an element x of L a minimal vector of L if Q(x) = m(L). Q(x), R(x, y) denote quadratic forms and corresponding bilinear forms (2R(x, y)) = Q(x + y) - Q(x) - Q(y).

§1. Let L,M be positive definite quadratic lattices over Z with bilinear forms B_L, B_M respectively. Then the tensor product $L \otimes M$ over Z can be made into a positive definite quadratic lattice over Z with bilinear form B such that $B(x_1 \otimes y_1, x_2 \otimes y_2) = B_L(x_1, x_2)B_M(y_1, y_2)$ for any $x_i \in L, y_i \in M$. Hereafter the tensor product $L \otimes M$ means this positive definite quadratic lattice over Z. Let x (resp. y) be a minimal vector of L (resp. M); then $x \otimes y \in L \otimes M$ implies $m(L \otimes M) \leq m(L)m(M)$. It is

Received September 10, 1976.

known by Steinberg (p. 47 in [3]) that there is an example of L, M such that $m(L \otimes M) \leq m(L)m(M)$.

DEFINITION. Let L be a positive definite quadratic lattice over Z. We say that L is of E-type if every minimal vector of $L \otimes M$ is of the form $x \otimes y$ ($x \in L$, $y \in M$) for any positive definite quadratic lattice M over Z. Then x (resp. y) is a minimal vector of L (resp. M), and $m(L \otimes M)$ is equal to m(L)m(M).

PROPOSITION 1. If L_1, L_2 are of E-type,*) then $L_1 \perp L_2, L_1 \otimes L_2$ are of E-type.

Proof. Let M be a positive definite quadratic lattice over Z. Let v be a minimal vector of $(L_1 \perp L_2) \otimes M$; then v is of the form x+y $(x \in L_1 \otimes M, y \in L_2 \otimes M)$. Since x is orthogonal to y, we have Q(v) = Q(x) + Q(y). The minimality of Q(v) yields x = 0 or y = 0. Hence v is in $L_1 \otimes M$ or $L_2 \otimes M$, and v is of the form $u \otimes w$ $(u \in L_1 \text{ or } L_2, w \in M)$. This means that $L_1 \perp L_2$ is of E-type. Every minimal vector of $L_1 \otimes L_2 \otimes M$ is of the form $x_1 \otimes y$ where x_1 (resp. y) is a minimal vector of L_1 (resp. $L_2 \otimes M$). As y is of the form $x_2 \otimes z$ $(x_2 \in L_2, z \in M)$, we have $x_1 \otimes y = x_1 \otimes x_2 \otimes z$, and $x_1 \otimes x_2$ is a minimal vector of $L_1 \otimes L_2$. Hence $L_1 \otimes L_2$ is of E-type.

PROPOSITION 2. Let L be of E-type. If a submodule L_1 of L satisfies $m(L_1) = m(L)$, then L_1 is of E-type.

Proof. Let M be a positive definite quadratic lattice over Z. Since we have $m(L)m(M)=m(L\otimes M)\leq m(L_1\otimes M)\leq m(L_1)m(M)=m(L)m(M)$, a minimal vector v of $L_1\otimes M$ is one of $L\otimes M$. Hence v is of the form $x\otimes y$ $(x\in L,y\in M)$. As y is primitive in M, x is in L_1 . Therefore L_1 is of E-type.

DEFINITION. Let n be a natural number. We put $\mu_n = \max \frac{m(A)}{\sqrt[n]{|A|}}$, where A runs over positive definite real symmetric matrices with degree n, and $m(A) = \min_{x \in \mathbb{Z}^{n} - \{0\}} {}^t x A x$.

LEMMA 1. If
$$n \ge 40$$
, then $\mu_n < \frac{n}{6}$.

^{*)} When we say that L is of E-type, L is assumed to be a positive definite quadratic lattice over Z.

Proof. It is known by [1] that

$$\mu_n < rac{2}{\pi} arGamma \Big(2 + rac{n}{2}\Big)^{\!\scriptscriptstyle 2/n} \ .$$

Since $\Gamma(x) = \sqrt{2\pi} x^{x^{-1/2}} e^{-x + \mu(x)}$ $\left(x > 0, \mu(x) = \frac{\theta}{12x}, 0 < \theta < 1\right)$, we have $\mu_n < \frac{2}{\pi} (2\pi)^{1/n} \left(2 + \frac{n}{2}\right)^{1+3/n} e^{-4/n - 1 + 1/3n(n + 4)}$. Put $f(x) = \log \frac{x}{6} - \log \left\{\frac{2}{\pi} (2\pi)^{1/x} \left(2 + \frac{x}{2}\right)^{1+3/x} e^{-4/x - 1 + 1/3x(x + 4)}\right\}$. If f(x) > 0 for $x \ge 40$, then Lemma is true. Since $f(x) = \log x - \log 6 - \log \frac{2}{\pi} - \frac{1}{x} \log 2\pi - \left(1 + \frac{3}{x}\right) \log \left(2 + \frac{x}{2}\right)^{n-1} + \frac{4}{x} + 1 - \frac{1}{3x(x + 4)}$, we get

$$\begin{split} x^2 f'(x) &= \log 2\pi + 3 \log \left(2 + \frac{x}{2}\right) - 3 - \frac{4}{x+4} \\ &+ \frac{2x+4}{3(x+4)^2} > 3 \log 22 - 3 - \frac{1}{11} > 0 \quad \text{if } x \ge 40 \ . \end{split}$$

Hence we have only to show f(40) > 0. This is easy to see.

We denote by κ the maximum of the number k which satisfies that $\mu_r \ge \sqrt{r}$ and $r \le k$ imply r = 1.

LEMMA 2. κ is not smaller than 42.

Proof. It is known that μ_n $(1 \le n \le 8)$ is $1, \sqrt{4/3}, \sqrt[8]{2}, \sqrt[4]{4}, \sqrt[5]{8}, \sqrt[6]{64/3}, \sqrt[7]{64}$, and 2 respectively. Hence $\kappa \ge 8$. Put

$$g(x) = \log \frac{2}{\pi} (2\pi)^{1/x} \left(2 + \frac{x}{2}\right)^{1+3/x} e^{-4/x - 1 + 1/3x(x+4)} - \log \sqrt{x}.$$

Since $\log \mu_n - \log \sqrt{n} < g(n)$, we have only to show $g(x) \le 0$ for $8 \le x \le 42$. Then $x^2 g'(x) = \frac{x}{2} - \log 2\pi - 3 \log \left(2 + \frac{x}{2}\right) + 3 + \frac{4}{x+4} - \frac{2x+4}{3(x+4)^2}$. Putting $h(x) = x^2 g'(x)$, we have

$$h'(x) = \frac{1}{2} - 3\frac{1}{x+4} - \frac{4}{(x+4)^2} - \frac{2}{3(x+4)^2} + \frac{4(x+2)}{3(x+4)^3}$$
$$= \frac{1}{6(x+4)^3} (3x^3 + 18x^2 - 20x - 176) .$$

Since $3x^3 + 18x^2 - 20x - 176 > 0$ for $x \ge 8$, we get h'(x) > 0. Moreover h(8) is positive. Hence g'(x) is positive for $x \ge 8$. g(42) < 0 is easy to see.

Remark. Rogers' result [5] may improve the number 42.

LEMMA 3. Let A, B be positive definite real symmetric matrices with degree n; then we have $\operatorname{Tr}(AB) \geq n \sqrt[n]{|A|} \sqrt[n]{|B|}$.

Proof. Put B = D[T] where D is diagonal and T is orthogonal. Let a_1, \dots, a_n and d_1, \dots, d_n be diagonals of TA^tT, D respectively. Then

$$\operatorname{Tr}(AB) = \operatorname{Tr}(AD[T]) = \operatorname{Tr}(TA^{t}TD) = \sum a_{i}d_{i} \geq n \sqrt[n]{|a_{i}d_{i}|}$$
$$= n \sqrt[n]{|B|} \sqrt[n]{|a_{i}|} \geq n \sqrt[n]{|B|} \sqrt[n]{|TA^{t}T|} = n \sqrt[n]{|A|} \sqrt[n]{|B|}.$$

THEOREM 1. If L is a positive definite quadratic lattice over Z with rank $L \leq \kappa$, then L is of E-type.

Proof. Taking a positive definite quadratic lattice M over Z, we put a minimal vector v of $L \otimes M = \sum_{i=1}^r x_i \otimes y_i \ (x_i \in L, y_i \in M)$. In these representations of v we take one with minimal r. Then x_1, \dots, x_r and y_1, \dots, y_r is linearly independent in L, M respectively. Noting $Q(v) = Q(\sum x_i \otimes y_i) = \sum_{i,j} B(x_i, x_j) B(y_i, y_j) = \operatorname{Tr} ((B(x_i, x_j)(B(y_i, y_j)), \text{ we get } Q(v) \geq r(|(B(x_i, x_j))||(B(y_i, y_j))|)^{1/r}$ by Lemma 3. On the other hand $Q(v) = m(L \otimes M) \leq m(L)m(M) \leq m(Z[x_1, \dots, x_r])m(Z[y_1, \dots, y_r])$. Therefore

$$r \leq \frac{m(\mathbf{Z}[x_1, \dots, x_r])}{|(B(x_i, x_j))|^{1/r}} \frac{m(\mathbf{Z}[y_1, \dots, y_r])}{|(B(y_i, y_j))|^{1/r}} \leq \mu_r^2.$$

By the definition of κ we have r=1. This completes the proof.

Remark. In the Steinberg's example for $m(L \otimes M) < m(L)m(M)$, rank $L \geq 292$.

THEOREM 2. Let L be a positive definite quadratic lattice over Z. If $m(L) \leq 6$, and the discriminant dL_0 of any non-zero submodule L_0 of L is not smaller than 1, then L is of E-type.

Proof. Let M be a positive definite quadratic lattice over Z, and let a minimal vector v of $L \otimes M$ be $\sum_{i=1}^r x_i \otimes y_i$. As in the proof of Theorem 1 we may assume that x_1, \dots, x_r , and y_1, \dots, y_r are linearly independent in L, M respectively. Put $L_0 = Z[x_1, \dots, x_r]$ and $M_0 = Z[y_1, \dots, y_r]$. Then $m(L \otimes M) = Q(v) \geq r \sqrt[r]{dL_0} \sqrt[r]{dM_0} \geq r \sqrt[r]{dM_0}$. On the other

hand $m(L\otimes M)\leq m(L)m(M)\leq 6m(M_0)$. Hence we get $r/6\leq m(M_0)/\sqrt[r]{dM_0}\leq \mu_r$. Lemma 1 implies $r\leq 40$, and Lemma 2 implies that L_0 is of E-type. Since $v\in L_0\otimes M_0$ and $m(L\otimes M)\leq m(L_0\otimes M_0)$, v is a minimal vector of $L_0\otimes M_0$. Therefore v is of the form $x\otimes y$ $(x\in L_0,y\in M_0)$, and this completes the proof.

§ 2. We apply the results of § 1 to our problem. Some other applications will appear in the forthcoming paper.

In this section E denotes a totally real algebraic number field with degree n, and $\mathbb O$ is the maximal order of E. From Theorem III of p. 2 in [6] follows that $\operatorname{tr}_{E/Q} a^2 \geq n$ for any non-zero element a of $\mathbb O$, and moreover the equality yields $a=\pm 1$. Let L be a positive definite quadratic lattice over Z; then we denote by $\mathbb OL$ the tensor product of $\mathbb O$ and L as an extension of coefficient ring Z of L to $\mathbb O$. By definition an element v of $\mathbb OL$ gives the rational minimum of $\mathbb OL$ if and only if $Q(v)=\min Q(u)$ where u runs over a non-zero element of $\mathbb OL$ with $Q(u)\in Q$. When we regard $\mathbb O$ as a positive definite quadratic lattice over Z with the bilinear form $B(x,y)=\operatorname{tr}_{E/Q} xy$, we write $\mathbb O$ instead of $\mathbb O$.

LEMMA. Let L be a positive definite quadratic lattice over Z. If $\tilde{\mathfrak{D}}$ or L is of E-type, then a vector of $\mathfrak{D}L$ which gives the rational minimum of $\mathfrak{D}L$ is already in L.

Proof. As indicated in the introduction B denotes the bilinear form of L. We define a new bilinear form \tilde{B} on $\mathfrak{O}L$ which is defined by $\tilde{B}(x,y)=\operatorname{tr}_{E/Q}B(x,y)$ $(x,y\in\mathfrak{O}L)$. This quadratic lattice is denoted by $(\mathfrak{O}L,\tilde{B})$. As $\tilde{B}(a_1x_1,a_2x_2)=\operatorname{tr}_{E/Q}a_1a_2\cdot B(x_1,x_2)$ for $a_i\in\mathfrak{O}, x_i\in L$, a quadratic lattice $(\mathfrak{O}L,\tilde{B})$ is isometric to $\tilde{\mathfrak{O}}\otimes L$. Take a vector v of $\mathfrak{O}L$ which gives the rational minimum of $\mathfrak{O}L$; then we have

$$0 \neq \tilde{B}(v,v) = nQ(v) \leq nm(L) = m(\tilde{\mathfrak{D}})m(L) = m(\tilde{\mathfrak{D}} \otimes L) = m((\mathfrak{Q}L,\tilde{B})) \; .$$

Hence v is a minimal vector of $(\mathfrak{O}L, \tilde{B})$. Regarding v as an element of $\tilde{\mathfrak{O}} \otimes L$, we get $v = a \otimes x (a \in \mathfrak{O}, x \in L)$, where a is a minimal vector of $\tilde{\mathfrak{O}}$, and so $a = \pm 1$. This implies $v \in L$.

THEOREM. Let L, M be positive definite quadratic lattices over Z. Assume that rank $L \leq \kappa$ or $\tilde{\mathfrak{D}}$ is of E-type. Then, for any isometry σ from $\mathfrak{D}L$ on $\mathfrak{D}M$ over the ring \mathfrak{D} , we get $\sigma(L) = M$. *Proof.* Lemma implies that a vector v of L which gives the rational minimum of $\mathfrak{D}L$ is in L, and $\sigma(v)$ is also in M since $\sigma(v)$ gives the rational minimum of $\mathfrak{D}M$. Therefore σ induces an isometry from $\mathfrak{D}v^{\perp}$ on $\mathfrak{D}\sigma(v)^{\perp}$. Inductively we get $\sigma(\mathbf{Q}L) = \mathbf{Q}M$. $\sigma(\mathfrak{D}L) = \mathfrak{D}M$ yields $\sigma(L) = M$.

Remark 1. If $n \le \kappa$ or $n/m \le 6$ where $m\mathbf{Z} = \{\operatorname{tr}_{E/Q} a \; ; \; a \in \mathfrak{D}\} \; (m > 0)$, then Theorem 1,2 in §1 imply that $\tilde{\mathfrak{D}}$ is of E-type.

Remark 2. Assume that $E=E_1E_2$ where E_i is a totally real algebraic number field with maximal order \mathfrak{D}_i . Moreover we assume that $(dE_1, dE_2)=1$ and $\tilde{\mathfrak{D}}_i$ is of E-type (i=1,2). Then $\tilde{\mathfrak{D}}\cong \tilde{\mathfrak{D}}_1\otimes \tilde{\mathfrak{D}}_2$ is of E-type.

REFERENCES

- [1] H. F. Blichfeldt, The minimum value of quadratic forms, and the closest packing of spheres, Math. Ann., 101 (1929), 605-608.
- [2] Y. Kitaoka, Scalar extension of quadratic lattices, Nagoya Math. J., 66 (1977), 139-149.
- [3] J. Milnor-D. Husemoller, Symmetric bilinear forms, Springer-Verlag, 1973.
- [4] O. T. O'Meara, Introduction to quadratic forms, Springer-Verlag, 1963.
- [5] C. A. Rogers, Packing and covering, Cambridge University Press, 1964.
- [6] C. L. Siegel, Gasammelte Abhandlungen III, Springer-Verlag, 1966.

Nagoya University