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Anisotropic flow, entropy, and
Lp-Minkowski problem
Károly J. Böröczky and Pengfei Guan
Abstract. We provide a natural simple argument using anistropic flows to prove the existence of
weak solutions to Lutwak’s Lp-Minkowski problem on Sn which were obtained by other methods.

1 Introduction

For α > 0 and nonnegative f ∈ L1(Sn) with positive integral, we are interested in
finding a weak solution to the Monge–Ampére equation

u
1
α det(∇̄2

i ju + uḡ i j) = f ,(1.1)

or in other words, a weak solution to Lutwak’s Lp-Minkowski problem on Sn when
−n − 1 < p < 1 for p = 1 − 1

α where ∇̄ is the Levi-Civita connection of Sn , ḡ i j , with ḡ
being the induced round metric on the unit sphere. By a weak (Alexandrov) solution,
we mean the following: Given a nontrivial finite Borel measure μ on S

n (for example,
dμ = f dθ for the Lebesgue measure θ on Sn and the f in (1.1)), find a convex body
Ω ⊂ R

n+1 with o ∈ Ω such that

dμ = u
1
α dSΩ ,(1.2)

where u(x) = maxz∈Ω⟨x , z⟩ is the support function and SΩ is the surface area measure
of Ω (see [45]). If ∂Ω is C2

+, then

dSΩ = det(∇̄2
i ju + uḡ i j)dθ = K−1dθ ,

where K(x) is the Gaussian curvature at the point of ∂Ω where x ∈ Sn is the exterior
unit normal (see [45]). Concerning the regularity of the solution of (1.1), if f ∈
C0,β(Sn) and u are positive, then u is C2,β according to Caffarelli’s regularity theory in
[15, 16]. On the other hand, even if f is positive and continuous for α > 1

n , there might
exist weak solution where u(x) = 0 for some x ∈ Sn and u is not even C1 according
to Example 4.2 in [7]. Moreover, even if f ∈ C0,β(Sn) is positive, it is possible that
u(x) = 0 for some x ∈ Sn for α > 1

n , but Choi, Kim, and Lee [19] still managed to obtain
some regularity results in this case.
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2 K. J. Böröczky and P. Guan

The case α = 1
n+2 of the Monge–Ampére equation (1.1) is the critical case when

the left-hand side of (1.1) is invariant under linear transformations of Ω, and the case
α = 1 is the so-called logarithmic Minkowski problem posed by Firey [23]. Setting
p = 1 − 1

α < 1, the Monge–Ampére equation (1.1) is Lutwak’s Lp-Minkowski problem

u1−p det(∇̄2
i ju + uḡ i j) = f .(1.3)

In this notation, (1.2) reads as

dμ = u1−p dSΩ ;(1.4)

that equation makes sense for any p ∈ R. Within the rapidly developing Lp-Brunn–
Minkowski theory (where p = 1 is the classical case originating from Minkowski’s oeu-
vre) initiated by Lutwak [39–41], if p > 1 and p ≠ n + 1, then Hug, Lutwak, Yang, and
Zhang [30] (improving on Chou and Wang [20]) prove that (1.4) has an Alexandrov
solution if and only if the μ is not concentrated onto any closed hemisphere, and the
solution is unique. We note that there are examples in [25] (see also [30]) and show that
if 1 < p < n + 1, then it may happen that the density function f is a positive continuous
in (1.3) and o ∈ ∂K holds for the unique Alexandrov solution, and actually Bianchi,
Böröczky, and Colesanti [7] exhibit an example that o ∈ ∂K even if the density function
f is a positive continuous in (1.3) assuming −n − 1 < p < 1 .

In the case p ∈ (0, 1) (or equivalently, α > 1), if the measure μ is not concentrated
onto any great subsphere of Sn , then Chen, Li, and Zhu [17] prove that there exists
an Alexandrov solution K ∈ Kn

o of (1.4) using a variational argument (see also [8]).
We note that for p ∈ (0, 1) and n ≥ 2, no complete characterization of Lp-surface area
measures is known (see [12] for the case n = 1, and [8, 43] for partial results about the
case when n ≥ 2 and the support of μ is contained in a great subsphere of Sn).

Concerning the case p = 0 (or equivalently, α = 1), the still open logarithmic
Minkowski problem (1.3) or (1.4) was posed by Firey [23] in 1974. The paper [11]
characterized even measures μ such that (1.4) has an even solution for p = 0 by the so-
called subspace concentration condition (see (a) and (b) in Theorem 1.1). In general,
Chen, Li, and Zhu [18] proved that if a nontrivial finite Borel measure μ on Sn−1

satisfies the same subspace concentration condition, then (1.4) has a solution for p = 0.
On the other hand, Böröczky and Hegedus [10] provide conditions on the restriction
of the μ in (1.4) to a pair of antipodal points.

If−n − 1 < p < 0 (or equivalently, 1
n+2 < α < 1) and f ∈ L n+1

n+1+p
(Sn) in (1.3), then (1.3)

has a solution according to [8]. For a rather special discrete measure μ satisfying that
μ is not concentrated on any closed hemisphere and any n unit vectors in the support
of μ are independent, Zhu [47] solves the Lp-Minkowski problem (1.4) for p < 0. The
p = −n − 1 (or equivalently, α = 1

n+2 ) case of the Lp-Minkowski problem is the critical
case because its link with the SL(n) invariant centro-affine curvature whose reciprocal
is un+2 det(∇̄2

i ju + uḡ i j) (see [29] or [38]). For positive results concerning the critical
case p = −n − 1, see, for example, [28, 34], and for obstructions for a solution, see, for
example, [20, 22].

In the super-critical case p < −n − 1 (or equivalently, α < 1
n+2 ), there is a recent

important work by Li, Guang, and Wang [27] proving that for any positive C2 function
f, there exists a C4 solution of (1.3). See also [22] for non-existence examples.
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Lp-Minkowski flow 3

The main contribution of this paper is to provide a very natural argument based
on anisotropic flows developed by Andrews [4] to handle the case −n − 1 < p < 1, or
equivalently, the case 1

n+2 < α < ∞.
Entropy functional. For any convex body Ω, a fixed positive function f on S

n and
α ∈ (0,∞), define

Eα , f (Ω) ∶= sup
z∈Ω

Eα , f (Ω, z),(1.5)

where

Eα , f (Ω, z) ∶=
⎧⎪⎪⎨⎪⎪⎩

α
α−1 log(∫Sn uz(x)1− 1

α f (x)dθ(x)) , α ≠ 1,

∫Sn log(uz(x)) f (x)dθ(x), α = 1.
(1.6)

Here, uz(x) ∶= supy∈Ω ⟨y − z, x⟩ is the support function of Ω in direction x with respect
to z0 and∫Sn h(x) dθ(x) = 1

ωn ∫Sn h(x) with ωn being the surface area of Sn and θ is
the Lebesgue measure on Sn . When α = 1 and f (x) ≡ 1, then the above quantity agrees
with the entropy in [26], first introduced by Firey [23] for the centrally symmetric
Ω. General integral quantities were studied by Andrews in [2, 4]. Here, we shall
assume that∫Sn f (x) dθ(x) = 1, namely, 1

ωn
f (x)dθ(x) is a probability measure. For

the special case f ≡ 1, Eα , f (Ω) becomes the entropy Eα(Ω) in [6].
For positive f ∈ C∞(Sn), consider the anisotropic flow for convex hypersurfaces

X̃(⋅, τ) ∶ Mτ → R
n+1:

∂
∂τ

X̃(x , τ) = − f α(ν)K̃α(x , τ) ν(x , τ),(1.7)

where ν(x , τ) is the unit exterior normal at X̃(x , τ) of M̃τ = X̃(M , τ), and K̃(x , τ) is
the Gauss curvature of M̃τ at X̃(x , τ). Andrews [4] proved that flow (1.7) contracts
to a point under finite time if the initial hypersurface M0 is strictly convex. Under a
proper normalization, the normalized anisotropy flow of (1.7) is

∂
∂t

X(x , t) = − f α(ν)Kα(x , t)
∫Sn f α Kα−1 ν(x , t) + X(x , t).(1.8)

The basic observation is that a critical point for entropy Eα , f (Ω) defined in (1.5)
under volume normalization is a solution to equation (1.1). The entropy is monotone
along flow (1.8). One may view (1.1) is an “optimal solution” to this variational problem
as the flow (1.8) provides a natural path to reach it. This approach was devised in [5]
with the aim to obtain convergence of the normalized flow (1.8). The main arguments
in [5] follows those in [6, 26] where convergence of isotropic flows by power of Gauss
curvature (i.e., f = 1) was established. Unfortunately, the entropy point estimate in [6,
26] fails for general anisotropic flows except 1

n+2 < α ≤ 1
n [4]. The convergence was

obtained in [5] assuming M0 and f are invariant under a subgroup G of O(n + 1)
which has no fixed point. We note that an inverse Gauss curvature flow argument was
considered by Bryan, Ivaki, and Scheuer [14] to produce a origin-symmetric solution
to (1.1).

Since we are only interested in finding a weak solution to (1.2), one only needs
certain “weak” convergence of the flow (1.8). The key steps are to control diameter
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4 K. J. Böröczky and P. Guan

with entropy under appropriate conditions on measure μ = f dθ on S
n and use

monotonicity of entropy to produce a solution to (1.2). The following is our main
result.

Theorem 1.1 For α > 1
n+2 and finite nontrivial Borel measure μ onS

n , n ≥ 1, there exists
a weak solution of (1.2) provided the following holds:

(i) If α > 1 and μ is not concentrated onto any great subsphere x� ∩ S
n , x ∈ Sn .

(ii) If α = 1 and μ satisfies that for any linear �-subspace L ⊂ R
n+1 with 1 ≤ � ≤ n, we

have
(a) μ(L ∩ S

n) ≤ �

n + 1
⋅ μ(Sn);

(b) equality in (a) for a linear �-subspace L ⊂ R
n+1 with 1 ≤ d ≤ n implies the

existence of a complementary linear (n + 1 − �)-subspace L̃ ⊂ R
n+1 such that

supp μ ⊂ L ∪ L̃.
(iii) If 1

n+2 < α < 1 and dμ = f dθ for nonnegative f ∈ L
n+1

n+2− 1
α (Sn) with ∫Sn f > 0.

Let us briefly discuss what is known about uniqueness of the solution of the Lp-
Minkowski problem (1.4). If p > 1 and p ≠ n, then Hug, Lutwak, Yang, and Zhang [30]
proved that the Alexandrov solution of the Lp-Minkowski problem (1.4) is unique.
However, if p < 1, then the solution of the Lp-Minkowski problem (1.3) may not be
unique even if f is positive and continuous. Examples are provided by Chen, Li, and
Zhu [17, 18] if p ∈ [0, 1), and Milman [42] shows that for any C ∈ K(0), one finds q ∈
(−n, 1) such that if p < q, then there exist multiple solutions to the Lp-Minkowski
problem (1.4) with μ = SC , p ; or in other words, there exists K ∈ K(0) with K ≠ C and
SK , p = SC , p . In addition, Jian, Lu, and Wang [33] and Li, Liu, and Lu [37] prove that
for any p < 0, there exists positive even C∞ function f with rotational symmetry such
that the Lp-Minkowski problem (1.3) has multiple positive even C∞ solutions. We note
that in the case of the centro-affine Minkowski problem p = −n, Li [36] even verified
the possibility of existence of infinitely many solutions without affine equivalence, and
Stancu [46] related unique solution in the cases p = 0 and p = −n.

The case when f is a constant function in the Lp-Minkowski problem (1.3) has
received a special attention since [23]. When p = −(n + 1), (1.3) is self-similar solution
of affine curvature flow. It is proved by Andrews that all solutions are centered
ellipsoids. If n = 2 and p = 2, the uniqueness was proved by Andrews [3]. For general
n and p > −(n + 1), through the work of Lutwak [40], Guan-Ni [26], and Andrews,
Guan, and Ni [6], Brendle, Choi, and Daskalopoulos [13] finally classified that the
only solutions are centered balls. See also [21, 32, 44] for other approaches. Stability
versions of these results have been obtained by Ivaki [31], but still no stability version
is known in the case p ∈ [0, 1) if we allow any solutions of (1.3) not only even ones.

Concerning recent versions of the Lp-Minkowski problem, see [9].
The paper is structured as follows: The required diameter bounds are discussed in

Section 2. Section 3 verifies the main properties of the Entropy, Section 4 proves our
main result (Theorem 4.1) about flows, and finally Theorem 1.1 is proved in Section 5
via weak approximation.
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Lp-Minkowski flow 5

2 Entropy and diameter estimates

For δ ∈ [0, 1) and linear i-subspace L ofRn+1 with 1 ≤ dim L ≤ n, we consider the collar

Ψ(L ∩ S
n , δ) = {x ∈ Sn ∶ ⟨x , y⟩ ≤ δ for y ∈ L� ∩ S

n}.

Let B(1) ⊂ R
n+1 be the unit ball centered at the origin.

Theorem 2.1 Let α > 1
n+2 , let∫Sn f = 1 for a bounded measurable function f on S

n with
inf f > 0, and let Ω ⊂ R

n+1 be a convex body such that ∣Ω∣ = ∣B(1)∣ and diam Ω = D.
For any δ, τ ∈ (0, 1), we have

(i) if α > 1, and∫Ψ(z�∩Sn ,δ) f ≤ 1 − τ for any z ∈ Sn , then

exp(α − 1
α

Eα , f (Ω)) ≥ γ1τδ1− 1
α D1− 1

α ,

where γ1 > 0 depends on n and α;
(ii) if α = 1, and

∫
Ψ(L∩Sn ,δ)

f < (1 − τ)i
n + 1

,

for any linear i-subspace L of Rn+1, i = 1, . . . , n, then

E1, f (Ω) ≥ τ log D + log δ − 4 log(n + 1);

(iii) if 1
n+2 < α < 1, p = 1 − 1

α (where −n − 1 < p < 0), τ ≤ 1
2∫Sn f ⋅ u1− 1

α and

∫
Ψ(z�∩Sn ,δ)

f
n+1

n+1+p ≤ τ
n+1

n+1+p ,(2.1)

for any z ∈ Sn−1, then

either D ≤ 16n2/δ2 , or D ≤ ( 1
2∫Sn

f ⋅ u1− 1
α )

2
p

.

Moreover, if τ ≤ 1
2 exp ( α−1

α Eα , f (Ω)), then

either D ≤ 16n2/δ2 , or D ≤ ( 1
2

exp(α − 1
α

Eα , f (Ω)))
2
p

.

Remark 2.2 We note that for any α ≥ 1, bounded f with inf f > 0 and∫Sn f = 1, and
τ ∈ (0, 1), there exists δ ∈ (0, 1) such that conditions in (i) and (ii) hold. In the case of
1 > α > 1

n+2 , (iii) holds if in addition that τ ≤ 1
2 exp ( 1−α

α Eα , f (Ω)) for the convex body
Ω ⊂ R

n+1.

Proof Given α > 1
n+2 , bounded f with inf f > 0 and∫Sn f = 1, and τ ∈ (0, 1), the

existence of suitable δ ∈ (0, 1) follows from the fact that the Lebesgue measure is a
Borel measure.

Now, we assume that the conditions in (i)–(iii) hold. We may assume that the
centroid of Ω is the origin; thus, Kannan, Lovász, and Simonovics [35] yield the
existence of an o-symmetric ellipsoid such that

E ⊂ Ω ⊂ (n + 1)E , and hence − Ω ⊂ (n + 1)Ω.(2.2)
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6 K. J. Böröczky and P. Guan

Let u be the support function of Ω, and let R = max{∥y∥ ∶ y ∈ Ω} ≥ D/2 and z0 ∈ Sn

such that Rz0 ∈ ∂Ω. We observe that the definition of the entropy yields

∫
Sn

f u1− 1
α ≤ exp( 1 − α

α
Eα , f (Ω)) if α > 1;

∫
Sn

f log u ≤ E0, f (Ω);

∫
Sn

f u1− 1
α ≥ exp( 1 − α

α
Eα , f (Ω)) if 1

n + 2
< α < 1.

Case 1: α > 1.
According to the condition in (i), we may choose ζ ∈ {+1,−1} such that

∫
Φ

f ≥ τ
2

for Φ = {x ∈ Sn ∶ ⟨x , ζz0⟩ > δ},

and hence Rζz0
n+1 ∈ Ω by (2.2). Since uσ(x) ≥ ⟨ Rζz0

n+1 , x⟩ ≥ Rδ
n+1 for x ∈ Φ, we have

∫
Sn

f u1− 1
α ≥∫

Φ
f ( Rδ

n + 1
)

1− 1
α

≥ τ
2
⋅ ( Dδ

2(n + 1))
1− 1

α

.

Case 2: α = 1.
To simplify notation, we consider the Borel probability measure μ(A) =∫A f on Sn .

Let e1 , . . . , en+1 ∈ Sn be the principal directions associated with the ellipsoid E in (2.2),
and let r1 , . . . , rn+1 > 0 be the half axes of E with r i e i ∈ ∂E where we may assume that
r1 ≤ ⋅ ⋅ ⋅ ≤ rn+1. In particular, (2.2) yields that

(n + 1)n+1
n+1
∏
i=1

r i =
∣(n + 1)E∣
∣B(1)∣ ≥ ∣Ω∣

∣B(1)∣ = 1.(2.3)

We observe that for any v ∈ Sn , there exists e i such that ∣⟨v , e i⟩∣ ≥ 1√
n+1 > δ

n+1 . For
i = 1, . . . , n + 1, we define

B i = {v ∈ Sn ∶ ∣⟨v , e i⟩∣ ≥
δ

n + 1
and ∣⟨v , e j⟩∣ <

δ
n + 1

for j > i} .

In particular, B i ⊂ Ψ(L i ∩ S
n , δ) for i = 1, . . . , n and L i = lin{e1 , . . . , e i}.

It follows that Sn is partitioned into the Borel sets B1 , . . . , Bn+1, and as B i ⊂ Ψ(L i ∩
S

n , δ) for i = 1, . . . , n, we have

μ(B1) + ⋅ ⋅ ⋅ + μ(B i) ≤ i(1 − τ)
n + 1

for i = 1, . . . , n,(2.4)

μ(B1) + ⋅ ⋅ ⋅ + μ(Bn+1) = 1.(2.5)

For ζ = 1−τ
n+1 , we have 0 < ζ < 1

n+1 , and define

β i = μ(B i) − ζ for i = 1, . . . , n,(2.6)

βn+1 = μ(Bn+1) − ζ − τ,(2.7)
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Lp-Minkowski flow 7

where (2.4) and (2.5) yield

β1 + ⋅ ⋅ ⋅ + β i ≤ 0 for i = 1, . . . , m − 1,(2.8)

β1 + ⋅ ⋅ ⋅ + βn+1 = 0.(2.9)

As r i e i ∈ Ω, it follows from the definition of B i that u(x) ≥ ⟨x , r i e i⟩ ≥ r i ⋅ δ
n+1 for x ∈

B i , i = 1, . . . , n + 1. We deduce from applying (2.3), (2.5)–(2.9), r1 ≤ ⋅ ⋅ ⋅ ≤ rn+1, and
ζ < 1

n+1 that

∫
Sn

log u dμ =
n+1
∑
i=1

∫
B i

log u dμ

≥
n+1
∑
i=1

μ(B i) log r i +
n+1
∑
i=1

μ(B i) log δ
n + 1

=
n+1
∑
i=1

μ(B i) log r i + log δ
n + 1

=
n+1
∑
i=1

β i log r i +
n+1
∑
i=1

ζ log r i + τ log rn+1 + log δ
n + 1

≥
n+1
∑
i=1

β i log r i + ζ log 1
(n + 1)n+1 + τ log rn+1 + log δ

n + 1

= (β1 + ⋅ ⋅ ⋅ + βn+1) log rn+1 +
n
∑
i=1

(β1 + ⋅ ⋅ ⋅ + β i)(log r i − log r i+1)

− (n + 1)ζ log(n + 1) + τ log rn+1 + log δ
n + 1

≥ − log(n + 1) + τ log rn+1 + log δ
n + 1

.

Now, D ≤ (n + 1)diam E = 2(n + 1)rn+1 ≤ (n + 1)2rn+1 and τ < 1, and hence

− log(n + 1) + τ log rn+1 + log δ
n + 1

≥ − log(n + 1) + τ log D
(n + 1)2 + log δ

n + 1
= log (δDτ) − (2 + 2τ) log(n + 1)
≥ τ log D + log δ − 4 log(n + 1).

In particular, we conclude that

E1, f (Ω) ≥∫
Sn

f log u = ∫
Sn

log u dμ ≥ τ log D + log δ − 4 log(n + 1).

Case 3: 1
n+2 < α < 1.

In this case, −(n + 1) < 1 − 1
α < 0. We may assume that

D ≥ 16n2/δ2 ,

and we consider

Φ0 = {x ∈ Sn ∶ u(x) >
√

2R} ,

Φ1 = {x ∈ Sn ∶ u(x) ≤
√

2R} .
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Concerning Φ0, we have

∫
Φ0

f ⋅ u1− 1
α ≤ (2R) 1

2 (1−
1
α ) ∫

Φ0
f ≤ D

1
2 (1−

1
α ) = D

p
2 .(2.10)

On the other hand, we have ± R
(n+1) z0 ∈ Ω by (2.2), thus any x ∈ Φ1 satisfies

√
2R ≥ u(x) ≥ ∣⟨x , R

n + 1
z0⟩∣ ,

and hence ∣⟨x , z0⟩∣ ≤ (n + 1)
√

2
R ≤ 4n√

D
≤ δ; or in other words,

Φ1 ⊂ Ψ(z�0 ∩ S
n , δ).

It follows from ∣Ω∣ = ∣B(1)∣ and the Blaschke–Santaló inequality (cf. [45]) that

∫
Sn

u−(n+1) ≤ (n + 1)∣B(1)∣ = ωn , and hence∫
Sn

u−(n+1) ≤ 1.

For p = 1 − 1
α ∈ (−n − 1, 0), Hölder’s inequality and ∫Φ1

f
n+1

n+1+p < τ
n+1

n+1+p yield

∫
Φ1

f ⋅ u1− 1
α ≤ (∫

Φ1
f

n+1
n+1+p )

n+1+p
n+1

(∫
Φ1

u−(n+1)
σ )

∣p∣
n+1

≤ (∫
Φ1

f
n+1

n+1+p )
n+1+p

n+1
≤ τ.

Finally, adding the last estimate to (2.10) yields

exp(α − 1
α

Eα , f (Ω)) ≤∫
Sn

f ⋅ u1− 1
α ≤ D

p
2 + τ,

and hence the conditions either τ ≤ 1
2∫Sn f ⋅ u1− 1

α or τ ≤ 1
2 exp ( 1−α

α Eα , f (Ω)) on τ
implies (iii). ∎

3 Anisotropic flows and monotonicity of entropies

The following theorem was proved by Andrews in [4] (see also for a discussion of
contracting of non-homogeneous fully nonlinear anisotropic curvature flows in [24]).

Theorem 3.1 [4] For any α > 0 and positive f ∈ C∞(Sn) and any initial smooth,
strictly convex hypersurface M̃0 ⊂ R

n+1, the hypersurfaces M̃τ given by the solution of
(1.7) exist for a finite time T and converge in Hausdorff distance to a point p ∈ Rn+1 as
τ approaches T.

Assuming

∫
Sn

f = 1, ∣Ω0∣ = ∣B(1)∣,

solution (1.7) yields a smooth convex solution to the normalized flow (1.8) with volume
preserved.

Set

hz(x , t) ≑ f (x)u−
1
α

z (x , t)K(x , t), dσt(x) = uz(x , t)
K(x , t) dθ(x).(3.1)

Note that∫Sn dσt(x) =∫Sn dθ(x) = 1.
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Since the un-normalized flow (1.7) shrinks to a point in finite time, we may assume
that it is the origin. Then the support function u(x , t) is positive for the normalized
flow (1.8).

Lemma 3.2 (a) The entropy Eα , f (Ωt) defined in (1.5) is monotonically decreasing,

Eα , f (Ωt2) ≤ Eα , f (Ωt1), ∀t1 ≤ t2 ∈ [0,∞).(3.2)

(b) There is D > 0 depending only on inf f , sup f , α, Ω0 such that

diam Ωt = D(t) ≤ D, ∀t ≥ 0.(3.3)

(c) ∀t0 ∈ [0,∞),

Eα , f (Ωt0 , 0) ≥ Eα , f ,∞ + ∫
∞

t0
( ∫Sn hα+1(x , t) dσt

∫Sn h(x , t) dσt ⋅∫Sn hα(x , t) dσt
− 1) dt,(3.4)

where

h(x , t) = h0(x , t), Eα , f ,∞ ≑ lim
t→∞

Eα , f (Ωt).

Proof (a) We follow argument in [26]. For each T0 > fixed, pick T > T0. Let aT =
(aT

1 , . . . , aT
n+1) be an interior point of ΩT . Set uT = u − e t−T ∑n+1

i=1 aT
i x i ; it satisfies

equation

∂
∂t

uT(x , t) = − f α(x)Kα(x , t)
∫Sn f α Kα−1 + uT(x , t).(3.5)

Note that since aT is an interior point of ΩT and u(x , T) is the support
function of ΩT with respect to aT , uT(x , T) > 0,∀x ∈ Sn . We claim

uT(x , t) > 0, ∀t ∈ [0, T).

Suppose uT(x0 , t′) ≤ 0 for some 0 < t′ < T , x0 ∈ Sn , and equation (3.5) implies
uT(x0 , t) < 0 for all t > t′, which contradicts to uT(x , T) > 0.

Set aT(t) = e t−T aT . By the claim, aT(t) is in the interior of Ωt , ∀t ≤ T .
Denote

dσT ,t = uT(x , t)K−1(x , t)dθ ,

we rewrite equation (3.3) as

∂
∂t

uaT(t)(x , t) = − f α(x)Kα(x , t)
∫Sn hα

aT(t)(x , t) dσT ,t
+ uaT(t)(x , t).(3.6)

We have

∂
∂t

Eα , f (Ωt , aT(t)) =
−∫Sn hα+1

aT(t)(x , t) dσT ,t

∫Sn haT(t)(x , t) dσT ,t ⋅∫Sn hα
aT(t)(x , t) dσT ,t

+ 1.
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Thus, ∀t < T ,

Eα , f (Ωt , aT(t)) − Eα , f (ΩT , aT)(3.7)

= ∫
T

t
∫
Sn

⎛
⎝

∫Sn hα+1
aT(t)(x , t) dσT ,t

∫Sn haT(t)(x , t) dσT ,t ⋅∫Sn hα
aT(t)(x , t) dσT ,t

− 1
⎞
⎠

dt ≥ 0.

Therefore,

Eα , f (Ωt) ≥ Eα , f (ΩT , aT), ∀t < T .

Since aT is arbitrary, (3.2) is proved.
(b) The boundedness of D(t) follows from Theorem 2.1 combined with the estimate

Eα ,1(Ωt) ≤ Eα ,1(B(1)) from (a) (see also [6, 26]). The only nontrivial case is when
1

n+2 < α < 1 because we have to choose a τ independent of t. However, we may
choose any τ ∈ (0, 1) with τ ≤ 1

2 exp ( 1−α
α Eα , f (B(1))) according to Eα ,1(Ωt) ≤

Eα ,1(B(1)).
(c) ∀ε > 0, ∀t0 fixed, pick T > T0 > t0. As Eα , f (ΩT) is bounded by (a), ∃aT inside

ΩT such that Eα , f (ΩT) ≤ Eα , f (ΩT , aT) + ε. By (3.7),

Eα , f (Ωt0 , aT(t0)) − Eα , f (ΩT)

≥ ∫
T0

t0
∫
Sn

⎛
⎝

∫Sn hα+1
aT(t)(x , t) dσT ,t

∫Sn haT(t)(x , t) dσT ,t ⋅∫Sn hα
aT(t)(x , t) dσT ,t

− 1
⎞
⎠

dt − ε.

As ∣aT ∣ ≤ D, ∀T , let T → ∞,

aT(t) → 0, uT(x , t) → u(x , t), uniformly for 0 ≤ t ≤ T0 , x ∈ Sn .

We obtain ∀t0 < T0,

Eα , f (Ωt0 , 0) − Eα , f ,∞ ≥ ∫
T0

t0
∫
Sn

( ∫Sn hα+1(x , t) dσt

∫Sn h(x , t) dσt ⋅∫Sn hα(x , t) dσt
− 1) dt − ε.

Then let T0 → ∞, as ε > 0 is arbitrary, we obtain (3.4). ∎

4 Weak convergence

The goal of this section is to prove the following statement.

Theorem 4.1 For a C∞ function f ∶ Sn → (0,∞) and α > 1
n+2 with∫Sn f = 1, there exist

λ > 0 and a convex body Ω ⊂ R
n+1 with o ∈ Ω whose support function u is a (possibly

weak) solution of the Monge–Ampère equation

u
1
α det(∇̄2

i ju + uḡ i j) = f(4.1)

and Ω satisfies that

Eα , f (λΩ) ≤ Eα , f (B(1)), ∣λΩ∣ = ∣B(1)∣,(4.2)

where C−1 < λ < C for a C > 1 depending only on the α, τ, δ in Theorem 2.1 such that f
satisfies the conditions in Theorem 2.1.
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From now on, we will assume that the f in Theorem 4.1 satisfies the corresponding
condition in Theorem 2.1 and Ω0 = B(1) in (1.8). We note that for any z ∈ B(1), vz ≤ 2
for the support function vz of B(1) at z, and hence if α > 1

n+2 , then

Eα , fk(B(1)) ≤ {
α

α−1 ⋅ log 21− 1
α , if α ≠ 1,

log 2, if α = 1.(4.3)

The following is a consequence of Theorem 2.1 and Lemma 3.2.

Lemma 4.2 There exist Cα ,τ ,δ > 0, Dα ,τ ,δ > 0, and cα ,τ ,δ ∈ R depending only on con-
stants α, τ, δ in Theorem 2.1 such that, along (1.8), we have

D(t) ≤ Dα ,τ ,δ , Eα , f (Ωt , 0) ≥ cα ,τ ,δ , 1
Cα ,τ ,δ

≤∫
Sn

h(x , t)dσt ≤ Cα ,τ ,δ .(4.4)

Proof For each α > 1
n+2 fixed with condition on f as in Theorem 2.1, Eα , f (Ωt) is

bounded from below in terms of the diameter D(t). Since ∣Ωt ∣ = ∣B(1)∣, we have
D(t) ≥ 2 by the Isodiametric Inequality (cf. [45]). By Theorem 2.1, Eα , f (Ωt) is
bounded from below by a constant cα ,τ ,δ > 0, and hence Eα , f ,∞ ≥ cα ,τ ,δ . It follows
from Lemma 3.2 that Eα , f (Ωt) ≤ Eα , f (B(1)), and this estimate combined with (4.3)
and Theorem 2.1 yields D(t) ≤ Dα ,τ ,δ where Dα ,τ ,δ depends only on constants in
condition on f in Theorem 2.1. Finally, the inequalities follow from Lemma 3.2. ∎

Set

η(t) =∫
Sn

h(x , t) dσt .(4.5)

We note that∫Sn h(x , t) dσt is monotone and bounded from below and above by
Lemma 4.2, and hence we have

Cα ,τ ,δ ≥ lim
t→∞∫Sn

h(x , t) = η ≥ 1
Cα ,τ ,δ

.(4.6)

By Lemma 3.2 and Corollary 4.2,

∫
∞

0
( ∫Sn hα+1(x , t) dσt

∫Sn h(x , t) dσt ⋅∫Sn hα(x , t) dσt
− 1) dt < ∞.(4.7)

Since the integrand is nonnegative, ∃tk → ∞ such that

lim
k→∞

( ∫Sn hα+1(x , tk) dσtk

∫Sn h(x , tk) dσtk ⋅∫Sn hα(x , tk) dσtk

− 1) = 0.(4.8)

This implies

lim
k→∞

(∫Sn hα+1(x , tk) dσtk)
1

1+α

∫Sn h(x , tk) dσtk

= lim
k→∞

(∫Sn hα+1(x , tk) dσtk)
α

1+α

∫Sn hα(x , tk) dσtk

= 1.(4.9)

After considering a subsequence, we may assume that

Ωtk → Ω, u(x , tk) → u(x),(4.10)
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12 K. J. Böröczky and P. Guan

where u is the support function of Ω. In view of (4.9) and (4.6),

lim
k→∞∫Sn

hα+1(x , tk) dσtk = η1+α , lim
k→∞∫Sn

hα(x , tk) dσtk = ηα .(4.11)

The following lemma is crucial for the weak convergence, which is a refined form
of the classical Hölder inequality.1

Lemma 4.3 Let p, q ∈ R+ with 1
p + 1

q = 1, and set β = min{ 1
p , 1

q}. Let (M , μ) be a
measurable space; ∀F ∈ Lp , G ∈ Lq ,

∫
M
∣FG∣dμ ≤ ∥F∥Lp∥G∥Lq

⎛
⎜
⎝

1 − β ∫
M

⎛
⎝

∣F∣
p
2

(∫M ∣F∣pdμ) 1
2
− ∣G∣

q
2

(∫M ∣G∣qdμ) 1
2

⎞
⎠

2⎞
⎟
⎠

.(4.12)

Proof We first prove the following Claim. ∀s, t ∈ R,

e
s
p+

t
q ≤ es

p
+ e t

q
− β(e

s
2 − e

t
2 )2 .(4.13)

We may assume t ≥ s, set τ = t − s, and (4.13) is equivalent to

e
τ
q ≤ 1

p
+ eτ

q
− β(1 − e

τ
2 )2 , ∀τ ≥ 0.(4.14)

Set
ξ(τ) = 1

p
+ eτ

q
− β(1 − e

τ
2 )2 − e

τ
q .

We have ξ(0) = 0,

ξ′(τ) = e
τ
q

q
ρ, where ρ(τ) = e

τ
p (1 − βq) + qβe

τ
2−

τ
q − 1.

If β = 1
q , then 1

q ≤ 1
2 ; since τ ≥ 0,

ρ(τ) = e
τ
p (1 − βq) + qβe

τ
2−

τ
q − 1 = e

τ
2−

τ
q − 1 ≥ 0.

If β = 1
p , then 1

q ≥ 1
2 ; we have

ρ′(τ) = e
τ
p ( 1 − βq

p
+ βq( 1

2
− 1

q
)e

τ
2−

τ
q )

≥ e
τ
p ( 1 − βq

p
+ βq( 1

2
− 1

q
))

≥ e
τ
p βq( 1

2
− 1

p
) ≥ 0.

We conclude that ρ(τ) ≥ 0, ∀τ ≥ 0.

In turn, ξ′(τ) ≥ 0, ∀τ ≥ o.

This yields (4.14) and (4.13). The Claim is verified.
1We would like to thank referee for pointing out that the lemma was proved as Theorem 2.2 in [1].

Here, we provide a proof for completeness.
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Back to the proof of the lemma. We may assume

F ≥ 0, g ≥ 0, ∫ F p > 0, ∫ Gq > 0.

Set
es = F p

∫ F p , e t = Gq

∫ Gq .

Put them into (4.13) and integrate, as 1
p + 1

q = 1,

∫ FG
(∫ F p)

1
p (∫ Gq)

1
q
≤
⎛
⎝

1 − β ∫ ( F
p
2

(∫ F p) 1
2
− G

q
2

(∫ Gq) 1
2
)2⎞
⎠

.
∎

We prove weak convergence.

Proposition 4.4 ∀α > 1
n+2 , suppose that (4.10) and (4.11) hold. Denote

uk = u(x , tk), σn ,k = σn(u i j(x , tk) + u(x , tk)δ i j).

Then
lim

k→∞∫Sn
∣u

1
α
k σn ,k − f

η
∣dθ = 0,(4.15)

where η is defined in (4.5) which is bounded from below and above in (4.6). As a
consequence, there is a convex body Ω ⊂ R

n+1 with o ∈ Ω,

∣Ω∣ = ∣B(1)∣, Eα , f (Ωt) ≤ Eα , f (B(1)),

and its support function u satisfies

u
1
α SΩ = 1

η
f dθ .(4.16)

Proof We only need to verify (4.15). By (4.11), it is equivalent to prove

lim
k→∞∫Sn

∣u
1
α
k σn ,k − f η−1(tk)∣dθ = 0.(4.17)

Since D(tk) is bounded,

∫
Sn

u
1

α2
k σn ,k dθ ≤ (D(tk))

1
α2∫

Sn
u

1
α2
k σn ,k dθ ≤ (D(tk))

1
α2 ∣∂Ωtk ∣ ≤ C .

∫
Sn
∣u

1
α
k σn ,k − f η−1(tk)∣dθ =∫

Sn
∣ f

η(tk)u
1
α
k σn ,k

− 1∣u
1
α
k σn ,k dθ

≤
⎛
⎜
⎝
∫

Sn
∣ f

η(tk)u
1
α
k σn ,k

− 1∣1+α dσtk

⎞
⎟
⎠

1
1+α

(∫
Sn

u(
1
α −1) 1+α

α
k dσtk)

α
1+α

=
⎛
⎜
⎝
∫

Sn
∣ f

η(tk)u
1
α
k σn ,k

− 1∣1+α dσtk

⎞
⎟
⎠

1
1+α

(∫
Sn

u
1

α2
k σn ,k dθ)

α
1+α

≤ C (∫
Sn
∣ f η−1(tk)u

− 1
α

k σ−1
n ,k − 1∣1+α dσtk)

1
1+α

.(4.18)
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By (4.8), (4.11), and Lemma 4.3, with p = α + 1, F 1
1+α = h(x , tk), G = 1,

lim
k→∞∫ ((h(x , tk)

η(tk)
) 1+α

2 − 1)
2

dσtk = 0.(4.19)

For tk fixed, let

γk(x) = f η−1(tk)u−
1
α

k σ−1
n ,k = h(x , tk)η−1(tk)

and set

Σk = {x ∈ Sn ∣ ∣γk(x) − 1∣ ≤ 1
2
} .

It is straightforward to check that ∃Aα ≥ 1 depending only on α such that

Aα ∣γ
1+α

2
k (x) − 1∣ ≥ ∣γk(x) − 1∣, ∀x ∈ Σk ,

Aα ∣γ
1+α

2
k (x) − 1∣2 ≥ ∣γk(x) − 1∣1+α , ∀x ∈ Σc

k .

Since ∣γ
1+α

2
k (x) − 1∣ ≤ 21+α , ∀x ∈ Σk , let δ = min{1 + α, 2},

∫
Sn
∣γk(x) − 1∣1+α dσtk =

1
ωn
(∫

Σk

∣γk(x) − 1∣1+α dσtk + ∫
Σc

k

∣γk(x) − 1∣1+α dσtk)

≤A1+α
α

ωn
(∫

Σk

∣γ
1+α

2
k (x) − 1∣1+α dσtk + ∫

Σc
k

∣γ
1+α

2
k (x) − 1∣2dσtk)

≤(2Aα)1+α

ωn
(∫

Σk

∣γ
1+α

2
k (x) − 1∣δ dσtk + ∫

Σc
k

∣γ
1+α

2
k (x) − 1∣2dσtk)

≤(2Aα)1+α (∫
Sn
∣γ

1+α
2

k (x) − 1∣δ dσtk +∫
Sn
∣γ

1+α
2

k (x) − 1∣2dσtk)

≤(2Aα)1+α ((∫
Sn
∣γ

1+α
2

k (x) − 1∣2dσtk)
δ
2 +∫

Sn
∣γ

1+α
2

k (x) − 1∣2dσtk) .

By (4.19),

lim
k→∞∫Sn

∣γ
1+α

2
k (x) − 1∣2dσtk = 0.

Hence,

lim
k→∞∫Sn

∣γk(x) − 1∣1+α dσtk = 0.(4.20)

Now, (4.17) follows from (4.18)–(4.20). ∎

Proof Proof of Theorem 4.1. It follows from Proposition 4.4 after a proper rescaling
as η satisfies (4.6) and (4.16). ∎

5 The general Monge–Ampère equations – proof of Theorem 1.1

In order to prove Theorem 1.1, we need weak approximation in the following sense.
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Lemma 5.1 For δ, ε ∈ (0, 1
2 ) and a Borel probability measure μ on S

n , n ≥ 1, there
exists a sequence dμk = 1

ωn
fk dθ of Borel probability measures whose weak limit is μ

and fk ∈ C∞(Sn) satisfies fk > 0 and the following properties:
(i) If μ (Ψ(z� ∩ S

n , 2δ)) ≤ 1 − ε for any z ∈ Sn−1, then

∫
Ψ(z�∩Sn ,δ)

fk ≤ 1 − ε for any z ∈ Sn−1 .(5.1)

(ii) If μ(Ψ(L ∩ S
n , 2δ)) < (1 − 2δ) ⋅ �

n+1 for any linear �-subspace L of R
n+1, � =

1, . . . , n, then

μk (Ψ (L ∩ S
n , δ)) < (1 − δ) ⋅ �

n + 1
.(5.2)

(iii) If dμ = 1
ωn

f dθ for f ∈ Lr(Sn) where r > 1, and

∫
Ψ(z�∩Sn ,2δ)

f r ≤ ε(5.3)

for any z ∈ Sn−1, then

∫
Ψ(z�∩Sn ,δ)

f r
k ≤ 2r ε for any z ∈ Sn−1 .(5.4)

Proof For k ≥ 1, let {Bk , i}i=1, . . . ,m(k) be a partition of Sn into spherically convex Borel
measurable sets Bk , i with diamBk , i ≤ 1

k and θ(Bk , i) > 0. For each Bk , i , we choose
a C∞ function hk , i ∶ Sn → [0,∞) such that for Mk , i = max hk , i and the probability
measure dθ̃ = 1

ωn
dθ, we have:

• hk , i = 0 if x /∈ Bk , i ;
• Mk , i ≤ (1 + 1

k ) ⋅
μ(Bk , i)
θ̃(Bk , i)

;
• θ ({x ∈ Bk , i ∶ hk , i(x) < Mk , i}) < 1

k θ(Bk , i);
• ∫Bk , i

hk , i dθ̃ = μ(Bk , i).

We consider the positive C∞ function f̃k = 1
k +∑m(k)

i=1 hk , i , and hence fk = (∫Sn f̃k)
−1

f̃
satisfies that the probability measure dμk = fk dθ̃ tends weakly to μ, and for large k ≥
1/δ, μk satisfies (i), and if (ii) holds, then μk also satisfies (5.2).

Turning to (iii), we assume that dμ = f dθ̃ for f ∈ Lr(Sn)where r > 1, and f satisfies
(5.3). For any large k and i = 1, . . . , m(k), we deduce from the Hölder inequality that

∫
Bk , i

f̃ r
k =∫

Bk , i
(hk , i +

1
k
)

r
≤ 2r−1∫

Bk , i
hr

k , i + 2r−1∫
Bk , i

1
kr

≤ 2r−1 θ̃(Bk , i)Mr
k , i + 2r−1∫

Bk , i

1
kr

≤ 2r−1 (1 + 1
k
)

r
θ̃(Bk , i)

⎛
⎝

∫Bk , i
f

θ̃(Bk , i)
⎞
⎠

r

+ 2r−1∫
Bk , i

1
kr

≤ 2r−1 (1 + 1
k
)

r

∫
Bk , i

f r + 2r−1∫
Bk , i

1
kr .
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Summing this estimate up for large k and all Bk , i with Bk , i ∩ Ψ(z� ∩ S
n , δ) ≠ ∅, and

using that∫Sn f̃k ≥ 2−1/2 for large k, we deduce that

∫
Ψ(z�∩Sn ,δ)

f r
k ≤
√

2∫
Ψ(z�∩Sn ,δ)

f̃ r
k ≤
√

2 ⋅ 2r−1 (1 + 1
k
)

r

∫
Ψ(z�∩Sn ,2δ)

f r +
√

2 ⋅ 2r−1

kr ≤ 2r ε.

∎

For α > 0 and p = 1 − 1
α , the Lp-surface area dSΩ, p = u1−pdSΩ was introduced

in the seminal works [39–41] for a convex body Ω ⊂ R
n+1 with o ∈ Ω and support

function u. Since the surface area measure is weakly continuous for p < 1, and if
K ⊂ R

n+1 is an at most n-dimensional compact convex set, then SK , p ≡ 0 for p < 1,
we have the following statement.

Lemma 5.2 If convex bodies Ωm ⊂ R
n+1 tend to a compact convex set K ⊂ R

n+1 where
o ∈ Ωm , K, and lim inf m→∞ SΩm , p > 0, then intK ≠ ∅ and SΩm , p tends weakly to SK , p.

For the reader’s sake, let us recall Theorem 1.1.

Theorem 5.3 For α > 1
n+2 and finite nontrivial Borel measure μ on S

n , n ≥ 1, there
exists a weak solution of (1.2) provided the following holds:

(i) If α > 1 and μ is not concentrated onto any great subsphere x� ∩ S
n , x ∈ Sn .

(ii) If α = 1 and μ satisfies that for any linear �-subspace L ⊂ R
n+1 with 1 ≤ � ≤ n, we

have:
(a) μ(L ∩ S

n) ≤ �

n + 1
⋅ μ(Sn);

(b) equality in (a) for a linear �-subspace L ⊂ R
n+1 with 1 ≤ d ≤ n implies the

existence of a complementary linear (n + 1 − �)-subspace L̃ ⊂ R
n+1 such that

supp μ ⊂ L ∪ L̃.
(iii) If 1

n+2 < α < 1, assume dμ = f dθ for nonnegative f ∈ L
n+1

n+2− 1
α (Sn) with ∫Sn f > 0.

Proof Let α > 1
n+2 . After rescaling, we may assume that the μ in (1.2) is a probability

measure. We consider the sequence dμk = 1
ωn

fk dθ of Lemma 5.1 of Borel probability
measures whose weak limit is μ and fk ∈ C∞(Sn) satisfies fk > 0. For each fk , let Ωk ⊂
R

n+1 be the convex body with o ∈ Ωk provided by Theorem 4.1 whose support function
uk is the solution of the Monge–Ampère equation

u
1
α
k dSΩk = fk dθ;(5.5)

∃λk > 0 under control, with ∣λk Ω∣ = ∣B(1)∣, Ωk satisfies that

Eα , fk(λk Ωk) ≤ Eα , fk(B(1)).(5.6)

We also need the observations that

∣Ωk ∣ =
1

n + 1 ∫Sn
uk dSΩk ,(5.7)

and if p = 1 − 1
α , then

SΩk , p(Sn) = ∫
Sn

u1− 1
α

k dSΩk = ωn∫
Sn

fk = ωn .(5.8)
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We claim that if there exists Δ > 0 depending on n, α, and μ such that

diamΩk ≤ Δ, then Theorem 5.3 holds.(5.9)

To prove this claim, we note that (5.9) yields the existence of a subsequence of {Ωk}
tending to a compact convex set Ω with o ∈ Ω, which is a convex body by (5.8) and
Lemma 5.2. Moreover, Lemma 5.2 also yields that Ω is an Alexandrov solution of (1.2),
verifying the claim (5.9).

We divide the rest of the argument verifying Theorem 5.3 into three cases.
Case 1: α > 1.

Since μ is not concentrated to any great subsphere, there exist δ ∈ (0, 1
2 ) depending

on μ such that μ (Ψ(z� ∩ S
n , 2δ)) ≤ 1 − 2δ for any z ∈ Sn−1. It follows from Lemma 5.1

that we may assume that

∫
Ψ(z�∩Sn ,δ)

fk ≤ 1 − δ for any z ∈ Sn−1 .(5.10)

Now, Theorem 4.1 implies that λk ≥ c for a constant c > 0 depending on n, δ, and α,
and in turn Theorem 4.1, (4.3), and 1

α − 1 < 0 yield that

Eα , f (Ωk) = α
α − 1

⋅ log λ
1
α −1
k + Eα , f (λk Ωk) ≤ α

α − 1
⋅ log λ

1
α −1
k + Eα , f (B(1)) ≤ C

for a constant C > 0 depending on n, δ, and α. Therefore, Theorem 2.1 and (5.10) imply
that the sequence {Ωk} is bounded, and in turn the claim (5.9) implies Theorem 5.3
if α > 1.
Case 2: α = 1.

The argument is by induction on n ≥ 0 where we do not put any restriction on the
probability measure μ in the case n = 0. For the case n = 0, we observe that any finite
measure μ on S0 can be represented in the form dμ = u dSΩ for a suitable segment
Ω ⊂ R

1.
For the case n ≥ 1, assuming that we have verified Theorem 5.3(ii) in smaller

dimensions, we consider a Borel measure probability μ on Sn satisfying (a) and (b).
Case 2.1: There exists a linear �-subspace L ⊂ R

n+1 with 1 ≤ � ≤ n and μ(L ∩ S
n) = �

n+1 ⋅
μ(Sn).

Let L̃ ⊂ R
n+1 be the complementary linear (n + 1 − �)-subspace with supp μ ⊂ L ∪

L̃, and hence μ(L̃ ∩ S
n) = n+1−�

n+1 ⋅ μ(Sn). It follows by induction that there exist an
�-dimensional compact convex set K′ ⊂ L and an (n + 1 − �)-dimensional compact
convex set K̃′ ⊂ L̃ such that μ (L ∩ Sn) = � VK′ and μ (L̃ ∩ Sn) = (n + 1 − �)VK̃′ .
Finally, for K = L̃� ∩ (K′ + L�) and K̃ = L� ∩ (K̃′ + L̃�), there exist α, α̃ > 0 such that

μ = (n + 1)VαK+α̃ K̃ .

Case 2.2: μ(L ∩ S
n) < �

n+1 ⋅ μ(Sn) for any linear �-subspace L ⊂ R
n+1 with 1 ≤ � ≤ n.

It follows by a compactness argument that there exists δ ∈ (0, 1
2 ) depending on

μ such that μ(Ψ(L ∩ S
n , 2δ)) < (1 − 2δ) ⋅ �

n+1 for any linear �-subspace L of Rn+1,
� = 1, . . . , n. We consider the sequence of probability measures dμk = 1

ωn
fk dθ of
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Lemma 5.1 tending weakly to μ such that fk > 0, fk ∈ C∞(Sn), and

μk (Ψ (L ∩ S
n , δ)) < (1 − δ) ⋅ �

n + 1
(5.11)

for any linear �-subspace L of Rn+1, � = 1, . . . , n.
For each fk , let Ωk ⊂ R

n+1 with o ∈ Ωk be the convex body provided by Theorem
4.1 whose support function uk is the solution of the Monge–Ampère equation (4.1)
and satisfies (4.2) with f = fk and λ = λk where ∣B(1)∣ = ∣λk Ωk ∣ for λk > 0, and

∣Ωk ∣ =
1

n + 1 ∫
Sn

uk det(∇̄2
i juk + uk ḡ i j) dθ = ωn

n + 1∫Sn
uk det(∇̄2

i juk + uk ḡ i j)

= ∣B(1)∣∫
Sn

fk = ∣B(1)∣,

and hence λk = 1. In particular, (4.3) yields

E1, fk(λk Ωk) ≤ E1, fk(B(1)) ≤ log 2.

Since E1, fk(Ωk) is bounded, (5.11) and Theorem 2.1 imply that the sequence Ωk stays
bounded, as well. Therefore, the claim (5.9) yields Theorem 5.3 if α = 1.
Case 3: 1

n+2 < α < 1.
We set p = 1 − 1

α ∈ (−n − 1, 0) and r = n+1
n+1+p > 1, and

τ = 1
2
⋅ 2−

∣p∣(n+1)
∣p∣+n ,(5.12)

and choose δ ∈ (0, 1
2 ) such that

∫
Ψ(z�∩Sn ,2δ)

f r ≤ τr

2r

for any z ∈ Sn−1. We deduce from Lemma 5.1 that if z ∈ Sn−1, then

∫
Ψ(z�∩Sn ,δ)

f r
k ≤ τr .(5.13)

We deduce from (5.5), (5.7), and ∣λk Ωk ∣ = ∣B(1)∣ = ωn
n+1 that

∫
Sn

up
k fk = n + 1

ωn
∫
Sn

uk dSΩk = n + 1
ωn

∣Ωk ∣ = λ−n−1
k .(5.14)

In particular, (4.3) and the upper bound on the entropy yield that

2p ≤ exp (p ⋅ Eα , fk(B(1))) ≤ exp (p ⋅ Eα , f (λk Ωk)) ≤∫
Sn
(λkuk)p fk

= λp
k ∫

Sn
uk dSΩk = λp−n

k ⋅ n + 1
ωn

⋅ ∣λk Ωk ∣ = λp−n
k .(5.15)

It follows from (5.15) that λk ≤ 2
∣p∣
∣p∣+n , and in turn (5.14) yields that

∫
Sn

up
k fk ≥ 2−

∣p∣(n+1)
∣p∣+n .
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Therefore, τ ≤ 1
2∫Sn up

k fk (cf. (5.12)), (5.13), and Theorem 2.1 yield that the sequence
{Ωk} is bounded, and in turn the claim (5.9) implies Theorem 5.3 if 1

n+2 < α < 1. ∎
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