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Abstract

The Huygens' property is exploited to study propagation relations for solutions of certain
types of linear higher order Cauchy problems. Motivated by the solution properties of
the abstract wave problem, addition formulas are developed for the solution operators of
these problems. The application of these alternative forms of the solution operators to data
leads to connecting operator relations between distinct solutions of the problems at different
times. We examine this solution behaviour for both analytic and abstract Cauchy problems.
A basic algorithm for constructing addition formulas for solutions of ordinary differential
equations is included.

1. Introduction

The Huygens' property plays an important role in studying the behaviour of solutions
of Cauchy problems. In the development of series representations of classical heat
functions in terms of heat polynomials and associated functions, Rosenbloom and
Widder [6] made use of this property. For the standard one space variable wave
problem, the Huygens' property is reflected in propagations along the characteristics.
To obtain other implications of this property, we consider the abstract wave problem

w"{t) = Aw(t); w(0)=<p1,w'(0) = <p2 (1.1)

where A = B2 with B the generator of a continuous group GB{t) in a Banach space
X and where <pj e D(B2), j = 1, 2. We can write the solution of this in the form

w(t) = 0,(r)«i>, + O2(t)<p2 (1.2)
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230 L. R. Bragg [2]

where Ox{t) and O2(t) are formal solution operators defined by the relations

0,(O«0i = cosh(fB)^, = {GB(t)<px + GB(-0<pi)/2

O2(t)(p2= I Ox(o)(p2da. (1.3)

One can express these evaluations in terms of solutions of related heat problems
by means of transmutations [2]-[4] (also, see Goldstein [5] for the development
of the cosine operator and its uses for solving wave problems). Now, let W\(t)
denote the solution (1.2) corresponding to <p{ = <p, <p2 = 0 and let w2(t) denote the
solution (1.2) corresponding to tpx = 0, <p2 = <p. Then w'2(t) = Wi(t). Using the
addition formulas for the hyperbolic cosine and sine functions, we find 0\{t\ ± t2) =
Oi ('2)0i (*i) ± AO2(t{)O2(t2) and O2(h±t2) = O2(ti)Oi(t2) ± 0i(r,)02fe). If we
now apply these to the data function <p, we obtain the formulas

± t2) = OiCfcJiuifo) ±

w2(tx ± t2) = Odh)wi(tx) ± 02{t2)wx{tx). (1.4)

Now, take tx = t2 = t > 0 in the first of these. If we then add and subtract the
resulting relations, it follows that

and wx(2t) - <p = 2AO2(t)w2(t). (1.5)

Similarly, using (1.4b), we can show that

w2(2t) = 20, (t)w2(t) = 2O2(t)wl (0- (1.6)

These solution propagation relations are easily verified for the one space variable wave
problem by calling upon the d'Alembert formulas. For wave problems with a larger
number of space variables, (1.5) and (1.6) yield multiple integral solution relationships.
By making other selections for t\ and t2 in (1.4), we can obtain additional relations
among the functions W\ (t) and w2(t). In these developments, the role of the Huygens'
property is taken on by the addition formulas for the formal solution operators.

In this paper, we consider the problem of developing relations analogous to (1.4)-
(1.6) for certain classes of solvable Cauchy problems of order greater than 2. One
class of these of particular interest involves a partial differential equation of the form

uin)(x, t) = k,P{D)u(n-x\x, t) + X2P
2(D)u("-2)(x, / ) + •••

+ XnP\D)u{x,t). (1.7)

In this, the A, are real constants, x = (x,, . . . , xm), D = (£),, D2, ..., Dm) with
Dj<p(x) = d(p(x)/dXj, P(D) is a linear partial differential operator in the Dj with
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[3] Propagation relations for Cauchy problems 231

constant coefficients and u^\x, t) = dJu(x, t)/dt'. Let uk(x, t) denote the solution
of this equation corresponding to the initial conditions u{j\x, 0) = <p(x) if j = k — 1
and 0 otherwise for k = 1, 2, • • • , n. Entireness conditions on <p(x) will be stated
later. With (1.7), we associate the ordinary differential equation

/•>(*) = A.,y("-»(r) + W ~ 2 ) ( 0 + • • • + \ny{t). (1.8)

Let yk{t) denote the solution of this corresponding to the conditions ;y*;>(0) = 1 if
j = k — 1 and 0 otherwise. Let Ok(t) = yk(tP(D)). Then the function uk(x, t) can
be expressed as uk(x, t) = Ok(t)<p(x) and can be determined by using quasi inner
products if <p(x) has suitable growth. To develop propagation relations among the
uk(x, t), we require addition formulas for the solution operators Ok(t) and, hence,
addition formulas for the yk(t).

In Section 2 to follow, we outline the steps leading to the simple algorithm for
deriving the addition formulas for the solution functions yk(t) of (1.8) satisfying
the conditions y '̂CO) = 1 for j = k — 1 and 0 otherwise, j = 0, 1, • • • , n — 1.
Associated with each yk is an n x n "addition formula" matrix. An addition formula
for the expression yk(tx — t2) is also easy to write down if the function yk{t) is strictly
even or odd in t. If yk{t) is neither even nor odd, an expression for yk(ti — t2) can
be obtained in terms of the even and odd parts of yk but it is inconvenient to use in
connection with Cauchy problems involving equations such as (1.7). The results of
Section 2 will then be applied in Sections 3 and 4 to develop propagation relations
among the solution functions uk(x, t) associated with special equations of the form
(1.7). Finally, in Section 5, we consider a third order abstract Cauchy problem.

2. The addition formula algorithm

For k = 1, 2, • • • , « , let yk{t) denote a solution of (1.8) such that ^ ' (O) = 1
for j = k — 1 and 0 otherwise, j = 0, 1, • • • , n — 1. Let y(t) be any solution of
(1.8). Using linear independence, the function y(t + r) can be expressed as a linear
combination of the yk(t). But since y{t + r) is symmetric in t and r, it can also be
expressed as a linear combination of the yk(r). From this it follows that

y(t + r) = Y(t)-M-Y1(r) (2.1)

in which Y(t) is the row vector (>>i(/), yi{t), ••• , yn(t)), Y (f) is the transpose of
Y(t), and M is an n x n matrix of constants. We need to determine the entries m,v of
this matrix M. But, by symmetry,
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232 L. R. Bragg

for p + q = I with p > 0, q > 0. This in turn implies that

/ « (* + r) = (Y(t))w • M • (yT(r))(<?).

At t = 0, T = 0, and using the definitions of the yk{t), we find

mpq = y+<?)(0) for 0 < p + q < In - 2.

[4]

(2.3)

(2.4)

ALGORITHM 2.1. Let y(t) be any solution of the differential equation (1.8). Then the
function y(t + T) satisfies (2.1) with

M =

y(0)

y"(0)

y2"-2>(0)_

(2.5)

It should be noted that the function y(t + r) defined by (2.1) does indeed satisfy (1.8)
with t replaced by t + x.

Thus, we see that obtaining the addition formulas for the basic solutions yk(t)
of (1.8) reduces to computing the derivative entries in the matrix (2.5) and this
can be accomplished by invoking the initial conditions on the yk(t) and repeatedly
differentiating and evaluating terms in (1.8). Let us construct the matrix M for the
solution function yx{t) of (1.8). Now the initial conditions give }>,(()) = 1 and
yf\0) = 0 for k = 1, 2, • • • , n - 1. From (1.8), we have y\"\0) = kn. If we
repeatedly differentiate the two sides of (1.1) n — 2 times, it is easy to show that

y[n+j)(0) = \"+ • • • + k j y \ " \ 0 ) , y = 1, 2 , • • • , / ! - 2 . (2 .6)

It readily follows from these relations that

and, in general,

= (A?

where Pj(XuX2, ... ,Xj) is a generating polynomial for all partitions of 7. Each term
in this polynomial is the product of a numerical coefficient by powers of the A,. The
sum of the products of the exponents of the A, by the i is equal to 7 and the numerical
coefficient represents the number of different possible rearrangements of the A, in
that term. This polynomial includes all such terms. We can now fill in the entries of
(2.5) to obtain the matrix M\. The reader can construct analogous combinatoric type
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[5] Propagation relations for Cauchy problems 233

formulas for the entries in the matrices M corresponding to the addition formulas for
the functions yiif),- • • , yn(t). In the applications, special choices of the kj are taken
in (1.7) in order that the addition matrices have relatively simple forms.

The formulas for the corresponding v, (t — r) can have more complicated structures
depending upon whether (1.8) contains only even order derivative terms or a mixture
of odd and even order derivative terms. Now we can use the decomposition Y (t) =
yj(r) + YJ

0(t) of yT(0 into even and odd parts to obtain Y^\-t) = rJ(O - Y^t) =
YT(t)-2Yl(t) and, hence,

yt{t - r) = Y(t)MYJ
E(r) - Y(t)MYJ

0(r)

= Y(t)MY\r)-2Y(t)MYl(r). (2.7)

One can determine the evenness or oddness of the y;(f) functions from (1.8) and the
initial conditions that they satisfy.

3. Cauchy problems I

In this section, we take n to be even and consider obtaining propagation relations
among the solutions of the set of Cauchy problems

uf\x, 0) = <p(x) if k = j - 1 and 0 otherwise, for j = 1, 2, ... ,n. (3.1)

Associated with these are the ordinary differential equation problems

yf\t) =
y(jk)(O) = 1 if k = j - 1 and 0 otherwise, for 7 = 1 ,2 , . . . , n. (3.2)

By employing Algorithm 2.1, one can show, with effort, that the addition matrices are
given by Mj = M\C'~X, j = 1, 2, . . . , n where

(3.3)M] =

1
0
0

0

Thus, we have the

0
0
0

1

0 •
0 •

0 •

*
0 ••

addition

• 0
• 0

• 1

• 0
• 0

0
1
0

0
0.

formulas

and C =

0
0

0
1

1
0

0
0

0
1

0
0

0 •••
0 •••

0 •••
0 •••

0
0

0
1
0

(r), y = 1.2 «. (3.4)
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Upon completing the multiplication of the matrices and vectors in this, we obtain the
following scalar forms for these addition formulas:

yi(f + r ) = 53#(Oy.-+i-;(T) + J2 yj(t)yn+i+i-j(r), i = 1, 2, . . . , « . (3.5)

Double "angle" formulas for the yj(2t) follow from these by replacing x in these by t.
We next obtain formulas for the yt(t — x). From the initial conditions on the y,(0»

it is easy to see that the j , (t) with odd subscripts are even functions and the yt (t) with
even subscripts are odd functions. Thus, >,•(—0 = (— l)'~lyi(t), i = 1,2, ... ,n.
From this it follows that the formulas for the v,(r - r ) become

yXt - r) = ^( - l ) ' - J v y (Oy, + 1 - j (T) + J2 (-l)"+i-jyj(t)yn+i+i-j(T). (3.6)

When / = 1 and x = t, this becomes

n

1 = y,(0) = y]{t) + £(-l)"+1-'>;(O3W2_y(O (3-7)

and for;' = 3, 5 , . . . ,n — 1,

/ n

0 = j,(0) = ^(-iy-^;a)y/ + ,_y(O + J ] (-l)"+I-^,(O>W;+i-,(O (3-8)

(for i even, these relations are trivial since the terms in their last members cancel
pairwise). If we think of the yt(t) as the ith coordinate of a point (yu y2,... , yn) inn
space, then the vector Y (t) describes a manifold determined by the quadratic relations
in (3.7) and (3.8). (When n = 2, this is the hyperbola y]{t) - y\{t) = 1.)

Observe that we have deduced the above relations without knowing the explicit
formulas of the functions yi(t). We leave it to the reader, using series methods, to
show that

These can also be expressed as

v(t, „ - . F (.JJ + l n-l n + 1 n + j - l t"
n n n n n n"

The double angle formulas obtained from (3.4) and (3.7) and (3.8) then yield identities
among these 0Fn-\ hypergeometric functions.
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[7] Propagation relations for Cauchy problems 235

With the availability of these yj(t) and their addition formulas, we can now return
to the Cauchy problems (3.1). As was noted in Section 1, the solutions of these are
given formally by

Uj(x,t) = Oj{t)<p (3.10)

where Oj(t) = yj(tP(D)). In order that this be well defined, let <p(z) = (p(zt, • • • ,zn)
be entire of growth < 1 in each z;, i.e. \<p(zlt--- , zn)\ < Afexp(5^J=1 ?J\ZJ\">) where
Pj < 1 for all j . Using the quasi inner product approach of [1], we can rewrite (3.10)
in the form

Uj(x,t) = f e-° {yjH) o H(x,q_)) da
Jo

{ ) (3.11)

and these Uj are defined for all real value vectors x and real t. We note that
duj(x,t)/dt = uj^(x,t) for j = 2, 3 , . . . ,n. Upon replacing the addition for-
mulas (3.5) by the corresponding solution operator formulas for (3.1) and applying
them to <p(x), we obtain:

THEOREM 3.1. For all real t and x, the solution propagation relations for the problems
(3.1) are given by the formulas

Uj(x, t + r ) = ^2 Oi+i-j{x)Uj(x, 0 + 5 1 On+i+{-j(r)Uj(x, t),

i = l , 2 , . . . , / i . (3.12)

The corresponding formulas for the Uj(t — r ) follow by replacing r in these by —r
and then using the fact that Oj(—r) = (—1);"' Oy(r). Making use of this fact for the
formula in (3.12) corresponding to / = 1, we also obtain:

THEOREM 3.2. Double "angle" relations satisfied by a solution u\{x, t) of (3.1) are
defined by the formulas

I (n-2)/2 1

0,(o«i(*,o+ Yl oB_2t+i(o«2*+i(jf,o|,
«/2

«,(*, 20 - <p(x) = 2j2On-2k+2(t)u2k(x, t). (3.13)
J t = l

These are higher order versions of the formulas of type (1.5). One can construct
formulas analogous to these for the functions u2(x, t),... , un(x, t). For example,
suppose that / is odd with 1 < i < n — 1. Since M,(*, t — t) = 0, we can add the
second of the formulas in (3.13) with z — t and r = — t to obtain:

https://doi.org/10.1017/S033427000000062X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000062X


236

COROLLARY 3.3.

L. R. Bragg [8]

U,(X, It) =2 J2 Oi-2*(0«2*+l(jC, 0 + 2
*=0

<V/-2*(O"2*C*, 0-

We leave the reader to construct similar formulas for the other uj(x, t).

4. Cauchy problems II

In order to treat cases of (1.7) with a second term in the right hand member, let us
consider the set of Cauchy problems

uf\x, t) = XP2(D)uf\x, t) + fiP\D)Uj(x, t),

uf\x, 0) = <p(x) if k = j - 1 and 0 otherwise, for j = 1, 2, 3, 4.
(4.1)

In these, x is a single space variable and X and \x are positive parameters. Associated
with this is the set of initial value problems in ordinary differential equations

yj*>(0) = 1 if k = j - 1 and 0 otherwise. (4.2)

Now the characteristic roots of the equation in this are given by r2 = —rx,

r, = J(x + y/X2 + 4/n) /2 , r, = iUy/X2+4/x - XJ /2 and r4 = - r 3 . Moreover,

applying Algorithm 2.1, we can show that the addition matrices associated with the
problems (4.2) are given by

M, =

(4.3)

1
0
0

.0

0 0
0 1
1 0
0 X

0
0
0

1
0
X
0

0
0
fl

0

X

0
fJL

0
Xix_

0 "
X
0

2 ~

and M4

0
1
0

^0

=

1
0
0
0

"0
0
0
1

0
0
0

V-

0
0
1
0

0
0
M
0_

0
1
0
X

r
0

X

0_

Now the functions yx{t) and j3(z) are even while y2(t) and j 4 ( 0 are odd. Then it
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[9] Propagation relations for Cauchy problems 237

follows from this and the Mj matrices that

± T) = yi(t)yi(r) ± ix(y4(t)y2(r) + y2(t)y4(r))

y2(t ±x) =

y3(t ± r) = [ydt)y3(r) + y,(T)y3(O] ± y2«)y2(x) ± k[y2(t)y4(r) + y2(z)y4(t)}

+ kMOM*) ± 2

y4(t ± r) = [±yi(t)y4(T)

+ k[±Mt)y*(T) + Mr)ydt)]. (4.4)

Then the "double angle" formulas for these are

y3(2t) = 2yi(t)M0 + yl(0 + 2ky2(t)y4(t) + Xy\{x) + (A2

y4{2t) = 2yi{t)y4(t) + 2M0M0 + 2ky3(t)y4(t). (4.5)

Finally, taking r = t in the formulas (4.4) corresponding to the minus signs, we obtain
the pair of identities

y\{t) - 2ny2(t)y4(t) + tiy\{f) - Xiiy\{f) = 1,

2y,(r)y,(O - 2Xy2(.t)y4{t) - y|(r) + Ay3
2(O - (X2 + M ) J 2 ( 0 - 0- (4-6)

Once again, the solutions of the problems (4.1) can be expressed in the form
Uj(x,t) = Oj(t)<p(x) = yj(tP(D))(p(x) for j = 1,2,3,4 provided that Uj(x,t)
exists. Now the y;-(f) functions can be expressed as linear combinations of the
exp(r;-f) and, hence, the operator Oj{t) can be expressed as a linear combination of
the exponential operators exp(rjtP(D)). If <p(z) is entire of growth < 1, then the
functions exp(ryf P(D))<p(x) can be computed as solutions of a generalized initial
value heat problem [1]. Under these conditions, the «,(*, t) exist and are defined for
all real x and t.

If we replace t in the relations (4.5) by tP(D), we obtain identities among the
operators Oj(2t) and the operators Oj(t). If we apply the resulting identities to the
function <p(x), we obtain the solution propagation relations. The first two of these are
expressed by:

THEOREM 4.1. Let Uj(x, t) denote the solutions of (4.1) for j = 1, 2, 3,4. Then we
have the double "angle" relations

«,(*, 2f) = <9,(0«. (*, 0 + 2/*04(O«2(*, 0 + /*03(O«3(*, 0 + kfiO4(xt),

u2(x, 20 = 20,(O«2(*, 0 + 2fxO3(t)u4(x, t). (4.7)
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Note that we can replace O4(t)u2(x, t) in the first of these by O2(t)u4(x, t). Sim-
ilarly, in the second of these, O\(t)u2(x,t) = 02{t)ux(x,t) and O3(t)u4(x,t) =
O4(t)u3(x, t). Finally, let us note that the first identity in (4.6) translates into the
solution propagation relation

- 2\xO4(t)u2(x, t) + /j,O3(t)u3(x, t) - kfj,O4(t)u4(x, t) =
(4.8)

5. Third order abstract problems

We finally consider the abstract equation

ii"'(0 = Bu"(t) + B2u'{t) - B3u(t), (5.1)

where B generates a continuous group in a Banach space X, subject to the usual initial
conditions

uy\0) = 0 , j 56 1 - 1, and «f "''(0) = (p, i, j = 1, 2, 3, <p e D(B4). (5.2)

The ordinary differential equation problems associated with (5.1) and (5.2) are
given by

/ ' ( O - ky"{t) - X2y'(t) + X3y(t) = 0,

yjj)(O) = 0, j 56 i - l, and yf " 0 (0 ) = 1, i, y = 1,2,3, (5.3)

and their solutions have the explicit forms

yi(t, k) = A.{sinh(A.OA}/2 + cosh(X/) - Xekl/2,

y2(,t,k) = sinh(A0A,

t, k) = I- I (sinh(Aa)A + oeka) da. (5.4)
2 Jo

Moreover, if we apply Algorithm 2.1 to (5.3), we obtain the addition formulas

yi(t + T, k) =->,(*, k)yi(r, k) - k3[y2(t, k)y2(z, k) + y3(t, k)y2(r, k)]

-k4y3(t,k)y3(z,k),

y2(t + r,k) = [yi(t, k)y2(z, k) + y2(t, A)V,(T, k)]

+ k2[y2(t, k)y3(T, k) + y3(t, k)y2(r, k)],

y3(t + r,k) = [>>,(r, k)y3(r, k) + y3(t, A)y,(T, k)] +y2(t, k)y2(x, k)

) + y3(t, k)y2(z, k)] + 2k2y3(t, k)y3(x, k).
(5.5)

https://doi.org/10.1017/S033427000000062X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000062X


[11] Propagation relations for Cauchy problems 239

Formulas (5.4) and (5.5) will now be interpreted for the problems (5.1), (5.2). Let
the operators 0 , (0 be defined by 0 , (0 • <p = yt(t, B) -<p,i = 1, 2, 3 and let GB(0
denote the group of operators noted in the introduction. Then we have

«i (0 = Ol(t)-<p = -Bw2(t) + u;,(0 - -=BGB{f) • <P'

u2(t) = 02(r) • <p = w2(t),

1 f
" 3 ( 0 = O 3 ( 0 • <P = - / {w2{o) + CTGB(CT) • <p)d<7, (5.6)

where the functions wx (t) and u>2(0 are defined as in the example in the introduction.
Choosing x = t and A. = B in (5.5), we deduce:

THEOREM 5.1. 77ze double "angle" relations satisfied by the solutions of (5.1), (5.2)
are given by the formulas

«,(20 = 0 , (0 • «.(0 - 2B3O3(0 • u2(t) - B4O3(0 • «3(0,

«2(2O = 2O2(f) • n,(0 + 2B2O3(0 • «2(0,

«3(2O = 203(O • «i(0 + O2(t) • u2(t) + 2O3(r) • «2(0

+ 2B203(O-«3(O.

Since n is odd for this problem, there is no convenient way to compute the evaluations
Oi(t-x)<p, ( = 1,2,3.
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