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1. Introduction
The article [Klo20] contains a significant error in Lemma 2.14, used in the core Theorem
4.1. We describe here how to fix the error, changing slightly an assumption in Theorem 4.1
while leaving all main results intact. A consolidated version of the article is available from
https://arxiv.org/abs/1711.08052v3.

It is easy to find counter-examples to the original Lemma 2.14, e.g. for the full shift, it
suffices to consider a generic potential depending on a single coordinate. I apologize to
readers of the previous version for this embarrassing mistake and warmly thank Manuel
Stadlbauer for pointing out this error to me, much more gently than was deserved.

2. Weighting a coupling by a normalized potential
We start by some additional definitions.

Definition 1. Given a coupling P and a normalized potential A : � → R, we define PA =
(eAt (x̄) d�t

x,y(x̄, ȳ))t ,x,y and we say that PA has ω-decay rate F when for some constant
C = C(A), for all t and for all x, y,∫

ω ◦ d(xt , yt )e
At (x̄) d�t

x,y(x̄, ȳ) ≤ CF(t , ω ◦ d(x, y)).

Here, P is then said to have stable ω-decay rate F when the above holds for all bounded,
normalized A.

The role of the constant C is to allow a factor depending on A, but the decay rates we
will consider (exponential or polynomial) are all defined up to a constant anyway. Observe
that since A is assumed to be normalized,∫

eAt (x̄) d�t
x,y(x̄, ȳ) =

∫
eAt (x̄) dmt

x(x̄) = 1 for all t , x, y,

so that for each (t , x, y), eAt (x̄) d�t
x,y(x̄, ȳ) is a probability measure; however, Definition 1

really is an extension of the original definition of ω-decay rate since PA is not a coupling:
its first marginal is the Markov chain MA = (eA(x1) dmx(x1))x but its second marginal is
different, and might not even be a Markov chain (in PA, the weight in the pairing of a x̄
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with a ȳ is given by At(x̄), independently of ȳ). A sufficient condition to have stable decay
is given in §4.

3. Replacements for Lemmas 2.12, 2.14 and Theorem 4.1
We shall use a slightly extended version of Lemma 2.12 (the added part is a direct
consequence of Lemma 2.9).

LEMMA 2. Let P = (�t
x,y)x,y,t be a coupling of M, t ∈ N and μ, ν ∈ P(�). If P is

ω-Hölder with constant C, then

Wω(L ∗t
0 μ, L ∗t

0 ν) ≤ C Wω(μ, ν).

If P has ω-decay rate F, then

Wω(L ∗t
0 μ, L ∗t

0 ν) ≤ F(t , Wω(μ, ν))

(in other words, L ∗
0 also has decay rate F in the metric Wω).

We replace Lemma 2.14 by the following lemma.

LEMMA 3. For all flat normalized potentials A ∈ C ω(�), there exists a constant B > 0
such that for all t and �t

x,y-almost all (x̄, ȳ),

eAt (x̄)−Bω◦d(x,y) ≤ eAt (ȳ) ≤ eAt (x̄)+Bω◦d(x,y).

In particular, there exists a constant C > 0 such that

1
C

eAt (x̄) ≤ eAt (ȳ) ≤ CeAt (x̄).

Proof. By flatness,

eAt (ȳ) ≤ e|At (ȳ)−At (x̄)|eAt (x̄) ≤ eBω◦d(x,y)eAt (x̄) ≤ eBω(diam �)︸ ︷︷ ︸
C

eAt (x̄)

and similarly eAt (ȳ) ≥ e−Bω◦d(x,y)eAt (x̄).

Theorem 4.1 should then be replaced by the following statement, where the assumption
on the decay of P is replaced by the decay of PA (for the same ω and F).

THEOREM 4. Let M be a transition kernel on a compact metric space �, and let ω be a
modulus of continuity. Let A ∈ C ω(�) be a flat, normalized potential and set L = LM,A.

Assume M admits a coupling P such that PA has ω-decay with decay function F and
corresponding half-life τ = τ1/2 : (0, +∞) → N.

Then there exist constants C > 0 and k ∈ N such that for all μ, ν ∈ P(�) with
Wω(μ, ν) =: r , it holds

Wω(L ∗kτ(r/k)μ, L ∗kτ(r/k)ν) ≤ 1
2 Wω(μ, ν)

and

Wω(L ∗tμ, L ∗t ν) ≤ C Wω(μ, ν) for all t ∈ N.

https://doi.org/10.1017/etds.2022.74 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.74


3540 B. R. Kloeckner

In particular:
• if F is exponential, then τ(r) is bounded and so is kτ(r/k), so that L ∗

M,A decays
exponentially in the metric Wω, and LM,A has a spectral gap on C ω(�);

• if F is polynomial, then τ(r) ≤ D/rα so that kτ(r/k) ≤ D′/rα and L ∗
M,A decays

polynomially, with the same degree.

We provide the complete proof, very similar to the original one.

Proof.

Step 1. Construct a transport plan between L ∗t δx and L ∗t δy .

Here we need the normalization assumption to ensure these two measures are both of
the same mass. Fix t ∈ N, x, y ∈ � and observe that L ∗t δx = (et )∗(eAt

dmt
x), where

et : �t → � is the projection to the last coordinates. We seek an efficient transport plan
between L ∗t δx and L ∗t δy , and we will construct it as (et , et )∗�, where � is a transport
plan between eAt

dmt
x and eAt

dmt
y . What we are given by the coupling P is a transport

plan �t
x,y between mt

x and mt
y , and we will modify it to take into account the eAt

factors.
Define a function

a : �t × �t → R

(x̄, ȳ) 
→ min(eAt (x̄), eAt (ȳ))

so that a d�t
x,y is a positive measure whose marginals are less than eAt

dmt
x and eAt

dmt
y ,

respectively. There must thus exist some positive measure 	 on �t × �t such that

� := a d�t
x,y + 	

is a probability measure with marginals exactly eAt
dmt

x and eAt
dmt

y . We want to bound
above the ω-cost of �; the basic idea is that the first term will be small by the decay
hypothesis, the second one will be small because 	 has small mass.

Step 2. Bound from above the mass of 	.

By Lemma 3, for �t
x,y almost all (x̄, ȳ) and for some constant B,

a(x̄, ȳ) ≥ eAt (x̄)e−Bω◦d(x,y);

using that A is normalized, it comes that the total mass of a d�t
x,y is at least e−Bω◦d(x,y).

Since � has finite diameter, up to enlarging B, this total mass can be bounded from below
both by a constant e−B ∈ (0, 1) and by 1 − Bω ◦ d(x, y). The total mass of 	 is therefore
bounded above as follows:∫

1 d	 ≤ min(Bω ◦ d(x, y), 1 − e−B).

Step 3. Bound the cost of � for a modified metric.

We introduce a new modulus of continuity

ω′ = min(Kω, ω(diam �)),
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where K is a positive constant to be specified later on (independently of x, y). We
have ω′ ◦ d(x, y) ≥ ω ◦ d(x, y) for all x, y ∈ � and ω′ ≤ Kω, so that ω ◦ d and ω′ ◦
d are Lipschitz-equivalent metrics on �, and as a consequence, Wω and Wω′ are
Lipschitz-equivalent (with the same constants).

We decompose the cost as∫
ω′ ◦ d(xt , yt ) d�(x̄, ȳ) =

∫
ω′ ◦ d(xt , yt )a(x̄, ȳ) d�t

x,y(x̄, ȳ)

+
∫

ω′ ◦ d(xt , yt ) d	(x̄, ȳ).

For the first term, we get from ω-decay of PA (with D only depending on A):∫
ω′ ◦ d(xt , yt )a(x̄, ȳ) d�t

x,y(x̄, ȳ) ≤ K

∫
ω ◦ d(xt , yt )e

At (x̄) d�t
x,y(x̄, ȳ)

≤ DK · F(t , ω ◦ d(x, y))

≤ DK · F(t , ω′ ◦ d(x, y)).

For the second term, we distinguish two cases. If ω ◦ d(x, y) ≥ ω(diam �)/K , then ω′ ◦
d(x, y) = ω(diam �) = ω′(diam �) and we bound the mass of 	 by 1 − e−B , so that∫

ω′ ◦ d(xt , yt ) d	(x̄, ȳ) ≤ (1 − e−B)ω′(diam �)

≤ (1 − e−B)ω′ ◦ d(x, y).

If ω ◦ d(x, y) ≤ ω(diam �)/K , then ω′ ◦ d(x, y) = Kω ◦ d(x, y) and we bound the mass
of 	 by Bω ◦ d(x, y):∫

ω′ ◦ d(xt , yt ) d	(x̄, ȳ) ≤ Bω ◦ d(x, y)ω′(diam �)

≤ Bω(diam �)

K
ω′ ◦ d(x, y).

Choosing K large enough to ensure Bω(diam �)/K ≤ 1 − e−B , we get in both cases∫
ω′ ◦ d(xt , yt ) d�(x̄, ȳ) ≤ DK · F(t , ω′ ◦ d(x, y)) + (1 − e−B)ω′(d(x, y)). (1)

Step 4. Wω(L ∗tμ, L ∗t ν) ≤ C Wω(μ, ν) for all t ∈ N, for all μ, ν ∈ P(�).

Since F(t , r) � r , the previous step implies in particular that �, as a restricted coupling
at time t, is ω′-Hölder; but ω ≤ ω′ ≤ Kω on [0, diam �] so that � is also ω-Hölder. Then
the claim follows from Lemma 2.

Step 5. There exist θ1 ∈ (0, 1) and k1 ∈ N such that for all r, all x, y ∈ � such that ω′ ◦
d(x, y) ≥ r and all t ≥ k1τ(r/2k1),

Wω′(L ∗t δx , L ∗t δy) ≤ θ1ω
′ ◦ d(x, y).

We choose any θ1 ∈ (1 − e−B , 1) and k1 large enough to ensure DK/2k1 + (1 − e−B)

≤ θ1, and then apply equation (1) (note that k1τ(r/2k1) ≥ τ(r) + τ(r/2) + · · · +
τ(r/2k1)).
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Step 6. There exist θ ∈ (0, 1) and k2 ∈ N such that for all r, all μ, ν ∈ P(�) such that
Wω′(μ, ν) = r and all t ≥ k2τ(r/k2),

Wω′(L ∗tμ, L ∗t ν) ≤ θ Wω′(μ, ν).

Choose any θ ∈ (θ1, 1) and let η > 0 be small enough to ensure θ1 + Cη ≤ θ , where C
is the constant of Step 4. Let μ, ν be any two probability measures and let � ∈ �(μ, ν) be
optimal for Wω′(μ, ν) =: r . Define s := ηr and E := {(x, y) | ω′ ◦ d(x, y) ≥ s}. For all
t ≥ k1τ(s/2k1), using Lemma 2.9, we obtain

Wω′(L ∗tμ, L ∗t ν) ≤
∫

Wω′(L ∗t δx , L ∗t δy) d�(x, y)

≤
∫

E

Wω′(L ∗t δx , L ∗t δy) d�(x, y)

+
∫

�×�\E
Wω′(L ∗t δx , L ∗t δy) d�(x, y)

≤ θ1

∫
E

ω′ ◦ d(x, y) d�(x, y) + C

∫
�×�\E

ω′ ◦ d(x, y) d�(x, y)

≤ θ1 Wω′(μ, ν) + Cηr

≤ θ Wω′(μ, ν).

It suffices to choose k2 ≥ 2k1/η.

Step 7. Conclude.

We deduce that the θ decay time τω′
θ (r) of L ∗ with respect to Wω′ is at most k2τ(r/k2).

Then for all n ∈ N,

τω′
θn (r) ≤ k2τ(r/k2) + k2τ(θr/k2) + · · · + kτ(θn−1r/k2)

and taking n large enough to ensure θn ≤ 1/2K , we get

τω′
1/2K(r) ≤ k2nτ(θn−1r/k2) ≤ kτ(r/k) for some k.

Now since Wω ≤ Wω′ ≤ K Wω, the decay time for L ∗ with respect to Wω satisfies τω
1/2 ≤

τω′
1/2K , and we are done.

4. A criterion for stable ω-decay
Last, we give a criterion that can be used to check the new hypothesis in Theorem 4.
We assume that P is itself Markovian, that is, is given by (�t

x,y)x,y = (πx,y)x,y ◦ · · · ◦
(πx,y)x,y for some πx,y ∈ �(mx , my).

Definition 5. We say that a Markov transition kernel (πx,y)x,y on �2 is non-dilating
and contracting with positive probability when there exists λ, p ∈ (0, 1) such that for all
x, y ∈ �:
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• for πx,y-almost all (x1, y1), d(x1, y1) ≤ d(x, y);
• there exists a set Ex,y ⊂ �2 such that for all (x1, y1) ∈ Ex,y , d(x1, y1) ≤ λd(x, y) and

πx,y(Ex,y) ≥ p.

LEMMA 6. Let (πx,y)x,y be a Markovian coupling of M and A be a bounded potential
normalized with respect to M. If (πx,y)x,y is non-dilating and contracting with positive
probability, then (eA(x1) dπx,y(x1, y1))x,y is non-dilating and contracting with positive
probability.

Proof. Both points are essentially obvious: eA(x1) dπx,y(x1, y1) is absolutely continuous
with respect to πx,y and

∫
Ex,y

eA(x1) dπx,y ≥ p min(eA) > 0. For the claim to make sense

though, one has to observe that (eAπx,y)x,y is a Markov transition kernel, which follows
from the normalization hypothesis:∫

1eA(x1) dπx,y(x1, y1) =
∫

1eA(x1) dmx(x1) = 1.

LEMMA 7. If (πx,y)x,y is a Markov transition kernel on �2 which is non-dilating and
contracting with positive probability, then for some λ ∈ (0, 1), all (x, y) ∈ �2 and all
t ∈ N, ∫

d(xt , yt ) dπt
x,y(x̄, ȳ) ≤ λt d(x, y).

Here we denoted by πt
x,y the iterates of the Markov transition kernel, so that when

(πx,y)x,y comes from the coupling P, πt
x,y = �t

x,y .

Proof. It suffices to consider the case t = 1, then conclude by induction. However, this
follows from the definition: denoting by λ1 the contraction factor of πx,y on Ex,y ,∫

d(x1, y1) dπx,y(x1, y1) =
∫

Ex,y

d(x1, y1) dπx,y(x1, y1)

+
∫

�2\Ex,y

d(x1, y1) dπx,y(x1, y1)

≤ pλ1d(x, y) + (1 − p)d(x, y)

then we take λ = pλ1 + (1 − p).

COROLLARY 8. Assume P is Markovian with a transition kernel that is non-dilating and
contracting with positive probability. Then for all bounded normalized potentials A, PA

has exponential decay with respect to ωα+β log for all α ∈ (0, 1) and all β ∈ R; and PA

has polynomial decay of degree β with respect to ωβ log for all β > 0.

Proof. Let A be a bounded, normalized potential. Then for all modulus of continuity ω,
some λ ∈ (0, 1) and all x, y, t :∫

ω ◦ d(xt , yt ) d(eAt

�t
x,y)(x̄, ȳ) ≤ ω

( ∫
d(xt , yt ) d(eAt

�t
x,y)(x̄, ȳ)

)

≤ ω(λt d(x, y)).
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It only remains to observe that for all α′ < α, ωα+β log(λ
t r) � λα′tωα+β log(r) and that

ωβ log(λ
t r) = ωβ log(r)

(1 + t · ωβ log(r)1/β log(1/λ))β
,

which provides exactly the polynomial decay of degree β.

To apply this machinery in practice, we can replace Lemma 5.3 by the following lemma.

LEMMA 9. Let M be a weakly contracting 1-to-k transition kernel and P be the natural
coupling. For all bounded normalized potentials A, PA has exponential decay with respect
to ωα+β log for all α ∈ (0, 1) and all β ∈ R, and PA has polynomial decay of degree β

with respect to ωβ log for all β > 0.

Proof. The natural coupling is Markovian, with transition kernel

πx,y =
∑
j

1
k
δ(xη(j),yσ(j)),

which is non-dilating and contracting with positive probability thanks to the hypothesis
that M is weakly contracting. Corollary 8 provides the conclusion.

Let us in particular consider the one use of the original Theorem 4.1 I know of in the
literature, Example 3.13 in [CMRS21]. They consider a full shift (with a weakly regular
potential); the Markov chain to be considered jumps randomly uniformly from the current
point x to one of its antecedents by the shift map and is thus a contracting 1-to-k transition
kernel, so that Lemma 9 applies, providing the necessary hypothesis for Theorem 4.

Other statements and proofs in [Klo20] can be left as they are.
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