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1. Introduction. All 2-by-2 matrices in this paper are to be viewed as linear
fractional transformations on the extended complex plane C*. Let L+ and L~ be the open
half-planes to the right and left, respectively, of the extended imaginary axis L. Let A be
the set of complex 2-by-2 matrices A with real trace and determinant ±1 such that
A(L+)czL~. Let ft = ftiUft2Uft3Uft4, where

fti = {AeA:detA = l , | t rA|>2},

ft2 = {A e A:det A = 1, |tr A| = 2cos(7r/q) for some integer q> 2},

ft3 = {AeA:trA = O},

and
O, = {AeA:detA = - l , A 2 e A } .

Observe that the elements of ftxUf^ have infinite order, while those of ft2Uft3 have
finite order.

We will prove that whenever A e ft and B e ft do not both have a fixed point on L,
then the group (A,B') is the discrete free product (A)*(B'), where B' denotes the
transpose of B. The case where both A and B have a fixed point on L is also discussed.
We show in addition that if A eft and Beft are real, then (A,B') is the discrete free
product (A)*(B') if and only if for every real u,

-.1)•

The significance of these results is discussed in §3. In particular, we show there that the
latter result implies that the free products in [2, Theorem 1] are all discrete. We thereby
fill a gap in [2, §4], wherein the discreteness was proved only in a special case.

Discrete free products of two cyclic matrix groups have been extensively studied,
along different lines. For example, Purzitsky [5] has given necessary and sufficient
conditions for any group (A, B) generated by real linear fractional transformations A and
B of determinant 1 to be the discrete free product (A)*(B). (See also [6].)

2. Definitions and notation. Let P denote the set of matrices
a b

of determinant

a b
± 1 such that either a, b ^ 0 ^ c, d or a, b < 0 < c, d. We reserve the notation M =

c a
for a matrix (or transformation) in ft n P. In fact, the symbol M can be used to denote an
arbitrary real matrix in ft, in view of Lemma 5. Given a transformation M, we stipulate
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70 RONALD J. EVANS

without loss of generality that a, b=zO>c, d. If, moreover, c(a + d)sO, M is said to be
plussed.

Let wM and u)'M be the fixed points of M, with |<«>MI —IG'MI if the fixed points are on
the extended real line U*, and with I m % > 0 otherwise. Note that coM is finite, because

1 *
otherwise <oM = a>'M=<x> and M would have the form , which contradicts the fact

that Me P. Note also that Rew M s0 , since M(L+)aL~. Let LM denote the extended
vertical line through <oM. Let LJ, and L« denote the open half-planes to the right and left
of LM, respectively.

If £ is a nonsingular 2-by-2 matrix and si is a set of 2-by-2 matrices, write
siiE = {AE: A e s£}, where AE = EAE~\ A 2-by-2 matrix S is said to be an L-map if
S(L+) = L+. Note that if S and Sj are L-maps, then so are S"1 and S°Sl. In addition,
S(L) = L, S(L~) = L-, AS = A, and fts = ft.

Let 1 = 1
0

0
1

T =
0

1/u

- M

0
, and Wr =

1 r
0 - 1

. Write T= T, and W= Wo.

Given 1/<=C*, let cl U denote the closure of U in C* and let ccl U denote the
complement of the closure of U in C*.

3. Main results. We now present the main theorems. The proofs are postponed
until §6.

THEOREM 1. Let A, Be Cl and C = BW. Suppose that A and C do not both have a fixed
point on L. Then (A, C) is the discrete free product (A)*{C).

THEOREM 2. Let A, Bed and C = BW. If A and B are real, then (A, C) is the discrete
free product (A)*(C) if and only if for every real u, {A, C}<£{W, Tu}.

Consider the Hecke group (Sx, T) generated by SA = 1

0

A

1
and T =

0

1

- 1

0
. It is

well-known that when A = 2cos(ir/q) for an integer q ^ 3, then (Sk, T) is the discrete free
product (TSK)*(T), and that when A is a complex number of modulus s=2, then {SK, T) is
the discrete free product (SK)*(T). Theorem 1 is sufficiently general to imply these results.
For, if A = 2cos(ir/q) for an integer q > 3, apply Theorem 1 with A = TSK, B = T. If A e C,

|A|>2, apply Theorem 1 with A = S?, B = TG, where G= .

If, in Theorem 1, C is denned to be B' instead of Bw, the resulting statement is
equivalent. To see this, we need only show that ftw = ft'. Assume that for some TX 6 L+

and some AeA, A"1(T1) = T2£C1(L+). Then A ( T 2 ) € L + , SO for some r 3 e L + close to T2,

A ( T 3 ) £ L + . This contradicts the fact that A(L+)^L~. Thus A~\L+)<=:L~ for all AeA.

This proves that A = A~\ Thus ft = ft~\- so ft' = Tft~1T = ftT. Since TW= is an

L-map, ft™ = ft. Therefore, ft' = ftT = ftw.
Similarly, if C is defined to be B' instead of Bw in Theorem 2, the resulting

statement is equivalent. Another equivalent formulation of Theorem 2 is as follows. "Let
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_ 0-1/2 , and let C = B'. If A and B are real, then (A, C) is
1 1

the discrete free product (A)*(C) if and only if, for every real pair r, s satisfying

s 2 - r2= 1, we have {A, C}<£ I r , , 11". In the notation of [2], it follows from
[\-s -r 1 0 | J

[2, Lemma 9] and Lemma 5 below that J c A v ; hence K c f l v , so Theorem 2 now
immediately implies that the free products in [2, Theorem 1] are all discrete.

Theorem 2 is, in fact, an extension of a theorem of Newman [4, Theorem 15, p. 162].
For if in Theorem 2 the determinants of A and B are restricted to be 1, then Theorem 2
becomes a restatement of Newman's theorem (see Lemma 5 below).

The following simple example shows that the requirement in Theorem 2 that A and
.Then A G O , Ceilw,B are real cannot be dropped. Let A =

but (A, C) is not the free product (A)*(C), since {ACf = I.

1

0

i

- 1
and C =

1
i

0

- 1

4. Real conjugates of complex matrices. Theorem 4 (below) will enable us to focus
attention on those matrices in il which are real. First a lemma is proved.

LEMMA 3. If Neil fixes °o, then N=WP for some p. If Neil fixes 0, then N = Wp for
some p.

PProof. Suppose that N(°°) = °°, so N =
0 8

. For each T G L + , NT = («/5)T + /3/8e

L . Let (/> = arg(a/8) with -TT<^I^TT. Suppose that ifre(-ir, 0]. If r e L + has sufficiently
large modulus and arg T is sufficiently close to TT/2, then N T 6 L + , a contradiction. Suppose
then that <p e (0, IT). If T 6 L+ has sufficiently large modulus and arg T is sufficiently close to
-TT/2, then NreL+, a contradiction. Thus t//= IT, i.e., a/8<0.

Suppose that a& U. Since tr N is real/8 = a. Since a/a is a negative number of

modulus 1, a = —a. Thus N = a P
0 - a

, i.e., N = Wp for some p.

Suppose that a e U. Since a/S<0, detiV<0. Thus Ne€l3 or Nefl4. For all reL+,
= (a2/82)T + j3(a + 8)/82. If r e R is sufficiently large, then N2reL+. Thus N2£A, so

, i.e., N= Wp for some p. This,. Therefore, Neft3. It follows that N =

proves the first assertion.

Suppose that Neil fixes 0. Then, since TW =

a
0 -

0
1

P
a

1
0

is an L-map, N^eil and N™

fixes oo. By the first assertion, NTW = Wp for some p, so N = Wlp.

a 0
THEOREM 4. Let N = efl. Then there is an L-map S such that SNS l is real.

Proof. Note that the fixed points w and w' of N lie in cl(L ), since N(L+)<=L .
Define wj = Re m, (o2 = Im w, w'i = Re w', and w'2 = Im a/.
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Case 1: to, co'eL. Assume that o> = a>'. If
0 1

', conjugate N by the L-map
1 " f o r. Thus we may assume that both fixed points of N are oo. Then N =

some j3, which contradicts the fact that NeA. Hence co
0 1

'. If neither &> nor co' is oo,

conjugate N by the L-map

conjugate N by the L-map

— ft)' — ft>(ft> —

1 - c o '

,, ; if one of co or co' is °°, say o> = oo, then

0 1
(which fixes o» = »). Thus we may assume that «/ = 0

and to = oo. By Lemma 3, N= Wp and N= W'v- for some pair p, v. Hence N =
1 0
0 - 1

Case 2: &>'e L, o> e L . If <» V oo, conjugate N by the L-map
0 1

. Then we may
1 -co'

assume that w' = oo. We may moreover assume that &> = - ! , for otherwise conjugate N by

the L-map

1 P

1 ft>2

0 -io>
(which fixes o)' = oo). Thus N =

a a-8
0 5

. By Lemma 3, N =

0 - 1
for some p. Therefore, N =

0 - 1

Case 3: &», o>'eL and o> = o»'. We may assume that &> = - 1 , for otherwise conjugate

N by the L-map I ft)2

0 - i tO
. Thus N =

that yl R. Let TJ = arg 7. Let S =

SNS'1 =

1 k

1-7 - 7

1 + 7
. If 7 e R, then N is real, so suppose

'1 l + 7x

Case 4: to, co'eL",

k 1

, where 7i = I7I

, where k = i tan(rj/2). Then S is an L-map and

ft)'. We may assume that a>' = - 1 , otherwise conjugate JV by

the L-map

equation

1 O)2

0 -ift);
. Assume that o)2 ^ 0. Let S' = xi 1

1 xi
, where x is a solution of the

Since the discriminant of this quadratic equation is

-1 ) 2 +o>

it follows that xeU. Therefore S' is an L-map. Since S'(-l) = - l and S'(co)eR by
definition of x, we see that S'N(S')"1 fixes the two distinct real points - 1 and S'(OD). It
may thus be assumed without loss of generality that a>2 = 0, i.e., that N fixes - 1 and <a,

<r/2-y jE
where o><0, co^-1 . Write N =

N(-l ) = - l and N(OJ) = (O imply that /3 =

.„ , where cr = trN. The equalities
tr/2+y
and y = (l-co)7/2. Since
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we have
! = 4(a2/4-detN)/(l + a>)2.

Since a and det N are real by the hypothesis Neft, y is real or purely imaginary. If y e R,

. ,— . Then S isthen N is real, so suppose that y is purely imaginary. Let S =

(r/2-z z ( l -
:(l-o>)/2 O-/2 +

real, the proof is complete.

an L-map and SNS 1= , where z = iyJ--Z>. Since this matrix is

5. Lemmas on real matrices in ft.

LEMMA 5. Let N = w have real entries. Then Ne A if and only if NeP.

Proof. Suppose that N e A . It was shown in §3 that A = A ' . Hence N *l
so that either y, z>0 or y, z<0. Further, for all t>0,

wt + x

yt + z

It follows that NeP.

Conversely, suppose that NeP. Then N~1(«>)f£L+, so for all reL+,

sgn Re(N(r)) = sgn{wy|r|2 + xz + (xy + wz)Re T } < 0 .

It follows that NeA. This completes the proof.

The next lemma characterizes those matrices Me ft which map LM onto a straight
line. (Recall that M always denotes a matrix

LEMMA 6. The following are equivalent:
(i) ccEM(LM);

(ii) M= Wb, or both tr M = 0 and detM= 1;
(iii) M(LM) = LM.

Proof. We show that (i) ̂  (ii) ̂  (iii) (note that

e ft with a, b > 0, and c, d sO.)

is obvious).

Case 1: d e t M = l . Suppose that <»eM(LM). If M(oo) = oo, then M =
0 d

, where

o > 0 and d < 0. This contradicts the fact that det M = 1. Hence M(°o) # =», i.e., c < 0. Then
-d/ceLM, so -d/c = RewM. By definition of wM,

-d/c = Re wM = Re{(2c)-1(a -d-y/(a + df-A)}. (1)

It is readily seen that (1) holds if and only if a + d = 0. This proves (ii).
To prove that (ii) =>(iii), suppose that tr M = 0. Then c¥ 0 and by the second equality
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in (1),

M(oo) = ale = RewM = Re w'M.

Thus M maps each of wM, w'M and oo into LM, so M{LM) = LM.

Case 2: d e t M = - l . In this case, o>M, <o'Me U*. Suppose that (i) holds. Assume that
c <0. Then -die e LM, so -d/c = Re &>M = «M. Then

2 + 4)/2c,

which is impossible. Hence c = 0, i.e., M(oo) = oo. By Lemma 3, M= Wb. This proves (ii).
To prove that (ii)=>(iii), note that if M= Wb, then M fixes the line {z :Re z = -b/2} =

LM. This completes the proof.

Define n to be the set of (real) Mefi which satisfy (ii) of Lemma 6. Define DM as
follows. If Me II, let DM = LM. If Me fl4, let DM be the interior of the circle M^(LM). For
all other Me ft, let DM be the interior of the circle M(LM). If Meft4, define D'Mto be the
interior of the circle M(LM). (See Figures 1 through 5.) Note that since M is real and
conformal, the circles M{LM) and M^iL^ are orthogonal to the real axis.

«- L

Figure 1. Mefl Figure 2. M€fl l t M plussed

Lemmas 7 through 11 (below) show that if M is plussed (recall that this means
c(a + d)>0), then M{L+

M) = DM when M£ft4, and M(Lt,) = D M and M^L^) = DM when
Meft4. Lemmas 8 through 11 also verify that DM and DMare positioned as suggested by
Figures 2 through 5. We note that if % e l , then Mei l 3 . For if u)M = ir, then M =

when r>0 , and M is as given in Lemma 3 when r = 0.

LEMMA 7. If Mell, then M{L^) = DM.

Proof. First suppose that M= W6. Then M maps the points -fc/2, -b/2+ i, oo to -fc/2,
-b/2- i, oo, respectively. Thus M fixes LM but reverses its orientation. Therefore M(Lti) =
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Figure 3. Mefl2, M plussed

M(LM)

Figure 4. Mefl3\Il

M(LM)

Figure 5. Meft4, M plussed
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Now suppose that M = withdetM=l . If c = 0, then de tM<0; hence
a b
c -a

Therefore, M maps the points (a - i)lc, ale, (a + i)/c to (a - i)/c, °°, (a + i)lc, respectively.
Consequently, M fixes LM but reverses its orientation, so M(Ljf) = L^ = DM. This
completes the proof.

LEMMA 8. If Me f̂  is plussed, then DM <=• L~ n L M and M(L^) = DM.

Proof. It suffices to show that <aM < M(°o) < 0. For then, clearly DM <= L~ C\ Lj,. Also,
since the upper half-plane is invariant under M, the sequence M(coM), M(wM + i), M(«)
will determine a clockwise orientation on M(LM), so M(L^ = DM.

If c = 0, then by Lemma 3, M= Wp for some p. Then det M= - 1 , which contradicts
the fact thatvMefti. Hence c<0. As M is plussed, <r = a + d<0. Hence VCT 2 -4<-CT.

Dividing by -2c and then adding (a - d)/2c, we have

o)M = (a - d - Vo-2-4)/2c < a/c = M(°o).

Finally, a/csO because Me.P. This completes the proof.

LEMMA 9. If Me ft2 is plussed, then DM c L~ and M{L^ = DM.

Proof. It suffices to show that Re wM < M(<») < 0. As shown in the proof of Lemma 8,
c<0, a/c<0, and a + d < 0 . Thus,

Re (oM = (a - d)/2c < a/c = M(<») < 0.

LEMMA 10. J /Mef t 3 \n , then DM^L~M and M(Ltd = DM.

Proof. It suffices to show that M(°°) < a>M. For then, clearly DM c L^,. Also, since M
maps the upper half-plane to the lower half-plane, the sequence M(wM), M(a>M + j), M(a>)
will determine a clockwise orientation on M(LM), so M ( L ^ = DM.

If c = 0, then M=WP for some p, which contradicts the fact that M£I1. Hence c < 0
and

This completes the proof.

LEMMA 11. If Me£l4 is plussed, then D'M<=LM DM<^L~C\L+
M, M(Ltt) = D'M, and

Proof. As in the proof of Lemma 10, it suffices to show that

o) < 0.

Write
a2 b

. Since Mis plussed, c2 = c(a + d )^0 . Also, a2 + d2 = (a + d)2 + 2>2.
c2

This proves that M2 is plussed and that M^eftj. Thus, the inequality wM<M2(oo)^0
follows exactly as in the proof of Lemma 8.

If c = 0, then by Lemma 3, M= Wp, which contradicts the fact that Meil4. Hence
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c<0 . Clearly,

Dividing by -2c and then adding (a - d)/2c, we have

M (oo) = a/c < (a - d - V(a + d)2 + 4)/2c = wM.

This completes the proof.

U DM. If M is plussed, then Mn(ccl 0M) <= 0M for all n suchLEMMA 12. Define CM =

that M V 7 .

Proo/. Case 1: Mefl j . We have M by Lemma 8, and hence

Also, M~1(CC1DM) = LMC:CC1DM, and hence

M-"(ccl DM) c L~M (n > 0).

(2)

(3)

Since ecl 0M = LMHCC1 DM, the desired result follows from (2) and (3).
Case 2: Mefl2- Let q be the order of M. Fix TecclCM- Let 1^ =

{zeC*:|fi(z)| = |(i(T)|} where fj= 1 ~Wf . If T G R , then KT= R*. If T £ R , then K, is a
1 ~wM

circle through T such that M(KT) = XT. (This can be shown using the formula f(W(r)) =
p~2t(r) which occurs in [1, p. 112].) If I m r X ) , then K r c{z : Imz>0} and wM is inside
K,; if Im T < 0, then K,.c {z : Im z < 0} and o>'M is inside K^. Thus K, n CM is an arc or a
ray. (See Figure 6.) By Lemma 9, M(Lt^ = DM and hence also M-1(ccl DM) = L^.
Consequently, M(T) e CM and M~X(T) € CM. We claim that the points T, M(T), . . . , M""1^)
occur in that cyclic order on Kr. To see this, choose a complex linear fractional
transfoimation Y such that Y(°o) and Y(0) are the fixed points of M. Then X= Y-1AfY =

for some complex u^ 0. We have a = Xq(a) = u2qa for all a, so u2q = 1. Since

Figure 6
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MeO, , u2 = exp(±27TJ/q). Let a = Y ^ T ) . The points a, X(a) ,X 2 (a) , . . . , Xq-\a) occur
in that cyclic order on Y^K,. This proves the claim. It follows that the points
M(T), . . . , Mq~\j) all lie on K, D 0M. Thus M"(T) e 0M for all n such that M" * 7.

Case 3: Meft3. By Lemmas 7 and 10,

M(ccl 0M) = Af(L£) = DM cr L M = 0M-

Since M is an involution, this is the desired result.
Case 4: MeO4. By Lemma 11, M 2 (L^ = D M c L j ( , and hence

(4)

Also, M~2(ccl DM) = L M C ccl DM, and hence

M-2"(cclDM)crLMC<7M („>()). (5)

For all n>0 , we have, by (5) and Lemma 11,

M~2n+\L+
M) = M-2"(D'J c M-2n(ccl DM) c 0M. (6)

For all n>0 , we have, by (4) and Lemma 11,

M 2 - 1 ^ ) <= M~l(DM) = D^<= L-Mcz 0M. (7)

The desired result now follows from (4), (5), (6) and (7). This completes the proof.

6. Proofs of Theorems 1 and 2.

Proof of Theorem 1. By Theorem 4, there exist L-maps d and Q2 such that
X=Qi1AQ1 and Y=Q21BQ2 are real. Since Aeil and d is an L-map, XeCl.
Similarly, Ye ft. We may assume without loss of generality that X is plussed, otherwise
replace A by A"1. Similarly, assume that Y is plussed. Let Z=YW (recall that

W = . Note that Z = Q^CQj, where Q3 = Q^. Define 6X and CY as in LemmaJ. Note that Z Q^CQj, where Q3 Q^. Define 6X and CY

12. Note that Cx
ci<~ and W(€Y)<=L+ (see Figures 1 through 5). Since d and Q3 are

L-maps, C! = d ( ( 9 x ) c L " and C3= 03(W(CY))cL+. Define F=ccl((?1U C3). Since, by
hypothesis, at least one of A and C fixes no point of L, we have F ^ 0 . To see this,
suppose, for example, that A fixes no point of L. Then X fixes no point of L, so
L~nccl(Cx)# 0 (see Figures 1 through 5). Thus L~nccl(0i)* 0 , so F * 0 .

To show that (A, C) is the discrete free product (A)*{C), we will show that for every
nontrivial reduced word U in (A, C), U(F)nF= 0 . To show this, it suffices to prove that
for all integers n such that An^I,

An(F\J03)c0lt (8)

and that for all integers n such that Cn^ I,

Cn(FD0l)^03. (9)

We give an example to illustrate why it suffices to prove (8) and (9). Let T £ F and let U
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be the reduced word A5CT3A4. By (8), r1 = A4re01. By (9), T2 = C~3
Tl e €3. By (8),

U SO U
Putting M=X in Lemma 12, we have X"(ccl 0x)c 0x for all n such that X V I .

Since

it follows that A"(ccl P,)cOl t for all n such that A V I . This yields (8). Putting M= Y in
Lemma 12, we have WZnW(ccl 0y)<= 0Y for all n such that Z V I. Hence C"(ccl 03)c 03

for all n such that C" # I. This yields (9) and completes the proof.

Before proving Theorem 2, we prove the following lemma.

LEMMA 13. Let A and Cbe linear fractional transformations of order 2 such that A ̂  C
and AC is not elliptic. Then (A, C) is the discrete free product (A)*(C).

Proof. The reduced words in (A, C) are the words alternating in the symbols A and
C, e.g., ACACACA. Since A* C, AC* I. Since AC is not elliptic, AC has infinite order.
Hence (A, C) = (A)*(C). Moreover, by [3, Theorem IE, p. 87], (AC) is discrete. Since
[(A, C): (AC)] = 2, it follows that (A, 0 is discrete. This completes the proof.

Proof of Theorem 2. If {A, C}<={W, Tu) for some u, clearly (A, C) is not the free
product of (A) and (C). Conversely, assume that for every u, {A, C}<£{W, Tu}. It may be
assumed that both A and C have a fixed point on L, otherwise (A, C) is the discrete free
product (A)*(C) by Theorem 1. As W(L) = L, B also has a fixed point on L. Let

Me {A, B} (where we write M = with a, b > 0 and c, d s 0). If M fixes 0 or <», then
c

M= Wf, (with b>0) or M=W'C (with c^O) by Lemma 3. If M fixes a point ui

(0<u<°°), then an easy calculation shows that M =
a -cu2

. But since the diagonal
c a

elements of M cannot both be positive or negative, a = 0. Hence M = Tu. Since for every a,
{A, C}?z:{W, Tu}, <A, C) is one of the following groups or their transposes:

G1 = (Wr,Ws) (r<0,s>0), (10)

G2 = (W'r,Ws) (r>0,s>0), (11)

G3 = (WS,TU) (s*0), (12)

or

G4 = <TU,TU) ( u > o > 0 ) . (13)

Let Ut and V, be the first and second given generator of Gh respectively (i =
1,2,3,4). It remains to show that each Gf is the discrete free product (l)j)*(Vj). It is
easily checked that Ui and V; are involutions and that 1/jVj is not elliptic (i = 1,2, 3,4).
(Note, for example, that U3V3 is loxodromic.) Hence the result follows from Lemma 13
and the proof is complete.

https://doi.org/10.1017/S0017089500003748 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500003748


80 RONALD J. EVANS

7. Transformations with fixed points on L. We discuss the structure of (A, C) where
A eft, Ceftw, and both A and C have a fixed point on L. The case where these fixed
points are equal is treated in Theorem 14; the remaining case is treated in Theorem 15.

THEOREM 14. Let A eft and Ceftw. Suppose that A and C both fix weL. Then
(A, C) is the discrete free product (A)*{C) unless A = C.

Proof. If w^oo, conjugate A and C by the L-map
0
1 -c

. Thus we may assume

without loss of generality that w = <». By Lemma 3, A = Wp and C = W™= W_v for some

pair p, v. Suppose that
from Lemma 13.

C. Then AC =
0 1

for some u^O. The result thus follows

THEOREM 15. Let As SI and Ce ilw. Suppose that A fixes o>AeL and C fixes o>c e L,
where wA^ wc. Then there exists an L-map S such that As = Wp and Cs = Wv for some
pair p, v. Also (A, C) is the discrete free product (A)*(C) if and only if A^C and AC is
not elliptic.

Proof. We begin by proving the first assertion. If
0 1

0, conjugate A and C by the

. Thus it may be assumed without loss of generality that <oA = ». Let S

(note that « c # <oA = oo). Then As(<») = oo and Cs(0) = 0. Since

L-map
i -<oA

be the L-map

(Cs)weft and (Cs)w(0) = 0, it follows from Lemma 3 that AS=WP for some p and
C w s = WLV for some v. Hence Cs = Wv.

To prove the second assertion, assume that AC is elliptic. If AC has finite order, then
(A, C) is not the free product (A)*(C). If AC has infinite order, then (AC), and hence
(A, Q, is not discrete. Conversely, assume that A^C and that AC is not elliptic. By the
first assertion of this theorem, A and C are involutions. Thus (A, C) is the discrete free
product (A)*(C) by Lemma 13.
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