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Abstract
We derive a sufficient condition for a sparse randommatrix with given numbers of non-zero entries in the
rows and columns having full row rank. The result covers both matrices over finite fields with independent
non-zero entries and {0, 1}-matrices over the rationals. The sufficient condition is generally necessary as
well.
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1. Introduction
1.1 Background andmotivation
Few subjects in combinatorics have had as profound an impact on other disciplines as combi-
natorial random matrix theory. Prominent applications include powerful error correcting codes
called low-density parity check codes [47], data compression [1, 52] and hashing [19]. Needless to
mention, random combinatorial matrices are of keen interest to statistical physicists, too [40]. It
therefore comes as no surprise that the subject has played a central role in probabilistic combina-
torics since the early days [31–34]. The current state of affairs is that the theory of dense random
matrices is significantly more advanced than that of sparse ones with a bounded average number
of non-zero entries per row or column [50, 51]. This is in part because concentration techniques
apply more easily in the dense case. Another reason is that the study of sparse random matri-
ces is closely tied to the investigation of satisfiability thresholds of random constraint satisfaction
problems, an area where many fundamental questions still await a satisfactory solution [4].

Perhaps the most basic question to be asked about any random matrix model is whether the
resulting matrix will likely have full rank. This paper contributes a succinct sufficient condition
that covers a broad range of sparse random matrix models. As we will see, the condition is essen-
tially necessary as well. The main result can be seen as a satisfiability threshold theorem as the full
rank property is equivalent to a random linear system of equations possessing a solution w.h.p.
This formulation generalises a number of prior results such as the satisfiability threshold theorem
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for the random k-XORSAT problem, one of the most intensely studied random constraint satis-
faction problems (e.g. [2, 19, 21, 28, 44]). In addition, the main theorem covers other important
random matrix models, including those that low-density parity check codes rely on [47].

The classical approach to tackling the full rank problem is the second moment method
[3, 4]. This technique was pioneered in the seminal work on the k-XORSAT threshold of Dubois
and Mandler [21]. Characteristic of this approach is the emergence of complicated analytic opti-
misation problems that encode entropy-probability trade-offs resulting from large deviations
problems. Tackling these optimisation problems turns out to be rather challenging even in rel-
atively simple special cases such as random k-XORSAT, as witnessed by the intricate calculations
that Pittel and Sorkin [44] and Goerdt and Falke [23] had to go through. For the general model
that we investigate here this proof technique thus appears futile.

We therefore pursue a totally different proof strategy, largely inspired by ideas from spin glass
theory [40, 41]. In statistical physics jargon, the second moment method constitutes an ‘annealed’
computation. This means that we effectively average over all random matrices, including atypical
specimens apt to boost the average. By contrast, the present work relies on a ‘quenched’ strategy
based on a coupling argument that implicitly discards such pathological events. In effect, we will
show that a truncated moment calculation confined to certain benign ‘equitable’ solutions suffices
to determine the satisfiability threshold. This part of the proof is an extension of prior work of
(some of) the authors on the normalised rank and variations on the random k-XORSAT problem
[6, 10]. In addition, to actually compute the truncated second moment we need to determine the
precise expected number of equitable solutions. To this end, we devise a new proof ingredient
that combines local limit theorem techniques with algebraic ideas, particularly the combinatorial
analysis of certain integer lattices. This technique can be seen as a generalisation of an argument
of Huang [27] for the study of adjacency matrices of d-regular random graphs.

Let us proceed to present the main results of the paper. The first theorem deals with random
matrices over finite fields. As an application we obtain a result on sparse {0, 1}-matrices over the
rationals.

1.2 Results
We work with the comprehensive random matrix model from [10]. Hence, let d≥ 0, k≥ 3 be
independent integer-valued random variables with P(d= 0)< 1 and E[d2+η]+E

[
k2+η

]
<∞

for an arbitrarily small η > 0. Let (di, ki)i≥1 be independent copies of (d, k) and set d=E[d], k=
E[k]. Moreover, let d and k be the greatest common divisors of the support of d and k, respec-
tively. Further, let n> 0 be an integer divisible by k and let m be a Poisson variable with mean
dn/k, independent of (di, ki)i≥1. Routine arguments reveal that the event

n∑
i=1

di =
m∑
j=1

kj (1.1)

occurs with probability �(n−1/2) for such n [10, Proposition 1.10]. Given (1.1), we then define
the simple random bipartite graph G=Gn(d, k) on a set {a1 . . . , am} of check nodes and a set
{x1, . . . , xn} of variable nodes as a uniformly random simple graph such that the degree of ai
equals ki and the degree of xj equals dj, for all i, j. The existence of such a graph is proven in [10,
Proposition 1.10]. Following coding theory jargon, we refer to G as the Tanner graph. The edges
of G are going to mark the positions of the non-zero entries of the random matrix. The entries
themselves will depend on whether we deal with a finite field or the rationals.

1.2.1 Finite fields
Suppose that q≥ 2 is a prime power, let Fq signify the field with q elements and let χ be a random
variable that takes values in the set F∗q = Fq \ {0} of units of Fq. Moreover, let (χ i,j)i,j≥1 be copies
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of χ , mutually independent and independent of the di, ki, m and G. Finally, let A=An(d, k, χ)
be them× n-matrix with entries

Ai,j = 1
{
aixj ∈ E(G)

} · χ i,j.
Hence, the i-th row of A contains ki non-zero entries and the j-th column contains dj non-zero
entries.

The following theorem provides a sufficient condition for A having full row rank. The con-
dition comes in terms of the probability generating functions D(x) and K(x) of d and k. Since
E[d2]+E[k2]<∞, we may define

� : [0, 1]→R, z �→D
(
1−K ′(z)/k

)− d
k
(
1−K(z)− (1− z)K′(z)

)
. (1.2)

Theorem 1.1. Let d≥ 0, k≥ 3 and q be a fixed prime power such that d= gcd(supp(d)) and q are
coprime. If

�(z)<�(0) for all 0< z≤ 1, (1.3)
then A has full row rank over Fq w.h.p.

Observe that the function� does not depend on q. Hence, neither does (1.3).
The sufficient condition (1.3) is generally necessary, too. Indeed, ref. [10, Theorem 1.1]

determines the likely value of the normalised rank of A:
rk(A)
n

P−→ 1− max
z∈[0,1]

�(z) as n→∞. (1.4)

Since k≥ 3, definition (1.2) ensures that �(0)= 1− d/k and thus n�(0)∼ n−m w.h.p. Hence,
(1.4) implies that rk(A)≤m−�(n) w.h.p. unless �(z) attains its maximum at z= 0. In other
words, A has full row rank only if �(z)≤�(0) for all 0< z≤ 1. Indeed, in Section 1.3 we will
discover examples that require a strict inequality as in (1.3). The condition that q and d be coprime
is generally necessary as well, as we will see in Example 1.7 below.

Let us emphasise that (1.4) does not guarantee that A has full row rank w.h.p. even if (1.3) is
satisfied. Rather due to the normalisation of the l.h.s. (1.4) only implies themuchweaker statement
rk(A)=m− o(n) w.h.p. Hence, in the case that (1.3) is satisfied, Theorem 1.1 improves over the
asymptotic estimate (1.4) rather substantially. Unsurprisingly, this stronger result also requires a
more delicate proof strategy.

We finally remark that condition (1.3) in combination with (1.4) enforces that d≤ k. Moreover,
if d= k, then �(0)= 0≤D(0)=�(1), such that condition (1.3) also cannot be satisfied for such
d, k. Thus, d< k for all matrices to which Theorem 1.1 applies, and the subject of Theorem 1.1
is the rank of rectangular matrices with asymptotically more columns than rows. For sparse and
square Bernoulli matrices, Glasgow, Kwan, Sah and Sawhney [24] recently provided precise com-
binatorial descriptions of the exact real rank. The method of [24] applies to both symmetric and
asymmetric Bernoulli matrices and relates the real rank to the Karp-Sipser core of the associated
graph models. Theorem 1.1 also does not make a quantitative statement about the rate of con-
vergence. While such a quantification could in principle be obtained from our proof, we do not
expect it to be very close to optimal and have therefore not pursued this.

1.2.2 Zero-onematrices over the rationals
Apart from matrices over finite fields, the rational rank of sparse random {0, 1}-matrices has
received a great deal of attention [50, 51]. The random graph G naturally induces a {0, 1}-
matrix, namely the m× n-biadjacency matrix B=B(G). Explicitly, Bij = 1{aixj ∈ E(G)}. As an
application of Theorem 1.1 we obtain the following result.

Corollary 1.2. If (1.3) is satisfied then the random matrix B has full row rank overQ w.h.p.
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Since (1.4) holds for random matrices over the rationals as well, Corollary 1.2 is optimal to the
extent that B fails to have full row rank w.h.p. if maxx∈[0,1] �(x)>�(0). Moreover, in Example
1.4 we will see that B does not generally have full rank w.h.p. unless x= 0 is the unique maximiser
of�.

1.2.3 Fixed-degree sequences
In Section 2.3, we consider amore general model forA, where the sequences (di)i≥1 and (kj)j≥1 are
specified instead of being obtained by taking i.i.d. copies of d and k. Under analogous conditions
like (1.3) together with some additional ‘smoothness’ conditions for d1, . . . , dn and k1, . . . , km,
we also show that the matrix A corresponding to the fixed-degree setting has full row rank (see
Proposition 2.1).

1.3 Examples
To illustrate the power of Theorem 1.1 and Corollary 1.2 we consider a few instructive special
cases of distributions d, k, χ .
Example 1.3 (random k-XORSAT). In random k-XORSAT we are handed a number of indepen-
dent random constraints ci of the type

ci = yi1 XOR · · · XOR yik, (1.5)

where each yij is either one of n available Boolean variables x1, . . . , xn or a negation¬x1, . . . ,¬xn.
The obvious question is to determine the satisfiability threshold, that is, the maximum number of
random constraints that can be satisfied simultaneously w.h.p.

Because Boolean XOR boils down to addition over F2, this problem can be rephrased as the
full rank problem for the random matrix A with q= 2, k= k fixed to a deterministic value and
d∼ Po(d) for a parameter d> 0. To elaborate, because the constraints ci are drawn uniformly
and independently, we can think of each as tossing k balls randomly into n bins that represent
x1, . . . , xn. If there are m∼ Po(dn/k) constraints ci, the joint distribution of the variable degrees
coincides with the distribution of (d1, . . . , dn) subject to the condition (1.1). Furthermore, the
random negation patterns of the constraints (1.5) amount to choosing a random right-hand side
vector y for which we are to solve Ax= y.

Since the generating functions of d, k work out to be D(z)= exp(d(z− 1)) and K(z)= zk, we
obtain

�d,k(z)= exp(− dzk−1)− d
k

(
1− kzk−1 + (k− 1)zk

)
.

Thus, Theorem 1.1 implies that for a given k≥ 3 the threshold of d up to which random
k-XORSAT is satisfiable w.h.p. equals the largest d such that

�d,k(z)<�d,k(0)= 1− d/k for all 0< z≤ 1. (1.6)

A few lines of calculus verify that (1.6) matches the formulas for the k-XORSAT threshold derived
by combinatorial methods tailored to this specific case [19, 21, 41, 44]. Theorem 1.1 also encom-
passes the generalisations to other finite fields Fq from [6, 23]. (For d= 6.5 and k= 7 see the left
of Fig. 1.)

Example 1.4 (identical distributions). An interesting scenario arises when d, k are identically
distributed. For example, suppose that P[d= 3]= P[d= 4]= P[k= 3]= P[k= 4]= 1/2. Thus,
D(z)=K(z)= (z3 + z4)/2 and

�(z)= 256z12 + 768z11 + 864z10 − 1808z9 − 4959z8 − 3780z7 + 6111z6 + 10584z5 − 3234z4 − 4802z3

4802
.
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Figure 1. Left: The function � from Example 1.3 with D(z)= exp(6.5(z− 1)) and K(z)= z7. Right: The function � from
Example 1.4 with D(z)= K(z)= (z3 + z4)/2.

Figure 2. Left: The function� from Example 1.5 with D(z)= z3, K(z)= z8. Right: The function� from Example 1.6 with D(z)=∑∞
�=1 ζ (3.5)−1z��−3.5 and K(x)= x3.

This function attains two identical maxima, namely�(0)=�(1)= 0 (See the right of Fig. 1). Since
the degrees ki, di are chosen independently subject only to (1.1), the probability that A has more
rows than columns works out to be 1/2+ o(1). As a consequence, A cannot have full row rank
w.h.p. This example shows that the condition that 0 be the uniquemaximiser of�(x) is generally
necessary to ensure that A has full row rank. The same applies to the rational rank of B.

Example 1.5 (fixed d, k). Suppose that both d= d, k= k≥ 3 are constants rather than genuinely
random. Then

�(z)=
(
1− zk−1

)d − d
k

(
1− kzk−1 + (k− 1)zk

)
.

Clearly, A cannot have full row rank unless d≤ k, while Theorem 1.1 implies that A has full row
rank w.h.p. if d< k (See the left of Fig. 2). This result was previously established via the second
moment method [42]. But in the critical case d= k the function�(z) attains its identical maxima
at z= 0 and z= 1. Specifically, 0=�(0)=�(1)>�(z) for all 0< z< 1. Hence, Theorem 1.1
does not cover this special case. Nonetheless, Huang [27] proved that the random {0, 1}-matrix B
has full rational rank w.h.p. The proof is based on a delicate moment computation in combination
with a precise local expansion around the equitable solutions.
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Example 1.6 (power laws). Let P(d= �)∝ �−α for some α > 3 and k= k≥ 3. Thus,

D(z)= 1
ζ (α)

∞∑
�=1

z�

�α
, K(z)= zk,

�(z)=D
(
1− zk−1

)
− ζ−1(α)ζ (α− 1)

k

(
1− kzk−1 + (k− 1)zk

)
.

Since

�′(z)=−(k− 1)zk−2D′
(
1− zk−1

)
+ ζ−1(α)ζ (α− 1)

k

(
k(k− 1)(zk−1 − zk−2)

)
< 0,

the function�(z) is strictly decreasing on (0, 1). Therefore, (1.3) is satisfied (For α = 3.5 and k= 3
see the right of Fig. 2).

Example 1.7 (zero row sums). Theorem 1.1 requires the assumption that q and the g.c.d. d of the
support of d be coprime. This assumption is indeed necessary. To see this, consider the case that
q= 2, χ = 1, d= 4 and k= 8 deterministically. Then the rows of A always sum to zero. Hence,
A cannot have full row rank.

2. Overview
In contrast to much of the prior work on the rank problem, random k-XORSAT and random con-
straint satisfaction problems generally, the proofs of the main results do not rely on an ‘annealed’
second moment computation. Such arguments appear to be far too susceptible to large deviation
effects to extend to as general a randommatrix model as we deal with here. Instead, we proceed by
way of a ‘quenched’ argument that enables us to discard pathological events. As a result, it suffices
to carry out the moment calculation in the particularly benign case of ‘equitable’ solutions.

This proof strategy draws on but substantially generalises tools that were developed towards
the approximate rank formula (1.4) and variations on random k-XORSAT [6, 10]. In addition, to
actually prove that A has full rank with high probability we will need to carry out a meticulous,
asymptotically exact calculation of the expected number of equitable solutions. A key element
of this analysis will be a delicate analysis of the lattices generated by certain integer vectors
that encode conceivable equitable solutions. This part of the proof, which generalises a part of
Huang’s argument for the adjacency matrices of random d-regular graphs [27], combines local
limit techniques with a whiff of linear algebra.

To describe the proof strategy in detail let us first explore the ‘annealed’ path, discover its pit-
falls and then apply the lessons learned to develop a workable ‘quenched’ strategy. The bulk of the
proof deals with the random matrix model from Section 1.2.1 over the finite field Fq; the rational
case from Corollary 1.2 comes out as an easy consequence.

In order to reduce fluctuations we are going to condition on the σ -algebra A generated by
m, (ki)i≥1, (di)i≥1 and by the numbers m(χ1, . . . , χ�) of checks of degree �≥ 3 with coefficients
χ1, . . . , χ� ∈ F∗q . We write PA = P [ · |A] and EA =E [ · |A] for brevity.

2.1 Moments and deviations
We already alluded to how the full rank problem for the random matrix A over Fq can be viewed
as a random constraint satisfaction problem. Indeed, suppose we draw a right-hand side vector
y ∈ Fm

q independently of A. Then A has full row rank w.h.p. iff the random linear system Ax= y
admits a solution w.h.p. For if rkA<m, then the image AFn

q is a proper subspace of Fm
q and

thus the random linear system Ax= y has a solution with probability at most 1/q. Naturally, the
random linear system is nothing but a random constraint satisfaction problem withm constraints
and n variables.
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Over the past two decades the second moment method has emerged as the default approach
to pinpointing satisfiability thresholds of random constraint satisfaction problems [3, 4]. Indeed,
one of the first success stories was the random 3-XORSAT problem, which boils down directly to a
full rank problem over F2 [21]. In fact, as we saw in Example 1.3, to mimic 3-XORSAT we just set
q= 2, d= Po(d) for some d> 0 and k= 3 deterministically. In addition, draw y ∈ Fm

2 uniformly
and independently of everything else.

We try the second moment method on the number Z= Z(A, y) of solutions to Ax= y given
A. Since y is independent of A, for any fixed vector x ∈ Fn

2 the event Ax= y has probability 2−m.
Consequently,

EA[Z]= 2n−m. (2.1)

Hence, (2.1) recovers the obvious condition that we cannot have more rows than columns. Since
m∼ Po(dn/3), (2.1) boils down to d< 3.

The secondmoment method now rests on the hope that we may be able to show thatEA[Z2]∼
EA[Z]2. Then Chebyshev’s inequality would imply Z∼EA[Z] w.h.p., and thus, in light of (2.1),
that Ax= y has a solution w.h.p.

Concerning the computation of EA[Z2], because the set of solutions is either empty or a
translation of the kernel, we obtain

EA[Z2]=
∑
σ ,τ∈Fnq

PA

[
Aσ =Aτ = y

]= ∑
σ ,τ∈Fnq

PA

[
Aσ = y

]
PA [σ − τ ∈ kerA]

=EA [Z]EA| kerA|. (2.2)

To calculate the expected kernel size we notice that the probability that a vector x is in the kernel
depends on its Hamming weight. For instance, the zero vector always belongs to the kernel, while
the all-ones vector 1 does not w.h.p. More systematically, invoking inclusion/exclusion, we find
that for a vector x of Hamming weightwwe havePA [x ∈ kerA]∼ [

(1+ (1− 2w/n)3)/2
]m . Since

the total number of such vectors comes to
(n
w
)
, we obtain

EA| kerA| =
n∑

w=0

(
n
w

)(
1+ (1− 2w/n)3

2

)m
. (2.3)

Taking logarithms, invoking Stirling’s formula and parametrising w= zn, we simplify (2.3) to

log EA| kerA| ∼ n · max
z∈[0,1]

−z log z− (1− z) log (1− z)+ m
n
log

1+ (1− 2z)3

2
(cf. [21]).

(2.4)

If we substitute z= 1/2 into (2.4), the expression further simplifies to (n−m) log 2. Hence, if
the maximum is attained at another value z = 1/2, then (2.4) yields EA| kerA| � 2n−m and the
second moment method fails.

Figure 3 displays (2.4) for d= 2.5 and d= 2.7. While for d= 2.5 the function takes its max-
imum at z= 1/2, for d= 2.7 the maximum is attained at z≈ 0.085. However, the true random
3-XORSAT threshold is d≈ 2.75 [21]. Thus, the naive second moment calculation falls short of
the real threshold.

How so? The expression (2.4) does not determine the ‘likely’ but the expected size of the kernel,
a value prone to large deviations effects. Indeed, because the number of vectors in the kernel scales
exponentially with n, an exponentially unlikely event that causes an exceptionally large kernel may
end up dominating EA| kerA|. Precisely such an event manifests itself in the left local maximum
in Fig. 3. Moreover, as we approach the satisfiability threshold such large deviations issues are
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Figure 3. The r.h.s. of (2.4) for d= 2.5 (blue) and d= 2.7 (red) in the interval [0, 12 ].

compounded by a diminishing error tolerance. Indeed, while for d= 2.5 the value at z= 1/2 just
swallows the spurious maximum, this is no longer the case for d= 2.7.

For random k-XORSAT Dubois and Mandler managed to identify the precise large devia-
tions effect at work. It stems from fluctuations of a densely connected sub-graph of G called the
2-core, obtained by iteratively pruning nodes of degree less than two along with their neigh-
bours (if any). Dubois and Mandler pinpointed the 3-XORSAT threshold by applying the second
moment method to the minor A(2) induced by G(2) while conditioning on the 2-core having its
typical dimensions.

The technical difficulty is that the rows of A(2) are no longer independent. Indeed, A(2) is dis-
tributed as a random matrix with a truncated Poisson d(2) ∼ Po≥2(d′) with d′ = d′(d, k)> 0 as
the distribution of the variable degrees. Unfortunately, the given-degrees model leads to a fairly
complicated moment computation. Instead of the humble one-dimensional problem from (2.4)
we now face parameters (zi)i≥2 that gauge the fraction of variables of each possible degree i set
to one. Additionally, on the constraint side we need to keep track of the number of equations
with zero and with two variables set to one. Of course, these variables are tied together through
the constraint that the total Hamming weight on the variable side matches that on the constraint
side.

With a deal of diligence Dubois and Mandler managed to solve this optimisation problem.
However, even just the step on to check degrees k> 3 turns out to be tricky because now we need
to keep track of all the possible ways in which a k-ary parity constraint can be satisfied [19, 44].
Yet even these difficulties are eclipsed by those that result from merely advancing to fields of size
q= 3 [23].

Not to mention entirely general degree distributions d, k and general fields Fq as in Theorem
1.1. The ensuing optimisation problem comes in terms of variables (zi)i∈suppd that range over
the space P(Fq) of probability distributions on Fq. Additionally, there is a second set of vari-
ables (ẑχ1,...,χ�)�∈suppk, χ1,...,χ�∈suppχ to go with the rows of A whose non-zero entries are precisely
χ1, . . . , χ�. These variables range over probability distributions on solutions σ ∈ F�q to χ1σ1 +
· · · + χ�σ� = 0. In terms of these variables we would need to solve
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max
∑
σ∈Fq

E
[
(d− 1)zd(σ ) log zd(σ )

]

− d
k
E

⎡
⎢⎢⎢⎣

∑
σ1,...,σk∈Fq

χ1,1σ1+···+χ1,kσk=0

ẑχ1,1,...,χ1,k(σ1, . . . , σk) log ẑχ1,1,...,χ1,k(σ1, . . . , σk)

⎤
⎥⎥⎥⎦ (2.5)

s.t. E[dzd(τ )]=E

⎡
⎢⎢⎢⎣

∑
σ1,...,σk∈Fq

χ1,1σ1+···+χ1,kσk=0

k1 {σ1 = τ } ẑχ1,1,...,χ1,k(σ1, . . . , σk)

⎤
⎥⎥⎥⎦ for all τ ∈ Fq.

On an high level, (2.5) is not so different from (2.4): The first summand in (2.5) corresponds
to the number of vectors with a specified number of components of each field element, taking
into account the different numbers of non-zero entries of the columns. The remaining part cor-
responds to the probability that any such vector satisfies all equations, taking into account the
number of field elements of each type in a random equation. Finally, while the frequencies of
the field elements appear decoupled for rows and columns in the first line of (2.5), the second
line ensures that only compatible frequencies are considered after all. As in random 3-XORSAT, a
simple calculation shows that the value of (2.5) evaluated at the ‘equitable’ solution

zi(σ )= q−1 ẑχ1,...,χ�(σ1, . . . , σ�)= q1−� for all i, χ1, . . . , χ� (2.6)

hits the value (1− d/k) log q, which matches the normalised first moment n−1 logEA[Z].
In summary, the secondmomentmethod hardly seems like a promising path towards Theorem

1.1. Not only does (2.5) seem unwieldy as even for very special cases of d, k an analytic solution
remains elusive [23]. Even worse, just in the case of ‘unabridged’ random k-XORSAT large devi-
ations effects may cause spurious maxima. In effect, even if we could miraculously figure out the
precise conditions for (2.5) being attained at the uniform solution, this would hardly determine
for what d, k the random matrix A actually has full row rank w.h.p.

2.2 Quenching and truncating
The large deviations issues ultimately result from our attempt at computing the mean of | kerA|,
a (potentially) exponential quantity. The mathematical physics prescription is to compute the
expectation of its logarithm instead [40]. In the present algebraic setting this comes down to com-
puting the mean of the nullity nulA= dim kerA, or equivalently of the rank rkA= n− nulA.
This ‘quenched average’ is always of order O(n) and therefore immune to large deviations effects.
In fact, even if on some unfortunate event of exponentially small probability exp(−�(n)) the
kernel of A were quite large, the ensuing boost to EA[nulA] remains negligible.

Yet computing the quenched average EA[nulA] does not suffice to prove Theorem 1.1. Indeed,
(1.4) already provides an asymptotic formula for EA[nulA]. But as we saw due to the normalisa-
tion on the l.h.s. (1.4) merely implies that rkA=m− o(n) w.h.p. To actually prove that rkA=m
w.h.p. we will combine the quenched computation with a truncated moment argument calcula-
tion. Specifically, we will harness an enhanced version of (1.4) to prove that under the assumptions
of Theorem 1.1 the only combinatorially meaningful solutions to (2.5) asymptotically coincide
with the equitable solution (2.6), around which we will subsequently expand (2.5) carefully.
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To carry this programme out, let xA = (xA,i)i∈[n] ∈ Fn
q be a random vector from the kernel

of A. Consider the event

O=
⎧⎨
⎩A :

∑
σ ,τ∈Fq

n∑
i,j=1

∣∣P [
xA,i = σ , xA,j = τ |A

]− q−2
∣∣= o(n2)

⎫⎬
⎭ . (2.7)

Then by Chebyshev’s inequality onO w.h.p. we have
n∑
i=1

1
{
di = �, xA,i = σ

}= P [d= �] n/q+ o(n) for all σ ∈ Fq, � ∈ suppd.

Hence, on O the only combinatorially relevant value of z�(σ ) from (2.5) is the uniform 1/q for
every �, σ , because for every � asymptotically almost all kernel vectors set about an equal number
of variables of degree � to each of the q possible values. Thanks to this observation will prove that
w.h.p.

EA [Z · 1 {A ∈O}]∼EA [Z]∼ qn−m and (2.8)
EA

[
Z2 · 1 {A ∈O}]∼EA [Z]2 , (2.9)

provided that (1.3) is satisfied. Theorem (1.1) will turn out to be an easy consequence of (2.8)–(2.9)
and Corollary 1.2 of Theorem 1.1.

Thus, the challenge is to prove (2.8)–(2.9). Specifically, while the second asymptotic equality
in (2.8) is easy, the proof of the first is where we require knowledge of the ‘quenched average’
(1.4). In fact, instead of just applying (1.4) as is we will need to perform a ‘quenched’ compu-
tation for a slightly enhanced random matrix from scratch. Second, the key challenge towards
the proof of (2.9) is to obtain an exact asymptotic equality here, rather than the weaker esti-
mate EA

[
Z2 · 1 {A ∈O}]=O(EA [Z]2 ). This will require a meticulous expansion of the second

moment around the uniform solution, which will involve the detailed analysis of the lattices
generated by integer vectors that encode conceivable values of zi, ẑχ1,...,χ� from (2.5).

2.3 Specified d1, . . . , dn and k1, . . . , km
Given two positive integers n andm=m(n), consider now two arrays (d(n)i )1≤i≤n and (k(m)

i )1≤i≤m
of non-negative integers such that for all n,

n∑
i=1

d(n)i =
m∑
j=1

k(m)
j .

We aim to find conditions on the arrays (d(n)i )1≤i≤n and (k(m)
i )1≤i≤m and the sequence

(m(n))n≥1 which guarantee full row rank for the corresponding matrix in this fixed-degree setting
as n→∞ and are analogous to (1.3). Throughout, we abbreviate m(n)=m. Let dn denote a uni-
formly chosen element from the sequence (d(n)i )1≤i≤n and kn a uniformly chosen element from the
sequence (k(m)

i )1≤i≤m. Assume that (d(n)i )1≤i≤n and (k(m)
i )1≤i≤m satisfy the following conditions in

terms of the uniformly chosen degrees dn and kn:

(P1) There exist (integer-valued) random variables d, k≥ 0 with P(d= 0)< 1 and P(k≥ 3)= 1
such that dn

d−→ d and kn
d−→ k;

(P2) E[d],E[k]<∞ and E[dn]→E[d], E[kn]→E[k] as n→∞.
(P3) E[d2],E[k2]<∞ and E[d2n]→E[d2], E[k2n]→E[k2] as n→∞.
(P4) For some η > 0, E[d2+η]<∞ and E[d2+ηn ]→E[d2+η].
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(P5) m∼E [d] n/E [k].
(P6) For allm and j ∈ [m], k(m)

j ≥ 3.

(P7) For all n, gcd (supp(d))= gcd (d(n)i )1≤i≤n).

Conditions (P1)-(P3) correspond to standard regularity conditions for the non-bipartite version
of the configuration model (see Condition 7.8 in [25], for example).

Let D(x) and K(x) denote the probability generating functions for d and k, respectively. We
also abbreviate d=E [d] and k=E [k] as before. We may then define

� : [0, 1]→R, z �→D
(
1−K′(z)/k

)− d
k
(
1−K(z)− (1− z)K′(z)

)
. (2.10)

Finally, to make the difference to the i.i.d. degree case apparent, we denote the random matrix
constructed by generating a uniformly random simple Tanner graph based on the fixed-degree
sequences (d(n)i )1≤i≤n and (k(m)

i )1≤i≤m by A. Again, the non-zero entries of A are i.i.d. copies of
the random variable χ .

Proposition 2.1. Suppose that (d(n)i )1≤i≤n and (k(m)
i )1≤i≤m satisfy

∑n
i=1 d

(n)
i =∑m

j=1 k
(n)
j for all n

and properties (P1)-(P7). Let d= gcd (supp(d)). If q and d are coprime, and

(a) A ∈O w.h.p.;
(b) �(z)<�(0) for all 0< z≤ 1;

then A has full row rank over Fq w.h.p.

Remark 2.2. As mentioned above, conditions (P1)-(P3) are natural when considering the con-
figuration model on general specified degree sequences (d(n)i )1≤i≤n and (k(m)

i )1≤i≤m. In particular,
these are sufficient and necessary conditions to allow translation of results from the pairingmodel.
A more detailed discussion and references can be found below Lemma 3.6. Conditions (P4) and
(P7) are needed in the proof of a local limit theorem for the random vector ρσ ∈ZFq , where
ρσ (s) := ∑n

i=1 di1{σ i = s} for a uniformly random σ ∈ Fn
q and s ∈ Fq.Whilem=�(n) is essential

throughout the whole proof, the precise asymptotics in (P5) are only used in the final conclusion in
the proof of Proposition 2.1. Finally, we chiefly employ condition (P6) in the proof of Claim 7.12.

We first prove Proposition 2.1. Then, we prove Theorem 1.1 by showing that w.h.p. A ∈O
if m∼ Po(dn/k), (di)i≥1 and (kj)j≥1 are i.i.d. copies of d and k. Theorem 1.1 then follows from
Proposition 2.1.

In the current case,A simply is the σ -algebra generated by the numbersm(χ1, . . . , χ�) of equa-
tions of degree �≥ 3 with coefficients χ1, . . . , χ� ∈ F∗q , since all degrees are deterministic. When
A is used as a subscript, it serves as a notation that suppresses explicit mentioning of m, (d(n)i )ni=1
and (k(m)

i )1≤i≤m. As discussed above, it suffices to prove (2.8) (withm=m) and (2.9) in the more
general model A. We observe that (2.8) follows immediately by hypothesis (a) of Proposition 2.1,
as w.h.p.,

EA

[
Z · 1 {

A ∈O
}]

=
∑
A∈O

∑
σ∈Fn

∑
y∈Fm

PA

[
A=A, y= y

]
1
{
Aσ = y

}= qn−m
∑
A∈O

PA [A=A]∼ qn−m. (2.11)

Thus, to complete the proof for Proposition 2.1 it suffices to prove (2.9).
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2.4 The truncated first moment
We start our discussion by verifying condition (a) of Proposition 2.1 for i.i.d. di and kj. Hence, let
us restrict to the ‘i.i.d. version’ of A, that is, d1, . . . , dn and k1, . . . , km are i.i.d. copies of d and
k. Although we know the approximate nullity (1.4) of A already, this does not suffice to actually
prove that O is a ‘likely’ event. To this end we need to study a slightly modified matrix instead.
Specifically, for an integer t≥ 0 obtain A[t] from A by adding t more rows that contain precisely
three non-zero entries. The positions of these non-zero entries are chosen uniformly, mutually
independently and independently of everything else, and the non-zero entries themselves are
independent copies of χ . We require the following lower bound on the rank of A[t].

Proposition 2.3. If (1.3) is satisfied then there exists δ0 = δ0(d, k)> 0 such that for all 0< δ < δ0
we have

lim sup
n→∞

1
n
E[nulA[�δn�]]≤ 1− d

k
− δ. (2.12)

The proof of Proposition 2.3 relies on the Aizenman-Sims-Starr scheme, a coupling argument
inspired by spin glass theory [5]. The technique was also used in ref. [10] to prove the rank formula
(1.4). While we mostly follow that proof strategy and can even reuse some of the intermediate
deliberations, a subtle modification is required to accommodate the additional ternary equations.
The details can be found in Section 4.

How does Proposition 2.3 facilitate the proof of (2.8)? Assuming (1.3), we obtain from (1.4)
that nulA/n∼ 1− d/k w.h.p. Hence, (2.12) shows that nearly each one of the additional ternary
rows added to A[�δn�] reduces the nullity. We are going to argue that this is possible only if A ∈O
w.h.p.

To see this, let us think about the kernel of a general M×N matrix A over Fq for a short
moment. Draw xA = (xA,i)i∈[N] ∈ kerA uniformly at random. For any given coordinate xA,i,
i ∈ [N] there are two possible scenarios: either xA,i = 0 deterministically, or xA,i is uniformly dis-
tributed over Fq. (This is because if we multiply xA by a scalar t ∈ Fq we obtain txA ∈ kerA.) We
therefore call coordinate i frozen if xi = 0 for all x ∈ kerA and unfrozen otherwise. Let F(A) be the
set of frozen coordinates.

IfA hadmany frozen coordinates then adding an extra random rowwith three non-zero entries
could hardly decrease the nullity w.h.p. For if all three non-zero coordinates fall into the frozen
set, then we get the new equation ‘for free’, that is, nulA[1] = nulA. Thus, Proposition 2.3 implies
that |F(A)| = o(n) w.h.p. We conclude that xA,i is uniformly distributed over Fq for all but o(n)
coordinates i ∈ [n]. However, this does not yet imply that xA,i, xA,j are independent for most i, j,
as required byO. Yet a more careful argument based on the ‘pinning lemma’ from [10] does. The
proof of the following statement can be found in Section 5.

Proposition 2.4. Assume that (1.3) is satisfied. Then w.h.p. A ∈O.

2.5 Expansion around the equitable solution
In this part, we consider the more general model A, that is, the model in Proposition 2.1. As
outlined earlier, given that we know (2.8), we can establish (2.9) by expanding (2.5) around the
uniform distribution (2.6). At first glance, this may not seem entirely immediate because (2.8) only
appears to fix the variables (zi(σ ))i,σ of (2.5) that correspond to the variable nodes. But thanks to a
certain inherent symmetry property the optimal ẑχ1,...,χ� to go with the check nodes end up being
nearly equitable as well. This observation by itself now suffices to show without further ado that

EA[Z2 · 1{A ∈O}]=O
(
EA[Z · 1{A ∈O}]2) . (2.13)
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Yet the estimate (2.13) is not quite precise enough to complete the proof of Proposition 2.1.
Indeed, to apply Chebyshev’s inequality we would need asymptotic equality as in (2.9) rather than
just an O(·)-bound; Huang [27] faced the same issue in the case d= k constant and q prime. The
proof of this seemingly innocuous improvement actually constitutes one of the main technical
obstacles that we need to surmount.

As a first step, using a careful local expansion we will show that the dominant contribution to
the second moment actually comes from (z�)� such that

∑
�≥0

n∑
i=1

1{di = �}
n

∑
σ∈Fq

|z�(σ )− q−1| =O(n−1/2). (2.14)

But even once we know (2.14) a critical issue remains because we allow general distributions
of degrees d1, . . . , dn, k1, . . . , km and matrix entries χ . In effect, to estimate the kernel size accu-
rately we need to investigate the conceivable frequencies of field values that can lead to solutions.
Specifically, for an integer k0 ≥ 3 and χ1, . . . , χk0 ∈ F∗q let

Sq(χ1, . . . , χk0 )=
⎧⎨
⎩σ ∈ Fk0

q :
k0∑
i=1

χiσi = 0

⎫⎬
⎭ (2.15)

comprise all solutions to a linear equation with coefficients χ1, . . . , χk0 ∈ Fq. For each σ ∈
Sq(χ1, . . . , χk0 ) the vector

σ̂ =
⎛
⎝ k0∑

i=1
1 {σi = s}

⎞
⎠

s∈F∗q

∈Z
F
∗
q (2.16)

tracks the frequencies with which the various non-zero field elements appear. Depending on
the coefficients χ1, . . . , χk0 , the frequency vectors σ̂ may be confined to a proper sub-grid of
the integer lattice. For example, in the case q= k0 = 3 and χ1 = χ2 = χ3 = 1 they span the sub-
lattice spanned by

(1
1
)
and

(0
3
)
. The following proposition characterises the lattice spanned by the

frequency vectors for general k0 and χ1, . . . , χk0 .

Proposition 2.5. Let k0 ≥ 3, let χ1, . . . , χk0 ∈ F∗q and let Mq(χ1, . . . , χk0 )⊆Z
F
∗
q be the Z-module

generated by the frequency vectors σ̂ for σ ∈Sq(χ1, . . . , χk0 ). Then Mq(χ1, . . . , χk0 ) has a
basis (b1, . . . , bq−1) of non-negative integer vectors with ‖bi‖1 ≤ 3 for all 1≤ i≤ q− 1 such that
detZ

(
b1 · · · bq−1

)= q1{χ1=···=χk0 }.
A vital feature of Proposition 2.5 is that the module basis consists of non-negative integer vec-
tors with small �1-norm. In effect, the basis vectors are ‘combinatorially meaningful’ towards our
purpose of counting solutions. Perhaps surprisingly, the proof of Proposition 2.5 turns out to be
rather delicate, with details depending on whether q is a prime or a prime power, among other
things. The details can be found in Section 6.

In addition to the sub-grid constraints imposed by the linear equations themselves, we need
to take a divisibility condition into account. Indeed, for any assignment σ ∈ Fn

q of values to vari-
ables, the frequencies of the various field elements s ∈ Fq are divisible by the g.c.d. d of d1, . . . , dn,
that is,

d |
n∑
i=1

di1 {σi = s} for all s ∈ Fq. (2.17)

To compute the expected kernel size we need to study the intersection of the sub-grid (2.17) with
the grid spanned by the frequency vectors σ̂ for σ ∈Sq(χ1,1, . . . , χ1,k). Specifically, by way of
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estimating the number of assignments represented by each grid point and calculating the ensuing
satisfiability probability, we obtain the following.

Proposition 2.6. Assume that q and d are coprime. Then (2.9) holds w.h.p.

We prove Proposition 2.6 in Section 7. Combining Propositions 2.3–2.6, we now establish the
main theorems.

Proof of Proposition 2.1. Assumption (1.3) implies that 1− d/k=�(0)>�(1)= P (d= 0)≥ 0.
Combining (2.11) and Proposition 2.6, we obtain (2.8)–(2.9) for thematrixA. Hence, Chebyshev’s
inequality and assumption (P5) imply that Z≥ (1− o(1))qn−m = qn(1−d/k+o(1)) > 0 w.h.p.
Consequently, the random linear system Ax= y has a solution w.h.p., and thus rkA=m
w.h.p. �
Proof of Theorem 1.1. This is now an immediate consequence of Proposition 2.4 and
Proposition 2.1. �
Proof of Corollary 1.2. Let q be a prime that does not divide d and let χ = 1 deterministically.
Obtain the matrix B̄ ∈ Fm×n

q by reading the {0, 1}-entries of B as elements of Fq. Then the dis-
tribution of B̄ coincides with the distribution of the random Fq-matrix A. Hence, Theorem 1.1
implies that B̄ has full row rank w.h.p.

Suppose that indeed rkB̄=m. We claim that then the rows of B are linearly indepen-
dent. Indeed, assume that z�B= 0 for some vector z= (z1, . . . , zm)� ∈Zm. Factoring out
gcd (z1, . . . , zm) if necessary, we may assume that the vector z̄ ∈ Fm

q with entries z̄i = zi + qZ
is non-zero. Since z�B= 0 implies that z̄�B̄= 0, the rows of B̄ are linearly dependent, in
contradiction to our assumption that B̄ has full row rank. �

2.6 Discussion and related work
The present proof strategy draws on the prior work [6, 10] on the rank of random matrices.
Specifically, toward the proof of Proposition 2.3 we extend the Aizenman-Sims-Starr technique
from [10] and to prove Proposition 2.4 we generalise an argument from [6]. Additionally, the
expansion around the centre carried out in the proof of Proposition 2.6 employs some of the tech-
niques developed in the study of satisfiability thresholds, particularly the extensive use of local
limit theorems and auxiliary probability spaces [12, 13].

The principal new proof ingredient is the asymptotically precise analysis of the secondmoment
by means of the study of the sub-grids of the integer lattice induced by the constraints as sketched
in Section 2.5. This issue was absent in the prior literature on variations on random k-XORSAT
[6, 10, 15] and on other random constraint satisfaction problems [12, 13]. However, in the study
of the random regular matrix from Example 1.5 Huang [27] faced a similar issue in the special case
d= k constant and χ = 1 deterministically. Proposition 2.5, whose proof is based on a combina-
torial investigation of lattices in the general case, constitutes a generalisation of the case Huang
studied. A further feature of Proposition 2.5 absent in ref. [27] is the explicit �1-bound on the
basis vectors. This bound facilitates the proof of Proposition 2.6, which ultimately carries out the
expansion around the equitable solution.

Satisfiability thresholds of random constraint satisfaction problems have been studied exten-
sively in the statistical physics literature via a non-rigorous technique called the ‘cavity method’.
The cavity method comes in two installments: the simpler ‘replica symmetric ansatz’ associated
with the Belief Propagation message passing scheme, and the more intricate ‘replica symmetry
breaking ansatz’. The proof of Theorem 1.1 demonstrates that the former renders the correct pre-
diction as to the satisfiability threshold of random linear equations. By contrast, in quite a few
problems, notoriously random k-SAT, replica symmetry breaking occurs [14, 20].
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An intriguing question for future workmight be to understand the ‘critical’ case of� that attain
their global max at 0 and another point left open by Theorem 1.1. While Example 1.4 shows that
it cannot generally be true that A has full row rank w.h.p., the regular case where d= k= d are
fixed to the same constant provides an intriguing example. For this scenario Huang proved that
the random {0, 1}-matrix B has full rank w.h.p. [27]. The proof, based effectively on a moment
computation over finite fields and local limit techniques, also applies to the adjacency matrices of
random d-regular graphs.

While the present paper deals with sparse random matrices with a bounded average number
of non-zero entries in each row and column, the case of dense random matrices has received a
great deal of attention, too. Komlós [34] first shows that dense square random {0, 1}-matrices are
regular over the rationals w.h.p.; Vu [50] suggested an alternative proof. The computation of the
exponential order of the singularity probability subsequently led to a series of intriguing articles
[30, 48, 49]. By contrast, the singularity probability of a dense square matrix over a finite field
converges to a value strictly between zero and one [35, 36, 38, 39].

Apart from the sparse and dense case, the regime of intermediate densities has been studied as
well. Balakin [7] and Blömer, Karp and Welzl [8] dealt with the rank of such random matrices of
intermediate densities over finite fields. In addition, Costello and Vu [16, 17] studied the rational
rank of random symmetric matrices of an intermediate density.

Indeed, an interesting open problem appears to be the extension of the present methods to the
symmetric case. In particular, it would be interesting to see if the present techniques can be used to
add to the line of works on the adjacencymatrices of random graphs, which have been approached
by means of techniques based on local weak convergence or Littlewood-Offord techniques [9, 22].
Several core ideas of [10] have recently been used to study the asymptotic rank of a special class of
symmetric random matrices [26].

2.7 Organisation
After some preliminaries in Section 3 we begin with the proof of Proposition 2.3 in Section 4. The
proof relies on an Aizenman-Sims-Starr coupling argument, some details of which are deferred to
Section 8. Section 5 deals with the proof of Proposition 2.4. Subsequently we prove Proposition
2.5 in Section 6, thereby laying the ground for the proof of Proposition 2.6 in Section 7.

3. Preliminaries
Unsurprisingly, the proofs of themain results involve a few concepts and ideas from linear algebra.
We mostly follow the terminology from [10], summarised in the following definition.

Definition 3.1 ([10, Definition 2.1]). Let A be an m× n-matrix over a field F.

• A set ∅ = I ⊆ [n] is a relation of A if there exists a row vector y ∈ F1×m such that ∅ =
supp(yA)⊆ I.

• If I = {i} is a relation of A, then we call i frozen in A. Let F(A) be the set of all frozen i ∈ [n]
and let

f(A)= |F(A)|/n.
• A set I ⊆ [n] is a proper relation of A if I \ F(A) is a relation of A.
• For δ > 0, �≥ 1 we say that A is (δ, �)-free if there are no more than δn� proper relations

I ⊆ [n] of size |I| = �.
Thus, a relation is set of column indices such that the support of a non-zero linear combination

yA of rows ofA is contained in that set of indices. Of course, every single row induces a relation on
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the column indices where it has non-zero entries. An important special case is a relation consisting
of one coordinate i only. If such a relation exists, then xi = 0 for all vectors x ∈ kerA, which is why
we call such a coordinate i frozen. Furthermore, a proper relation is a relation that is not just built
up of frozen variables. Finally, we introduce the term (δ, �)-free to express that A has ‘relatively
few’ relations of size � as we will generally employ this term for bounded � and small δ > 0.

The following observation will aid the Aizenman-Sims-Starr coupling argument, where we will
need to study the effect of adding a few extra rows and columns to a random matrix.

Lemma 3.2 ([10, Lemma 2.5]). Let A, B, C be matrices of size m× n, m′ × n and m′ × n′, respec-
tively, and let I ⊆ [n] be the set of all indices of non-zero columns of B. Moreover, obtain B∗ from B
by replacing for each i ∈ I ∩ F(A) the i-th column of B by zero. Unless I is a proper relation of A we
have

nul

⎛
⎝A 0

B C

⎞
⎠− nulA= n′ − rk(B∗ C). (3.1)

Apart from Lemma 3.2 we will harness an important trick called the ‘pinning operation’. The
key insight is that for any given matrix we can diminish the number of short proper relations by
simply expressly freezing a few random coordinates. The basic idea behind the pinning operation
goes back to the work of Montanari [43] and has been used in other contexts [11, 46]. The version
of the construction that we use here goes as follows.

Definition 3.3 ([10, Definition 2.3]). Let A be an m× n matrix and let θ ≥ 0 be an integer. Let
i1, i2, . . . , iθ ∈ [n] be uniformly random andmutually independent column indices. Then the matrix
A[θ] is obtained by adding θ new rows to A such that for each j ∈ [θ] the j-th new row has precisely
one non-zero entry, namely a one in the ij-th column.

Proposition 3.4 ([10, Proposition 2.4]). For any δ > 0, � > 0 there exists �0 =�0(δ, �)> 0 such
that for all�>�0 and for any matrix A over any field F the following is true. With θ ∈ [�] chosen
uniformly at random we have P [A[θ] is (δ, �)-free]> 1− δ.

At first sight, it might appear surprising that Proposition 3.4 does not depend on the matrix A
at all. It is here where the randomness in the number of added unit rows θ comes into play: On
a heuristic level, the proof of Proposition 3.4 is based on tracing the effect of adding unit rows
over a sufficiently large number of steps. Throughout this process, irrespective of the underlying
matrix A, there cannot be too many steps where the expected increase in the size of the set of
frozen variables is large, since their number is trivially bounded above by n. Thus, when choosing
a uniformly random number of unit rows to append, we have to be truly unlucky to hit exactly
one of these few steps. On the other hand, a multitude of proper linear relations at any given point
increases the chances to freeze a large number of variables upon addition of one more unit row,
and therefore there also cannot be too many such moments throughout the process of adding
unit rows. Of course, the precise details of the proof are more involved, and we refer the interested
reader to [10].

As a fairly immediate application of Proposition 3.4 we conclude that if the pinning operation
applied to a random matrix over a finite field leaves us with few frozen variables, a decorrelation
condition akin to the eventO from (2.7) will be satisfied. For a matrix A we continue to denote by
xA a uniformly random vector from kerA.

Corollary 3.5 ([6, Lemma 4.2]). For any ζ > 0 and any prime power q> 0 there exist ξ > 0 and
�0 > 0 such that for any �>�0 for large enough n the following is true. Let A be a m× n-matrix
over Fq. Suppose that for a uniformly random θ ∈ [�] we have E|F(A[θ])|< ξn. Then

∑
σ ,τ∈Fq

n∑
i,j=1

E
∣∣P [

xi = σ , xj = τ |A
]− q−2

∣∣< ζn2.
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As mentioned earlier, at a key junction of the moment computation we will need to estimate
the number of integer lattice points that satisfy certain linear relations. The following elementary
estimate will prove useful.

Lemma 3.6. [37, p. 135] LetM⊆R� be a Z-module with basis b1, . . . , b�. Then

lim
r→∞

|{x ∈M : ‖x‖ ≤ r}|
vol

({
x ∈R� : ‖x‖ ≤ r

}) = 1
| det (b1 · · · b�)| .

The definition of the random Tanner graph in Section 1.2.1 provides that G is simple.
Commonly it is easier to conduct proofs for an auxiliary random multi-graph drawn from a pair-
ing model and then lift the results to the simple random graph. This is how we proceed as well.
Given (1.1) we let G be the random bipartite graph on the set {x1, . . . , xn} of variable nodes and
{a1, . . . , am} of check nodes generated by drawing a perfect matching � of the complete bipartite
graph on

n⋃
i=1
{xi} × [di] and

m⋃
i=1
{ai} × [ki]

and contracting the sets xi × [di] and ai × [ki] of variable/check clones. We also let A be the
random matrix to go with this random multi-graph. Hence,

Aij = χ i,j

ki∑
u=1

dj∑
v=1

1{{(ai, u), (xj, v)} ∈�}.

Similarly, given fixed-degree sequences (d1, . . . , dn) and (k1, . . . , km) with
∑n

i=1 di =
∑m

j=1 kj,
we may define a random bipartite graph G and the corresponding matrix A. The deviating
notation only emphasises that the underlying degrees have been fixed in contrast to the i.i.d.
model. Moreover, if the degree sequences (d1, . . . , dn) and (k1, . . . , km) satisfy (P3), then routine
arguments (e.g. see [29]) show that G is simple with non-vanishing probability.

Proposition 3.7 ([25, Theorem 7.12]). Suppose that the degree sequences (d1, . . . , dn) and
(k1, . . . , km) satisfy (P3). Then, P

[
G is simple

]=�(1).
If (d1, . . . , dn) and (k1, . . . , km) are i.i.d. copies of d and k with E[d2]+E

[
k2
]
<∞ as in

Section 1.2.1, then a standard Azuma-Hoeffding argument shows that w.h.p. they satisfy (P3).

Corollary 3.8 ([10, Lemma 4.3]). P
[
G is simple |∑n

i=1 di =
∑m

i=1 ki
]=�(1).

When working with the random graphs G or G we occasionally encounter the size-biased
versions d̂, k̂ of the degree distributions defined by

P
[
d̂= �

]
= �P [d= �] /d, P

[
k̂= �

]
= �P [k= �] /k (�≥ 0). (3.2)

In particular, these distributions occur in the Aizenman-Sims-Starr coupling argument. In that
context we will also need the following crude but simple tail bound.

Lemma 3.9 ([10, Lemma 1.11]). Let (λi)i≥1 be a sequence of independent copies of an integer-
valued random variable λ≥ 0 with E [λr]<∞ for some r> 2. Further, let s be a sequence such that
s=�(n). Then for all δ > 0,

P

[∣∣∣∣∣
s∑

i=1
(λi −E [λ] )

∣∣∣∣∣> δn
]
= o(1/n).
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Finally, throughout the article we use the common O(·)-notation to refer to the limit n→∞.
In addition, we will sometimes need to deal with another parameter ε > 0. In such cases we use
Oε(·) and similar symbols to refer to the double limit ε→ 0 after n→∞.

4. Proof of Proposition 2.3
4.1 Overview
The first ingredient of the proof of Proposition 2.3 is a coupling argument inspired by the
Aizenman-Sims-Starr scheme from mathematical physics [5], which also constituted the main
ingredient of the proof of the approximate rank formula (1.4) from [10]. Indeed, the coupling
argument here is quite similar to that from [10], with some extra bells and whistles to accom-
modate the additional ternary equations. We therefore defer that part of the proof to Section 8.
The Aizenman-Sims-Starr argument leaves us with a variational formula for a lower bound on the
rank of A[�δn�]. The second proof ingredient is to solve this variational problem. Harnessing the
assumption (1.3), we will obtain the explicit expression for the rank provided by Proposition 2.3.

Let us come to the details. As explained in Section 3, we will have an easier time working with
the pairing model versions G,A of the Tanner graph and the random matrix. Moreover, to facili-
tate the coupling argument we will need to poke a few holes, known as ‘cavities’ in physics jargon,
into the random matrix. More precisely, we will slightly reduce the number of check nodes and
tolerate a small number of variable nodes xi of degree less than di. The cavities will provide the
flexibility needed to set up the coupling argument. Finally, to be able to assume that the matri-
ces we are dealing with are (δ, �)-free with probability close to one, we also add a random, but
bounded number of unary checks p1, . . . , pθ , as described in Proposition 3.4. While this measure
does not affect the asymptotic rank, quite crucially, it enables our bound on the rank difference in
the coupling argument of Section 8.

Formally, let ε, δ ∈ (0, 1) and let�≥ 0 be an integer. Ultimately� will depend on ε but not on
n or δ. We then construct the random matrix A [n, ε, δ,�] as follows. Let

mε ∼ Po((1− ε)dn/k), mδ ∼ Po(δn), θ ∼ unif([�]). (4.1)

The Tanner multi-graph G [n, ε, δ,�] has variable nodes x1, . . . , xn and check nodes
a1, . . . , amε , t1, . . . , tmδ , p1, . . . , pθ . To connect them draw a randommaximummatching� [n, ε]
of the complete bipartite graph with vertex classes

V1 =
mε⋃
i=1
{ai} × [ki] and V2 =

n⋃
j=1

{
xj
}× [dj].

For every matching edge {(ai, h), (xj, �)} ∈�[n, ε], h ∈ [ki], � ∈ [dj], between a clone of xj and a
clone of ai we insert an ai-xj-edge into G [n, ε, δ,�]. Moreover, the check nodes t1, . . . , tmδ each
independently and uniformly choose three neighbouring variables ii,1, ii,2, ii,3 with replacement
among {x1, . . . , xn}. Further, check node p� for � ∈ [θ] is adjacent to x� only. Finally, to obtain the
random (θ +mε +mδ)× n-matrix A [n, ε, δ,�] from G [n, ε, δ,�] we let

A [n, ε, δ,�]pi,xh = 1
{
i= h

}
(i ∈ [θ], h ∈ [n]), (4.2)

A [n, ε, δ,�]ai,xh = χ i,h

ki∑
�=1

dh∑
s=1

1{(xh, s), (ai, �)} ∈� [n, ε]} (i ∈ [mε], h ∈ [n]), (4.3)

A [n, ε, δ,�]ti,xh = χmε+i,h
3∑
�=1

1{ii,� = h} (i ∈ [mδ], h ∈ [n]). (4.4)
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Applying the Aizenman-Sims-Starr scheme to the matrix A[n, ε, δ,�], we obtain the following
variational bound.

Proposition 4.1. There exist δ0 > 0, �0(ε)> 0 such that for all 0< δ < δ0 and any �=�(ε)≥
�0(ε) we have

lim sup
ε→0

lim sup
n→∞

1
n
E [nul(A [n, ε, δ,�] )]≤ max

α,β∈[0,1]
�(α)

+ (
exp

(−3δβ2)− 1
)
D(1−K ′(α)/k)− δ + 3δβ2 − 2δβ3. (4.5)

The proof of Proposition 4.1, carried out in Section 8 in detail, resembles that of the rank formula
(1.4), except that we have to accommodate the additional ternary checks ti. Their presence is the
reason why the optimisation problem on the r.h.s. comes in terms of two variables α, β rather
than a single variable as (1.4).

To complete the proof of Proposition 2.3 we need to solve the optimisation problem (4.5). This
is the single place where we require that�(z) takes its unique global max at z= 0, which ultimately
implies that the optimiser of (4.5) is α = β = 0. This fact in turn implies the following.

Proposition 4.2. For any d, k that satisfy (1.3) there exists δ0 > 0 such that for all 0< δ < δ0 we
have

max
α,β∈[0,1]

�(α)+ (
exp

(−3δβ2)− 1
)
D(1−K ′(α)/k)− δ + 3δβ2 − 2δβ3 = 1− d

k
− δ.

The proof of Proposition 4.2 can be found in Section 4.2. Finally, in Section 4.3 we will see that
Proposition 2.3 is an easy consequence of Propositions 4.1 and 4.2.

4.2 Proof of Proposition 4.2
Let

�̃δ(α, β)=�(α)+
(
exp

(−3δβ2)− 1
)
D(1−K ′(α)/k)− δ + 3δβ2 − 2δβ3 (α, β ∈ [0, 1]).

Assuming (1.3), we are going to prove that for small enough δ,

max
α,β∈[0,1]

�̃δ(α, β)= �̃δ(0, 0)= 1− d
k
− δ, (4.6)

whence the assertion is immediate.
The C1-function �̃δ attains its maximum either at a boundary point of the compact domain

[0, 1]2 or at a point where the partial derivatives vanish. Beginning with the former, we consider
four cases.

Case 1: α = 0 We have

�̃δ(0, β)= �̃δ(0, 0)+ 3δβ2 − 2δβ3 − (1− exp
(−3δβ2) ). (4.7)

Expanding the exponential function, we see that 3δβ2 − 2δβ3 − (1−
exp

(−3δβ2) )=−2δβ3 +Oδ(δ2β4). Since −2δβ3 +Oδ(δ2β4) is non-positive
for all β ∈ [0, 1], (4.7) yields maxβ �̃δ(0, β)= �̃δ(0, 0) for all small enough δ > 0.

Case 2: β = 0 The assumption (1.3) ensures that � is maximised in 0. Therefore, as
�̃δ(α, 0)=�(α)− δ, the maximum on {(α, 0) : α ∈ [0, 1]} is attained in α= 0.
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Case 3: α= 1 We obtain

�̃δ(1, β)=�(1)+
(
exp

(−3δβ2)− 1
)
D(0)− δ + 3δβ2 − 2δβ3 = exp

(−3δβ2)D(0)
+ δ(3β2 − 2β3 − 1).

Again, expanding the exponential, we see that for sufficiently small δ, �̃δ(1, β)≤
�̃δ(1, 0)=�(1)− δ. Thanks to assumption (1.3), this yields maxβ �̃δ(1, β)=
�̃δ(0, 0) for all small enough δ > 0.

Case 4: β = 1 We have

�̃δ(α, 1)=�(α)− (1− exp(−3δ) )D
(
1− K ′(α)

k

)
. (4.8)

Because D and K ′ are continuous on [0, 1] due to the assumption E[d2]+E[k2]<
∞, for any ζ > 0 there exists α̂ > 0 such that D(1−K ′(α)/k)> 1− ζ for all 0<
α < α̂. Therefore, (4.8) shows that for small enough δ > 0 and 0<α < α̂ we have
�̃δ(α, 1)< �̃δ(α, 0)≤ �̃δ(0, 0). On the other hand, for α̂ ≤ α ≤ 1 the difference
�(α)−�(0) is uniformly negative because of our assumption (1.3) that � attains
its unique global maximum at α = 0. Hence, for δ small enough and α̂ ≤ α ≤ 1 we
obtain �̃δ(α, 1)< �̃δ(0, 0).

Combining Cases 1–4, we obtain

max
(α,β)∈∂[0,1]2

�̃δ(α, β)= �̃δ(0, 0). (4.9)

Moving on to the interior of [0, 1]2, we calculate the derivatives

∂�̃δ

∂α
=�′(α)+ (

1− exp
(−3δβ2)) K ′′(α)

k
D′(1−K ′(α)/k)

= K ′′(α)
k

(
d(1− α)− exp

(−3δβ2)D′(1−K ′(α)/k)
)
,

∂�̃δ

∂β
= 6δβ

(
1− β − exp

(−3δβ2)D(1−K ′(α)/k)
)
.

Hence, potential maximisers (α, β) in the interior of [0, 1]2 satisfy

d(1− α)=D′(1−K ′(α)/k) exp
(−3δβ2) and 1− β = exp

(−3δβ2)D(1−K ′(α)/k).
(4.10)

Substituting (4.10) into �̃δ , we obtain

�̃δ(α, β)=�(α)− δ +
(
exp

(−3δβ2)− 1
)
D(1−K ′(α)/k)+ 3δβ2 − 2δβ3

=�(α)− δ + (1− β)(1− exp
(
3δβ2

)
)+ 3δβ2 − 2δβ3

≤�(α)− δ − 3δβ2(1− β)+ 3δβ2 − 2δβ3 =�(α)− δ + δβ3. (4.11)

To estimate the r.h.s. we consider the cases of small and large α separately. Specifically, by
continuity for any ζ > 0 there is 0< α̂ < δ such that D(1−K′(α)/k)> 1− ζ for all 0<α < α̂.

Case 1: 0<α < α̂ Since D(1−K′(α)/k)> 1− ζ , (4.10) implies that for β > 0

1− β > (1− 3δβ2)(1− ζ )= 1− ζ − 3δβ2(1− ζ ).
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In particular, small α̂ implies that also β is small. More precisely, after choosing
δ, ζ small enough, we may assume that β < β̂ for any fixed β̂ > 0. In this case, we
may thus restrict to solutions (α, β) ∈ (0, 1)2 to (4.10) where both coordinates are
sufficiently small. Also here, we distinguish three cases that all lead to contradictions.

(A) If the solution satisfies α = β , consider the function
x �→ 1− x− exp

(−3δx2)D(1−K ′(x)/k)
whose zeros determine the solutions to the right equation in (4.10) under the assump-
tion α = β . Its value is zero at x= 0 and it has derivative

−1+ 6δx exp
(−3δx2)D(1−K ′(x)/k)+ exp

(−3δx2)D′(1−K ′(x)/k)K
′′(x)
k

,

which is negative in a neighbourhood of x= 0. Thus (α, α) cannot be a solution to (4.10)
for α ∈ (0, α̂).

(B) Assume now that α < β . Then the right equation of (4.10) yields

1− β > exp
(−3δβ2)D (

1−K ′(β)/k
)
>

(
1− 3δβ2

) (
1− d

k
K ′(β)

)
.

Now since k≥ 3, K ′(β)=Oβ(β2). But then the above equation yields a contradiction
for β small enough and thus (α, β) ∈ (0, α̂)× (0, β̂) with α < β is no possible solution.

(C) Finally, if α > β , the left equation of (4.10) yields

d (1− α) > exp
(−3δα2)D′ (1−K ′(α)/k

)
> d

(
1− 3δα2

) (
1− E

[
d2

]
dk

K ′(α)
)
.

Now since k≥ 3, K ′(α)=Oα(α2). But then the above equation yields a contradiction
for α small enough and thus (α, β) ∈ (0, α̂)× (0, β̂) with α > β is no possible solution.

Hence, (4.10) has no solution with 0<α < α̂.
Case 2: α̂ ≤ α < 1 because �(α)<�(0) for all 0<α ≤ 1, (4.11) shows that we can choose δ

small enough so that �̃δ(α, β)< �̃δ(0, 0) for all α ≥ α̂ and all β ∈ [0, 1].

Combining both cases and recalling (4.9), we obtain (4.6).

4.3 Proof of Proposition 2.3
Combining Propositions 4.1 and 4.2, we see that

lim sup
n→∞

1
n
E [nul(A [n, ε, δ,�] )]≤ 1− d

k
− δ + oε(1). (4.12)

The only (small) missing piece is that we still need to extend this result to the original random
matrix A[�δn�] based on the simple random factor graph G. To this end we apply the following
lemma.

Lemma 4.3 ([10, Lemma 4.8]). For any fixed �> 0 there exists a coupling of A and A [n, ε, 0,�]
such that

E|nulA− nulA [n, ε, 0,�] | =Oε(εn).

Let A[�δn�] be the matrix obtained from A by adding �δn� random ternary equations.
Combining (4.12) with Corollary 4.3, we obtain

1
n
E
[
nul(A[�δn�])

]≤ 1− d
k
− δ + o(1). (4.13)
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Furthermore, since changing a single edge of the Tanner graph G or a single entry of A can
change the rank by at most one, the Azuma–Hoeffding inequality shows that nul(A[�δn�]) is tightly
concentrated. Thus, (4.13) implies

P

[
1
n
nul(A[�δn�])≤ 1− d

k
− δ + o(1)

]
= 1− o(1/n). (4.14)

Finally, combining (4.14) with Proposition 3.7, we conclude that

P

[
1
n
nul(A[�δn�])≤ 1− d

k
− δ + o(1)

]
= 1− o(1/n),

which implies the assertion because nul(A[�δn�])≤ n deterministically.

5. Proof of Proposition 2.4
We now go on to prove that if the matrix A[θ0] obtained from A by adding a few random unary
checks had many frozen coordinates, then the nullity of A[�δn�] would be greater than permitted
by Proposition 2.3; we use an argument similar to [6, proof of Proposition 2.7]. Invoking Corollary
3.5 will then complete the proof of Proposition 2.4.

Lemma 5.1. Assume that for some�> 0 and θ0 ∼ unif([�]) we have

lim sup
n→∞

1
n
E |F(A[θ0])|> 0.

Then for all δ > 0 we have

lim sup
n→∞

1
n
E
[
nul(A[�δn�])

]
> 1− d

k
− δ.

Proof. For an integer �≥ 0 obtain A[�][θ0] from A[θ0] by adding � random ternary equations.
Since nulA[�δn�] ≥ nulA[�δn�][θ0]≥ nulA[�δn�] − θ0, for any fixed�> 0,

E
∣∣nulA[�δn�][θ0]− nulA[�δn�]

∣∣=O(1). (5.1)
For fixed large n, we now estimate the nullity of A[δn][θ0] under the assumption that

P [|F(A[θ0])|> ζn]> ζ for some ζ > 0. (5.2)
Because adding equations can only increase the set of frozen variables, we have F(A[�][θ0])⊆
F(A[�+1][θ0]) for all �≥ 0. Therefore, (5.2) implies that

P
[∣∣F(A[�][θ0])

∣∣> ζn]> ζ for all �≥ 0. (5.3)
We now claim that for any δ > 0

1
n
E
[
nulA[δn][θ0]

]≥ 1− d/k− δ + δζ 4 + o(1). (5.4)

To prove (5.4) it suffices to show that for any �≥ 0,

E
[
nulA[�+1][θ0]− nulA[�][θ0]

]≥ ζ 4 − 1. (5.5)

Indeed, we obtain (5.4) from (5.5) and the nullity formula n−1E[nulA[0][θ0]]= n−1E[nulA]+
o(1)= 1− d/k+ o(1) from (1.4) by writing a telescoping sum.

To establish (5.5) we observe that nulA[�+1][θ0]− nulA[�][θ0]≥−1 because we obtain
A[�+1][θ0] from A[�][θ0] by adding a single ternary equation. Furthermore, if |F(A[�][θ0])| ≥ ζn,
then with probability at least ζ 3 all three variables of the new ternary equation are frozen
in A[�][θ0], in which case nulA[�+1][θ0]= nulA[�][θ0]. Hence, (5.4) follows from (5.5), which
follows from (5.3). Finally, combining (5.1) and (5.4) completes the proof. �

https://doi.org/10.1017/S096354832400021X Published online by Cambridge University Press

https://doi.org/10.1017/S096354832400021X


Combinatorics, Probability and Computing 23

Proof of Proposition 2.4. The proposition follows from Proposition 2.3, Corollary 3.5 and
Lemma 5.1. �

6. Proof of Proposition 2.5
The proof proceeds very differently depending on whether the coefficients χ1, . . . , χk0 are
identical or not. The following two lemmas summarise the analyses of the two cases.

Lemma 6.1. For any prime power q and any χ ∈ F∗q the Z-module Mq(χ , χ , χ) possesses a basis
(b1, . . . , bq−1) of non-negative integer vectors bi ∈Z

F
∗
q for all i ∈ [q− 1] such that

‖bi‖1 ≤ 3 and
∑
s∈F∗q

bi,ss= 0 in Fq for all i ∈ [q− 1], and detZ
(
b1 · · · bq−1

)= q.

Furthermore, for any k0 > 3 we haveMq (χ , . . . , χ)︸ ︷︷ ︸
k0 times

=Mq(χ , χ , χ).

Lemma 6.2. Suppose that q is a prime power, that k0 ≥ 3 and that χ1, . . . , χk0 ∈ F∗q satisfy
|{χ1, . . . , χk0}| ≥ 2. Then

Mq(χ1, . . . , χk0 )=Z
F
∗
q .

Furthermore,Mq(χ1, . . . , χk0 ) possesses a basis (b1, . . . , bq−1) of non-negative integer vectors bi ∈
Z
F
∗
q such that

‖bi‖1 ≤ 3 and
∑
s∈F∗q

bi,ss= 0 in Fq for all i ∈ [q− 1].

Clearly, Proposition 2.5 is an immediate consequence of Lemmas 6.1 and 6.2 . We proceed to
prove the former in Section 6.1 and the latter in Section 6.2.

6.1 Proof of Lemma 6.1
Because we can just factor out any scalar, it suffices to consider the module

M=Mq (1, . . . , 1)︸ ︷︷ ︸
k0 times

.

Being a submodule of the free Z-module ZF
∗
q , M is free, but it is not entirely self-evident that a

basis with the additional properties stated in Lemma 6.1 exists. Indeed, while it is easy enough
to come up with q− 1 linearly independent vectors in M that all have �1-norm bounded by 3, it
is more difficult to show that these vectors generate M. In the proof of Lemma 6.1, we sidestep
this difficulty by working with two sets of vectors B1 and B2. The first set B1 is easily seen to
generateM, while B2 is a set of linearly independent vectors inM with �1-norms bounded by 3.
To argue that B2 generatesM, too, it then suffices to show that the determinant of the change of
basis matrix equals one.

To interpret the bases as subsets of Zq−1 rather than Z
F
∗
q in the following, we fix some notation

for the elements of Fq. Throughout this section, we let q= p� for a prime p and � ∈N. If �= 1,
we regard Fq as the set {0, . . . , p− 1} with mod p arithmetic. If �≥ 2, the field elements can be
written as

{a0 + a1X+ . . .+ a�−1X�−1 : aj ∈ Fp for j= 0, . . . , �− 1},
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with mod g(X) arithmetic for a prime polynomial g(X) ∈ Fp[X] of degree �. Exploiting this
representation of the field elements as polynomials, we define the length len(a0 + a1X+ . . .+
a�−1X�−1) of an element of Fq to be the number of its non-zero coefficients. Finally, let

F(≥2)
q = {

h ∈ Fq : len(h)≥ 2
}

(6.1)

be the set of all elements of Fq with length at least two. Of course, if �= 1, F(≥2)
q is empty.

Recall that we viewM as a subset of ZF
∗
q that is generated by the vectors⎛

⎝ k0∑
i=1

1 {σi = s}
⎞
⎠

s∈F∗q

, σ ∈Sq(1, . . . , 1).

In the above representation, the generators are indexed by F∗q rather than by the set [q− 1]. But
to carry out the determinant calculation, it is immensely useful to represent both B1 and B2
as matrices with a convenient structure. Hence, there is ambiguity in the choice of a bijection
f : F∗q →{1, . . . , q− 1} that maps the non-zero elements of Fq to coordinates in Z

F
∗
q . To put a

clear structure to the matrices in this subsection, we will soon choose f in a particular way. With
the above notation, we will from now on fix a bijection f that is monotonically decreasing with
respect to the length function on F∗q : If len(h1)<len(h2) for h1, h2 ∈ F∗q , then f (h1)> f (h2). More
precisely, f maps the (p− 1)� elements in F∗q of maximal length � to the interval [(p− 1)�], the
�(p− 1)�−1 elements of length �− 1 to the interval {(p− 1)� + 1, . . . , (p− 1)� + �(p− 1)�−1},
and so on. For elements of length one, we further specify that

f (aXi)= q− 1− (�− i)(p− 1)+ a for i ∈ {0, . . . �− 1} and a ∈ [p− 1].

For our purposes, there is no need to fully specify the values of f within sets of constant length
greater than one, but one could follow the lexicographic order, for example. The benefit of such
an ordering will become apparent in the next two subsections.

6.1.1 First basisB1

The idea behind the first set B1 is that it consists of vectors whose coordinates can be easily seen
to correspond to element statistics of a valid solution while ignoring the �1-restriction formulated
in Lemma 6.1. We build B1 from frequency vectors of solutions of the form

(
a0 + a1X+ . . .+ a�−1X�−1

)
+
�−1∑
i=0

ai · ((p− 1)Xi)= 0.

That is, we take any element a0 + a1X+ . . .+ a�−1X�−1 from F∗q and cancel it by a linear com-
bination of elements from {p− 1, (p− 1)X, . . . , (p− 1)X�−1} ⊆ F∗q . Formally, let e1, . . . , eq−1
denote the canonical basis of Zq−1. The set of statistics of all frequency vectors of the form
described above then reads

B1 =
{
ef (∑�−1

i=0 aiXi) +
�−1∑
i=0

aief (−Xi) :
�−1∑
i=0

aiXi ∈ F∗q

}
.

A moment of thought shows that |B1| = q− 1. Indeed, it is helpful to notice that for any h ∈
F∗q \ {−1, . . . ,−X�−1}, there is exactly one element with a non-zero position in coordinate f (h),
and this coordinate is 1. That is, there is basically exactly one element in B1 associated with each
element of F∗q . Generally, the elements ofB1 can be ordered to yield a lower triangular matrixMq.
To sketch this matrix, we first consider the case �= 1. In this case, with our choice of indexing
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Figure 4. ThematrixMp.

Figure 5. ThematrixMq for �≥ 2.

function f , the elements of B1 can be ordered to give the matrix displayed in Fig. 4. For the case of
fields of prime order, this basis is already implicitly mentioned in [27].

Note that this reduces toM2 = (2) in the case p= 2. In this representation, rows are indexed by
the field elements they represent, while columns are indexed by the field elements they are associ-
ated with. For �≥ 2, we can use the matrixMp for the compact representation ofMq displayed in
Fig. 5.

In the matrix Mq, the upper left block is an identity matrix of the appropriate dimension, the
upper right is a zero matrix, the lower left is a matrix that only has non-zero entries in rows that
correspond to −1, . . . ,−X�−1 while the lower right is a block diagonal matrix whose blocks are
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given by Mp. In particular, Mp is a lower triangular matrix. Because Mp has determinant p the
following is immediate.

Claim 6.3. We have det (Mq)= p� = q.

Let B1 denote the Z-module generated by the elements of B1. Then the lower triangular
structure ofMq also implies the following.

Claim 6.4. The rank of B1 is q− 1.

The following lemma shows that the moduleM is contained inB1.

Lemma 6.5. The Z-moduleM is contained in the Z-moduleB1.

Proof. We show that each element of M can be written as a linear combination of elements of
B1. To this end it is sufficient to show that every frequency vector of a solution to an equation
with exactly k0 non-zero entries and all-one coefficients can be written as a linear combination
of the elements of B1. Let thus x ∈Nq−1 be such a frequency vector, that is,

∑q−1
i=1 xif−1(i)= 0 in

Fq. Before we state a linear combination of x in terms of B1, observe that for each j ∈ [q− 1] \
{q− 1− (�− 1)(p− 1), q− 1− (�− 2)(p− 1), . . . , q− 1}, there is exactly one basis vector with a
non-zero entry in position j. Moreover, the entry of this basis vector in position j is 1. On the other
hand, the basis vectors corresponding to the remaining � columns q− 1− (�− 1)(p− 1), q− 1−
(�− 2)(p− 1), . . . , q− 1 ofMq are actually integer multiples of the standard unit vectors, as

ef ((p−1)Xi) + (p− 1)ef (−Xi) = pef ((p−1)Xi)

for i= 0, . . . , �− 1. With these observations, the only valid candidate for a linear combination of
x in terms of the elements of B1 is given by

x=
∑

∑�−1
i=0 aiXi∈F∗q\{−1,...,−X�−1}

xf (∑�−1
i=0 aiXi)

⎛
⎝ef (∑�−1

i=0 aiXi) +
�−1∑
j=0

ajef (−Xj)

⎞
⎠

+
�−1∑
j=0

xf (−Xj) −
∑∑�−1

i=0 aiXi∈F∗q\{−1,...,−X�−1} ajxf (
∑�−1

i=0 aiXi)

p
· pef (−Xj).

It remains to argue why the coefficients of the basis vectors pef (−1), . . . , pef (−X�−1) in the second
sum are integers. At this point, we will use that x is a solution statistic: Because

∑
∑�−1

i=0 aiXi∈F∗q
xf (∑�−1

i=0 aiXi)

�−1∑
j=0

ajXj = 0 in Fq

and the additive group (Fq,+) is isomorphic to ((Fp)�,+), all ‘components’ in the above sum
must be zero and thus ∑

∑�−1
i=0 aiXi∈F∗q

xf (∑�−1
i=0 aiXi)aj = 0 in Fp

for all j= 0, . . . , �− 1. However, isolating the contribution from {−1, . . . ,−X�−1} yields
0=

∑
∑�−1

i=0 aiXi∈F∗q
xf (∑�−1

i=0 aiXi)aj =−xf (−Xj) +
∑

∑�−1
i=0 aiXi∈F∗q\{−1,...,−X�−1}

ajxf (∑�−1
i=0 aiXi) in Fp,

(6.3)
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as the coefficient aj of Xj in −Xi is zero unless i= j. Therefore, the right-hand side in (6.3) is
divisible by p and the claim follows. �

6.1.2 Second basisB2

In this subsection, we define a candidate set for the vectors (b1, . . . , bq−1) in the statement of
Lemma 6.1. That is, we define a set B2 all whose elements have non-negative components and
�1-norm at most three. In other words, we are looking for solutions to

x1 + . . .+ xk0 = 0 (6.4)

with at most three different non-zero components.
Here again, our construction basically associates one basis vector to each element of F∗q .

However, due to the �1-restriction, there is less freedom in choosing the remaining non-zero
coordinates. Our approach to design a set that satisfies this restriction while retaining a represen-
tation in a convenient block lower triangular matrix structure is to distinguish between elements
of length one and of length at least two. We will therefore construct B2 via two sets B(1) and
B(≥2) such that B2 is given as

B2 =B(1) ∪B(≥2). (6.5)

Let us start with an element h=∑�−1
i=0 aiXi of length at least two in Fq. Assume that its leading

coefficient is ar for r ∈ [�− 1]. If a variable in (6.4) takes value h, we may cancel its contribution
to the equation by subtracting the two elements arXr and h− arXr , both of which are shorter
than h:

�−1∑
i=0

aiXi − arXr −
(
�−1∑
i=0

aiXi − arXr
)
= 0.

This solution corresponds to the vector

ef (h) + ef (−arXr) + ef (−h+arXr).

This idea for field elements h ∈ F
(≥2)
q of length at least two then yields the q− 1− �(p− 1) integer

vectors

B(≥2) =
{
ef (h) + ef (−arXr) + ef (−h+arXr) : r ∈ [�− 1] and h=

r∑
i=0

aiXi ∈ F(≥2)
q with ar = 0

}
.

For a field element h of length one, an analogous shortening operation would correspond to
the vector

ef (h) + ef (−h).

If p= 2, this procedure applied to all field elements of length one yields � distinct vectors and we
are done. However, if p> 2, employing this idea for all elements of length one would only lead to
�(p− 1)/2 rather than �(p− 1) additional vectors, as h and−h are distinct and obviously give rise
to the same statistic. As a consequence, for p> 2, we need to deviate from the above construction
and come up with a modified ‘short-solution’ scheme. Let h= arXr be an element of length one.
If ar ∈ {1, . . . (p− 1)/2}, we simply associate the vector ef (h) + ef (−h) to it, as indicated. If on the
other hand ar ∈ {(p+ 1)/2, . . . , p− 1}, we let h correspond to the vector

ef (h) + ef (−Xr) + ef (−h+Xr).
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Figure 6. The matrix Ap.

With this, for p> 2, the part of B2 that corresponds to field elements of length one is given by the
set

B(1) =
�−1⋃
r=0

({
ef (arXr) + ef (−arXr) : ar ∈ [(p− 1)/2]

}
∪ {

ef (−arXr) + ef (−Xr) + ef (arXr+Xr) : ar ∈ [(p− 1)/2]
})

. (6.6)

If p= 2, in line with the above discussion, we simply let

B(1) =
�−1⋃
r=0

{
2ef (Xr)

}
. (6.7)

Again, a moment of thought shows that in any case, |B2| = |B1| = q− 1. Let B2 denote the Z-
module generated by the elements of B2. Our choice of B2 has the advantage that again, its
elements may be represented in a block lower triangular matrix. For this representation, it is
instructive to consider the case �= 1 first. In this case and with our choice of f , the elements
of B2 can be arranged as the columns of a matrix Ap as in Fig. 6.

Here, as in the construction of Mp, column i corresponds to the unique vector associated to
i ∈ Fq. In the special case p= 2, this matrix reduces to

A2 = (2).

For �≥ 2, the elements of B2 may then be visualised in the matrix from Fig. 7.
In Aq, column i ∈ [q− 1] corresponds to the unique vector that is associated with the field

element f−1(i). Moreover, at this point, a moment of appreciation of our indexing choice f is in
place: Because f is monotonically decreasing with respect to length, there are no entries above
the diagonal in the first |F(≥2)

q | columns, as we only cancel field elements by strictly shorter ones.
Moreover, the remaining �(p− 1) columns are governed by a simple block structure. As a concrete
example, (6.8) with p= 7 reads
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Figure 7. Thematrix Aq for �≥ 2.

A7 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 1

0 0 1 0 1 0

0 0 1 2 0 0

0 1 0 0 1 0

1 0 0 1 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and A7 would be used as a block matrix in any field of order 7� as shown in (6.9).
As each element of B2 corresponds to a solution with at most 3≤ k0 non-zero components,

we obtain the following.

Claim 6.6. The Z-moduleB2 is contained in the Z-moduleM.

Thus far we know B2 ⊆M⊆B1. Moreover, B2 has the desired �1-property. On the other
hand, in comparison to B1, it is less clear that B2 generates M. It thus remains to show that in
fact B2 =B1. We will do so by using the following fact, which is an immediate consequence of
the adjugate matrix representation of the inverse matrix.
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Fact 6.7. If M is a free Z-module with basis x1, . . . , xn, a set of elements y1, . . . , yn ∈M is a basis of
M if and only if the change of basis matrix (cij) has determinant±1.

We will apply Fact 6.7 to M=B1 with {x1, . . . , xn} =B1 and {y1, . . . , yn} =B2. Let Cq ∈
Z(q−1)×(q−1) be the matrix whose entries comprise the coefficients when we express the ele-
ments of B2 by B1 (recall that B2 ⊆B1) when we order the elements of B1,B2 as done in
the construction ofMq and Aq. Thus Aq =MqCq. As

det (Aq)= det (MqCq)= det (Mq) · det (Cq),

we do not need to compute Cq explicitly to apply Fact 6.7, but instead it suffices to compute
det (Mq) and det (Aq). From Claim 6.3, det (Mq) is already known. Moreover, for Aq, the compu-
tation will not be too hard, as Aq is a block lower triangular matrix. Therefore, we are just left to
calculate the determinant of the non-trivial diagonal blocks.

Lemma 6.8. For any prime p we have det (Ap)= p.

Proof. The case p= 2 is immediate. We thus assume that p> 2 in the following. We transform
Ap into a lower triangular matrix by elementary column operations. To this end, let a1, . . . , aq−1
be the columns of Ap. The first (p+ 1)/2 columns already have the right form, so we do not alter
this part of the matrix. For any j= (p+ 3)/2, . . . , p− 1, subtract column ap+1−j from column aj.
This yields the matrix

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0 0
. . . 0 0 0

... 0
0 0 0 1 0 0 0 0
0 0 0 1 2 −1 0 0

0 0
... 0 0 1 −1 0

0 1 0 0 0 0
. . . −1

1 0 0 0 1 1 1 2

.

Next, we swap column (p+ 1)/2 successively with columns (p+ 3)/2, . . . up to p− 1, yielding

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0 0
. . . 0 0 0

... 0
0 0 0 1 0 0 0 0
0 0 0 1 −1 0 0 2

0 0
... 0 1 −1 0 0

0 1 0 0 0 0
. . . 0

1 0 0 0 1 1 2 1

.

This changes the determinant by a factor of (− 1)(p−3)/2. Finally, in order to erase the entry 2 in
row (p+ 1)/2 and column p− 1, we add twice the sum of columns (p+ 1)/2, . . . , p− 2 to column
p− 1. We thus obtain the matrix
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1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0 0
. . . 0 0 0

... 0
0 0 0 1 0 0 0 0
0 0 0 1 −1 0 0 0

0 0
... 0 1 −1 0 0

0 1 0 0 0 0
. . . 0

1 0 0 0 1 1 2 p

.

with determinant (− 1)(p−3)/2p. Multiplying with (− 1)(p−3)/2 from the column swaps yields the
claim. �
Corollary 6.9. For any prime p and �≥ 1, we have det (Aq)= q.

Finally, Claim 6.3 and Corollary 6.9 imply that det (Cq)= 1. Thus, by Fact 6.7, B2 is a basis of
B1, which implies thatB1 =B2 =M. The column vectors b1, . . . , bq−1 ofAq therefore enjoy the
properties stated in Lemma 6.1.

6.2 Proof of Lemma 6.2
Assume w.l.o.g. that χ1 = 1. Moreover, by assumption, the set {χ1, . . . , χk0} contains at least two
different elements, and so we may also assume that χ3 = 1 (recall that k0 ≥ 3).

We define (b1, . . . , bq−1) by distinguishing between three cases:
Case 1: p= 2 and χ2 = 1.
Denote the order of χ−13 in (F∗q , ·) by o, so that the elements 1, χ−13 , . . . , χ−(o−1)3 are pairwise

distinct. Since p= 2 and o | q− 1, o is an odd number. Moreover, because χ−13 = 1, o≥ 3.We now
partition F∗q into orbits of the action of ({1, χ−13 , . . . , χ−(o−1)3 }, ·) on F∗q such that

F∗q =
⋃̇(q−1)/o

j=1 Oj,

where each orbit Oj contains exactly o elements. Suppose that Oj = {g(j)1 , . . . , g(j)o }, where the
elements are indexed such that g(j)i+1 = χ−13 g(j)i .

To eachOj, we associate a set of potential basis vectors whose union over different j then yields
the full set (b1, . . . , bq−1). More precisely, the set corresponding toOj is defined as

Bj =
o−1⋃
i=1

{
eg(j)i

+ eg(j)i+1

}
∪
{
eg(j)1

+ eg(j)2
+ eg(j)2 +g(j)3

}
.

In this definition, we have used that for χ1 =−χ2 = 1 and any h ∈ Fq,

χ1 · h+ χ2 · 0+ χ3 · χ−13 h= 0 as well as χ1 · h+ χ2 · χ−13 h+ χ3 · (χ−13 h+ χ−23 h)= 0.

Note that the element

g(j)2 + g(j)3 = (1+ χ−13 )g(j)2

is non-zero and distinct from both g(j)2 and g(j)3 . It might be one of g(j)1 , g(j)4 , . . . , g(j)o .
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We next argue that the union of the different Bj generates ZF
∗
q . By linear transformation and

using that o is odd, Bj has the same span as{
eg(j)1

+ eg(j)2
, eg(j)1

− eg(j)3
, eg(j)1

+ eg(j)4
, . . . , eg(j)1

− eg(j)o

}
∪
{
eg(j)1 +g(j)2

}
.

Now, there are two cases.

1. For all j ∈ [(q− 1)/o], g(j)2 + g(j)3 ∈ {g(j)1 , g(j)4 , . . . , g(j)o }. In this case, either eg(j)2 +g(j)3
= eg(j)1

, or
we can subtract eg(j)2 +g(j)3

from or add it to the element eg(j)1
± eg(j)2 +g(j)3

to obtain eg(j)1
. After

isolating eg(j)1
, a straightforward linear transformation yields a set of o distinct unit vectors

whose non-zero components are given byOj. Thus, the union over all Bj constitutes a set
of linearly independent elements that generates ZF

∗
q .

2. For all j ∈ [(q− 1)/o], g(j)2 + g(j)3 /∈ {g(j)1 , g(j)4 , . . . , g(j)o }. In this case, consider the union⋃(q−1)/o
j=1 Bj, which has the same span as

(q−1)/o⋃
j=1

{
eg(j)1

+ eg(j)2
, eg(j)1

− eg(j)3
, eg(j)1

+ eg(j)4
, . . . , eg(j)1

− eg(j)o

}
∪
{
eg(j)1 +g(j)2

}
.

Since for each j, the element g(j)1 + g(j)2 must be contained in some Oj′ for j = j′, as in case
(1), eg(j)1 +g(j)2

can be used to isolate e
g(j
′)

1

. After isolating e
g(j
′)

1

for all j′, these elements can be

straightforwardly used to linearly transform the union over all Bj into the standard basis
(eh)h∈F∗q of Z

F
∗
q .

Finally, set
⋃(q−1)/o

j=1 Bj = {b1, . . . , bq−1}.
Case 2: p = 2 and χ2 =−1.
We proceed almost exactly as before, only the choice of the ‘cyclic’ basis vectors is different:
Denote the order of χ−13 in (F∗q , ·) by o, so that the elements 1, χ−13 , . . . , χ−(o−1)3 are pairwise

distinct. Then o | q− 1, and since χ−13 = 1, o≥ 2. We now partition F∗q into orbits of the action of
({1, χ−13 , . . . , χ−(o−1)3 }, ·) on F∗q such that

F∗q =
⋃̇(q−1)/o

j=1 Oj,

where each orbit Oj contains exactly o elements. Suppose that Oj = {g(j)1 , . . . , g(j)o }, where the
elements are indexed such that g(j)i+1 = χ−13 g(j)i .

To eachOj, we associate a set of potential basis vectors whose union over different j then yields
the full set (b1, . . . , bq−1). More precisely, the set corresponding toOj is defined as

Bj =
o−1⋃
i=1

{
eg(j)i

+ eg(j)i+1

}
∪
{
eg(j)1

+ eg(j)2
+ e2g(j)1

}
.

Here, we have used that for χ1 =−χ2 = 1 and p = 2,

χ1 · 0+ χ2 · h+ χ3 · χ−13 h= 0 and χ1 · h+ χ2 · 2h+ χ3 · χ−13 h= 0.

Note that the element 2g(j)1 is distinct from g(j)1 . It might be one of g(j)2 , . . . , g(j)o .
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We next argue that the union of the different Bj generates ZF
∗
q . By linear transformation, Bj

has the same span as{
eg(j)1

+ eg(j)2
, eg(j)1

− eg(j)3
, eg(j)1

+ eg(j)4
, . . . , eg(j)1

± eg(j)o

}
∪
{
e2g(j)1

}
.

Now, there are two cases.

1. For all j ∈ [(q− 1)/o], 2g(j)1 ∈ {g(j)2 , . . . , g(j)o }. As in case 1, we can then subtract e2g(j)2
from

or add it to eg(j)1
± e2g(j)2

to isolate eg(j)1
. After isolating eg(j)1

, a straightforward linear transfor-
mation yields a set of o distinct unit vectors whose non-zero components are given byOj.
Thus, the union over allBj constitutes a set of linearly independent elements that generates
Z
F
∗
q .

2. For all j ∈ [(q− 1)/o], 2g(j)1 /∈ {g(j)2 , . . . , g(j)o }. In this case, consider the union
⋃(q−1)/o

j=1 Bj,
which has the same span as

(q−1)/o⋃
j=1

{
eg(j)1

+ eg(j)2
, eg(j)1

− eg(j)3
, eg(j)1

+ eg(j)4
, . . . , eg(j)1

± eg(j)o

}
∪
{
e2g(j)1

}
.

Since for each j, the element 2g(j)1 must be contained in someOj′ for j = j′, as in case 1, e2g(j)1
can be used to isolate e

g(j
′)

1

. After isolating e
g(j
′)

1

for all j′, these elements can be straightfor-

wardly used to linearly transform the union over all Bj into the standard basis (eh)h∈F∗q of
Z
F
∗
q .

In any case, set
⋃(q−1)/o

j=1 Bj = {b1, . . . , bq−1}.
Case 3: χ2 = −1.

Denote the order of −χ−12 in (F∗q , ·) by o, so that the elements 1,−χ−12 , . . . , (− χ−12 )o−1 are
pairwise distinct. Then o | q− 1, and since −χ−12 = 1, o≥ 2. We now partition F∗q into orbits of
the action of ({1,−χ−12 , . . . , (− χ−12 )o−1}, ·) on F∗q such that

F∗q =
⋃̇(q−1)/o

j=1 Oj,

where each orbit Oj contains exactly o elements. Suppose that Oj = {g(j)1 , . . . , g(j)o }, where the
elements are indexed such that g(j)i+1 =−χ−12 g(j)i .

To eachOj, we associate a set of potential basis vectors whose union over different j then yields
the full set (b1, . . . , bq−1). More precisely, the set corresponding toOj is defined as

Bj =
o−1⋃
i=1

{
eg(j)i

+ eg(j)i+1

}
∪
{
eg(j)1

+ eg(j)2
+ e(1−χ3)g(j)1

}
.

In the above, we have used that for χ1 = 1,
χ1 · h+ χ2 · (− χ−12 )h+ χ3 · 0= 0 and χ1 · (1− χ3)h+ χ2 · (− χ−12 )h+ χ3 · h= 0.

Note that the element (1− χ3)g(j)1 is distinct from g(j)1 . It might be one of g(j)2 , . . . , g(j)o .
We next argue that the union of the different Bj generates ZF

∗
q . By linear transformation, Bj

has the same span as{
eg(j)1

+ eg(j)2
, eg(j)1

− eg(j)3
, eg(j)1

+ eg(j)4
, . . . , eg(j)1

± eg(j)o

}
∪
{
e(1−χ3)g(j)1

}
.

https://doi.org/10.1017/S096354832400021X Published online by Cambridge University Press

https://doi.org/10.1017/S096354832400021X


34 A. Coja-Oghlan et al.

Now, there are two cases.

1. For all j ∈ [(q− 1)/o], (1− χ3)g(j)1 is one of the elements g(j)2 , . . . , g(j)o . As in case 1, we can
then subtract e(1−χ3)g(j)1

from or add it to eg(j)1
± e(1−χ3)g(j)1

to isolate eg(j)1
. After isolating eg(j)1

,
a straightforward linear transformation yields a set of o distinct unit vectors whose non-
zero components are given by Oj. Thus, the union over all Bj constitutes a set of linearly
independent elements that generates ZF

∗
q .

2. For all j ∈ [(q− 1)/o], (1− χ3)g(j)1 is none of the elements g(j)2 , . . . , g(j)o . In this case,
consider the union

⋃(q−1)/o
j=1 Bj, which has the same span as

(q−1)/o⋃
j=1

{
eg(j)1

+ eg(j)2
, eg(j)1

− eg(j)3
, eg(j)1

+ eg(j)4
, . . . , eg(j)1

± eg(j)o

}
∪
{
e(1−χ3)g(j)1

}
.

Since for each j, the element (1− χ3)g(j)1 must be contained in someOj′ for j = j′, as in case
(1), e(1−χ3)g(j)1

can be used to isolate e
g(j
′)

1

. After isolating e
g(j
′)

1

for all j′, these elements can be

straightforwardly used to linearly transform the union over all Bj into the standard basis
(eh)h∈F∗q of Z

F
∗
q .

In any case, set
⋃(q−1)/o

j=1 Bj = {b1, . . . , bq−1}.

7. Proof of Proposition 2.6
7.1 Overview
Recall that Proposition 2.6 concerns the model A with fixed numbers of non-zero entries per col-
umn and row, where both m and the degree sequences (d(n)i )1≤i≤n and (k(m)

i )1≤i≤m are specified.
For the sake of readability, throughout this section, we will omit the superscript from d(n)i and
k(m)
i . LetA be the σ -algebra generated by the numbersm(χ1, . . . , χ�) of equations of degree �≥ 3
with coefficients χ1, . . . , χ� ∈ F∗q . Let�=

∑n
i=1 di denote the total degree. As before, we let A be

the random matrix arising from the pairing model in this setting.
The aim in this section is to bound the expected size of the kernel of A onO from (2.7), that is,

| kerA| · 1{A ∈O}. This is related to Proposition 2.6 through the identities Z2 = Z · | kerA| and
EA[Z2 · 1{A ∈O}]=EA[Z]EA[| kerA| · 1{A ∈O}]. Let us first observe that it suffices to count
‘nearly equitable’ kernel vectors, in the following sense. For a vector σ ∈ Fn

q and s ∈ Fq define the
empirical frequency

ρσ (s)=
n∑
i=1

di1 {σi = s} (7.1)

and let ρσ = (ρσ (s))s∈Fq . IfO occurs, then ρσ is nearly uniform for most kernel vectors. Formally,
we have the following statement.

Fact 7.1. For any ε > 0 and n large enough, we have 1{A ∈O} · | kerA| ≤ (1+
ε)

∣∣{σ ∈ kerA : ‖ρσ − q−1�1‖1 < ε�
}∣∣ .

Proof. Observe that to prove the claim, it is enough to show that for A ∈O, w.h.p. for all
s ∈ Fq,

∑n
i=1 di1

{
xA,i = s

}−�/q< ε�. Choose δ = δ(ε, q)> 0 small enough. Thanks to con-
dition (P1), �=∑n

i=1 di =�(n). Moreover, (P3) ensures that the sequence (dn)n is uniformly
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integrable, such that

�>
√
δn and

n∑
i=1

1{di > d∗}di < δ� (7.2)

for a large constant d∗ and all n large enough. On the other hand, for any degree �≤ d∗, a random
vector xA ∈ kerA satisfies

∑
s,t∈Fq

n∑
i,j=1

1{di = dj = �}
∣∣P [

xA,i = s, xA,j = t |A]− q−2
∣∣= o(n2) for A ∈O. (7.3)

Again by (P1), for all � ∈ supp(d),
∑n

j=1 1{dj = �} =�(n) and consequently (7.3) shows that

n∑
i=1

1
{
di = �

} ∣∣P [
xA,i = s|A]− 1/q

∣∣= o(n) for all s ∈ Fq, �≤ d∗ and A ∈O. (7.4)

Combining (7.2) and (7.4) with the definition (7.1) of ρσ completes the proof. �
We proceed to contemplate different regimes of ‘nearly equitable’ frequency vectors and

employ increasingly subtle estimates to bound their contributions. To this end, let Pq be the set
of all possible frequency vectors, that is,

Pq =
{
ρσ : σ ∈ Fn

q

}
.

Moreover, for ε > 0 let

Pq(ε)=
{
ρ ∈Pq : ‖ρ − q−1�1‖1 < ε�

}
.

In addition, we introduce

Zρ =
∣∣{σ ∈ kerA : ρσ = ρ

}∣∣ (ρ ∈Pq),

Zε =
∑

ρ∈Pq(ε)
Zρ (ε≥ 0),

Z
ε,ε′ =Z

ε
′ −Zε (ε, ε′ ≥ 0).

The following lemma sharpens the ε� error bound from Fact 7.1 to ωn−1/2�.

Lemma 7.2. For any small enough ε > 0, for large enough ω=ω(ε)> 1 we have EA

[
Zωn−1/2,ε

]
<

εqn−m.
The proof of Lemma 7.2, which can be found in Section 7.2, is based on an expansion to the second
order of the optimisation problem (2.5) around the equitable solution. Similar arguments have
previously been applied in the theory of random constraint satisfaction problems, particularly
random k-XORSAT (e.g. [4, 6, 21]).

For ρ that are withinO(n−1/2�) of the equitable solution such relatively routine arguments do
not suffice anymore. Indeed, by comparison to examples of random CSPs that have been studied
previously, sometimes by way of the small sub-graph conditioning technique, a new challenge
arises. Namely, due to the algebraic nature of our problem the conceivable empirical distributions
ρx given that x ∈ kerA are confined to a proper sub-lattice of Zq. The same is true of Pq unless
d= 1. Hence, we need to work out how these lattices intersect. Moreover, for ρ ∈Pq we need
to calculate the number of assignments σ such that ρσ = ρ as well as the probability that such
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an assignment satisfies all equations. Seizing upon Proposition 2.5 and local limit theorem-type
techniques, we will deal with these challenges in Section 7.3, where we prove the following.

Lemma 7.3. Assume that d and q are coprime. Then for any ε > 0 for large enough ω=ω(ε)> 1
we have EA[Zωn−1/2 ]≤ (1+ ε)qn−m w.h.p.

Proof of Proposition 2.6. This is an immediate consequence of Fact 7.1, Lemma 7.2 and
Lemma 7.3. �

7.2 Proof of Lemma 7.2
As we just saw, on the one hand we need to count σ ∈ Fn

q such that ρσ hits a particular attainable
ρ ∈Pq(ε). On the other hand, we need to estimate the probability that such a given σ satisfies
all equations. The first of these, the entropy term, increases as ρ becomes more equitable. The
second, the probability term, takes greater values for non-uniform ρ. Roughly, the more zero
entries ρ contains, the better. The thrust of the proofs of Lemmas 7.2 and 7.3 is to show that the
drop in entropy is an order of magnitude stronger than the boost to the success probability.

Toward the proof of Lemma 7.2 we can get away with relatively rough bounds, mostly
disregarding constant factors. The first claim bounds the entropy term. Instead of counting
assignments we will take a probabilistic viewpoint. Hence, let σ ∈ Fn

q be a uniformly random
assignment.

Claim 7.4. There exists C> 0 such that w.h.p. PA

[
‖ρσ − q−1�1‖1 > t

√
�
]
≤ C exp(− t2/C) for

all t≥ 1.

Proof. This is an immediate consequence of (P3) and Azuma–Hoeffding. �
Let us move on to the probability term. We proceed indirectly by way of Bayes’ rule. Hence, fix

ρ ∈Pq and let ξ = (ξ ij)i,j≥1 be an infinite array of Fq-valued random variables with distribution
�−1ρ, mutually independent and independent of all other randomness. Moreover, let

R(ρ)=
⋂
s∈Fq

⎧⎨
⎩

m∑
i=1

ki∑
j=1

1
{
ξ ij = s

}
= ρ(s)

⎫⎬
⎭ , S=

⎧⎨
⎩∀i ∈ [m] :

ki∑
j=1

χ ijξ ij = 0

⎫⎬
⎭ . (7.5)

In words, R(ρ) is the event that the empirical distribution induced by the random vector ξ ij,
truncated at i=m and j= ki for every i, works out to be ρ ∈Pq. Furthermore,S is the event that
allm checks are satisfied if we substitute the independent values ξ ij for the variables.

Crucially, S ignores that the various equations share variables, or conversely that variables
may appear in several distinct checks. Hence, the unconditional eventS effectively just deals with
a linear system whose Tanner graph consists of m checks with degrees k1, . . . , km and

∑m
i=1 ki

variable nodes of degree one each. However, the conditional probability PA [S |R(ρ)] equals the
probability that a random assignment σ lies in the kernel of A given that ρσ = ρ:
Claim 7.5. With the previous notation, for any ρ ∈Pq,

PA [S |R(ρ)]= PA [σ ∈ kerA | ρσ = ρ] . (7.6)

Proof. We relate both probabilities in (7.6) to the same random experiment. For this, let ρ ∈Pq
be an empirical distribution that is compatible with the fixed vertex degrees, and additionally fix
non-zero coefficients (χ1, . . . , χk�) for every equation. Thus, we consider the linear system as
fixed.

We first take a look at the left hand side of (7.6): Conditionally on the empirical distribution of
the variables (ξ 11, . . . , ξ 1k1 , ξ 21, . . . , ξmkm) being ρ, by exchangeability, every possible assignment
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of values to the� positions in the linear system has the same probability
(
�
ρ

)−1. The left hand side
of (7.6) is thus equal to the number of all satisfying assignments with ρ(s) s-entries for each s ∈ Fq
divided by

(
�
ρ

)
.

On the other hand, and turning to the right-hand side of (7.6), in the pairing model, variable
clones are matched to check clones in a uniformly random manner. In such a uniform matching,
for any fixed assignment σ with empirical distribution ρ, the probability to end up with a specific
assignment of values to the� positions in the linear system has probability

(
�
ρ

)−1. The right-hand
side of (7.6) is thus equal to the number of all satisfying assignments with ρ(s) s-entries for each
s ∈ Fq, to positions in the fixed linear system, divided by

(
�
ρ

)
. �

We are going to see momentarily that the unconditional probabilities of R(ρ) and S are easy
to calculate. In addition, we will be able to calculate the conditional probability PA [S |R(ρ)] by
way of the local limit theorem for sums of independent random variables. Finally, Lemma 7.2 will
follow from these estimates via Bayes’ rule.

Claim 7.6. For any ε > 0, there exists C= C(ε)> 0 such that for all ρ ∈Pq(ε), PA [S]≤
qm(C

∑
s∈Fq |�−1ρ(s)−1/q|3−1+ε3).

Proof. For any ρ ∈Pq, h≥ 3 and any χ1, . . . , χh ∈ suppχ we aim to calculate

Ph = log
∑
σ∈Fhq

1

⎧⎨
⎩

h∑
i=1

χiσi = 0

⎫⎬
⎭

h∏
i=1

ρ(σi)
�

.

With this notation, PA [S]=∏m
i=1 e

Pki . We regard Ph as a function of the variables (ρ(s))s∈Fq and
will use Taylor’s theorem to expand it around the constant vector ρ̄ = q−1�1:

Ph(ρ)= Ph(ρ̄)+DPh (ρ̄)T (ρ − ρ̄)+ 1
2
(ρ − ρ̄)TD2Ph (ρ̄) (ρ − ρ̄)+ Rρ̄,3(ρ) (7.7)

for an appropriate error term

Rρ̄,3(ρ)= 1
6

∑
s,s′,s′′∈Fq

∂3Ph
∂ρ(s)∂ρ(s′)∂ρ(s′′)

(z)
(
ρ(s)− �

q

)(
ρ(s′)− �

q

)(
ρ(s′′)− �

q

)
,

where z is some point z on the segment from ρ̄ to ρ. Firstly, Ph(ρ̄)=− log q. The derivatives of
Ph work out to be

∂Ph
∂ρ(s)

=
∑h

j=1
∑
σ∈Fhq 1

{∑h
i=1 χiσi = 0, σj = s

}∏
i=j

ρ(σi)
�

�ePh
(s ∈ Fq),

∂2Ph
∂ρ(s)∂ρ(s′)

=
∑

j=j′
∑
σ∈Fhq 1

{∑h
i=1 χiσi = 0, σj = s, σj′ = s′

}∏
i=j,j′

ρ(σi)
�

�2ePh

− ∂Ph
∂ρ(s)

∂Ph
∂ρ(s′)

(s, s′ ∈ Fq).

https://doi.org/10.1017/S096354832400021X Published online by Cambridge University Press

https://doi.org/10.1017/S096354832400021X


38 A. Coja-Oghlan et al.

Evaluating the derivatives at the equitable ρ̄ = q−1�1 we obtain for any h≥ 3,

∂Ph
∂ρ(s)

∣∣∣∣
ρ̄

= hq−1

�q−1
= h
�
,

∂2Ph
∂ρ(s)∂ρ(s′)

∣∣∣∣
ρ̄

= h(h− 1)q−1

�2q−1
− h2

�2 =−
h
�2 , (s, s′ ∈ Fq).

Hence, the Jacobi matrix and the Hessian work out to be

DPh (ρ̄)= h
�
1q, D2Ph (ρ̄)=− h

�21q×q. (7.8)

For all h≤ h∗ and ρ ∈Pq(ε), the third partial derivatives are clearly uniformly bounded, that is,
there is a constant C(ε, h∗) such that

∂3Ph
∂ρ(s)∂ρ(s′)∂ρ(s′′)

≤ C(ε, h∗) ·�−3. (7.9)

Finally, for any ε > 0, because of assumptions (P1) and (P3), we can choose h∗ large enough such
that for n large enough, there are at most ε3m equations with more than h∗ variables. For these,
we trivially bound ePh ≤ 1. For the remaining equations of uniformly bounded degree, we use the
previously described approach based on the Taylor expansion: Since ρ − ρ̄ ⊥ 1q, (7.7), (7.8) and
(7.9) imply the assertion. �
Claim 7.7. For any ε > 0, there exists C= C(ε)> 0 such that for all ρ ∈Pq(ε), PA [R(ρ)]≥ C(ε) ·
n(1−q)/2.
Proof. Since the ξ ij are mutually independent, the probability ofR(ρ) given A is nothing but

PA [R(ρ)]=
(

�

(ρ(s))s∈Fq

) ∏
s∈Fq

(
ρ(s)
�

)ρ(s)
.

The claim therefore follows from Stirling’s formula, together with assumption (P1). �
Claim 7.8. For all ε > 0 small enough and for all ρ ∈Pq(ε), PA [R(ρ) |S]=O(n(1−q)/2).
Proof. The claim follows from the local limit theorem for sums of independent random variables
(e.g. [18]). To elaborate, even once we condition on the eventS the random vectors (ξ ij)j∈[ki], 1≤
i≤m, remain independent for different i ∈ [m] due to the independence of the (ξ ij)i,j. Indeed,S
only asks that each check be satisfied separately, without inducing dependencies among different
checks. Thus, the vector ⎛

⎝ m∑
i=1

ki∑
j=1

1
{
ξ ij = s

}⎞⎠
s∈Fq

givenS

is a sum ofm independent random vectors. We first argue that (
∑m

i=1
∑ki

j=1 1{ξ ij = s})s∈F∗q given
S satisfies a central limit theorem (note that we removed one coordinate from each vector). For
this, let C ∈R

F
∗
q×F∗q be defined by setting C (s, s′)= 1{s= s′} 1q − 1

q2 . Then, thanks to the con-

ditioning, for ρ ∈Pq(ε), for all n, i, all entries of Ci =Cov((
∑ki

j=1 1{ξ ij = s})s∈F∗q |S) will have
distance at most δ from the corresponding entries of the matrix ki ·C , where δ = δ(ε) and can
be made arbitrarily small by choosing ε smaller. In particular, for ε small enough, all covariance
matrices Ci are positive definite.
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By the Lindeberg-Feller CLT, the standardised sequence ((
∑m

i=1 Ci)−1/2
∑m

i=1
∑ki

j=1 (1{ξ ij =
s} − ρ(s)/�))s∈F∗q given S converges in distribution towards a multivariate standard Gaussian
random variable if for every δ > 0,
m∑
i=1

E

⎡
⎢⎣
∥∥∥∥∥∥∥
( m∑

i=1
Ci

)−1/2⎛⎝ ki∑
j=1
1
{
ξ ij = s

}
− kiρ(s)

�

⎞
⎠

s∈F∗q

∥∥∥∥∥∥∥
2

2

1

⎧⎪⎨
⎪⎩
∥∥∥∥∥∥∥
( m∑

i=1
Ci

)−1/2⎛⎝ ki∑
j=1
1
{
ξ ij = s

}
− kiρ(s)

�

⎞
⎠

s∈F∗q

∥∥∥∥∥∥∥
2

> δ

⎫⎪⎬
⎪⎭

∣∣∣∣S
⎤
⎥⎦−→ 0.

(7.10)

To show (7.10), it is sufficient to show that for every δ′ > 0,

1
m

m∑
i=1

k2i 1
{
ki > δ′

√
m
}=E

[
k2n1

{
kn > δ′

√
m
}]−→ 0.

However, sincem=�(n), this follows from the dominated convergence theorem via assumption
(P3). Thus, the Lindeberg-Feller CLT applies. Moreover, since ρ ∈Pq(ε), P

(
ξ ij = s

)
∈ (1/q−

ε, 1/q+ ε) for all s ∈ Fq, so also the second condition of [18, Theorem 2.1] is satisfied: The local
limit theorem therefore implies that the probability of the most likely outcome of this random
vector is of order n(1−q)/2; in symbols,

max
r∈Pq(ε)

PA [R(r) |S]=O(n(1−q)/2). (7.11)

The assertion is an immediate consequence of (7.11). �
Proof of Lemma 7.2. Fix ρ ∈Pq(ε) such that ω

√
�≤∑

s∈Fq |ρ(s)−�/q|< ε�. Combining
Claims 7.6–7.8 with Bayes’ rule, we conclude that

PA [S |R(ρ)]= PA [S] PA [R(ρ) |S]
PA [R(ρ)]

=O(PA [S] )= qm(O(
∑

s∈Fq |ρ(s)/�−1/q|3)+ε3−1)+O(1).

(7.12)

Consequently, (7.6) and (7.12) imply that

PA [σ ∈ kerA | ρσ = ρ]= PA [S |R(ρ)]= qm(O(
∑

s∈Fq |ρ(s)/�−1/q|3)+ε3−1)+O(1). (7.13)

Hence, combining Claim 7.4 with (7.13) and Lemma 7.17 and using the bound
∑

s∈Fq |ρ(s)−
�/q|< ε�, we obtain

PA [σ ∈ kerA, ρσ = ρ]= qm(ε3+O(∑s∈Fq |ρ(s)/�−1/q|3)−(�(
∑

s∈Fq |ρ(s)/�−1/q|2)−1)+O(1)

= qm(−1−�(∑s∈Fq |ρ(s)/�−1/q|2)+O(1). (7.14)

Multiplying (7.14) with qn and summing on ρ ∈Pq(ε) such that ωn−1/2�≤∑
s∈Fq |ρ(s)−�/q|,

we finally obtain
EA

[
Zωn−1/2,ε

]
= qn−m+O(1)

∑
ρ∈Pq

ωn−1/2�≤∑s∈Fq |ρ(s)−�/q|<ε�

exp

⎛
⎝−�

⎛
⎝n

∑
s∈Fq

|ρ(s)/�− 1/q|2
⎞
⎠
⎞
⎠< εqn−m,

provided ω=ω(ε)> 0 is chosen large enough. �

https://doi.org/10.1017/S096354832400021X Published online by Cambridge University Press

https://doi.org/10.1017/S096354832400021X


40 A. Coja-Oghlan et al.

7.3 Proof of Lemma 7.3
By comparison to the proof of Lemma 7.2, the main difference here is that we need to be more
precise. Specifically, while in Claims 7.7 and 7.8 we got away with disregarding constant factors,
here we need to be accurate up to a multiplicative 1+ o(1). Working out the probability term
turns out to be delicate. As in Section 7.2, we introduce auxiliary Fq-valued random variables
ξ = (ξ ij)i,j≥1. These random variables are mutually independent as well as independent of all other
randomness. But this time all ξ ij are uniform on Fq. LetR(ρ) andS be the events from (7.5).

Similarly as in Section 7.2 we will ultimately apply Bayes’ rule to compute the probability ofS
given R(ρ) and hence the conditional mean of Zρ . The individual probability of R(ρ) is easy to
compute.

Claim 7.9. For any ρ ∈Pq we have PA [R(ρ)]= (
�
ρ

)
q−�.

Proof. This is similar to the proof of Claim 7.7. As the ξ ij are uniformly distributed and
independent, we obtain

PA [R(ρ)]=
(

�

(ρ(s))s∈Fq

)∏
s∈Fq

q−ρ(s) =
(
�

ρ

)
q−�,

as claimed. �
As a next step we calculate the conditional probability of S given R(ρ). Similar to (7.1), for

s ∈ Fq define the empirical frequency

ρ(s)=
m∑
i=1

ki∑
j=1

1
{
ξ ij = s

}
(7.15)

and let ρ = (ρ(s))s∈Fq as well as ρ̂ = (ρ(s))s∈F∗q . Of course, Proposition 2.5 implies that for some
ρ ∈Pq the eventSmay be impossible givenR(ρ). Hence, to characterise the distributions ρ for
whichS can occur at all, we let

L=
{
r ∈Z

F
∗
q : PA

[
ρ̂ = r

]
> 0 and

∥∥r− q−1�1
∥∥
1 ≤ωn−1/2�

}
, (7.16)

L0 =
{
r ∈L : PA

[
ρ̂ = r |S]

> 0
}
, (7.17)

L∗ =
{
r ∈L : PA

[
ρ̂σ = r

]
> 0

}
. (7.18)

Thus, L contains all conceivable outcomes of truncated frequency vectors. Moreover, L0 com-
prises those frequency vectors that can occur givenS, and L∗ those that can result from random
assignments σ to the variables. Hence, L0 is a finite subset of the Z-module generated by those
setsSq(χ1, . . . , χ�) from (2.15) withm(χ1, . . . , χ�)> 0. The following lemma shows that actually
the conditional probability S given R(ρ) is asymptotically the same for all ρ ∈L0, that is, for all
conceivably satisfying ρ that are nearly equitable.

Lemma 7.10. W.h.p. uniformly for all r ∈L0 we have PA

[
S | ρ̂ = r

]∼ q1{|suppχ |=1}−m.
We complement Lemma 7.10 by the following estimate of the probability that a uniformly

random assignment σ ∈ Fn
q hits the set L0 in the first place.

Lemma 7.11. Assume that d and q are coprime. Then w.h.p., PA

[
ρ̂σ ∈L0

]≤ (1+
o(1))q−1{|suppχ |=1}.
We prove Lemmas 7.10 and 7.11 in Sections 7.4 and 7.5, respectively.

Proof of Lemma 7.3. Formula (7.6) extends to the present auxiliary probability space with uni-
formly distributed and independent ξ ij (for precisely the same reasons given in Section 7.2).
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Hence, (7.6), (7.16) and (7.17) show that

EA[Zωn−1/2 ]≤
∑
σ∈Fnq

1
{
ρ̂σ ∈L

}
PA

[
S | ρ̂ = ρ̂σ

]= ∑
σ∈Fnq

1
{
ρ̂σ ∈L0

}
PA

[
S | ρ̂ = ρ̂σ

]
. (7.19)

Finally, combining (7.19) with Lemma 7.10 and Lemma 7.11, we obtain

EA[Zωn−1/2 ]≤ (1+ o(1))q1{|suppχ |=1}−m
∑
σ∈Fnq

1
{
ρ̂σ ∈L0

}

= (1+ o(1))qn−m+1{|suppχ |=1}PA

[
ρ̂σ ∈L0

]≤ (1+ o(1))qn−m,

as desired. �

7.4 Proof of Lemma 7.10
Given ω> 0 (from (7.16)) we choose ε0 = ε0(ω, q) sufficiently small and let 0< ε < ε0. Moreover,
recall that the degree sequences (d1, . . . , dn) and (k1, . . . , km) satisfy properties (P1)-(P3). The
proof hinges on a careful analysis of the conditional distribution of ρ̂ given S. We begin by
observing that the vector ρ̂ is asymptotically normal givenS. Let I(q−1)×(q−1) the (q− 1)× (q−
1)-identity matrix and let N ∈R

F
∗
q be a Gaussian vector with zero mean and covariance matrix

C = q−1I(q−1)×(q−1) − q−21(q−1)×(q−1). (7.20)

Claim 7.12. There exists a function α = α(n, q)= o(1) such that for all axis-aligned cubes U ⊆R
F
∗
q

we have ∣∣PA

[
�−1/2(ρ̂ − q−1�1) ∈U |S]− P [N ∈U]

∣∣≤ α.
Proof. The conditional mean of ρ̂ given S is uniform. To see this, consider any i ∈ [m] and h ∈
[ki]. We claim that for any vector (τj)j∈[ki]\{h},

PA

[
∀j ∈ [ki] \ {h} : ξ ij = τj |S

]
= q1−ki . (7.21)

Indeed, for any such vector (τj)j∈[ki]\{h} there is exactly one value ξ ih that will satisfy the equation,
namely

ξ ih =−χ−1ih

∑
j∈[ki]\{h}

χ ijτj.

Hence, givenS the events {∀j ∈ [ki] \ {h} : ξ ij = τj} are equally likely for all τ , which implies (7.21).
Furthermore, together with the definition (7.15) of ρ, (7.21) readily implies that EA

[
ρ̂|S]=

q−1�1. Similarly, (7.21) also shows that�−1/2ρ̂ has covariance matrix C givenS.
Finally, we are left to prove the desired uniform convergence to the normal distribution.

To this end we employ the multivariate Berry-Esseen theorem (e.g. [45]). Specifically, given a
small α > 0 choose K =K(q, α)> 0 andm0 =m0(K), n0 = n0(K,m0) sufficiently large. Assuming
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n> n0, sincem=�(n), we can ensure thatm>m0. Also let

ki′ = 1{ki ≤K}ki, ki′′ = ki − ki′,

ρ̂′(s)=
∑

1≤i≤m:ki≤K

ki∑
j=1

1{ξ ij = s}, ρ̂′′(s)=
∑

1≤i≤m:ki>K

ki∑
j=1

1{ξ ij = s},

�′ =
m∑
i=1

ki′, �′′ =
m∑
i=1

ki′′.

Now again, assumption (P3) implies that the sequence (kn)n is uniformly integrable, such that for
large enough n,

�′′ <α8�. (7.22)

Moreover, by the same reasoning as in the previous paragraph the random vectors ρ̂′ and ρ̂′′
have means q−1�′ and q−1�′′ and covariances �′C and �′′C , respectively. Thus, (7.22) and
Chebyshev’s inequality show that

PA

[∥∥∥∥ ρ̂′′ − q−1�′′1√
�

∥∥∥∥>α2∣∣∣S
]
<α2. (7.23)

Further, the Berry–Esseen theorem shows that

PA

[
ρ̂′ − q−1�′1√

�′
∈U

∣∣∣S]
− P [N ∈U]=O(K · n−1/2) for all cubes U. (7.24)

Here, O(·) refers to an n- and K-independent factor. Combining (7.24) and (7.23), we see that∣∣∣∣PA

[
ρ̂ − q−1�1√

�
∈U

∣∣∣S]
− P [N ∈U]

∣∣∣∣≤ α. (7.25)

The assertion follows from (7.25) by taking α→ 0 slowly as n→∞. For example, it is possible to
choose α = log−1 n and K =� (

n1/4
)
thanks to assumption (P3). �

The following claim states that the normal approximation from Claim 7.12 also holds for the
unconditional random vector ρ̂.

Claim 7.13. There exists a function α = α(n, q)= o(1) such that for all convex sets U ⊆R
F
∗
q we

have ∣∣PA

[
�−1/2(ρ̂ − q−1�1) ∈U

]− P [N ∈U]
∣∣≤ α.

Proof. This is an immediate consequence of Claim 7.9 and Stirling’s formula. �
Let k0 =min supp(k). In the case that |suppχ | = 1 we set χ1 = · · · = χk0 to the single ele-

ment of suppχ . Moreover, in the case that |suppχ |> 1 we pick and fix any χ1, . . . , χk0 ∈ suppχ
such that |{χ1, . . . , χk0}|> 1. Let I0 be the set of all i ∈ [m] such that ki = k0 and χ ij = χj for
j= 1, . . . , k0 and let I1 = [m] \ I0. Then |I0| =�(n) w.h.p. Further, set

r0(s)=
∑
i∈I0

∑
j∈[ki]

1
{
ξ ij = s

}
, r1(s)=

∑
i∈I1

∑
j∈[ki]

1
{
ξ ij = s

}
(s ∈ F∗q).

Then ρ̂ = r0 + r1.
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Because the vectors ξ i = (ξ i,1, . . . , ξ i,ki) are mutually independent, so are r0 = (r0(s))s∈F∗q and
r1 = (r1(s))s∈F∗q . To analyse r0 precisely, let

S0 =
⎧⎨
⎩σ ∈ Fk0

q :
k0∑
i=1

χiσi = 0

⎫⎬
⎭ .

Moreover, for σ ∈S0 let Rσ be the number of indices i ∈ I0 such that ξ i = σ . Then conditionally
onS, we have

r0(s)=
∑
i∈I0

∑
j∈[ki]

1
{
ξ ij = s

}
=

∑
σ∈S0

k0∑
j=1

1
{
σj = s

}
Rσ givenS,

which reduces our task to the investigation of R= (Rσ )σ∈S0 .
This is not too difficult because given S the random vector R has a multinomial distribution

with parameter |I0| and uniform probabilities |S0|−1. In effect, the individual entries R(σ ), σ ∈
S0, will typically differ by only a few standard deviations, that is, their typical difference will be of
order O(

√
�). We require a precise quantitative version of this statement.

Recalling the sets from (7.16) to (7.18), for r∗ ∈L0 and 0< ε < ε0 we let

L0(r∗, ε)=
{
r ∈L0 : ‖r− r∗‖∞ < ε

√
�
}
.

Furthermore, we say that R is t-tame if |Rσ − |S0|−1|I0|| ≤ t
√
� for all σ ∈S0. Let T(t) be the

event that R is t-tame.

Lemma 7.14. W.h.p. for every r∗ ∈L0 there exists r∗ ∈L0(r∗, ε) such that

PA

[
ρ̂ = r∗ |S]≥ 1

2|L0(r∗, ε)| and PA

[
T(− log ε) |S, ρ̂ = r∗

]≥ 1− ε4. (7.26)

Proof. Recall that the event {ρ̂ = r} is the same as R(r′) with r′(s)= r(s) for s ∈ F∗q and r′(0)=
�− ‖r‖1. As a first step we observe that R given S is reasonably tame with a reasonably high
probability. More precisely, since R has a multinomial distribution given A and S, the Chernoff
bound shows that w.h.p.

PA

[
T(− log ε) |S]≥ 1− exp(−�ε( log2 (ε))). (7.27)

Further, Claim 7.12 implies thatPA

[
ρ̂ ∈L0(r∗, ε) |S

]≥�ε(εq−1)≥ εq w.h.p., provided ε < ε0 =
ε0(ω) is small enough. Combining this estimate with (7.27) and Bayes’ formula, we conclude that
w.h.p. for every r∗ ∈L0,

PA

[
T(− log ε) |S, ρ̂ ∈L0(r∗, ε)

]≥ 1− ε5. (7.28)

To complete the proof, assume that there does not exist r∗ ∈L0(r∗, ε) that satisfies (7.26). Then
for every r ∈L0(r∗, ε) we either have
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PA

[
ρ̂ = r |S]

<
1

2|L0(r∗, ε)| or (7.29)

PA

[
T(− log ε) |S, ρ̂ = r

]
< 1− ε4. (7.30)

Let X0 be the set of all r ∈L0(r∗, ε) for which (7.29) holds, and let X1 =L0(r∗, ε) \X0. Then
(7.29)–(7.30) yield

PA

[
T(− log ε) |S, ρ̂ ∈L0(r∗, ε)

]
≤ PA

[
ρ̂ ∈X0 |S

]+∑
r∈X1 PA

[
T(− log ε) |S, ρ̂ = r

]
PA

[
ρ̂ = r |S]

PA

[
ρ̂ ∈L0(r∗, ε) |S

]
<

PA

[
ρ̂ ∈X0 |S

]+ (1− ε4)PA

[
ρ̂ ∈X1 |S

]
PA

[
ρ̂ ∈L0(r∗, ε) |S

] < 1− ε4,

provided that 1− ε4 > 1
2 , in contradiction to (7.28). �

Let M=Mq(χ1, . . . , χk0 ) and let b1, . . . , bq−1 be the basis of M supplied by Proposition 2.5.
Let us fix vectors τ (1), . . . , τ (q−1) ∈S0 whose frequency vectors as defined in (2.16) coincide with
b1, . . . , bq−1, that is,

τ̂ (i) = bi for i= 1, . . . , q− 1.
Also let T(r, t) be the event that ρ̂ = r and that R is t-tame. The following lemma summarises the
key step of the proof of Lemma 7.10.

Lemma 7.15. W.h.p. for any r∗ ∈L0, any 1≤ t≤ log n and any r, r′ ∈L0(r∗, ε) there exists a one-
to-one map ψ :T(r, t)→T(r′, t+Oε(ε)) such that for all (R, r1) ∈T(r, t) we have

log
PA [(R, r1)= (R, r1) |S]
PA [(R, r1)=ψ(R, r1) |S]

=Oε(ε(ω+ t)). (7.31)

Proof. Since r, r′ ∈M, we have r− r′ ∈M w.h.p. Indeed, if suppχ > 1, then Proposition 2.5
shows that M=Z

F
∗
q w.h.p. Moreover, if suppχ = 1, then M is a proper subset of the integer

lattice ZF
∗
q . Nonetheless, Proposition 2.5 shows that the modules

Mq( 1, . . . , 1︸ ︷︷ ︸
� times

)

coincide for all �≥ 3, and therefore M coincides with the Z-module generated by L0. Hence, in
either case there is a unique representation

r′ − r=
q−1∑
i=1

λibi (λi ∈Z) (7.32)

in terms of the basis vectors. Because r, r′ ∈L0(r∗, ε) and⎛
⎜⎜⎜⎜⎝
λ1

...

λq−1

⎞
⎟⎟⎟⎟⎠= (

b1 · · · bq−1
)−1 (r− r′),

the coefficients satisfy

|λi| =Oε(ε
√
�) for all i= 1, . . . , q− 1. (7.33)
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Now let λ0 =−∑q−1
i=1 λi, obtain the vector R′ from R by amending the entry R′0 corresponding to

the zero solution 0 ∈S0 to

R′0 = R0 + λ0, Rτ (i) ′ = Rτ (i) + λi for all i ∈ [q− 1] and Rσ ′ = Rσ

for all σ ∈ {0, τ (1), . . . , τ (q−1)}.
Further, define ψ(R, r1)= (R′, r1). Then ψ(R, r1) ∈T(r′, t+Oε(ε)) due to (7.32) and (7.33).
Moreover, Stirling’s formula and the mean value theorem show that

PA [(R, r1)= (R, r1) |S]
PA [(R, r1)=ψ(R, r1) |S]

=
(|I0|

R

)(|I0|
R′

)−1
= exp

⎡
⎣ ∑
σ∈S0

Oε
(
Rσ log Rσ − R′σ log R′σ

)⎤⎦

= exp

⎡
⎣Oε(|I0|) ∑

σ∈S0

∣∣∣∣∣
∫ Rσ /|I0|

R′σ /|I0|
log zdz

∣∣∣∣∣
⎤
⎦

= exp

⎡
⎣Oε(|I0|) ∑

σ∈S0

(
Rσ
|I0| −

R′σ
|I0|

)
log

(
1
q
+Oε

(
ω+ t√
�

))⎤⎦

= exp

⎡
⎣Oε(|I0|) ∑

σ∈S0

Oε
(
ω+ t√
�

(
Rσ
|I0| −

R′σ
|I0|

))⎤⎦ . (7.34)

Since |I0| =�ε(�)=�ε(n) w.h.p., (7.34) implies (7.31). Finally, ψ is one to one because each
vector has a unique representation with respect to the basis (b1, . . . , bq−1). �

Roughly speaking, Lemma 7.15 shows that any two tame r, r′ ∈L0(r∗, ε) close to a conceivable
r∗ ∈L0 are about equally likely. However, the map ψ produces solutions that are a little less tame
than the ones we start from. The following corollary, which combines Lemmas 7.14 and 7.15,
remedies this issue.

Corollary 7.16. W.h.p. for all r∗ ∈L0 and all r, r′ ∈L0(r∗, ε) we have

PA

[
T(r,−3 log ε) |S]= (1+ oε(1))PA

[
T(r′,−3 log ε) |S]

.

Proof. Let r∗ be the vector supplied by Lemma 7.14. Applying Lemma 7.15 to r∗ and r ∈L0(r∗, ε),
we see that w.h.p.

PA

[
T(r,−2 log ε) |S]≥ (

1+Oε
(
ε log ε

))
PA

[
T(r∗,− log ε) |S]

≥ 1
3|L0(r∗, ε)| for all r ∈L0(r∗, ε). (7.35)

In addition, we claim that w.h.p.

PA

[
T(r,−4 log ε) \T(r,−3 log ε) |S]≤ εPA

[
T(r∗,− log ε) |S]

for all r ∈L0(r∗, ε).
(7.36)

Indeed, applying Lemma 7.15 twice to r and r∗ and invoking (7.26), we see that w.h.p.

PA

[
T(r,−2 log ε) |S]≥ exp(Oε(ε log ε))PA

[
T(r∗,−3 log ε) |S]

≥ (
1−Oε(ε log ε)

)
PA

[
ρ̂ = r∗ |S]

, (7.37)
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PA

[
T(r,−4 log ε) \T(r,−3 log ε) |S]

≤ exp(Oε(ε log ε))PA

[
T(r∗,−3 log ε) \T(r∗,−2 log ε) |S]

Oε(ε4)PA

[
ρ̂ = r∗ |S]

. (7.38)

Combining (7.37) and (7.38) yields (7.36).
Finally, (7.26), (7.35) and (7.36) show that w.h.p.

PA

[
T(− 3 log ε) | ρ̂ = r, S

]≥ 1−√ε,
PA

[
T(− 3 log ε) | ρ̂ = r′, S

]≥ 1−√ε for all r, r′ ∈L0(r∗, ε), (7.39)

and combining (7.39) with Lemma 7.15 completes the proof. �
Proof of Lemma 7.10. We are going to show that the conditional probability PA

[
ρ̂ = r |S]

of
hitting some particular r ∈L0 coincides with the unconditional probability PA

[
ρ̂ = r

]
up to a

factor of (1+ oε(1))q1{|suppχ |=1}. Then the assertion follows from Bayes’ formula.
The unconditional probability PA

[
ρ̂ = r

]
is given precisely by Claim 7.9. Hence, recalling

the (q− 1)× (q− 1)-matrix C = q−1I(q−1)×(q−1) − q−21(q−1)×(q−1) from (7.20) and applying
Stirling’s formula, we obtain

PA

[
ρ̂ = r

]∼ qq/2

(2π�)(q−1)/2
exp

[
− (r− q−1�1)�C−1(r− q−1�1)

2�

]
(7.40)

w.h.p.
Next we will show that the conditional probability PA

[
ρ̂ = r |S]

works out to be asymptoti-
cally the same, up to an additional factor of q1{|suppχ |=1}. Indeed, Claim 7.12 shows that for any
r ∈L0 the conditional probability that ρ̂ hits the set L0(r, ε) is asymptotically equal to the proba-
bility of the event {‖N −�−1/2(r− q−1�1)‖∞ < ε}. Moreover, Corollary 7.16 implies that given
ρ̂ ∈L0(r, ε), ρ̂ is within oε(1) of the uniform distribution on L0(r, ε). Furthermore, Lemma 3.6
and Proposition 2.5 show that the number of points in L0(r, ε) satisfies

|L0(r, ε)|∣∣∣{z ∈Zq−1 : ‖z− r‖∞ ≤ ε√�
}∣∣∣ ∼ q−1{|suppχ |=1}.

Therefore, w.h.p. for all r ∈L0 we have

PA

[
ρ̂ = r |S]= (1+ oε(1))q1{|suppχ |=1}

qq/2

(2π�)(q−1)/2
exp

[
− (r− q−1�1)�C−1(r− q−1�1)

2�

]
.

(7.41)

Finally, we observe that

PA [S]=q−m. (7.42)

Indeed, since the ξ ij are uniform and independent, for each i ∈ [m] we have
∑ki

j=1 χi,jξ ij = 0 with
probability 1/q independently. Combining (7.40)–(7.42) completes the proof. �

7.5 Proof of Lemma 7.11
We continue to denote by σ ∈ Fn

q a uniformly random assignment and by I(q−1)×(q−1) the (q−
1)× (q− 1)-identity matrix. Also recall ρσ from (7.1) and for ρ = (ρ(s))s∈Fq obtain ρ̂ = (ρ(s))s∈F∗q
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by dropping the 0-entry. The following claim, which we prove via the local limit theorem for sums
of independent random variables, determines the distribution of ρσ . Let ρ̄ = q−1�1q−1.

Claim 7.17. Let C be the (q− 1)× (q− 1)-matrix from (7.20) and�2 =∑n
i=1 d2i . Then w.h.p. for

all ρ ∈Pq we have

PA [ρσ = ρ]= qq/2dq−1

(2π�2)(q−1)/2
exp

(
− (ρ̂ − ρ̄)�C−1(ρ̂ − ρ̄)

2�2

)
+ o(n(1−q)/2)

The proof of Claim 7.17 is based on local limit theorem techniques similar to but simpler than
the ones from Section 7.4. In fact, the proof strategy is somewhat reminiscent of that of the well-
known local limit theorem for sums of independent random vectors from [18]. However, the
local theorem from that paper does not imply Claim 7.17 directly because a key assumption (that
increments of vectors in each direction can be realised) is not satisfied here. We therefore carry
the details out in the appendix.

Claim 7.17 demonstrates that ρσ satisfies a local limit theorem. Hence, letN′ ∈Rq−1 be amean-
zero Gaussian vector with covariancematrixC . Moreover, fix ε > 0 and letU = v+ [− ε, ε]q−1 ⊆
Rq−1 be a box of side length 2ε. Then w.h.p. we have

PA

[
�2

−1/2(ρ̂σ − q−1�1) ∈U
]= PA

[
N ′ ∈U

]+ o(1), (7.43)

where �2 is as in Claim 7.17. This can be seen as in the proof of Lemma 7.8. Indeed, Claim 7.17
implies that ρ̂σ is asymptotically uniformly distributed on the lattice points of the box �2(U +
q−1�1) whose coordinates are divisible by dw.h.p. Thus, w.h.p. for any z, z′ ∈�2(U + q−1�1)∩
dZF

∗
q we have

PA

[
ρ̂σ = z

]= (1+ oε(1))PA

[
ρ̂σ = z′

]
. (7.44)

Let Ũ =�2(U + q−1�1). Moreover, we claim that

PA

[
ρ̂σ ∈L0 | ρ̂σ ∈ Ũ

]∼
∣∣∣Ũ ∩L0 ∩ dZF

∗
q
∣∣∣∣∣∣Ũ ∩ dZF∗q

∣∣∣ ≤
∣∣∣Ũ ∩M∩ dZF

∗
q
∣∣∣∣∣∣Ũ ∩ dZF∗q

∣∣∣ ≤ (1+ o(1))q−1{|suppχ |=1}.

(7.45)

Indeed, if |suppχ |> 1, then (7.45) is satisfied w.h.p. for the trivial reason that the r.h.s. equals
1+ o(1). Hence, suppose that |suppχ | = 1, let M⊃L0 be the module from Proposition 2.5 and
let b1, . . . , bq−1 be its assorted basis. Clearly, M∩ dZF

∗
q ⊇ dM. Conversely, Cramer’s rule shows

that any y ∈M∩ dZF
∗
q can be expressed as

(b1 · · · bq−1)z, with zi = det (b1 · · · bi−1 y bi+1 · · · bq−1)
q

.

In particular, all coordinates zi are divisible by d because y ∈ dZF
∗
q . Hence, y ∈ dM because d and q

are coprime. Lemma 3.6 therefore implies (7.45). Finally, the assertion follows from (7.43)–(7.45).

8. Proof of Proposition 4.1
We prove Proposition 4.1 by way of a coupling argument inspired by the Aizenman-Sims-Starr
scheme from spin glass theory [5]. The proof is a close adaptation of the coupling argument used
in [10] to prove the approximate rank formula (1.4). We will therefore be able to reuse some of
the technical steps from that paper. The main difference is that we need to accommodate the extra
ternary equations ti. Their presence gives rise to the second parameter β in (4.5).
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8.1 Overview
The basic idea behind the Aizenman-Sims-Starr scheme is to compute the expected difference
E[nulA[n+ 1, ε, δ,�]]−E[nulA[n, ε, δ,�]] of the nullity upon increasing the size of the matrix.
We then obtain (4.5) by writing a telescoping sum. In order to estimate the expected change of the
nullity, we set up a coupling of A[n, ε, δ,�] and A[n+ 1, ε, δ,�].

To this end it is helpful to work with a description of the randommatrix model that is different
from the earlier definition of the model in Section 4, which is closer to the original matrix model.
The present modification is owed to the fact that it will turn out beneficial to actually order the
check variables according to their degree: Specifically, let M= (Mj)j≥1, �= (�j)j≥1, λ and η be
Poisson variables with means

E[Mj]= (1− ε)P [
k= j

]
dn/k, E[�j]= (1− ε)P [

k= j
]
d/k, E [λ]= δn,

E [η]= δ. (8.1)

All these random variables are mutually independent and independent of θ and the (di)i≥1.
Further, let

M+
j =Mj +�j, mε,n =

∑
j≥1

Mj, m+
ε,n =

∑
j≥1

M+
j , λ+ = λ+ η. (8.2)

Since
∑

j≥1 Mj ∼ Po((1− ε)dn/k), (8.2) is consistent with (4.1).
We define a randomTanner (multi-)graphG [n,M, λ] with variable nodes x1, . . . , xn and check

nodes ai,j, i≥ 1, j ∈ [Mi], t1, . . . , tλ and p1, . . . , pθ . Here, the first index of each check variable ai,j
will indicate its degree. The edges between variables and the check nodes ai,j are induced by a
random maximal matching � [n,M] of the complete bipartite graph with vertex classes

n⋃
h=1
{xh} × [dh] and

⋃
i≥1

Mi⋃
j=1
{ai,j} × [i].

Moreover, for each j ∈ [λ] we choose ij,1, ij,2, ij,3 uniformly and independently from [n] and
add edges between xij,1 , xij,2 , xij,3 and tj. In addition, we insert an edge between pi and xi for every
i ∈ [θ].

To define the random matrix A [n,M, λ] to go with G [n,M, λ], let

A [n,M, λ]pi,xh = 1
{
i= h

}
(i ∈ [θ], h ∈ [n]), (8.3)

A [n,M, λ]ai,j,xh = χ i,h

i∑
�=1

dh∑
s=1

1{(xh, s), (ai,j, �)} ∈ �n,M} (i≥ 1, j ∈ [Mi], h ∈ [n]), (8.4)

A [n,M, λ]ti,xh = χmε,n+i,h
3∑
�=1

1{ii,� = h} (i ∈ [λ], h ∈ [n]). (8.5)

The Tanner graph G
[
n+ 1,M+, λ+

]
and its associated random matrix A

[
n+ 1,M+, λ+

]
are defined analogously using n+ 1 variable nodes instead of n, M+ instead of M and λ+
instead of λ.

Fact 8.1. For any ε, δ > 0 we have

E[nulA [n, ε, δ,�] ]=E[nulA [n,M, λ] ], E[nulA [n+ 1, ε, δ,�] ]=E
[
nulA

[
n+ 1,M+, λ+

]]
.

Proof. Because the check degrees ki of the random factor graph G [n, ε, δ,�] are drawn inde-
pendently, the only difference between G [n, ε, δ,�] and G [n,M, λ] is the bookkeeping of the
number of checks of each degree. The same is true of G [n+ 1, ε, δ,�] and G [n+ 1,M, λ]. �
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To construct a coupling of A [n,M, λ] and A
[
n+ 1,M+, λ+

]
we introduce a third, intermedi-

ate random matrix. Hence, let γ i ≥ 0 be the number of checks ai,j, j ∈ [M+
i ], adjacent to the last

variable node xn+1 in G
[
n+ 1,M+, λ+

]
. Set γ = (γ i)i≥3. Also let

λ− = δ(n+ 1) ·
(

n
n+ 1

)3
(8.6)

be the expected number of extra ternary checks of G
[
n+ 1,M+, λ+

]
in which xn+1 does not

appear (recall that each of the Po(δ(n+ 1)) ternary checks chooses its variables independently
and uniformly at random from all (n+ 1)3 possibilities). Let

M−
i = (Mi − γ i)∨ 0, as well as λ− ∼ Po(λ−). (8.7)

Consider the random Tanner graph G′ =G
[
n,M−, λ−

]
induced by a randommaximal matching

�′ =�
[
n,M−] of the complete bipartite graph with vertex classes

n⋃
h=1
{xh} × [dh] and

⋃
i≥1

M−
i⋃

j=1
{ai,j} × [i]. (8.8)

Each matching edge {(xh, s), (ai,j, �)} ∈�
[
n,M−] induces an edge between xh and ai,j in the

Tanner graph. For each j ∈ [λ−] and i−j,1, i
−
j,2, i

−
j,3 uniform and independent in [n], we add the edges

between xi−j,1 , xi−j,2 , xi−j,3 and tj. In addition, there is an edge between pi and xi for every i ∈ [θ]. Let
A′ denote the corresponding random matrix.

For each variable xi, i= 1, . . . , n, let C be the set of clones from
⋃

i∈[n]{xi} × [di] that
�
[
n,M−] leaves unmatched. We call the elements of C cavities.
From G′, we finally construct two further Tanner graphs. Obtain the Tanner graph G′′ from

G′ by adding new check nodes a′′i,j for each i≥ 3, j ∈ [Mi −M−
i ] and ternary check nodes t′′i for

i ∈ [λ′′], where

λ′′ ∼ Po(δn− λ−)= Po

(
δn

(
1−

(
n

n+ 1

)2
))

. (8.9)

The new checks a′′i,j are joined by a randommaximal matching �′′ of the complete bipartite graph
on

C and
⋃
i≥1

⋃
j∈[Mi−M−

i ]

{a′′i,j} × [i].

Moreover, for each j ∈ [λ′′] we choose i′′j,1, i′′j,2, i′′j,3 ∈ [n] uniformly and independently of every-
thing else and add the edges between x′′ij,1 , x′′ij,2 , x′′ij,3 and t′′j. Let A′′ denote the corresponding
random matrix, where as before, each new edge is represented by an independent copy of χ .

Finally, let

λ′′′ ∼ Po(δ(n+ 1)− λ−)= Po

(
δ(n+ 1)

(
1−

(
n

n+ 1

)3
))

. (8.10)

We analogously obtain G′′′ by adding one variable node xn+1 as well as check nodes a′′′i,j, i≥ 1,
j ∈ [γ i], b′′′i,j, i≥ 1, j ∈ [M+

i −M−
i − γ i], t′′′i , i ∈ [λ′′′]. The new checks a′′′i,j and b′′′i,j are connected to

G′ via a random maximal matching �′′′ of the complete bipartite graph on

C and
⋃
i≥1

⎛
⎜⎝ ⋃

j∈[γ i]
{a′′′i,j} × [i− 1]∪

⋃
j∈[M+

i −M−
i −γ i]

{b′′′i,j} × [i]

⎞
⎟⎠ .
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Figure 8. Visualisation of the construction of the auxiliarymatrices A′ ′ and A′ ′ ′ from A′. Thematrices are identifiedwith their
Tanner graph in the graphical representation.

For each matching edge we insert the corresponding variable-check edge and in addition each
of the check nodes a′′′i,j gets connected to xn+1 by exactly one edge. Then we connect each t′′′i to
x′′′ii,1 , x′′′ii,2 and xn+1, with i′′′i,1, i′′′i,2 ∈ [n+ 1] chosen uniformly and independently. Once again each
edge is represented by an independent copy of χ . Let A′′′ denote the resulting random matrix.

The following lemma connects A′′,A′′′ with the random matrices A [n,M, λ],
A
[
n+ 1,M+, λ+

]
and thus, in light of Fact 8.1, with A [n, ε, δ] and A [n+ 1, ε, δ] (See

Fig. 8).

Lemma 8.2. We have E[nul(A′′)]=E[nul(A[n,M, λ])]+ o(1) and E[nul(A′′′)]=E[nul(A[n+
1,M+, λ+])]+ o(1).

We defer the simple proof of Lemma 8.2 to Section 8.5.
The core of the proof of Proposition 4.1 is to estimate the difference of the nullities of A′′′ and

A′ and of A′′ and A′. The following two lemmas express these differences in terms of two random
variables α, β . Specifically, let α be the fraction of frozen cavities of A′ and let β be the fraction of
frozen variables of A′.
Lemma 8.3. For large enough�(ε)> 0 and small enough 0< δ < δ0 we have

E[nul(A′′′)− nul(A′)]=E
[
exp

(−3δβ2)D(1−K ′(α)/k)
]+ d

k
E
[
K ′(α)+K(α)

]
− d(k+ 1)

k
− 3δE

[
1− β2]+ oε(1).

Lemma 8.4. For large enough�(ε)> 0 and small enough 0< δ < δ0 we have

E[nul(A′′)− nul(A′)]=−d+ d
k
E
[
αK ′(α)

]− 2δE
[
1− β3]+ oε(1).

After some preparations in Section 8.2 we will prove Lemmas 8.3 and 8.4 in Sections 8.3
and 8.4.
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Proof of Proposition 4.1. For any ε, δ > 0, by Fact 8.1 and Lemma 8.2, we have

lim sup
n→∞

1
n
E [nul(A[n, ε, δ,�])]≤ lim sup

n→∞
E
[
nul(A[n+ 1,M+, λ+,�])

]−E [nul(A[n,M, λ,�])]

≤ lim sup
n→∞

E
[
nul(A′′′)− nul(A′)

]−E
[
nul(A′′)− nul(A′)

]
.

For large enough �(ε)> 0 and small enough 0< δ < δ0, we can further upper bound the last
expression via Lemma 8.3 and Lemma 8.4. Taking the maximum over all possible realisations of
the random variables α, β finishes the proof of Proposition 4.1. �

8.2 Preparations
To facilitate the proofs of Lemmas 8.3 and 8.4 we establish a few basic statements about the
coupling. Some of these are immediate consequences of statements from [10], where a similar
coupling was used. Let us begin with the following lower bound on the likely number of cavities.

Lemma 8.5. W.h.p. we have |C | ≥ εdn/2.
Proof. Apart from the extra ternary check nodes t1, . . . tλ′ , the construction of G′ coincides with
that of the Tanner graph from [10]. Because the presence of t1, . . . tλ′ does not affect the number
of cavities, the assertion therefore follows from [10, Lemma 5.5]. �

As a next step we show that w.h.p. the random matrix A′ does not have very many short linear
relations. Specifically, if we choose a bounded number of variables and a bounded number of
cavities randomly, then it is quite unlikely that the chosen coordinates form a proper relation.
Formally, let R(�1, �2) be the set of all sequences (i1, . . . , i�1 ) ∈ [n]�1 , (u1, j1), . . . , (u�2 , j�2 ) ∈ C
such that (i1, . . . , i�1 , u1, . . . , u�2 ) is a proper relation of A′. Furthermore, letR(ζ , �) be the event
that |R(�1, �2)| ≤ ζn�1 |C |�2 for all 0≤ �1, �2 ≤ �.
Lemma 8.6. For any ζ > 0, � > 0 exist �0 =�0(ε, ζ , �)> 0 and n0 > 0 such that for all n≥ n0,
�≥�0 we have P [R(ζ , �)]> 1− ζ .
Proof. Fix any �1, �2 ≤ � such that �1 + �2 > 0 and letR(ζ , �1, �2) be the event that |R(�1, �2)|<
ζn�1 |C|�2 . Then it suffices to show that P [R(ζ , �1, �2)]> 1− ζ as we can just replace ζ by ζ/(�+
1)2 and apply the union bound. To this end we may assume that ζ < ζ0(ε, �) for a small enough
ζ0(ε, �)> 0.

We will actually estimate |R(�1, �2)| on a certain likely event. Specifically, due to Lemma 8.5 we
have |C | ≥ εn/2 w.h.p. In addition, let A be the event that A′ is (ζ 4/L�, �)-free. Then Proposition
3.4 shows that P [A ]> 1− ζ/3, provided that n≥ n0 for a large enough n0 = n0(ζ , �). To see
this, consider the matrix B obtained from A′ by deleting the rows representing the unary checks
pi. Then Proposition 3.4 shows that the matrix B[θ] obtained from B via the pinning operation is
(ζ 4, L�)-free with probability 1− ζ/3, provided that � is chosen sufficiently large. The only dif-
ference between B[θ] and A′ is that in the former random matrix we apply the pinning operation
to θ random coordinates, while in A′ the unary checks pi pin the first θ coordinates. However, the
distribution ofA′ is actually invariant under permutations of the columns. Therefore, the matrices
A′ and B[θ] are (ζ 4, L�)-free with precisely the same probability. Hence, Proposition 3.4 implies
that P [A ]> 1− ζ/3.

Further, Markov’s inequality shows that for any L> 0,

P

[ n∑
i=1

di1{di > L} ≥ εζ 2n
16�

]
≤ 16�E [d1{d> L}]

εζ 2
.
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Therefore, since E [d]=Oε(1) we can choose L= L(ε, ζ , �)> 0 big enough such that the event

L =
{ n∑

i=1
di1{di > L}< εζ 2n

16�

}

has probability at least 1− ζ/3. Thus, the event E =A ∩L ∩ {|C | ≥ εn/2} satisfies
P [E ]> 1− ζ . Hence, it suffices to show that

|R(�1, �2)|< ζn�1 |C |�2 if the event E occurs. (8.11)

To bound R(�1, �2) on E we need to take into consideration that the cavities are degree
weighted. Hence, let R′(�1, �2) be the set of all sequences (i1, . . . , i�1 , (u1, j1), . . . , (u�2 , j�2 )) ∈
R(�1, �2) such that the degree of some variable node ui exceeds L. Assuming �2 > 0, on E we
have

|R′(�1, �2)| ≤ n�1 · �2 · |C |�2−1
n∑

i=1
di1{di > L} ≤ n�1 |C |�2 · 2

εn
· �2 · εζ

2n
16�

<
ζ

2
n�1 |C |�2 , (8.12)

provided that ζ > 0 is small enough. Here, we have used that on E , |C | ≥ εn/2 and thus
n�1 |C |�2−1 ≤ n�1 |C |�2 · 2

εn .
Finally, we bound the size of R′′(�1, �2)=R(�1, �2) \R′(�1, �2). Since for any

(i1, . . . , i�1 , (u1, j1), . . . , (u�2 , j�2 )) ∈R′′(�1, �2) the sequence (i1, . . . , i�1 , u1, . . . , u�2 ) is a
proper relation and since there are no more than L�2 ways of choosing the indices j1, . . . , j�2 , on
the event E we have

|R′′(�1, �2)| ≤ ζ 4

L�
· L�2n� [because A′ is ζ 4/L�, �)-free]

≤ ζ 4
(
2
ε

)�2
· n�1 |C |�2 [because |C |> εn/2]

<
ζ

2
n�1 |C |�2 , (8.13)

provided that ζ < ζ0(ε, �) is sufficiently small. Thus, (8.11) follows from (8.12) and (8.13). �
Let (k̂i)i≥1 be a sequence of copies of k̂, mutually independent and independent of everything

else. Also let

γ̂ j =
dn+2∑
i=1

1
{
k̂i = j

}
, γ̂ = (γ̂ j)j≥1.

Additionally, let (�̂j)j≥3 be a family of independent random variables with distribution

�̂j = Po
(
(1− ε)P [

k= j
]
d/k

)
. (8.14)

Further, let �′ be the σ -algebra generated by G′,A′, θ , λ−,M−,�n,M− , (χ i,j,h
′)i,j,h≥1 and (di)i∈[n].

In particular, α and β are�′-measurable.

Lemma 8.7. With probability 1− exp (−�ε(1/ε)), we have
dTV

(
P
[{γ ∈ · } |�′] , γ̂ )+ dTV

(
P
[{� ∈ · } |�′] , �̂)

=Oε(
√
ε).

Proof. Because G′ is distributed the same as the Tanner graph from [10], apart from the extra
ternary checks ti, which do not affect the random vector γ , the assertion follows from [10,
Lemma 5.8]. �
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Let �∗ = !exp(1/ε4)" and δ∗ = exp(− 1/ε4) and consider the event
E =R(δ∗, �∗). (8.15)

Further, consider the event

E ′ =
{
|C | ≥ εdn/2∧max

i≤n di ≤ n1/2
}
. (8.16)

Corollary 8.8. For sufficiently large �=�(ε)> 0 we have P
[
A′ ∈ E

]
> exp(− 1/ε4). Moreover,

P
[
E ′

]= 1− o(1).

Proof. The first statement follows from Lemma 8.6. The second statement follows from the choice
of the parameters in (8.1), Lemma 3.9 and Lemma 8.5. �
With these preparations in place we are ready to proceed to the proofs of Lemmas 8.3 and 8.4.

8.3 Proof of Lemma 8.3
Let

X =
∑
i≥1

�i, Y =
∑
i≥1

i�i, Y ′ =
∑
i≥1

iγ i.

Then the total number of new non-zero entries upon going from A′ to A′′′ is bounded by Y +
Y ′ + 3λ′′′. Let

E ′′ = {
X ∨ Y ∨ Y ′ ∨ λ′′′ ≤ 1/ε

}
.

Claim 8.9. We have P
[
E ′′

]= 1−Oε(ε).

Proof. Apart from the additional ternary checks the argument is similar to [10, Proof of Claim
5.9]. The construction (8.1) ensures that E[X],E[Y]=Oε(1). Therefore, P [X > 1/ε]=Oε(ε),
P [Y > 1/ε]=Oε(ε) by Markov’s inequality. Further, a given check node of degree i is adjacent to
xn+1 with probability at most idn+1/

∑n
i=1 di ≥ n≤ idn+1/n. Consequently,

E
[
Y ′

]=E
∑
i≥1

iγ i ≤E
∑

i∈[m+ε,n]
k2i dn+1/n=Oε(1).

Moreover, (8.10) shows that E[λ′′′]=Oε(1). Thus, the assertion follows from Markov’s
inequality. �

We obtainG′′′ fromG′ by adding checks a′′′i,j, i≥ 1, j ∈ [γ i], b′′′i,j, i≥ 1, j ∈ [M+
i −M−

i − γ i] and
t′′′i , i ∈ [λ′′′]. Let

X ′′′ =
⎛
⎝⋃

i≥1

γ i⋃
j=1
∂a′′′i,j \ {xn+1}

⎞
⎠∪

⎛
⎜⎝⋃

i≥1

⋃
j∈[M+

i −M−
i −γ i]

∂b′′′i,j

⎞
⎟⎠∪

λ
′′′⋃

i=1
∂t′′′i \ {xn+1}

be the set of variable neighbours of these new checks among x1, . . . , xn. Further, let

E ′′′ =
⎧⎨
⎩|X ′′′| = Y +

∑
i≥1

(i− 1)γ i + λ′′′
⎫⎬
⎭

be the event that the variables of G′ where the new checks connect are pairwise distinct.

Claim 8.10. We have P
[
E ′′′ | E ′ ∩ E ′′

]= 1− o(1).

Proof. By the same token as in [10, proof of Claim 5.10], given that E ′ occurs the total num-
ber of cavities comes to �(n). At the same time, the maximum variable node degree is of order
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O(
√
n). Moreover, given the event E ′′ no more than Y + Y ′ =Oε(1/ε) random cavities are cho-

sen as neighbours of the new checks a′′′i,j, b′′′i,j. Thus, by the birthday paradox the probability that
the checks a′′′i,j, b′′′i,j occupy more than one cavity of any variable node is o(1). Furthermore, the
additional ternary nodes t′′′i choose their two neighbours among x1, . . . , xn mutually indepen-
dently and independently of the a′′′i,j, b′′′i,j. Since λ′′′ is bounded given 1/ε, the overall probability of
choosing the same variable twice is o(1). �

The following claim shows that the unlikely event that E ∩ E ′ ∩ E ′′ ∩ E ′′′ does not occur does
not contributed significantly to the expected change in nullity.

Claim 8.11. We have E
[∣∣nul(A′′′)− nul(A′)

∣∣ (1− 1E ∩ E ′ ∩ E ′′ ∩ E ′′′)
]= oε(1).

Proof. We modify the proof of [10, Claim 5.11] to accommodate the extra ternary nodes.
Since A′′′ results from A′ by adding one column and no more than X + dn+1 + λ′′′ rows,
we have

∣∣nul(A′′′)− nul(A′)
∣∣≤ X+ dn+1 + λ′′′ + 1. Because X, d2n+1, λ′′′ have bounded second

moments, the Cauchy-Schwarz inequality therefore yields the estimate

E
[∣∣nul(A′′′)− nul(A′)

∣∣ (1− 1E ′′)]≤E
[
(X+ dn+1 + λ′′′ + 1)2

]1/2 (1− P
[
E ′′

])1/2 = oε(1).
(8.17)

Moreover, combining Corollary 8.8 and Claims 8.9–8.10, we obtain

E
[∣∣nul(A′′′)− nul(A′)

∣∣ 1E ′′ \ E
]≤Oε(ε−1) exp(− 1/ε4)= oε(1), (8.18)

E
[∣∣nul(A′′′)− nul(A′)

∣∣ 1E ′′ \ E ′
]
,E

[∣∣nul(A′′′)− nul(A′)
∣∣ 1E ′′ ∩ E ′ \ E ′′′

]= o(1). (8.19)

The assertion follows from (8.17) to (8.19). �
Recall that α denotes the fraction of frozen cavities and β the fraction of frozen variables of A′.

Further, let �′′ ⊃�′ be the σ -algebra generated by θ , G′, A′, M−, (di)i∈[n+1], γ , M, �, λ−, λ′′′.
Then α, β as well as E , E ′, E ′′ are�′′-measurable but E ′′′ is not.
Claim 8.12. On the event E ∩ E ′ ∩ E ′′ we have

E
[(
nul(A′′′)− nul(A′)

)
1E ′′′ |�′′]= oε(1)+ (1− β2)λ

′′′ ∏
i≥1

(1− αi−1)γ i −
∑
i≥1

(1− αi−1)γ i

− λ′′′(1− β2)−
∑
i≥1

(1− αi)(M+
i −M−

i − γ i).

Proof. We modify the proof of [10, Claim 5.12] by taking the additional ternary checks into
consideration. Let

A = {
a′′′i,j : i≥ 1, j ∈ [γ i]

}
, B = {

b′′′i,j : i≥ 1, j ∈ [M+
i −M−

i − γ i]
}
, T = {

ti : i ∈ [λ′′′]
}
.

We set up a random matrix B with rows indexed by A ∪B ∪T and columns indexed by
Vn = {x1, . . . , xn}. For a check a ∈A ∪B ∪T and a variable x ∈Vn the (a, x)-entry of B equals
zero unless x ∈ ∂G′′′a. Further, the non-zero entries ofB are independent copies ofχ . Additionally,
obtain B∗ from B by zeroing out the x-column for every variable x ∈ F(A′). Finally, let C ∈
FA ∪B∪T be a random vector whose entries Ca, a ∈A ∪T , are independent copies of χ , while
Cb = 0 for all b ∈B.

If E ′′′ occurs, B has row full rank because there is at most one non-zero entry in every column
and at least one non-zero entry in every row. Hence,

rk(B)= |A ∪B ∪T | =
∑
i≥1

M+
i −M−

i + λ′′′.
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Furthermore, since the rank is invariant under row and column permutations, given E ∩ E ′ ∩
E ′′ ∩ E ′′′ we have

nulA′′′ = nul

⎛
⎝A′ 0

B C

⎞
⎠ .

Moreover, given E ′ the setX ′′′ of all non-zero columns ofB satisfies |X ′′′| ≤ Y + Y ′ + λ′′′ ≤ 3/ε
while |C | ≥ εdn/2. Therefore, the set of cavities that �′′′ occupies is within total variation dis-
tance o(1) of a commensurate number of cavities drawn independently, that is, with replacement.
Furthermore, the variables where the checks from T attach are chosen uniformly at random
from x1, . . . , xn. Listing the neighbours of T first and then the cavities chosen as neighbours of
checks inA ∪B, the conditional probability thatX ′′′ forms a proper relation of A′ can be upper
bounded by the number of such choices that yield proper relations, divided by the total number
of choices of variables and cavities. Given E ′, we had observed that |X ′′′| ≤ 3/ε. Moreover, on
(8.15), for all 0≤ �1, �2 ≤ �∗ = !exp(1/ε4)", the proportion of proper relations among all choices
of �1 variables and �2 cavities is at most δ∗ = exp(− 1/ε4). Therefore, on E ∩ E ′ ∩ E ′′ the condi-
tional probability given E ′′′ that X ′′′ forms a proper relation is bounded by Oε( exp(− 1/ε4)).
Consequently, Lemma 3.2 implies that on the event E ∩ E ′ ∩ E ′′,

E
[(
nul(A′′′)− nul(A′)

)
1E ′′′ |�′′]= 1−E

[
rk (B∗ C) |�′′

]+ oε(1). (8.20)

We are thus left to calculate the rank of Q= (B∗ C). Given E ′′′ this block matrix decom-
poses into theA ∪T -rowsQA ∪T and theB-rowsQB such that rk(Q)= rk(QA ∪T )+ rk(QB).
Therefore, it suffices to prove that

E
[
rk (QB) |�′′

]=∑
i≥1

(
1− αi) (M+

i −M−
i − γ i)+ o(1), (8.21)

E
[
rk(QA ∪T ) |�′′]= λ′′′(1− β2)+

∑
i≥1

(
1− αi−1) γ i

+ 1− (1− β2)λ
′′′ ∏

i≥1

(
1− αi−1)γ i + o(1). (8.22)

Towards (8.21) consider a check b ∈B whose corresponding row sports i non-zero entries. Recall
that the fraction α of frozen cavities of A′ is�′′-measurable and can thus be regarded as constant.
Moreover, we may pretend (up to o(1) in total variation) that these i entries are drawn uniformly
and independently from the set of cavities, so that the probability that these i independent and
uniform draws all hit frozen cavities comes to αi + o(1). We emphasise that this calculation only
requires the draws to be independent and uniform, but makes no assumption on the underly-
ing dependencies between cavities. Since there areM+

i −M−
i − γ i such checks b ∈B, we obtain

(8.21).
Moving on to (8.22), consider a ∈A whose corresponding row has i− 1 non-zero entries,

and recall that Vn = {x1, . . . , xn}. By the same token as in the previous paragraph, the probabil-
ity that all entries in the a-row correspond to frozen cavities comes to αi−1 + o(1). Hence, the
expected rank of the A ×Vn-minor works out to be

∑
i≥1

(
1− αi−1) γ i + o(1), which is the sec-

ond summand in (8.22). Similarly, a t ∈T -row adds to the rank unless both the variables in the
corresponding check are frozen. The latter event occurs with probability β2. Hence the first sum-
mand. Finally, the C-column adds to the rank if none of the A ∪T -rows become all zero, which
occurs with probability (1− β2)λ

′′′ ∏
i≥1

(
1− αi−1)γ i + o(1). �
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Proof of Lemma 8.3. Letting E= E ∩ E ′ ∩ E ′′ ∩ E ′′′ and combining Claims 8.9–8.12, we obtain

E

∣∣∣E [
nul(A′′′)− nul(A′) |�′′]− (

(1− β2)λ
′′′ ∏

i≥1
(1− αi−1)γ i −

∑
i≥1

(1− αi−1)γ i

−
∑
i≥1

(1− αi)(M+
i −M−

i − γ i)− λ′′′(1− β2)
)
1E

∣∣∣= oε(1). (8.23)

On E all i with M+
i −M−

i − γ i > 0 are bounded. Moreover, w.h.p. we have Mi ∼E[Mi]=�(n)
for all bounded i by Chebyshev’s inequality. Hence, (8.7) implies that M−

i =Mi − γ i w.h.p.
Consequently, (8.23) becomes

E

∣∣∣E [
nul(A′′′)− nul(A′) |�′′]− (

(1− β2)λ
′′′ ∏

i≥1
(1− αi−1)γ i −

∑
i≥1

(1− αi−1)γ i

−
∑
i≥1

(1− αi)�i − λ′′′(1− β2)
)
1E

∣∣∣= oε(1). (8.24)

We proceed to estimate the various terms on the r.h.s. of (8.24) separately. Since P [E]= 1−
oε(1) by Corollary 8.8 and Claims 8.9 and 8.10, Lemma 8.7 yield

E

⎡
⎣1E · (1− β2)λ

′′′ ∏
i≥1

(1− αi−1)γ i |�′′
⎤
⎦

=E

⎡
⎣(1− β2)λ

′′′ ∏
i≥1

(1− αi−1)γ̂ i |�′′
⎤
⎦+ oε(1)

= exp(− 3δβ2)D(1−K ′(α)/k) [by (3.2) and (8.10)]. (8.25)
Moreover, since

∑
i≥1 γ i ≤ dn+1 and dn+1 has a bounded second moment, Lemma 8.7 implies

that

E

⎡
⎣1E ·∑

i≥1
(1− αi−1)γ i |�′′

⎤
⎦=E

⎡
⎣∑

i≥1
(1− αi−1)γ̂ i |�′′

⎤
⎦+ oε(1)= d− d

k
K ′(α)+ oε(1).

(8.26)
Further, by Claim 8.9, Lemma 8.7 and (8.14),

E

⎡
⎣1E ·∑

i≥1
(1− αi)�i |�′′

⎤
⎦=E

⎡
⎣∑

i≥1
(1− αi)�i |�′′

⎤
⎦+ oε(1)= oε(1)+ d

k
− d

k
E[K(α)].

(8.27)
Finally, (8.10) yields

E
[
1E · λ′′′(1− β2) |�′′]= 3δ(1− β2)+ oε(1). (8.28)

Thus, the assertion follows from (8.24)–(8.28). �

8.4 Proof of Lemma 8.4
We proceed similarly as in the proof of Lemma 8.3; actually matters are a bit simpler because we
only add checks, while in the proof of Lemma 8.3 we also had to deal with the extra variable node
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xn+1. Let E , E ′ be the events from (8.15) and (8.16) and let E ′′ = {
dn+1 + λ′′ ≤ 1/ε

}
. As a direct

consequence of the assumption E[d2n+1]=Oε,n(1) and of (8.9), we obtain the following.

Fact 8.13. We have P
[
E ′′

]= 1−Oε(ε2).

Let

X ′′ =
⋃
i≥1

⋃
j∈[Mi−M−

i ]

∂G′′a
′′i,j ∪

λ
′′⋃

i=1
∂t′′i

be the set of variable nodes where the new checks that we add upon going from A′ to A′′ attach.
Let E ′′′ be the event that in G′′ no variable from X ′′ is connected with the checks {a′′i,j : i≥ 1, j ∈
[Mi −M−

i ]} ∪ {t′′i : i ∈ [λ′′]} by more than one edge.

Claim 8.14. We have P
[
E ′′′ | E ′ ∩ E ′′

]= 1− o(1).

Proof. This follows from the ‘birthday paradox’ (see the proof of Claim 8.10). �
Claim 8.15. We have E

[∣∣nul(A′′)− nul(A′)
∣∣ (1− 1E ∩ E ′ ∩ E ′′ ∩ E ′′′)

]= oε(1).

Proof. We have
∣∣nul(A′′)− nul(A′)

∣∣≤ dn+1 + λ′′ as we add at most dn+1 + λ′′ rows. Because
E[(dn+1 + λ′′)2]=Oε(1) by (8.9), Claim 8.13 and the Cauchy-Schwarz inequality yield

E
[∣∣nul(A′′)− nul(A′)

∣∣ (1− 1E ′′)]≤E
[
(dn+1 + λ′′)2

]1/2 (1− P [E ] )1/2 = oε(1). (8.29)

Moreover, Corollary 8.8 and Claim 8.14 show that

E
[∣∣nul(A′′)− nul(A′)

∣∣ 1E ′′ \ E
]
,E

[∣∣nul(A′′)− nul(A′)
∣∣ 1E ′′ \ E ′

]
,

E
[∣∣nul(A′′)− nul(A′)

∣∣ 1E ′′ \ E ′′′
]= oε(1). (8.30)

The assertion follows from (8.29) and (8.30). �
The matrix A′′ results from A′ by adding checks a′′i,j, i≥ 1, j ∈ [Mi −M−

i ] that are connected to
random cavities of A′.

Moreover, as before let�′′ ⊃�′ be the σ -algebra generated by θ , G′, A′,M−, (di)i∈[n+1], γ ,M,
�, λ−, λ′′′. Then E , E ′, E ′′ are�′′-measurable, but E ′′′ is not.
Claim 8.16. On E ∩ E ′ ∩ E ′′ we have

E
[
(nul(A′′)− nul(A′))1E ′′′ |�′′]= oε(1)−

∑
i≥1

(1− αi)(Mi −M−
i )− λ′′(1− β3).

Proof. Let A = {a′′i,j : i≥ 1, j ∈ [Mi −M−
i ]}. Moreover, let T be the set of new ternary checks

t′′i, i ∈ [λ′′]. Let B be the Fq-matrix whose rows are indexed by A ∪T and whose columns are
indexed by Vn = {x1, . . . , xn}. The (a, x)-entry of B is zero unless a, x are adjacent in G′′, in which
case the entry is an independent copy of χ . Given E ′′′ the matrix B has full row rank rk(B)=
|A | = λ′′ +∑

i≥1 M
+
i −Mi, because no column contains two non-zero entries and each row has

at least one non-zero entry. Further, obtain B∗ from B by zeroing out the x-column of every x ∈
F(A′).

On E ∩ E ′ ∩ E ′′ ∩ E ′′′ we see that

nulA′′ = nul

⎛
⎝A′

B

⎞
⎠ . (8.31)

Moreover, let I be the set of non-zero columns of B. Then on E ′ ∩ E ′′ we have |I | ≤ dn+1 +
λ′′ ≤ 1/ε. Hence, on E ∩ E ′ ∩ E ′′ ∩ E ′′′ the probability thatI forms a proper relation is bounded
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by exp(− 1/ε4). Hence, Lemma 3.2 shows

E
[(
nul(A′′)− nul(A′)

)
1E ′′′ |�′′]= oε(1)−E

[
rk (B∗) |�′′

]
. (8.32)

We are thus left to calculate the rank of B∗. Recalling that α stands for the fraction of frozen
cavities, we see that for a ∈A of degree i the a-row is all zero in B∗ with probability αi + o(1).
Similarly, for a ∈T the a-row of B gets zeroed out with probability β3. Hence, we conclude that

E
[
rk (B∗) |�′′

]= oε(1)+ λ′′(1− β3)+
∑
i≥1

(
1− αi) (Mi −M−

i ). (8.33)

Combining (8.32) and (8.33) completes the proof. �
Proof of Lemma 8.4. Let E= E ∩ E ′ ∩ E ′′ ∩ E ′′′. Combining Claims 8.15–8.16, we see that

E

∣∣∣∣∣∣E[nul(A′′)− nul(A′) |�′′]+
⎛
⎝λ′′(1− β3)+

∑
i≥1

(1− αi)(Mi −M−
i )

⎞
⎠ 1E

∣∣∣∣∣∣= oε(1). (8.34)

On E all degrees i with M+
i −M−

i > 0 are bounded. Moreover, M−
i =�(n) w.h.p. for every

bounded i by Chebyshev’s inequality. Therefore, (8.7) shows that Mi −M−
i = γ i for all i with

M+
i −M−

i > 0 w.h.p. Hence, (8.34) turns into

E

∣∣∣∣∣∣E[nul(A′′)− nul(A′) |�′′]+
⎛
⎝λ′′(1− β3)+

∑
i≥1

(1− αi)γ i

⎞
⎠ 1E

∣∣∣∣∣∣= oε(1). (8.35)

We now estimate the two parts of the last expression separately. Since P [E]= 1− oε(1) by
Corollary 8.8, Fact 8.13 and Claim 8.14, the definition (8.9) of λ′′ yields

E
∣∣λ′′(1− β3)1E

∣∣= 2δ(1−E[β3])+ oε(1). (8.36)

Moreover, because
∑

i≥1 γ i ≤ dn+1, E[dn+1]=Oε(1),

E

⎡
⎣∑

i≥1
(1− αi)γ i1E

⎤
⎦

=E

⎡
⎣∑

i≥1
(1− αi)γ̂ i1

⎧⎨
⎩λ′′ +

∑
i≥1

γ̂ i ≤ ε−1/4
⎫⎬
⎭
⎤
⎦+ oε(1) [by Lemma 8.7 and Claim 8.13]

= dE[1− αk̂]+ oε(1)= d− dE[αK ′(α)]/k+ oε(1) [by (3.2)]. (8.37)

Combining (8.36) and (8.37) completes the proof. �

8.5 Proof of Lemma 8.2
The proof is relatively straightforward, not least because once again we can reuse some technical
statements from [10]. Let us deal with A′′ and A′′′ separately.
Claim 8.17. We have E[nul(A′′)]=E[nul(A[n,M, λ])]+ o(1).

Proof. The matrix models E[nul(A[n,M, λ])] and A′′ coincide with the corresponding mod-
els from [10, Claim 5.17], except that here we add extra ternary checks. Because these extra
checks are added independently, the coupling from [10, Claim 5.17] directly induces a coupling
of the enhanced models by attaching the same number λ′′ of ternary equations to the same
neighbours. �
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Claim 8.18. We have E[nul(A′′′)]=E[nul(A[n+ 1,M+, λ+])]+ o(1).

Proof. The matrix models E[nul(A[n+ 1,M+, λ+])] and A′′′ coincide with the corresponding
models from [10, Section 5.5] plus the extra independent ternary equations. Hence, the coupling
from [10, Claim 5.17] yields a coupling of the enhanced models just as in Claim 8.17. �
Proof of Lemma 8.2. The lemma is an immediate consequence of Claims 8.17 and 8.18. �
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A. Appendix
In this appendix we give a self-contained proof of Claim 7.17, the local limit theorem for sums of
independent vectors. We employ a simplified version of the strategy of the proof of Lemma 7.10.
Recall that the degree sequences (d1, . . . , dn) and (k1, . . . , km) satisfy (P1)-(P7) and the notation
�2 =∑n

i=1 d2i . Finally, we set

sn :=
√
�2. (A.1)

As in the proof of Lemma 7.17, given ω> 0, we choose ε0 = ε0(ω, q) sufficiently small and let
0< ε < ε0. With these parameters, we set

L0 =
{
r ∈Z

F
∗
q : PA

(
ρ̂σ = r

)
> 0 and

∥∥r− q−1�1
∥∥
1 <ωn

−1/2�
}

and

L0(r∗, ε)= {r ∈L0 : ‖r− r∗‖∞ < εsn} .
Then

L0 ⊆ dZF
∗
q .

We begin by observing that the vector ρ̂σ is asymptotically normal given A. As before we let
I(q−1)×(q−1) the (q− 1)× (q− 1)-identity matrix and let N ∈R

F
∗
q be a Gaussian vector with zero

mean and covariance matrix

C = q−1I(q−1)×(q−1) − q−21(q−1)×(q−1). (A.2)

Claim A.1. There exists a function ι= ι(n, q)= o(1) such that for all axis-aligned cubes U ⊆R
F
∗
q

we have ∣∣∣∣PA

[
ρ̂σ − q−1�1

sn
∈U

]
− P [N ∈U]

∣∣∣∣≤ ι.
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Proof. Given A, the mean of ρ̂σ (τ ) clearly equals �/q for every τ ∈ F∗q . Concerning the
covariance matrix, for distinct s = t we obtain

EA[ρ̂2σ (s)]=
∑

i,j∈[n]:i=j

didj
q2

+
n∑

i=1

d2i
q
=

n∑
i,j=1

didj
q2

+
n∑
i=1

d2i
q

(
1− 1

q

)
,

EA[ρ̂σ (s)ρ̂σ (t)]=
∑

i,j∈[n]:i=j

didj
q2

=
n∑

i,j=1

didj
q2

−
n∑

i=1

d2i
q2

.

Hence, the means and covariances of (ρ̂σ − q−1�1)/sn and N match.
We are thus left to prove that (ρ̂σ − q−1�1)/sn is asymptotically normal, with the required

uniformity. Thus, given a small ι > 0 we pickD1 =D1(q, ι)> 0 and n0 = n0(D1) sufficiently large.
Suppose n> n0 and let

d′i = 1{di ≤D1}di, d′′i = di − d′i,

ρ̂′σ (s)=
n∑

i=1
1{σ i = s}d′i, ρ̂′′σ (s)=

n∑
i=1

1{σ i = s}d′′i,

s′n2 =
n∑

i=1
d′i2, s′′n2 =

n∑
i=1

d′′i2,

�′ =
n∑

i=1
d′i, �′′ =

n∑
i=1

d′′i.

By construction, we have�=�′ +�′′, s2n = s′n2 + s′′n2 as well as s′n2 <D2
1n. Moreover, by (P3) and

(P4), both the sequences (dn)n and (d2n)n are uniformly integrable, such that for n large enough,

�′′ < ι8n, s′′n2 < ι8n, (A.3)

also provided that D1 is large enough. Hence, the multivariate Berry–Esseen theorem (e.g. [45])
shows that w.h.p. for all U,

PA

[
ρ̂′σ − q−1�′1

s′n
∈U

]
− P [N ∈U]=O(n−1/2). (A.4)

Furthermore, combining (A.3) with Chebyshev’s inequality, we see that w.h.p.

PA

[∣∣∣∣ ρ̂′′σ − q−1�′′1
sn

∣∣∣∣> ι2
]
< ι2. (A.5)

Thus, combining (A.4) and (A.5), we conclude that w.h.p.∣∣∣∣PA

[
ρ̂σ − q−1�1

sn
∈U

]
− P [N ∈U]

∣∣∣∣≤ ι. (A.6)

Finally, the assertion follows from (A.6) by taking the limit ι→ 0 slowly enough as n→∞. �
Let d= gcd (supp(d)), where d is the weak limit of (dn)n. Then there exist g ∈N, a1, . . . , ag ∈Z

and δ1, . . . , δg in the support of d such that the greatest common divisor of the support can be
linearly combined as

d=
g∑

i=1
aiδi. (A.7)
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We next count how many variables there are with degree δi. For i ∈ [g], let Ii denote the set
of all j ∈ [n] with dj = δi (the set of all variables that appear in δi equations). Set I0 = [n] \(
I1 ∪ . . .∪ Ig

)
. Then

I0 ∪ . . .∪ Ig = [n]

and |I1|, . . . , |Ig | =�(n) because of assumption (P1). We further count how many entries of
value s ∈ F∗q all variables of degree δi generate under the assignment σ , and the contribution from
the rest, yielding

r0(s)=
∑
j∈I0

dj1
{
σ j = s

}
, ri(s)=

∑
j∈Ii

dj1
{
σ j = s

}
. (i ∈ [g], s ∈ F∗q)

Then summing the contributions, we get back ρ̂σ = r0 +∑g
i=1 δiri, where ri = (ri(s))s∈F∗q .

Because σ 1, . . . , σ n are mutually independent given A, so are r0, r1, . . . , rg . Moreover, given
A, for i ∈ [g], ri has a multinomial distribution with parameter |Ii| and uniform probabilities q−1.
In effect, the individual entries ri(s), s ∈ F∗q , will typically differ by only a few standard deviations,
that is, their typical difference will be of order O(

√|Ii|). We require a precise quantitative version
of this statement.

Furthermore, we say that ri is t-tame if |ri(s)− q−1|Ii|| ≤ t
√|Ii| for all s ∈ F∗q . Let T(t) be the

event that r1, . . . , rg are t-tame.

Lemma A.2. W.h.p. for every r∗ ∈L0 there exists r∗ ∈L0(r∗, ε) such that

PA

[
ρ̂σ = r∗

]≥ 1
2|L0(r∗, ε)| and PA

[
T(− log ε) | ρ̂σ = r∗

]≥ 1− ε4. (A.8)

Proof. Since ri has a multinomial distribution given A the Chernoff bound shows that for a large
enough c= c(q) w.h.p.

PA

[
T(− log ε)

]≥ 1− exp(−�ε( log2 (ε))). (A.9)

Further, Claim A.1 implies that w.h.p. PA

[
ρ̂σ ∈L0(r∗, ε)

]≥�ε(εq−1)≥ εq, provided ε < ε0 =
ε0(ω) is small enough. Combining this estimate with (A.9) and Bayes’ formula, we conclude that
w.h.p. for every r∗ ∈L0,

PA

[
T(− log ε), ρ̂σ ∈L0(r∗, ε)

]≥ 1− ε5. (A.10)

To complete the proof, assume that there does not exist r∗ ∈L0(r∗, ε) that satisfies (A.8). Then
for every r ∈L0(r∗, ε) we either have

PA

[
ρ̂σ = r

]
<

1
2|L0(r∗, ε)| or (A.11)

PA

[
T(− log ε)|ρ̂σ = r

]
< 1− ε4. (A.12)
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Let X0 be the set of all r ∈L0(r∗, ε) for which (A.11) holds, and let X1 =L0(r∗, ε) \X0. Then
(A.11)–(A.12) yield

PA

[
T(− log ε) | ρ̂σ ∈L0(r∗, ε)

]≤ PA

[
ρ̂σ ∈X0

]+∑
r∈X1 PA

[
T(− log ε)|ρ̂σ = r

]
PA

[
ρ̂σ = r

]
PA

[
ρ̂σ ∈L0(r∗, ε)

]
≤ PA

[
ρ̂σ ∈X0

]+ (1− ε4)PA

[
ρ̂σ ∈X1

]
PA

[
ρ̂σ ∈L0(r∗, ε)

] < 1− ε4,

provided that 1− ε4 > 1
2 , in contradiction to (A.10). �

Also let T(r, t) be the event that ρ̂σ = r and that r1, . . . , rg are t-tame. We write (r0, . . . , rg) ∈
T(r, t) if r0 +∑g

i=1 δiri = r and |ri(s)− q−1|Ii|| ≤ t
√|Ii| for all s ∈ F∗q . The following lemma

summarises the key step of the proof of Lemma 7.10.

Lemma A.3. W.h.p. for any r∗ ∈L0, any 1≤ t≤ log n and any r, r′ ∈L0(r∗, ε) there exists a one-
to-one map ψ :T(r, t)→T(r′, t+Oε(ε)) such that for all (r0, . . . , rg) ∈T(r, t) we have

log
PA

[
(r0, . . . , rg)= (r0, . . . , rg)

]
PA

[
(r0, , . . . , rg)=ψ(r0, . . . , rg)

] =Oε(ε(ω+ t)). (A.13)

Proof. Since r, r′ ∈L0(r∗, ε), thanks to assumption (P7), we have r− r′ ∈ dZF
∗
q . Hence, with

e1, . . . , eq−1 denoting the standard basis of RF
∗
q , there is a unique representation

r′ − r=
q−1∑
i=1

λidei (A.14)

with λ1, . . . , λq−1 ∈Z. Because r, r′ ∈L0(r∗, ε) and

λ :=

⎛
⎜⎜⎜⎜⎝
λ1

...

λq−1

⎞
⎟⎟⎟⎟⎠= d−1(r′ − r),

the coefficients satisfy

|λi| =Oε (εsn) for all i= 1, . . . , q− 1. (A.15)

Now recall g ∈N, a1, . . . , ag ∈Z and δ1, . . . , δg in the support of d with

d=
g∑

i=1
aiδi.

Fir i ∈ [g], we set

r′i = ri + ai
d
λ

as well as r0′ = r0. Further, define ψ(r0, . . . , rg)= (r0′, . . . , r′g). Then clearly

r0 +
g∑

i=1
δir′i = r+

g∑
i=1

aiδi
d
λ= r+ r′ − r= r′. (A.16)
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and due to (A.15), we have ψ(r0, . . . , rg) ∈T(r′, t+Oε(ε)). Finally, for i ∈ [g] set

ri(0)= |Ii| −
∑
s∈F∗q

ri(s), r′i(0)= |Ii| −
∑
s∈F∗q

r′i(s).

Moreover, Stirling’s formula and the mean value theorem show that

PA

[
(r0, . . . , rg)= (r0, . . . , rg)

]
PA

[
(r0, . . . , rg)=ψ(r0, . . . , rg)

]

=
( |I1|
(r1(0),r1)

) · . . . · ( |Ig |
(rg (0),rg )

)
( |I1|
(r′1(0),r′1)

) · . . . · ( |Ig |
(r′g (0),r′g )

) = exp

⎡
⎣ g∑

i=1

∑
s∈Fq

Oε
(
r′i(s) log r′i(s)− ri(s) log ri(s)

)⎤⎦

= exp

⎡
⎣ g∑

i=1
Oε(|Ii|)

∑
s∈Fq

∣∣∣∣∣
∫ r′i(s)/|Ii|

ri(s)/|Ii|
log zdz

∣∣∣∣∣
⎤
⎦

= exp

⎡
⎣ g∑

i=1
Oε(|Ii|)

∑
s∈Fq

(
r′i(s)
|Ii| −

ri(s)
|Ii|

)
log

(
1
q
+Oε

(
(ω+ t)sn
|Ii|

))⎤⎦

= exp

⎡
⎣ g∑

i=1
Oε(|Ii|)

∑
s∈Fq

Oε
(
(ω+ t)sn
|Ii|

(
r′i(s)
|Ii| −

ri(s)
|Ii|

))⎤⎦ . (A.17)

Since |I1|, . . . , |Ig | =�ε(n), (A.17) implies (A.13). Finally, ψ is one to one because each vector
has a unique representation with respect to the basis (e1, . . . , eq−1). �

Roughly speaking, LemmaA.3 shows that any two tame r, r′ ∈L0(r∗, ε) close to a conceivable
r∗ ∈L0 are about equally likely. However, the map ψ produces solutions that are a little less tame
than the ones we start from. The following corollary, which combines Lemmas 7.14 and 7.15,
remedies this issue.

Corollary A.4. W.h.p. for all r∗ ∈L0 and all r, r′ ∈L0(r∗, ε) we have

PA

[
T(r,−3 log ε)]= (1+ oε(1))PA

[
T(r′,−3 log ε)] .

Proof. Let r∗ be the vector supplied by Lemma A.2. Applying Lemma A.3 to r∗ and r ∈L0(r∗, ε),
we see that w.h.p.

PA

[
T(r,−2 log ε)]≥ (1+Oε(ε log ε))PA

[
T(r∗,− log ε)

]≥ 1
3|L0(r∗, ε)| for all r ∈L0(r∗, ε).

(A.18)

In addition, we claim that w.h.p.

PA

[
T(r,−4 log ε) \T(r,−3 log ε)]≤ εPA

[
T(r∗,− log ε)

]
for all r ∈L0(r∗, ε). (A.19)

Indeed, applying Lemma 7.15 twice to r and r∗ and invoking (7.26), we see that w.h.p.

PA

[
T(r,−2 log ε)]≥ exp(Oε(ε log ε))PA

[
T(r∗,−3 log ε)]

≥ (
1−Oε(ε log ε)

)
PA

[
ρ̂σ = r∗

]
, (A.20)
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PA

[
T(r,−4 log ε) \T(r,−3 log ε)]≤ exp(Oε(ε log ε))PA

[
T(r∗,−3 log ε) \T(r∗,−2 log ε)]

Oε(ε4)PA

[
ρ̂σ = r∗

]
. (A.21)

Combining (A.20) and (A.21) yields (A.19).
Finally, (7.26), (A.18) and (A.19) show that w.h.p.

PA

[
T(− 3 log ε) | ρ̂σ = r

]≥ 1−√ε,
PA

[
T(− 3 log ε) | ρ̂σ = r′

]≥ 1−√ε for all r, r′ ∈L0(r∗, ε), (A.22)

and combining (A.22) with Lemma A.3 completes the proof. �
Proof of Claim 7.17. Claim A.1 shows that for any r ∈L0 and N∼N (0,C )

PA

(
ρ̂σ ∈L0(r, ε)

)= PA

(∥∥∥∥N − r−�1/q
sn

∥∥∥∥∞ < ε

)
+ o(1).

Moreover, Corollary A.4 implies that given ρ̂σ ∈L0(r, ε), ρ̂σ is within oε(1) of the uniform
distribution on L0(r, ε). Furthermore, Lemma 3.6 applied to the module M= dZF

∗
q with basis

{de1, . . . , deq−1} shows that the number of points in L0(r, ε) satisfies
|L0(r, ε)|∣∣{z ∈Zq−1 : ‖z− r‖∞ ≤ εsn

}∣∣ ∼ d1−q.

Finally, the eigenvalues of the matrix C are q−2 (once) and q−1 ((q− 2) times). Hence,
det C = q−q. Therefore, w.h.p. for all r ∈L0 we have

PA

[
ρ̂σ = r

]= (1+ oε(1))
qq/2dq−1

(2π�2)(q−1)/2
exp

[
− (r− q−1�1)TC−1(r− q−1�1)

2�2

]
. (A.23)

�
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