
J. Appl. Probab. 1–17 (2024)
doi:10.1017/jpr.2024.30

BIVARIATE TEMPERED SPACE-FRACTIONAL POISSON PROCESS AND
SHOCK MODELS

RITIK SONI,∗ ∗∗ AND

ASHOK KUMAR PATHAK,∗ ∗∗∗ Central University of Punjab, Bathinda
ANTONIO DI CRESCENZO ,∗∗∗∗ ∗∗∗∗∗ AND

ALESSANDRA MEOLI,∗∗∗∗ ∗∗∗∗∗∗ Università degli Studi di Salerno, Fisciano, Italy

Abstract

We introduce a bivariate tempered space-fractional Poisson process (BTSFPP) by
time-changing the bivariate Poisson process with an independent tempered α-stable
subordinator. We study its distributional properties and its connection to differential
equations. The Lévy measure for the BTSFPP is also derived. A bivariate competing
risks and shock model based on the BTSFPP for predicting the failure times of items
that undergo two random shocks is also explored. The system is supposed to break when
the sum of two types of shock reaches a certain random threshold. Various results related
to reliability, such as reliability function, hazard rates, failure density, and the probability
that failure occurs due to a certain type of shock, are studied. We show that for a gen-
eral Lévy subordinator, the failure time of the system is exponentially distributed with
mean depending on the Laplace exponent of the Lévy subordinator when the threshold
has a geometric distribution. Some special cases and several typical examples are also
demonstrated.
Keywords: Tempered space-fractional Poisson process; Lévy subordinator; shock model;
failure distribution; reliability
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1. Introduction

The Poisson process is one of the most widely used counting processes with nice mathemat-
ical properties and applications in diverse disciplines of applied sciences, namely insurance,
economics, biology, queuing theory, reliability, and statistical physics. In recent years, the
construction and generalization of the counting processes via subordination techniques have
received a considerable amount of interest from theoretical and application viewpoints [32,
34]. [26] introduced a space-fractional version of the Poisson process by subordinating the
homogeneous Poisson process (HPP) with an independent α-stable subordinator; [25] studied
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2 R. SONI ET AL.

the Poisson process by considering an inverse stable subordinator and established its connec-
tion with the fractional Poisson process; [27] proposed a unified approach by time-changing
the HPP with an independent general Lévy subordinator. For more recent developments in this
direction, see [11, 19, 20, 24, 31] and references therein.

Apart from univariate counting processes, researchers have explored multivariate versions
of the counting process in recent years for effectively analyzing complex real-world phenom-
ena arising in daily life. However, we remark that the literature on multivariate fractional
Poisson processes is quite limited, since this is a recent topic of interest. A multivariate
fractional Poisson counting process was defined in [3] by considering a common random
time-change of a finite-dimensional independent Poisson process. Along the same lines, [4]
obtained asymptotic results for a different multivariate version of the fractional Poisson
process. Moreover, among other topics, [5] studied the time-change of a multidimensional
space-fractional Poisson process by a common independent gamma subordinator. A multi-
parameter fractional Poisson process was considered in [23] using inverse subordinators and
Mittag–Leffler functions, and its main characteristics were studied.

In this paper, we introduce a bivariate tempered space-fractional Poisson process (BTSFPP)
by time-changing the bivariate Poisson process with an independent tempered α-stable subor-
dinator (TSS) and study its important characteristics. It should be stressed that the BTSFPP
under investigation is a natural multivariate extension of the Poisson process with a relativistic
stable subordinator studied in [27]. In particular, we derive its Lévy measure and the govern-
ing differential equations of the probability mass function (PMF) and probability-generating
function (PGF). As an application in a research area of interest in survival analysis and reli-
ability theory, we also propose a shock model for predicting the failure time of items subject
to two external random shocks in a counting pattern governed by the BTSFPP. The system is
supposed to break when two types of shock reach their random thresholds. The results related
to reliability, such as reliability function, hazard rates, failure density, and the probability that
the failure occurs due to a certain type of shock, are studied. Several typical examples based on
different random threshold distributions are also presented. Later on, for a general Lévy sub-
ordinator, we show that the failure time of the system is exponentially distributed with mean
depending on the Laplace exponent of the Lévy subordinator when the threshold is geomet-
rically distributed. Graphs of survival function for different values of tempering parameters θ
and stability index α are also shown.

We recall that the classical competing risks model deals with failure times subject to mul-
tiple causes of failure. It is suitable, for instance, for describing the failures of organisms or
devices in the presence of many types of risk. In the basic setting, this model deals with an
observable pair of random variables (T, ζ ), where T is the time of failure and ζ describes the
cause or type of failure. For a description of the main features of this model we refer, for
instance, to [2, 8]. A recent research line in this field focuses on the analysis of competing
risk models arising from shock models. Specifically, we study the bivariate counting process
(N α,θ

1 (t, λ1),N α,θ
2 (t, λ2)), whose components describe respectively shocks of type 1 and type

2 occurring in (0, t] to a given observed system. Failure of the system occurs as soon as the total
number of shocks reaches an integer-valued random threshold L for the first time, so that the
cause of failure is ζ = n if a shock of type n = 1, 2 effectively produces the system’s failure.

The recent literature in this area includes the following contributions. Various counting pro-
cesses in one-dimensional and multidimensional settings, as well as in time-changed versions,
have been successfully applied to shock models, deterioration models, and further contexts
of interest in reliability theory. For instance, [9] discussed a bivariate Poisson process with
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Bivariate tempered space-fractional Poisson process and shock models 3

applications in shock models, and [10] considered a bivariate space-fractional Poisson pro-
cess, studying competing risks and shock models associated with it. In reliability theory and
survival analysis, system failure is discussed primarily using conventional competing risks and
shock models. A class of general shock models in which failure arises as a result of competing
causes of trauma-related degradation was presented in [22]. A new class of bivariate counting
processes that have marginal regularity property was developed in [7] and utilized in a shock
model. For recent development in this area, see [6, 10, 34].

The structure of the paper is as follows. In Section 2, we present some preliminary notation
and definitions. In Section 3, we introduce the BTSFPP and discuss its connection to differen-
tial equations. A bivariate shock system governed by the BTSFPP and some reliability-related
results of the failure time of the system are provided in Section 4. Also, we present a bivariate
Poisson time-changed shock model when the underlying process is governed by an indepen-
dent general Lévy subordinator. Finally, some concluding remarks are discussed in the last
section.

2. Preliminaries

In this section, some notation and results are given that will be used in the subsequent
sections. Let N denote the set of natural numbers, and N0 =N∪ {0}. Let R and C denote the
sets of real and complex numbers, respectively.

2.1. Generalized Wright function

The generalized Wright function is defined by [17]

p�q

[
z

∣∣∣∣∣
(αi, βi)1,p

(aj, bj)1,q

]
=

∞∑
k=0

zk

k!
∏p

i=1 �(αi + βik)∏q
j=1 �(aj + bjk)

, z, αi, ai ∈C, βi, bi ∈R, (2.1)

under the convergence condition
∑q

j=1 bj −∑p
i=1 βi >−1.

2.2. Lévy subordinator

A Lévy subordinator, denoted by {S(t)}t≥0, is a nondecreasing Lévy process with Laplace
transform [1, Section 1.3.2] E(e−uS(t)) = e−tψ(u), u ≥ 0, where ψ(u) is the Laplace exponent
given by [30, Theorem 3.2]

ψ(u) = ηu +
∫ ∞

0
(1 − e−ux) ν(dx), η≥ 0.

Here, η is the drift coefficient and ν is a nonnegative Lévy measure on the positive half-line
satisfying

∫∞
0 min{x, 1} ν(dx)<∞ and ν([0,∞)) = ∞, so that {S(t)}t≥0 has strictly increasing

sample paths almost surely (a.s.)—for more details, see [29, Theorem 21.3].
For α ∈ (0, 1) and θ > 0, the tempered α-stable subordinator {Sα,θ (t)}t≥0 is defined by the

Laplace transform [21]

E
[
e−uSα,θ (t)]= e−t((u+θ)α−θα), (2.2)

with Laplace exponent ψ(u) = (u + θ )α − θα . Further, the Lévy density ν(s) associated with
ψ is (see [15, (5)] and [28])

ν(s) = α

�(1 − α)

e−θs

sα+1
, s> 0. (2.3)
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Let fSα,θ (t)(x, t) denote the probability density function (PDF) of the TSS. By independent and
stationary increments of the Lévy subordinator, the joint density is defined as

fSα,θ (t1),Sα,θ (t2)(x1, t1; x2, t2) dx1 dx2 = fSα,θ (t2−t1)(x2 − x1, t2 − t1)fSα,θ (t1)(x1, t1) dx1 dx2. (2.4)

2.3. Tempered space-fractional Poisson process

Let {N (t, λ)}t≥0 be the homogeneous Poisson process with parameter λ> 0. The tempered
space-fractional Poisson process (TSFPP) denoted by {N α,θ (t, λ)}t≥0 is defined by time-
changing the homogeneous Poisson process with an independent TSS as [14] N α,θ (t, λ) :=
N (Sα,θ (t), λ). Its PMF pα,θ (k, t) is given by [13, (26)]

pα,θ (k, t) = (−1)k

k! etθα
∞∑

i=0

θ i

λii! 1�1

[
−λαt

∣∣∣∣∣
(1, α)

(1 − k − i, α)

]
.

2.4. Backward shift operators

Let B be the backward shift operator defined by B[ξ (k)] = ξ (k − 1). For the fractional
difference operator (I − B)α , we have (see [26] and [33, p. 91])

(I − B)α =
∞∑

i=0

(
α

j

)
(−1)iBi, α ∈ (0, 1),

where I is an identity operator. Furthermore, let {Bi}, i ∈ {1, 2, . . . ,m}, be the operators
defined as

Bi[ξ (k1, k2, . . . , km)] = ξ (k1, k2, . . . , ki − 1, . . . , km).

For the m = 1 case, the Bi act the same as the operator B.

3. Bivariate tempered space-fractional Poisson process

Let {Ni(t, λi)}t≥0, i = 1, 2, be two independent homogeneous Poisson processes
with parameters λi, i = 1, 2, respectively. Then, for α ∈ (0, 1), we define the BTSFPP
{Qα,θ (t)}t≥0 as

Qα,θ (t) := (N1(Sα,θ (t), λ1),N2(Sα,θ (t), λ2)
)

:= (N α,θ
1 (t, λ1),N α,θ

2 (t, λ2)
)
, (3.1)

where Sα,θ is the TSS, independent of N1 and N2.
Throughout the paper, we work with the bivariate process. Here, we denote any arbitrary

bivariate vector of constants by a = (a1, a2), where a1 and a2 are nonnegative integers. Let
b = (b1, b2), and 0 = (0, 0) be the null vector. We write a ≥ b (or a ≤ b) to mean that ai ≥ bi

(or ai ≤ bi) for i = 1, 2. Further, we write k = (k1, k2) and r = (r1, r2).
Next, we derive the PMF, PGF, and associated differential equations for the BTSFPP.

Proposition 3.1. For α ∈ (0, 1) and k ≥ 0, the PMF qα,θ (k, t) = P{Qα,θ (t) = k} is given by

qα,θ (k, t) =
(

− 1

λ1 + λ2

)k1+k2 λ
k1
1 λ

k2
2

k1!k2! etθα

×
∞∑

i=0

θ i

i!(λ1 + λ2)i 1�1

[
−(λ1 + λ2)αt

∣∣∣∣∣
(1, α)

(1 − (k1 + k2) − i, α)

]
. (3.2)
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Proof. First, we have

qα,θ (k, t) = P
({Qα,θ (t) = k} ∩ {N α,θ

1 (t, λ1) +N α,θ
2 (t, λ2) = k1 + k2

})
= P

(Qα,θ (t) = k | {N α,θ
1 (t, λ1) +N α,θ

2 (t, λ2) = k1 + k2
})

× P
(N α,θ

1 (t, λ1) +N α,θ
2 (t, λ2) = k1 + k2

)
. (3.3)

Using a conditioning argument along similar lines to [3, Proposition 4], we get

P
(Qα,θ (t) = k | {N α,θ

1 (t, λ1) +N α,θ
2 (t, λ2) = k1 + k2

})= (k1 + k2)!
k1!k2!

λ
k1
1 λ

k2
2

(λ1 + λ2)k1+k2
.

Now, we calculate

P
(N α,θ

1 (t, λ1) +N α,θ
2 (t, λ2) = k1 + k2

)
=E

[
P(N1(r, λ1) + N2(r, λ2)) = k1 + k2

∣∣
r=Sα,θ (t)

]

=E

[
((λ1 + λ2)r)k1+k2

(k1 + k2)! e−r(λ1+λ2)
∣∣∣∣
r=Sα,θ (t)

]

= (−1)k1+k2

(k1 + k2)! etθα
∞∑

i=0

θ i

(λ1 + λ2)ii! 1�1

[
−(λ1 + λ2)αt

∣∣∣∣∣
(1, α)

(1 − (k1 + k2) − i, α)

]
.

With the help of (3.3), we get the PMF. The convergence of 1�1 follows from the condition in
(2.1) as α− α = 0>−1. �

Remark 3.1. When θ = 0, (3.2) reduces to the PMF of the bivariate space-fractional Poisson
process studied in [10].

Theorem 3.1. For u = (u1, u2) ∈ [0, 1]2, the PGF Gα,θ (u; t) for the BTSFPP is given by

Gα,θ (u; t) = exp{−t([λ1(1 − u1) + λ2(1 − u2) + θ ]α − θα)},
and it satisfies the differential equation

d

dt
Gα,θ (u; t) = −([λ1(1 − u1) + λ2(1 − u2) + θ ]α − θα)Gα,θ (u; t), Gα,θ (u; 0) = 1.

(3.4)

Proof. For λ> 0, the PGF for the TSFPP is given by [13]

E
[
uN α,θ (t,λ)]=E

[
E
[
uN (Sα,θ (t),λ) | Sα,θ (t)

]]=E
[
e−λ(1−u)Sα,θ (t)]= e−t((λ(1−u)+θ)α−θα).

We define the PGF as Gα,θ (u; t) =E
[
uQα,θ (t)

]=∑
k≥0 uk1

1 uk2
2 qα,θ (k, t). Hence, we get

Gα,θ (u; t) =E
[
E
[
uQα,θ (t,λ) | Sα,θ (t)

]]
=E

[
e(λ1(u1−1)+λ2(u2−1))Sα,θ (t)]

= e−t([λ1(1−u1)+λ2(1−u2)+θ]α−θα).

By calculus we obtain (3.4), and the condition trivially holds for t = 0. �
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Theorem 3.2. The PMF in (3.2) satisfies the differential equation

d

dt
qα,θ (k, t) = −(λ1 + λ2)α

((
I − λ1B1 + λ2B2 − θ

λ1 + λ2

)α
−
(

θ

λ1 + λ2

)α)
qα,θ (k, t),

with qα,θ (0, t) = 1.

Proof. From (3.4), we have

d

dt
Gα,θ (u; t) = −(λ1 + λ2)α

((
1 − λ1u1 + λ2u2 − θ

λ1 + λ2

)α
−
(

θ

λ1 + λ2

)α)
Gα,θ (u; t). (3.5)

Now, we concentrate our attention on simplifying the following:(
1 − λ1u1 + λ2u2 − θ

λ1 + λ2

)α
=
(

1 + θ

λ1 + λ2
− λ1u1 + λ2u2

λ1 + λ2

)α

=
∑
j≥0

(
α

j

)(
1 + θ

λ1 + λ2

)α−j

(−1)j
(
λ1u1 + λ2u2

λ1 + λ2

)j

=
∑
j≥0

(
α

j

)(
1 + θ

λ1 + λ2

)α−j (−1)j

(λ1 + λ2)j

∑
r≥0,

r1+r2=j

j!
r1!r2!λ

r1
1 λ

r2
2 ur1

1 ur2
2 .

Therefore, from (3.5),

d

dt
Gα,θ (u; t)

= −(λ1 + λ2)α
((

1 − λ1u1 + λ2u2 − θ

λ1 + λ2

)α∑
k≥0

uk1
1 uk2

2 qα,θ (k, t) −
(

θ

λ1 + λ2

)α∑
k≥0

uk1
1 uk2

2 qα,θ (k, t)

)

= −(λ1 + λ2)α
∑
j≥0

(
α

j

)(
1 + θ

λ1 + λ2

)α−j
(−1)j

(λ1 + λ2)j

∑
r≥0,

r1+r2=j

j!
r1!r2!λ

r1
1 λ

r2
2

∑
k≥0

uk1+r1
1 uk2+r2

2 qα,θ (k, t)

+ (λ1 + λ2)α
(

θ

λ1 + λ2

)α∑
k≥0

uk1
1 uk2

2 qα,θ (k, t)

= −(λ1 + λ2)α
∑
j≥0

(
α

j

)(
1 + θ

λ1 + λ2

)α−j
(−1)j

(λ1 + λ2)j

∑
r≥0,

r1+r2=j

j!
r1!r2!λ

r1
1 λ

r2
2

∑
k≥r

uk1
1 uk2

2 qα,θ (k − r, t)

+ (λ1 + λ2)α
(

θ

λ1 + λ2

)α∑
k≥0

uk1
1 uk2

2 qα,θ (k, t)

= −(λ1 + λ2)α
∑
k≥r

uk1
1 uk2

2

∑
j≥0

(
α

j

)(
1 + θ

λ1 + λ2

)α−j
(−1)j

(λ1 + λ2)j

∑
r≥0,

r1+r2=j

j!
r1!r2!λ

r1
1 λ

r2
2 qα,θ (k − r, t)

+ (λ1 + λ2)α
(

θ

λ1 + λ2

)α∑
k≥0

uk1
1 uk2

2 qα,θ (k, t).
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Since ∑
r≥0,

r1+r2=j

j!
r1!r2!λ

r1
1 λ

r2
2 qα,θ (k − r, t) = (λ1B1 + λ2B2)jqα,θ (k, t),

we obtain the desired differential equation. �

Next, we derive the Lévy measure for the BTSFPP.

Theorem 3.3. The discrete Lévy measure Vα,θ for the BTSFPP is given by

Vα,θ ( · ) =
∑

k1,k2>0

λ
k1
1 λ

k2
2

k1!k2!
α�(k1 + k2 − α)

�(1 − α)
δ{k}( · )(θ + λ1 + λ2)α−k1−k2,

where δ{k}( · ) is the Dirac measure concentrated at k.

Proof. The PMF for the bivariate Poisson process N (t) = (N1(t, λ1),N2(t, λ2)) is [3]

P{N1(t, λ1) = k1,N2(t, λ2) = k2} = λ
k1
1 λ

k2
2

k1!k2! tk1+k2 e−(λ1+λ2)t.

Using (2.3) and applying the formula from [29, p. 197] to calculate the Lévy measure, we get

Vα,θ ( · ) =
∫ ∞

0

∑
k1,k2>0

P{N1(s, λ1) = k1,N2(s, λ2) = k2}δ{k}( · )ν(s) ds

=
∑

k1,k2>0

λ
k1
1 λ

k2
2

k1!k2! δ{k}( · )
α

�(1 − α)

∫ ∞

0
es(θ+λ1+λ2)sk1+k2−α−1 ds.

Using the integral formula [12, (3.351.3)], we can simplify this as

Vα,θ ( · ) =
∑

k1,k2>0

λ
k1
1 λ

k2
2

k1!k2!
α(k1 + k2 − α − 1)!

�(1 − α)
δ{k}( · )(θ + λ1 + λ2)α−k1−k2 .

Hence, the theorem is proved. �

With the aim of calculating hazard rates, we establish the following lemma.

Lemma 3.1. For h ∈N0,

dh

duh

[
e−t((u+θ)α−θα)]= h∑

k=0

1

k!e−t((u+θ)α−θα)
k∑

j=0

(
k

j

)
tk(−1)j(((u + θ )α − θα))k−j

×
j∑

i=0

(
j

i

)
(αi)h(u + θ )αi−h(−θα)j−i,

where (x)h = x(x − 1) · · · (x − h + 1) denotes the falling factorial.
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Proof. Let V(u) = −t((u + θ )α − θα) and W(V(u)) = e−t((u+θ)α−θα). Then, applying
Hoppe’s formula [16] to the function W(V(u)), we get

dh

duh
W(V(u)) =

h∑
k=0

1

k!e−t((u+θ)α−θα)Th,k(V(u)), (3.6)

where Th,k(V(u)) is computed as

Th,k(V(u)) =
k∑

j=0

(
k

j

)
(−V(u))k−j dh

duh
(V(u))j

=
k∑

j=0

(
k

j

)
(t((u + θ )α − θα))k−j dh

duh
( − t((u + θ )α − θα))j

=
k∑

j=0

(
k

j

)
(t((u + θ )α − θα))k−j( − t)j

j∑
i=0

(
j

i

)
(−θα)j−i dh

duh
(u + θ )αi

=
k∑

j=0

(
k

j

)
tk(−1)j(((u + θ )α − θα))k−j

j∑
i=0

(
j

i

)
(αi)h(u + θ )αi−h(−θα)j−i.

Hence, through (3.6), we have proved the lemma. �

4. Bivariate shock models

We design a shock model that is subjected to two shocks of types 1 and 2. Let T be a
nonnegative absolutely continuous random variable that represents the failure time of a system
subject to two possible causes of failure. Set ζ = n, which represents the failure of the system
occurring due to a shock of type n for n = 1, 2. We define the total number of shocks {Z(t)}t≥0
during the time interval [0, t] as

Z(t) =N α,θ
1 (t, λ1) +N α,θ

2 (t, λ2),

where N α,θ
1 (t, λ1) and N α,θ

2 (t, λ2) are processes counting the number of shocks of type n for
n = 1, 2, respectively, during the time interval [0, t].

We introduce a random threshold L that takes values in the set of natural numbers. Hence, at
the first time when Q(t) = L, the failure occurs. The probability distribution and the reliability
function of L are respectively defined by

qk = P(L = k), k ∈N,

qk = P(L> k), k ∈N0.
(4.1)

Let gT (t) be the PDF of T , defined as T = inf{t ≥ 0: Z(t) = L}. Then, we have gT (t) = g1(t) +
g2(t), t ≥ 0, where the sub-densities gn(t) are defined by

gn(t) = d

dt
P{T ≤ t, ζ = n}, n = 1, 2.
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Also, the probability that the failure occurs due to a shock of type n is given by

P(ζ = n) =
∫ ∞

0
gn(t) dt, n = 1, 2. (4.2)

Furthermore, in terms of the joint PMF, the hazard rates are given by

h1(k1, k2; t) = lim
τ→0+

P{Qα,θ (t + τ ) = (k1 + 1, k2) |Qα,θ (t) = (k1, k2)}
τ

,

h2(k1, k2; t) = lim
τ→0+

P{Qα,θ (t + τ ) = (k1, k2 + 1) |Qα,θ (t) = (k1, k2)}
τ

,

(4.3)

with (k1, k2) ∈N
2
0. Hence, conditioning on L and with the help of (4.1), the failure densities

take the form

gn(t) =
∞∑

k=1

qk

∑
k1+k2=k−1

P{Qα,θ (t) = (k1, k2)}hn(k1, k2; t), n = 1, 2. (4.4)

The reliability function of T , denoted by RT (t) = P{T > t}, is given by

RT (t) =
∞∑

k=0

qk

∑
k1+k2=k

P{Qα,θ (t) = (k1, k2)}, q0 = 1. (4.5)

Proposition 4.1. Under the assumptions of the model in (3.1) and for n = 1, 2, the hazard rates
hn(k1, k2; t), t ≥ 0, are given by

hn(k1, k2; t) = αλn(�+ θ )α−1e−t(�+θ)α
( ∞∑

l=0

θ l

�ll! 1�1

[
−�αt

∣∣∣∣∣
(1, α)

(1 − h − l, α)

])−1

×
h∑

k=0

1

k!
k∑

j=0

(
k

j

)
(−1)jtk(((�+ θ )α − θα))k−j

j∑
i=0

(
j

i

)
(αi)h(�+ θ )αi(−θα)j−i,

(4.6)

where �= λ1 + λ2 and h = k1 + k2.

Proof. We fix n = 1. With the help of (2.4) and considering the BTSFPP as bivariate HPP
with tempered α-stable stopping time, we have

P{Qα,θ (τ ) = (k1 + 1, k2),Qα,θ (t) = (k1, k2)}

=
∫ ∞

0

∫ y

0
P{Qα,θ (y) = (k1 + 1, k2),Qα,θ (x) = (k1, k2)}fSα,θ (τ−t)(y − x, τ − t)fSα,θ (t)(x, t)dx dy

=
∫ ∞

0

∫ y

0
P{N1(y − x, λ1) = 1,N2(y − x, λ2) = 0}

× P{N1(x, λ1) = k1,N2(x, λ2) = k2}fSα,θ (τ−t)(y − x, τ − t)fSα,θ (t)(x, t) dx dy

=
∫ ∞

0

∫ y

0

λ
k1+1
1 λ

k2
2

k1!k2! e−(λ1+λ2)yxk1+k2 (y − x)fSα,θ (τ−t)(y − x, τ − t)fSα,θ (t)(x, t) dx dy.

https://doi.org/10.1017/jpr.2024.30 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.30


10 R. SONI ET AL.

By using Tonelli’s theorem, we get

P{Qα,θ (τ ) = (k1 + 1, k2),Qα,θ (t) = (k1, k2)}

= λ
k1+1
1 λ

k2
2

k1!k2!
∫ ∞

0

∫ ∞

x
xhfSα,θ (t)(x, t)fSα,θ (τ−t)(y − x, τ − t)e−(λ1+λ2)y(y − x) dy dx

= λ
k1+1
1 λ

k2
2

k1!k2!
∫ ∞

0
e−(λ1+λ2)xxhfSα,θ (t)(x, t) dx

∫ ∞

0
ye−(λ1+λ2)yfSα,θ (τ−t)(y, τ − t) dy

= λ
k1+1
1 λ

k2
2

k1!k2! (−1)h dh

dxh
E
[
e−xSα,θ (t)]∣∣∣

x=�
d

dy
E
[
e−ySα,θ (τ−t)]∣∣∣

y=�.

Hence, using the definition of conditional density in (4.3), the required form is obtained with
the help of (3.2) and Lemma 3.1. For the n = 2 case the proof follows along the same lines. �

In the next propositions, we derive the failure densities and the reliability function of the
system and obtain the distribution (4.2) of failure due to the nth type of shock.

Proposition 4.2. Under the assumptions of the model in (3.1), for n = 1, 2 and t ≥ 0, the failure
density is of the form

gn(t) = αλn(�+ θ )α−1e−t((�+θ)α−θα)×
∞∑

k=1

qk
(−1)k−1

(k − 1)!
k−1∑
l=0

tl

l!
l∑

j=0

(
l

j

)
(−1)j(((�+ θ )α − θα))l−j

j∑
i=0

(
j

i

)
(αi)k−1(�+ θ )αi(−θα)j−i.

Proof. On substituting the PMF (3.2) and (4.6) into (4.4), we get

gn(t) =
∞∑

k=1

qk

∑
k1+k2=k−1

qα,θ (k, t)(�+ θ )α−1e−t(�+θ )α
( ∞∑

l=0

θ l

�ll! 1�1

[
−�αt

∣∣∣∣∣
(1, α)

(1 − h − l, α)

])−1

× αλn

k1+k2∑
l=0

1

l!
l∑

j=0

(
l

j

)
(−1)jtl(((�+ θ )α − θα))l−j

j∑
i=0

(
j

i

)
(αi)k1+k2 (�+ θ )αi(−θα)j−i

= αλn(�+ θ )α−1e−t((�+θ )α−θα )
∞∑

k=1

qk
(−1)k−1

(k − 1)!�k−1

k−1∑
k1=0

(k − 1)!λk1
1 λ

k−1−k1
2

k1!(k − 1 − k1)!

×
k−1∑
l=0

tl

l!
l∑

j=0

(
l

j

)
(−1)j(((�+ θ )α − θα))l−j

j∑
i=0

(
j

i

)
(αi)k−1(�+ θ )αi(−θα)j−i.

Using the binomial theorem, the failure density is obtained. �

Proposition 4.3. Under the assumptions of the model in (3.1), the reliability function of T is
given by

RT (t) =
∞∑

k=0

qk
(−1)k

k! etθα
∞∑

i=0

θ i

�ii! 1�1

[
−�αt

∣∣∣∣∣
(1, α)

(1 − k − i, α)

]
, t ≥ 0.
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Proof. The reliability function can be obtained by substituting (3.2) into (4.5) and simplify-
ing it using the binomial theorem as carried out in the previous proof. �

Proposition 4.4. Under the assumptions of the model in (3.1), for n = 1, 2 we also have

P(ζ = n) = αλn
(�+ θ )α−1

(�+ θ )α − θα
×

∞∑
k=1

qk
(−1)k−1

(k − 1)!
k−1∑
l=0

l∑
j=0

(
l

j

)
(−1)j((�+ θ )α − θα)−j

j∑
i=0

(
j

i

)
(αi)k−1(�+ θ )αi(−θα)j−i.

Proof. With the help of Proposition 4.2, the probability (4.2) gives

P(ζ = n) = αλn(�+ θ )α−1×
∞∑

k=1

qk
(−1)k−1

(k − 1)!
k−1∑
l=0

1

l!
l∑

j=0

(
l

j

)
(−1)j(((�+ θ )α − θα))l−j

j∑
i=0

(
j

i

)
(αi)k−1(�+ θ )αi(−θα)j−i

×
∫ ∞

0
e−t((�+θ)α−θα)tl dt.

Using the integral formula of [12, (3.351.3)], we get the proposition. �

4.1. Generalized shock models

Let S := {S(t)}t≥0 be a Lévy subordinator. In the next theorem, we evaluate the reliability
function of T when the threshold L has geometric distribution with parameter p ∈ (0, 1], i.e.

qk = (1 − p)k, k = 0, 1, 2, . . . , (4.7)

and when the shocks arrive according to a process N := {N(t)}t≥0, where

N(t) := (N1(S(t), λ1),N2(S(t), λ2)), (4.8)

and the components of N are two time-changed independent homogeneous Poisson pro-
cesses with intensities λ1 > 0 and λ2 > 0, respectively. The time change is represented by an
independent generic subordinator S.

Recalling that T = inf{t ≥ 0: N1(S(t), λ1) +N2(S(t), λ2) = L}, the distribution (4.7) stems
from the customary assumption that the failure happens at the occurrence of the first critical
event of a sequence of Bernoulli trials having parameter p, where each trial is performed as
soon as the sum of shocks reaches any integer level.

Theorem 4.1. For (x1, x2) ∈N
2
0 and under the assumptions of the model in (4.7) and (4.8), the

reliability function of T is

FT (t) = e−tψ((λ1+λ2)p), (4.9)

where ψ( · ) is the Laplace exponent of the subordinator S.
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Proof. Consider the reliability function of T as

FT (t) =
+∞∑
k=0

(1 − p)k
k∑

x1=0

P(N1(S(t), λ1) = x1,N2(S(t), λ2) = k − x1)

=
+∞∑
k=0

(1 − p)k
k∑

x1=0

λ
x1
1

x1!
λ

k−x1
2

(k − x1)!
∫ +∞

0
e−(λ1+λ2)ssk

P(S(t) ∈ ds).

We exchange the order of summation and rearrange all the terms to get

FT (t) =
+∞∑
x1=0

λ
x1
1 (1 − p)x1

x1!
+∞∑
h=0

[λ2(1 − p)]h

h!
∫ +∞

0
sx1+he−(λ1+λ2)s

P(S(t) ∈ ds)

=
+∞∑
x1=0

λ
x1
1 (1 − p)x1

x1!
∫ +∞

0
sx1e−(λ1+λ2)s+λ2(1−p)s

P(S(t) ∈ ds)

=
∫ +∞

0
e−(λ1+λ2)s+λ2(1−p)s+λ1(1−p)s

P(S(t) ∈ ds)

=
∫ +∞

0
e−(λ1+λ2)ps

P(S(t) ∈ ds) = e−tψ((λ1+λ2)p). (4.10)

Hence, the theorem is proved. �

Remark 4.1. In (4.9), observe that the random failure time T is exponentially distributed with
mean depending on the Laplace exponent of the subordinator.

Remark 4.2. As a corollary of Theorem 4.1, it is straightforward to show that if the distribution
of L is a mixture of the geometric distribution (4.7), then the distribution of T is a mixture of
the exponential distribution (4.10). That is,

FT (t) =
∫ 1

0
e−tψ((λ1+λ2)p) dG(p),

where G is a distribution on (0, 1).

Next, we discuss examples of some special random thresholds under the assumptions of the
model in (3.1).

4.2. Some examples

First, we reproduce the following identity from [14]:

exp[− t((�(1 − u) + θ )α − θα)] = etθα
∞∑

k=0

(−u)k

k!
∞∑

i=0

θ i

�ii! 1�1

[
−�αt

∣∣∣∣∣
(1, α)

(1 − k − i, α)

]
.

(4.11)
Now, we derive the reliability function of T for two particular cases of the random threshold L.

(i) Let L follow the discrete exponential distribution with reliability function qk = e−k, k =
0, 1, 2, . . . From Proposition 4.3, and with help of (4.11), we get

RT (t) = exp[− t((�(1 − e−1) + θ )α − θα)].
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Also, the density is given by

gT (t) = d

dt
RT (t) = ((�(1 − e−1) + θ )α − θα) exp[− t((�(1 − ′e−1) + θ )α − θα)].

Therefore, the hazard rate function denoted by HT (t) for the random variable T is given by

HT (t) = gT (t)

RT (t)
= ((�(1 − e−1) + θ )α − θα), t ≥ 0.

(ii) Let L follow the Yule–Simon distribution with parameter p and the reliability func-
tion qk = kB(k, p + 1), k = 1, 2, . . ., where B(a, b) = ∫ 1

0 ta−1(1 − t)b−1 dt is the beta function.
Then, the reliability function RT (t) takes the form

RT (t) =
∞∑

k=0

kB(k, p + 1)
(−1)k

k! etθα
∞∑

i=0

θ i

�ii! 1�1

[
−�αt

∣∣∣∣∣
(1, α)

(1 − k − i, α)

]

=
∞∑

k=0

k

( ∫ 1

0
zk−1(1 − z)p dz

)
(−1)k

k! etθα
∞∑

i=0

θ i

�ii! 1ψ1

[
−�αt

∣∣∣∣∣
(1, α)

(1 − k − i, α)

]

= etθα
∫ 1

0
(1 − z)p

∞∑
k=1

kzk−1 (−1)k

k!
∞∑

i=0

θ i

�ii! 1�1

[
−�αt

∣∣∣∣∣
(1, α)

(1 − k − i, α)

]
dz

=
∫ 1

0
(1 − z)p

(
d

dz
exp[− t((�(1 − z) + θ )α − θα)]

)
dz.

Hence, the density function is given by

gT (t) =
∫ 1

0
(1 − z)p d

dt

(
d

dz
exp [ − t((�(1 − z) + θ )α − θα)]

)
dz.

Considering these gT (t) and RT (t), we get the hazard rate function in the case of a Yule–Simon
threshold.

Now, we discuss some special cases of the mixing distribution from Remark 4.2 under the
assumptions of the model in (4.8).

4.3. Special cases

We now analyze three special cases by specifying the mixing distribution, under the assump-
tion that S is the tempered α-stable subordinator as in (2.2). Evaluation of the reliability
functions can be performed using Mathematica.

(i) dG(p) = dp (uniform distribution). It is

FT (t) = etθα

α(λ1 + λ2)
[θE(α−1)/α(tθα) − (λ1 + λ2 + θ )E(α−1)/α(t(λ1 + λ2 + θ )α)], (4.12)

where El(z) = ∫ +∞
1 e−uz/ul du is a generalized exponential integral.

(ii)

dG(p) = ab(1 + ap)−(b+1)

1 − (1 + a)−b
dp,
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with a> 0 and (b>−1) ∧ (b �= 0) (truncated Lomax). Set a := (λ1 + λ2)/θ and b + 1 := α.
It is

FT (t) = etθα (α− 1)

α[1 − (1 + (λ1 + λ2)/θ )1−α]

×
[

E2−(1/α)(tθ
α) −

(
1 + λ1 + λ2

θ

)1−α
E2−(1/α)

(
tθα
(

1 + λ1 + λ2

θ

)α)]
. (4.13)

(iii)

dG(p) = b

a

(
p − c

a

)b−1

e−((p−c)/a)b
dp,

where a and b are positive values, and c is a real value (truncated three-parameter Weibull).
Set a = 1/(λ1 + λ2), b = α, and c = −θ/(λ1 + λ2). It is

FT (t) = 1 − e−(t+1)[(λ1+λ2+θ)α−θα]

(t + 1)[1 − e−[(λ1+λ2+θ)α−θα]]
. (4.14)

The graphs in Figures 1, 2, and 3 illustrate the special cases for some particular values of
the parameters.

FIGURE 1. Plots of the reliability function (4.12) with λ1 = λ2 = 1 and θ = 1 on the left, α = 0.5 on the
right.

FIGURE 2. Plots of the reliability function (4.13) with λ1 = λ2 = 1 and θ = 1 on the left, α = 0.5 on the
right.
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FIGURE 3. Plots of the reliability function (4.14) with λ1 = λ2 = 1 and θ = 1 on the left, α = 0.5 on the
right.

5. Concluding remarks

In this paper, we have proposed a bivariate tempered space-fractional Poisson process by
time-changing the bivariate Poisson process with an independent tempered α-stable subordina-
tor. First, we derived the expression for the probability mass function and expressed it in terms
of the generalized Wright function, then we obtained the governing differential equations for
the PMF and the PGF. We also derived the Lévy measure density for the BTSFPP. Tempering
the distribution of an α-stable subordinator by a decreasing exponential gives the new pro-
cess the property of behaving like a stable subordinator at small times, but with lighter tails at
large times. As a consequence, all moments are finite and its density is also infinitely divisi-
ble, although it is no more self-similar. Parameter estimation procedures are also well known
(see, for instance, [18]). Moreover, as outlined in [27], time-changing a Poisson process with
a tempered stable subordinator, rather than with a stable subordinator, has its advantages since
it results in high jumps occurring with smaller probability. This might be of interest when it
comes to modeling real phenomena. Many financial applications, like option pricing, rely on
tempered stable distributions, but, to our knowledge, the use of such processes in reliability
is totally unexplored. Therefore, we presented a bivariate competing risk and shock model
based on the BTSFPP and derived various reliability quantities to predict the life of the sys-
tem. Finally, we discussed a generalized shock model and various typical examples. We have
focused our study here on the bivariate case, but our work can be explored in multivariate cases
also. We could possibly develop the model in subsequent studies by taking into account nonho-
mogeneous, multistable, and multifractional counting processes. The next step in the research
might potentially include consideration of the ageing properties of the random failure time and
some additional reliability notions.
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