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THE EXPECTED DIMENSION OF A SUM OF VECTOR SUBSPACES

DAVID E. DOBBS AND MARK J. LANCASTER

Let W be an n-dimensional vector space over a field F. It is shown that the
expected dimension of a vector subspace of W is n/2. If F is infinite, the expected
dimension of a sum of a pair of subspaces of W is (n + l)/2 if n > 1; and 3/4
if n = 1. If F is finite, with g elements, the expected dimension of a sum of
subspaces of W depends on q and n. For fixed n, the limiting value of this
expectation as q —> oo is n if n is even; and n — 1/4 if n is odd. Moreover, if
F is finite and n > 1, the expected dimension of a sum of three (not necessarily
distinct) subspaces of W has limit n as q —> oo.

1. INTRODUCTION

The problems discussed in this article have the following geometric motivation.
Consider the usual two- (respectively three-) dimensional space of geometric vectors in
the Euclidean plane (respectively in Euclidean three-space). The "typical" vector sub-
space is a line (respectively line or plane) through the origin, and hence its "expected"
dimension is 1 (respectively, as likely to be 1 as 2, say 3/2). To generalise such ob-
servations, one may ask for the expected dimension of a subspace of an n-dimensional
vector space. As the above examples suggest, the answer is n/2. This is proved in
Corollary 2.2(a) in case the underlying field of scalars is infinite, and in Theorem 3.4 in
case the field is finite.

A related question asks for the "typical" dimension of a sum of two subspaces of
an n-dimensional space. In case the underlying field of scalars is infinite, we show via
cardinal arithmetic in Corollary 2.2(b) that if n > 1, then this expected dimension is
(n + l) /2, or equivalently that the expected dimension of an intersection of subspaces is
(n — l)/2. Contrary to what was announced in the preceding paragraph, the situation
is different in case the underlying field is finite, say with q elements. As shown in
Example 3.6, this expected value of the dimension of the sum depends on both q and
n. The main result of this paper is the determination of the limiting tendency of this
function of (fixed) n as q —» oo. As one might expect, this limiting value is asymptotic
to n, but, somewhat surprisingly, this value depends on the parity of n. If n is even,
the limiting value is n (see Theorem 4.1); if n is odd, the limiting value is n — 1/4 (see
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Theorem 5.1). It is noteworthy that the analysis for odd n in Section 5 depends on the
result established in Section 4 for even n; both sections depend on the counting results
regarding subspaces over finite fields in Section 3.

2. T H E INFINITE FIELD CASE

We begin by establishing running hypotheses and notation for the rest of this paper.

Let W be an n-dimensional vector space over a field F, where n is a positive integer.

For each integer i, 0 ^ i ^ n, let V{ be the cardinality of the set Bi of i-dimensional

subspaces of W.

We proceed to calculate the i/; in case F is infinite. Our calculations assume the

usual facts about arithmetic with infinite cardinal numbers (for instance, a + a = a

for infinite a) that follow from Zorn's Lemma.

PROPOSITION 2 . 1 . Assume that card(jF) = a is infinite. Hi is an integer
such that 1 ^ i ^ n — 1, then Vi = a.

PROOF: Let A be the set of (ordered) i-tuples of linearly independent vectors in
W, and let B — Bi be the set of i-dimensional subspaces of W. The function A —> B,
(wi, ..., Wi) i-> span({wi, . . . , w j ) , is evidently surjective, and so Vi = card(J3) ^
card (.A). Using an .F-basis of W, we see that card(W) = an = a. It follows that
a ^ card(^4) ^ ax — a, and so Vi ^ a. To complete the proof, it suffices to find an
injection F —> B (for then a ^ t>i). To this end, choose an .F-basis {ui, . . . , vn} of W

and, for each scalar r, define Wr = span({t>i, . . . , i>i_i, vi + rvi+i}). Then the desired
injection is given by r >-> Wr. Indeed, it is straightforward to verify that each Wr G B;
and that Vi + rvi+i G Wr \ W, if r and s are distinct scalars. D

Using intuitive combinatorial probability, we next infer the desired expected values
in case F is infinite.

COROLLARY 2 . 2 . Assume that card(F) = a is infinite. Then:

(a) The expected dimension of a subspace of W is n/2.

(b) The expected dimension of the sum of a pair of subspaces of W is

(n + l)/2 if n > 1; and 3/4 if n = 1.

(c) The expected dimension of the intersection of a pair of subspaces of W

is (n - l ) /2 if n > 1; and 1/4 if n = 1.

PROOF: (a) Evidently, t/o = 1 = vn. Suppose that n > 1. In view of Proposition
2.1, the intuitive "frequency" approach leads to the probability function p given by
p(0) = 0 = p(n) and p(i) = l / (n — 1) for 1 ^ t ^ n — 1. The expected dimension
is therefore Sjp(j) = (1 + . . . + n - l)/(n - 1) = [(n - l)ra/2]/(n - 1) = n/2 . In case
n = 1, the function p satisfies p(0) — 1/2 = p(l), and so the expected dimension is
(0 + 1)1/2 = 1/2 = n /2 .
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(b) For any subspaces U and V of W, dim(U + V) = dim(U) + d im(F) -
dim(U C\V). Since "expected value" is a linear operator, the assertion will follow from
(a) and (c); for instance, if n > 1, then E(dim(U + V)) = n /2 + n /2 - (n - l ) / 2 =

(c) Suppose that n > 1. The number of subspaces ofWPis l + a + .
Since each subspace V of W can trivially be expressed as V PI W, it follows that if
0 $J i ^ n — 1, there are (at least, hence exactly) a ways to express i-dimensional
subspaces as intersections of an ordered pair of (possibly equal) subspaces of W. Of
course, there is only one way to express W as such an intersection, namely as W D W.

Hence, the appropriate probability function p satisfies p{n) = 0 and p{i) = 1/n for

0 $J i ^ n — 1. The expected value is therefore Sj'p(j') = (0 + . . . + n — l ) / n =
[(n — l)n/2]/ra = (n — l ) / 2 . Finally, if n — 1, one of the four ordered pairs of subspaces
leads to the intersection being W; this leads to the function given by p(0) = 3/4,
p(l) = 1/4 and the expected value Sjp(j) = 1/4. D

REMARK 2.3. In the proof of Corollary 2.2(b), it was assumed that E(dim(U)) -
U(dim(F)) = n/2. While this may be intuitively clear on the basis of Corollary 2.2(a),
it will be helpful to sketch a rigorous proof.

As above, assume that F is an infinite field and W is an n-dimensional F-

vector space, where n is a positive integer. Let k ^ 2 be a positive integer, and

let (Ui, ••• , Uk) range over (ordered) fc-tuples of subspaces of W. (In Corollary

2.2, k = 2, but the extra generality will be needed in Proposition 5.3.) Then

£(dim(tfi)) = n / 2 for each i, l ^ i ^ k .

For the proof, observe first that the case n — 1 is easy. Assume n > 1 and,

for definiteness, take i — 1. Consider the random variables Xj = dim(Uj) for

1 ^ j ^ k. Recall that W has a subspaces of dimension d for each d= 1, ••• , n - l .

Hence the probability function p(xi , • • • , a:jb) vanishes at the 2* fc-tuples whose com-

ponents are either 0 or n ; and p takes the value l / [(n + l ) — 2*] at the other

(n + 1) — 2k fc-tuples. The marginal probability function pi(j) = Sp(j , X2, • • • , a:*)

therefore satisfies pi( j) = (n + l )*~V[( n + ! )* ~ 2*] for 3 = 1, ••• , n - 1 and

P l ( n ) = [(n + l)1"1 - 2*-1]/[(n + 1)* - 2*]. It follows that E(dim(tfi)) = I1 +

• • • + (n - l)](n + 1)*"V[(» + 1)* " 2*] + n[(n + I )*" 1 - 2fc"1]/[(n + 1)* - 2*]. Since

1 + • • • + (n — l ) = (n — l ) n / 2 , this simplifies to n / 2 , as asserted.

In the proofs of Sections 4 and 5 (which pertain to finite F), it will also be necessary

to observe rigorously that 2?(dim(Z7i)) — n / 2 , but that is a much simpler matter which

can be left to the reader.

3. T H E FINITE FIELD CASE

An additional running hypothesis for the rest of this paper is that the field F
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is finite, say with q elements. In this section, Theorem 3.4 presents the analogue of
Corollary 2.2(a) by finding the expected dimension of a subspace of W (in case F
is finite). In Sections 4 and 5, analogues of Corollary 2.2(b), (c) are developed. If
1 ^ d ^ n, it will be convenient to let uj denote the number of invertible d x d
matrices with entries in F. We begin with a useful result that gives formulas for Ud
and Vi.

PROPOSITION 3 . 1 . (a) If 1 ^ d ^ n, then

(b) Ifl^i^n, then Vi = (,» - 1)(,» - , )( ,» - g2) • • • (q
n - g '"1)/^-.

PROOF: (a) This assertion is well known and is included here for reference pur-
poses.

(b) We adapt the proof of Proposition 2.1. Let A be the set of (ordered) i-tuples
of linearly independent vectors in W, and let B be the set of i-dimensional subspaces
of W. The function g: A —> B, ( W I , . . . , W J ) *-* span({iz>i, . . . , Wi}), is evidently
surjective. Now, card (B) = i/j and it is easy to see (as in the standard proof of (a))
that card (A) - (q

n - l)(gn - q)(q
n - q

2) • • • (qn - g*"1) . Therefore, to complete the
proof, it suffices to show that the ^-preimage of each element of B has cardinality
Uj. In other words, we must show that if (ii>i, . . . , Wi) € A, then there are exactly Uj
elements (vi, ..., ut-) 6 A such that span ({t>i, . . . , Ui}) = span ({ii>i, . . . , v>i}) • This,
in turn, follows because such {v\, . . . , Vi) are in one-to-one correspondence with the
invertible .F-linear endomorphisms of span({tui, . . . , u>t}), that is, with the invertible
i x i matrices with entries in F . U

The proof of Theorem 3.4 will be facilitated with the aid of the following symmetry
result.

COROLLARY 3 . 2 . If 0 < i ^ n, then t/< = i/n_;.

PROOF: A computational proof of this assertion is available via Proposition 3.1(b);

we leave the detailed verification to the reader. There is a more conceptual proof, which

has the additional benefit of not depending on the riding hypothesis that F is finite.

We give this proof next, using dual spaces and their properties.

If 0 ^ j ^ n, we again let Bj denote the set of ./-dimensional subspaces of

W. If 7 6 Bi, then Ann(V) = {f e W* : f(v) = 0 for each v G V} is in £„_;.

Indeed, Ann(F) is the kernel of the restriction epimorphism from W* to V*, so that

W*l Ann(F) ^ V*\ then equating dimensions leads to dim(W) - dim (Ann (V)) =

dim(Vr), whence Ann(V) G Bn-i. Now, fix any F-vector-space isomorphism g: W* —»

W. It follows that the assignment V >-* </(Ann(F)) gives a function from Bi to Bn-i.

It suffices to show that this function is injective; for then Vi ̂  vn-i and, by the same
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argument with i replaced by n — i, we would obtain the reverse inequality. Hence, it
suffices to show that if V\ and F2 in B{ satisfy Ann(Vi) = Ann(V2), then Vi =V2.

Consider the natural isomorphism 7 : W —» W**. For each subspace V of W, it is
easy to verify that y(V) C Ann (Ann {V)) is an inclusion of two spaces having the
same dimension, so that j(V) = Ann(Ann(V)) . In particular, 7(Vi) = 7(^2)1 whence

v1 = va. D
Next, we record another upshot of Proposition 3.1. Its statement will be useful

in asymptotic arguments in Sections 4 and 5. It asserts that i/,- is an (ni — i2j-degree
polynomial in q with integer coefficients. It is important to note that these coefficients
do not depend on q.

COROLLARY 3 . 3 . I / O ^ i ^ n , then the formula in Proposition 3.1(b) gives a

polynomial f G Z[X] of degree (n — i)i such that Ui = f(q).

PROOF: The assertion is clear if i is 0 or n (for V{ is then the constant 1). Also,
vn-\ =V\= (qn — l)/{q — 1) = qn~1 + qn~2 + • • • + q + 1 and so we may assume that
2 ^ i ^ n — 2. Consider g, h E Z[X] given by

g = (Xn- l ^ X " - 1 - l ) ( X n - 2 - 1) • • • ( X n - i + 1 - 1)

and

h=(X*- 1) (X*-1 - l ) (X{-2 - l ) • • • (X - 1).

After some cancellation, we see via Proposition 3.1(b) that 1/; = f(q), where / is the

complex rational function given by / = g/h. It suffices to show that / € Z[X] (for the

assertion about degree would then be clear).

Evidently, none of the displayed factors of g or h has repeated roots. Moreover, if

r 6 C is a root of h of multiplicity A;, then r is a root of g of multiplicity at least k.

(This is clear if r = 1, in which case k = i. Assume that r ^ 1, with order m (^ 2)

in the group C \ {0}. Then 1 ^ k = [i/m] ^ i. If A is the minimal integer such that

n — i + 1 ^ Am, it follows that (A — l)m ^ n — i, and so (A + k — l)m ^ n — i + km ^ n.

Hence, r is a root of g of multiplicity at least k.) Thus, / £ C[Jf]. As g and h have

integral coefficients, it now follows from uniqueness of the remainder in the division

algorithm that / G Z[X]. D

We next present the main result of this section.

THEOREM 3 . 4 . If F is finite, then the expected dimension of a subspace of W

is n/2.

PROOF: Dimension of a subspace of If is a discrete random variable X taking
on the values 0, 1, • • • , n. Let p denote the associated probability function. It will be
convenient to let E;- denote a sum of terms as x ranges from 0 to j . In case n is odd,
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say n = 2e + 1, we have the expected value

E(X) = Vxp(x) = Eexp(x) + [(e + l)p(e + 1) + • • • + np{n)}

= Eexp(x) + Se(n — x)p(n — x).

Since p{n — x) = p(x) according to the symmetry result, Corollary 3.2, E(X) — He[x +

(n — x)]p(x) — raSep(z). However, £ep(a;) = 1/2 by symmetry, and so E(X) — n/2 if

n is odd.

Assume now that n is even, say n = 2c. In this case, we may argue as above, via

symmetry, that Se_izp(x) + [(e + l)p(e + 1) + • • • + np(n)] = nEe_ip(a;). Therefore,

adding ep(e) to this sum, we have E{X) = n[Se_ip(a;) + p(e)/2] = (n/2)S, where

S = 2Se_ip(a;) + p(e). By symmetry, S = Snp(a;) = 1, and so E(X) = n/2 in this

case as well. D

The next counting result will be of use in Sections 4 and 5, as well as in Example

3.6, which serves as motivation for those sections.

PROPOSITION 3 . 5 . Let V be a d-dimensional subspa.ce of W, where 0 < d <

n — 1. Tien tie number of {d + l)-dimensiona] subspaces of W which contain V is

PROOF: Let A = W \ V and let B be the set of (d+ l)-dimensional subspaces
of W which contain V. The function g: A —> B, given by w i—> span(V U {w}), is
evidently surjective. As in the proof of Proposition 3.1, card (A) = qn — qd, and so it
suffices to show that the ^-preimage of each element of B has cardinality qd(q — 1). In
other words, we must show that if w\ £ A, then there are exactly qd(q — 1) elements
W2 £ A such that span(V U {t«i}) = span(V U {102}) • This, in turn, follows because if
(vi, • • • , Vd) is an .F-basis of V, then such 102 are the linear combinations HrjVj +rwi,

with scalars rj,r(EF such that r ^ 0; of course, the number of such (rj, • • • , rj,, r)

isqd(q-l). D

It remains to develop the analogues of Proposition 2.2(b), (c) for finite F. This is
done in Sections 4 and 5. Data motivating that work are given next in this section's
final result.

EXAMPLE 3.6: (a) Assume that n = 1. Just as in the proof of Corollary 2.2(c), we

see that if (U, V) ranges over ordered pairs of subspaces of W, then E(dim(U (~) V)) —

1/4 and E(dim(£/ + V)) = 3/4.

(b) Assume that n = 2. Using Proposition 3.1, we see that the number of sub-

spaces of W is N = v0 + v-i + v2 = 1 + (q2 — l)/(<f — 1)+ 1 = 9 + 3; so the number

of ordered pairs {U, V) of subspaces of W is N2 = q2 + 6g + 9. Only one of these,

namely (W, W), leads to the intersection W. Moreover, the number of pairs that lead

to a one-dimensional intersection is 1/1 + 2v\ = 3q + 3. (The first summand counts
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self-intersections of one-dimensional subspaces; the second, inclusions/containments of
one-dimensional subspaces in W.) Thus, the number of ordered pairs that lead to
the intersection 0 is iV2 — 1 — (3g + 3) — q2 + 3g + 5. If the discrete random vari-
able dim (17 fl V) is denoted by X, then the associated probability function p is given
by p(0) = ( g 2 + 3 g + 5) / iV 2 ,p( l ) = (3g + 3)/iV2 and p(2) = l/N2. It follows that
E{diva(U D V)) = Yijp(j) = (3g + 5)/(q2 + 6q + 9) . Notice that this expression de-
pends on q. Moreover, as q —» oo, this expression has limit 0. (Indeed, it is easy
to check via calculus that the convergence to 0 is monotonic.) As in the proof of
Corollary 2.2(b), it now follows from Theorem 3.4 and linearity of the operator E that
£(dim(tf + V)) = 2/2 + 2 / 2 - jE(dim(tf n V)) = (2g2 +9q + 13)/(q2 + 6g + 9) ; notice
that, as q —» oo, this expression increases monotonically to 2.

(c) Assume that n = 3 . Using Proposition 3.1, we see that the number of subspaces
of W is N = uo+vi+V2+va = l + (q2 +q + l) + (q2 +q+l) + l = 2g2+2g + 4; so the
number of ordered pairs (U, V) of subspaces of W is N2 = 4g4 + 8g3 + 20g2 + 16g + 16.
The nature of the various intersections UtlV can be determined by reasoning as above
and using the following observations. If U S B\ and V £ Bi (or the other way
around), apply Proposition 3.5; if U, V are distinct elements of B2, observe that
their sum is W (for reasons of dimension), and so their intersection has dimension
1. If the discrete random variable dim (17 fl V) is denoted by X, then the associ-
ated probability function p is given by p(0) = (3g4 + 4qs + 8q2 + 5q + 7)/N2, p(l) =
(g4 + 4gs + 9g2 +8q + b)/N2, p(2) = (3g2 + 3g + 3)/JV2 and p(3) = l/N2. It follows
that E(dim(t7 0 V)) = Sjp(j) = (g4 + 4gs + 15g2 + 14g + 14) /N2 . Notice that this
expression depends on g. Moreover, as g —> 00, this expression has limit 1/4. (Indeed,
it is easy to check via calculus that this convergence to 1/4 is monotonic decreasing.
In order to motivate Theorem 5.1, this fact should be compared with the result in (a).)
As in (b), it now follows that £(dim (U + V)) = 3/2 + 3/2 - E(<iim (U (1 V)); you may
verify readily that, as q —* 00, this expression increases monotonically to 3 — 1/4: for
motivational purposes, this should be compared with the corresponding result in (a).

(d) Assume that n = 4. If one tries to analyse the expected dimension of U H
V, complications enter that were not present in (a)-(c). The interested reader may
verify that the expected values are easier to find in this case if one focuses first on
sums rather than on intersections. We leave the details to such readers but, for the
purpose of motivating Theorem 4.1, we note the following upshots (which should be
compared with the results in (b)). As q —* 00, .E(dim(i7 D V)) has limiting value 0
and E(dim(U + V)) has limiting value 4.

4. THE CASE OF FINITE F AND EVEN n

Suppose that n is even, say n — 2e. According to Proposition 3.3, if 0 5j i ^ n,
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then Vi can be expressed as a (monic) polynomial in q of degree (2e — i)i. It is easy
to see that this degree is maximised only once, namely at i = e. (The point is that if
0 < t < j < e, then (2e — i)i < (2e — j)j.) It follows that N, the number of subspaces
of W7, is a monic polynomial in q of degree (2e — e)e = e2. Accordingly, if we are
interested only in the hmit of either E(dim(U + V)) or E(dim(U t~\ V)) as q —> oo,
it suffices to count the dimensions of sums (or intersections) arising from U, V G Be.

This is done in the next result, which is motivated by Example 3.6(b), (d). Its proof is
a generalisation of the analysis suggested in Example 3.6(d).

THEOREM 4 . 1 . Assume that F is finite and n is even. Then

Urn E(dim {U + V))=n and lim E(dim {U D V)) = 0.
q—»OO q—>OO

PROOF: By Theorem 3.4, £(dim(tf n V)) = n/2 + n/2-.E(dim(£f + V)), and so
it suffices to prove the first assertion. To this end, we claim that if U G Be, then the
number of V G Be such that U + V — W is the e2-power of q.

Given the claim, it follows that the probability function p associated with
dim(Z7 + V) assigns to n some integral rational function in q whose numerator and
denominator are each monic of degree 2e2. (This is clear for the denominator N2.

As for the numerator, one need simply apply the claim, in conjunction with the case
i — e of Corollary 3.3. We shall see that the coefficients of this rational function do not
depend on g.) Therefore, if j ^ n, then p assigns to j an integral rational function in
q whose numerator has degree less than 2e2 (and whose denominator is N2 ) . It follows
that in applying lim to E(dim(U + V)) = ^jp(j), the first n terms each have limit

g—*oo

0 and the last term has hmit n; that is, lim E(dim(U + V)) — n, as desired.
q—»oo

It remains only to prove the above claim. Let B = {V G Be : U + V = W} and let
A be the set of (ordered) e-tuples of vectors forming bases of elements in B. The func-
tion G: A —* B, (vi, ..., ve) t-y span({vi, . . . , ve}), is evidently surjective. Now, since
card (17) = qe, we see (as in the standard proof of Proposition 3.1(a)) that card (A) =

(?n - 9e)(gn - 9e+1) (?n - 9e+2) • • • (0n - 9""1) • Moreover, the G-preimage of each el-
ement of B has cardinality ue. Indeed, if («i, . . . , ve) G A, then there are exactly ue

elements (wi, ..., we) G A such that span({«i, . . . , ve}) = span({u>i, . . . , we}) be-
cause such (u>i, . . . , We) are in one-to-one correspondence with the invertible .F-linear
endomorphisms of span({«i, . . . , ve}). Therefore

card(B) = (,» - ,«)(,» - q<+>) (qn - q<+2) •. • (,» - g - 1 ) / ^ .

It remains to show that the above expression for card (B) reduces to just the e2-
power of q. To see this, express ue via Proposition 3.1(a) and, using n = 2e, perform
algebraic cancellations. D
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5. T H E CASE OF FINITE F AND ODD n

In this section, it will be convenient to refine notation by letting I / ^ J denote the
number of i-dimensional subspaces of a given d-dimensional .F-vector space; vi will
continue to mean Vit n .

Suppose that n is odd, say n = 2e + 1 . According to Proposition 3.3, if 0 ^ i ^ n,
then i>i can be expressed as a (monic) polynomial in q of degree (2e + 1 — i)i. This
degree is maximised only twice, namely at i — e and at i = e + 1; the maximum value
is e2 + e. It follows that N, the number of subspaces of W, is an integral polynomial
in q whose term of highest degree is 2ge(e + 1) . Hence, N2 is an integral polynomial in q

with leading term 4g2 e( e + 1) . Accordingly, if we are interested only in the limit of either
E(dim(U + V)) or E(dim(U f) V)) as q —» oo, it suffices to count the dimensions of
sums (or intersections) arising from at least 4q2e(e+1) pairs (U, V) of subspaces of W.

By the above comments, we may restrict attention to U, V £ Be U -Be+i. This is done
in the next result, which is motivated by Example 3.6(a), (c). Its proof depends on
both Section 3 and Section 4.

THEOREM 5 . 1 . Assume that F is finite and n is odd. Then

Urn £(dim(tf + V)) = n - l / 4 and Urn £(dim(Z7 H V)) = 1/4.
q—*oo q—*oo

PROOF: AS in the proof of Theorem 4.1, we see via Theorem 3.4 and linearity of

the operator E that it suffices to prove the first assertion.

First, consider U G Be. We claim that the number of V G i?e+i such that

U + V = W is (at least) given by a monic integral polynomial in q of degree e(e + 1).

By reasoning as in the proof of Theorem 4.1, we see that this number is given by

(? n - g')(qn - qc+1) (qn - 9e + 2) • • • ( « " - g " - 1 ) / ^ ! -

Using Proposition 3.1(a), we simplify the displayed quantity to q'*-c+1\ thus proving
the claim. Now, allowing (U, V) to vary over Be x Be+i, we find qe(-e+1 V e pairs
(U, V) such that dim(17 + V) = n. Using Corollary 3.3, we see that the number of
such pairs is a monic integral polynomial in q of degree 2e(e + 1). Consequently, the
number of pairs (U, V) G (Be x Be+1 U Be+i x Be) such that U + V - W is (at least)
2g2e(e+!) - j . . . . j where • • • denotes terms of lower degree in q.

Next, consider (U, V) ranging over Bex Be. Fix a 2e-dimensional subspace Y of
W. By the proof of Theorem 4.1, the number of (17, V) such U + V = Y is a monic
integral polynomial in q of degree 2e2. Now, the number of such Y is t/2e = "n-2e = "l»
which, by Corollary 3.3, is a 2e-degree monic integral polynomial in q. Hence, the
number of (U, V) in Be x Be such that dim (U + V) = 2e is a monic integral polynomial
in q of degree 2e2 +2e = 2e(e + 1).

Next, we claim that the number of pairs (U, V) G -Be+i x I?e+i such that U + V =
W is asymptotic to (at least) g2e(e+1) -\ . Given this claim (and the above remarks),
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it follows that the probability function p associated with dim(J7 + V) assigns to n a

function having limit 0 as q —* oo plus some integral rational function in q of the form

(3g2e(e+1) + • • • )/N2 ; and to 2e — n — l,p assigns a function having limit 0 as q —> oo

plus an integral rational function in q of the form (g2e(e+1) -j- • • • )/N2 . Recalling that

N2 — 4g2e(e+1) + • • • , we see that the limit of the expected dimension of the sum of a

pair of subspaces of W is (n — 1)1/4 +n(3/4) = n — 1/4, as asserted.

It remains only to prove the above claim that there are, asymptotically, at least

g2e(e+i) + . . . e i e m e n t s ( ^ y) £ Be+1 X Be+1 such that U + V = W. Fix U G Be+1.

As in the second paragraph of this proof, one may show that there are qe(e+1) elements

Y € Be such that U + Y — W. According to Proposition 3.5, each such Y is contained

in (qn - qe)/{qe(q - 1)) = qe + q*'1 + • • • + 1 elements V G Be+1. In this way, the

fixed U leads nominally to ge(e+1)(ge + q"'1 -\ 1- l) elements V £ Be+1 such that

U + V = W. However, different Y may lead to the same V, and so there has been an

overcount. A given V arises at most vete+i — ^l.e+i = qe + • • • times from different

Y. Therefore, the desired number of ordered pairs is at least

Since i/e+1 = q<e+1~> -\ , the displayed product is asymptotic to g«(<=+i)+«(e+i)+<=-e =
g2e(e+l) []

We can now say what happens to the limit of expected dimension when more than
two subspaces of W are summed or intersected.

COROLLARY 5 . 2 . Assume that F is a finite field (with q elements) and W is

an n-dhnensional F-vector space, where n is a positive integer. Let k ^ 3 be a positive

integer, and let (Ui, • • • , Uk) range over (ordered) k-tuples of subspaces of W. Then:

(a) If n = 1, then lim ^(dim(^! + • • • + Uk)) = 1 - 1/2* and
9 — • o o

lim
q—>oo

(b) If n ^ 2, then lim E(dim(Ui + • • • + Uk)) = n and
9—*oo

lim E{dim(U1<l-nUk)) = 0.
q—>oo

PROOF: (a) If n = 1, it suffices to observe that Etf< = W and nUi = 0 for all but

one of the 2* fc-tuples {U\, • • • , f/jt).

(b) By Theorem 4.1, we may assume that n is odd, say n — 2e + 1, with e ^ 1.

Without loss of generality, k = 3. By the proof of Theorem 5.1, dim(£/j + U2) — n for

"essentially" three-fourths of the triples (U\, U2, U3). ("Essentially", in this context,

will mean that the quantity in question has limit 3/4 as q —» 00.) Also by the proof of

Theorem 5.1, dim(Z7i + U2) = n — 1 for the remaining "essentially" one-fourth of the

triples.
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Suppose that a triple satisfies dim(l7i + U2) = n — 1. Then the probability that

U3CU1+ U2 is

P- ("0,n-l +«"l,n-l H (-«'n-l,n-l)/(t'O,n+t'l1n H h ^ , n ) .

By the earlier arguments in Sections 4 and 5, p is asymptotic to (ge)e/2qe^e+1\ which
tends to 0 as q —> oo. Therefore, the probability that (the given) Ui, U2 and U3 sum
to W (that is, sura to an n-dimensional space) approaches 1 as q —» 00.

It follows that lira,-,*, £;(dim(J71 + U2 + U3)) = (3/4)n + (l/4)n = n.

As for intersections, we see from the proof of Theorem 5.1 that "essentially" three-

fourths of the triples satisfy U\ D U2 — 0 and "essentially" the remaining fourth satisfy

dim(£/! n U2) = 1 (or, equivalently, dim(Z7i + U2) = n - 1).

Suppose that a triple satisfies dim(J7i D U2) = 1. Then the probability that U\ C\

U2 C U3 is p — vltj/viin where j = dim(Z73). If j ^ n, it follows from Corollary 3.3

that p < 1/q. The probability that j = n is I/Si/,-, which approaches 0 as q —» 00.

Therefore, the probability that a given triple satisfies Ui PI E/2 D U3 = 0 approaches 1

as q —» 0 0 .

It foUows that Urn E(dim(^i n *72 n t/3)) = (3/4)0 + (1/4)0 = 0. D
q—*oo

In contrast to the above result over finite fields, it is interesting to note that over
infinite fields, the expected dimension of sums or intersections of subspaces of W does
not change when the number of subspaces being summed or intersected increases beyond
2. Indeed, we have the following result. Its proof, which is similar to that of Corollary
2.2, is left to the reader.

PROPOSITION 5 . 3 . Assume that F is an infinite field and W is an n-

dimensional F-vector space, where n is a positive integer. Let k ^ 2 be a positive

integer, and let (Z7i, • • • , J7jt) range over (ordered) k-tuples of subspaces of W. Then:

(a) If n = 1, then jB(dim(^1 + • •• + Uk)) = 1 - l/2fc and

(b) If n > 2, then JB(dim(£/1 + • • • + Uk)) = (n + l ) / 2 and

(tfi n • • • n Uk)) = (n -

REMARK 5.4. In closing, we indicate a direction for further work. It may be of interest

to develop formulas for E(dim(Ui -\ h Uk)) and E(dim(Ui D • • • n Uk)) for all q

and n. In this regard, we record here what was referred to in Example 3.6(a); namely,
for n = 4, E{dim(UnV)) = (3q7 + 9q6 + 23qs + 40g4 + 57gs + 579

2 + 37g + 30)/
(q8 + 6q7 + 17q6 + 30q5 + 449

4 + 54g3 + 49g2 + 30g + 25) .
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