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Abstract
Laser-plasma physics has developed rapidly over the past few decades as lasers have become both more powerful and
more widely available. Early experimental and numerical research in this field was dominated by single-shot experiments
with limited parameter exploration. However, recent technological improvements make it possible to gather data for
hundreds or thousands of different settings in both experiments and simulations. This has sparked interest in using
advanced techniques from mathematics, statistics and computer science to deal with, and benefit from, big data. At the
same time, sophisticated modeling techniques also provide new ways for researchers to deal effectively with situation
where still only sparse data are available. This paper aims to present an overview of relevant machine learning methods
with focus on applicability to laser-plasma physics and its important sub-fields of laser-plasma acceleration and inertial
confinement fusion.
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1. Introduction

1.1. Laser–plasma physics

Over the past decades, the development of increasingly pow-
erful laser systems[1,2] has enabled the study of light–matter
interaction across many regimes. Of particular interest is
the interaction of intense laser pulses with plasma, which is
characterized by strong nonlinearities that occur across many
scales in space and time[3,4]. These laser–plasma interactions
are of interest both for fundamental physics research and
as emerging technologies for potentially disruptive applica-
tions.

Regarding fundamental research, high-power lasers have,
for instance, been used to study transitions from classical
electrodynamics to quantum electrodynamics (QED) via the
radiation reaction, where a particle’s backreaction to its
radiation field manifests itself in an additional force[5–7].
Recent proposals to extend intensities to the Schwinger
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limit[8], where the electric field strength of the light is
comparable to the Coulomb field, could allow the study of
novel phenomena expected to occur due to a breakdown of
perturbation theory. In an only slightly less extreme case,
high-energy density physics (HEDP)[9] research uses lasers
for the production and study of states of matter that cannot
be reached otherwise in terrestrial laboratories. This includes
creating and investigating material under extreme pressures
and temperatures, leading to exotic states such as warm–
dense matter[10–12].

Apart from the fundamental interest, there is also con-
siderable interest in developing novel applications that are
enabled by these laser–plasma interactions. Two particularly
promising application areas have emerged over the past
decades, namely the production of high-energy radiation
beams (electrons, positrons, ions, X-rays, gamma-rays) and
laser-driven fusion.

Laser–plasma acceleration (LPA) aims to accelerate
charged particles to high energies over short distances by
inducing charge separation in the plasma, for example,
in the form of plasma waves to accelerate electrons or by
stripping electrons from thin-foil targets to accelerate ions.
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The former scenario is called laser wakefield acceleration
(LWFA)[13–15]. Here a high-power laser propagates through
a tenuous plasma and drives a plasma wave, which can
take the shape of a spherical ion cavity directly behind
the laser. The fields within this so-called bubble typically
reach around 100 GV/m, allowing LWFA to accelerate
electrons from rest to GeV energies within centimeters[16–21].
While initial experiments were single-shot in nature and
with significant shot-to-shot variations, the performance of
LWFA has drastically increased in recent years. Particularly
worth mentioning in this regard are the pioneering works on
LWFA at the kHz-level repetition rate, starting with an early
demonstration in 2013[22] and in the following years mostly
developed by Faure et al.[23], Rovige et al.[24] and Salehi
et al.[25], as well as the day-long stable operation achieved
by Maier et al.[26]. As a result of these efforts, typical
experimental datasets in publications have significantly
increased in size. To give an example, first studies on the
so-called beamloading effect in LWFA were done on sets of
tens of shots[27], whereas newer studies include hundreds of
shots[28] or, most recently, thousands of shots[29].

Laser-driven accelerators can also function as bright
radiation sources via the processes of bremsstrahlung
emission[30,31], betatron radiation[32,33] and Compton scat-
tering[34–36]. These sources have been used for a variety of
proof-of-concept applications[37], ranging from spectroscopy
studies of warm–dense matter[10] and over imaging[38,39] to
X-ray computed tomography (CT)[40–43]. It has also recently
been demonstrated that LWFA can produce electron beams
with sufficiently high beam quality to drive free-electron
lasers (FELs)[44,45], offering a potential alternative driver for
next generation light sources[46].

Laser-ion acceleration[47,48] uses similar laser systems as
LWFA, but typically operates with more tightly focused
beams to reach even higher intensities. Here the goal is to
separate a population of electrons from the ions and then use
this electron cloud to strip ions from the target. The ions are
accelerated to high energies by the fields that are generated
by the charge separation process. This method has been used
to accelerate ions to energies of a few tens of MeV/u in
recent years. In an alternative scheme, radiation pressure
acceleration[49,50], the laser field is used to directly accelerate
a target. Even though it uses the same or similar lasers, ion
acceleration typically operates at much lower repetition rate
because of its thin targets, which are not as easily replenished
as gas-based plasma sources used in LWFA. Recent target
design focuses on the mitigation of this issue, for instance
using cryogenic jets[51–54] or liquid crystals[55].

Another application of potentially high societal relevance
is laser-driven inertial confinement fusion (ICF)[56,57], where
the aim is to induce fusion by heating matter to extremely
high temperatures through laser–plasma interaction. As the
name suggests, confinement is reached via the inertia of
the plasma, which is orders of magnitude larger than the

thermal energy. To achieve spatially homogenous heating
that can penetrate deep into the fusion target, researchers
commonly resort to driving the ignition process indirectly. In
this method, light is focused into an empty cylindrical cavity,
called a hohlraum, which is used to radiate a nearly isotropic
blackbody spectrum that extends into the X-ray regime
and is subsequently absorbed by the imploding capsule[58].
In contrast to this, direct-drive methods aim to directly
drive the thermonuclear fusion process[59]. In this case, the
laser is focused directly onto the fuel capsule. Direct-drive
poses some challenges that are not present in indirect-drive
schemes. For instance, the light has to penetrate through
the high-density plasma shell surrounding the capsule and
the illumination is less homogeneous, because of which the
compressed target can be subject to large hydrodynamic
instabilities. Advanced ignition schemes aim to separate
compression of the thermonuclear fuel from triggering the
ignition process. Examples are fast ignition[60], which uses
the high-intensity laser pulse to directly heat the compressed
and dense fusion target, and shock ignition[61], which uses
a shock wave to compress the target. Recently, the first
ICF experiment at the National Ignition Facility (NIF) has
reported reaching the burning-plasma state via the com-
bination of indirect-drive with advanced target design[62].
This breakthrough has re-enforced scientific and commercial
interest in ICF, which is now also being pursued by a number
of start-up companies.

1.2. Why data-driven techniques?

In recent years, data-driven methods and machine learning
have been applied to a wide range of physics prob-
lems[63], including for instance quantum physics[64,65],
particle physics[66], condensed matter physics[67], electron
microscopy[68] and fluid dynamics[69]. In comparison, its use
in laser–plasma physics is still in its infancy and is curiously
driven by both data abundance and data scarcity. Regarding
the former, fast developments in both laser technology[70]

and plasma targetry[71–74] nowadays permit the operation
of laser–plasma experiments – in particular laser–plasma
accelerators – at joule-level energies and multi-Hz to kHz
repetition rates[75–79]. The vast amounts of data generated
by these experiments can be used to develop data-driven
models, which are then employed in lieu of conventional
theoretical or empirical approaches, or to augment them.
In contrast, laser systems used for inertial fusion research
produce MJ-level laser pulses and operate at repetition rates
as low as one shot per day. With such a sparse number of
independent experimental runs, data-driven models are used
to extract as much information as possible from the existing
data or combine them with other information sources, such
as simulations.

The success of all of the above applications depends on
the precise control of a complex nonlinear system. In order to
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optimize and control the process of laser–plasma interaction,
it is essential to understand the underlying physics and to be
able to model the complex plasma response to an applied
laser pulse. However, this is complicated by the fact that
it is a strongly nonlinear, multi-scale, multi-physics phe-
nomenon. While analytical and numerical models have been
essential tools for understanding laser–plasma interactions,
they have several limitations. Firstly, analytical models are
often limited to low-order approximations and therefore can-
not accurately predict the behavior of complex laser–plasma
systems. Secondly, accurate numerical simulations require
immense computational resources, often millions of core
hours, which limits their use for optimizing and controlling
real-world laser–plasma experiments. In addition, the huge
range of temporal and spatial scales means that in practice
many physical processes (ionization, particle collisions, etc.)
can only be treated approximately in large-scale numerical
simulations. Because of this, one active area of research is to
automatically extract knowledge from data in order to build
faster computational models that can be used for prediction,
optimization, classification and other tasks.

Another important problem is that the diagnostics
employed in laser–plasma physics experiments typically
only provide incomplete and insufficient information about
the interaction, and key properties must be inferred from the
limited set of available observables. Such inverse problems
can be hard to solve, especially when some information
is lost in the measurement process and the problem becomes
ill-posed. Modern methods, such as compressed sensing
(CS) and deep learning, are strong candidates to facilitate
the solution of such problems and thus retrieve so-far elusive
information from experiments.

The goal of this review is to summarize the rapid,
recent developments of data-driven science and machine
learning in laser–plasma physics, with particular emphasis
on LPA, and to provide guidance for novices regarding the
tools available for specific applications. We would like to
start with a disclaimer that the lines between machine
learning and other methods are often blurred.1 Given the

1 For instance, deep learning is a sub-field of machine learning where deep
neural networks are used, and this term is nowadays often used interchange-
ably with neural networks. Similarly, data-driven science is sometimes
used instead of machine learning, but also includes a variety of methods
from computer science, applied mathematics and statistics, as well as data
science, which is a field in itself. Even within itself, machine learning is
a heavily segmented research field, whose community can famously be
divided into five ‘tribes’, namely symbolists, connectionists, evolutionists,
Bayesians and analogizers. Each of these groups has pioneered different
tools, all of which have in recent years experienced a resurgence in
popularity. The arguably most popular branch is connectionism, which
focuses on the use of artificial neural networks. However, some chal-
lenges seen in laser–plasma physics require different approaches and, for
instance, Bayesian optimization has recently drawn considerable research
interest. Another line of division is often drawn between supervised and
unsupervised methods. While supervised methods are usually trained from
known datasets to build a model that can classify new data, unsupervised
methods attempt to find some structure in the data without such pre-existing
knowledge. Alternatively, one can distinguish between online and batch

multitude of often competing subdivisions, we have chosen
to organize this review based on a few broad classes of
problems that we believe to have highest relevance for
laser–plasma physics and its applications. These problems
are modeling and prediction (Section 2), inverse problems
(Section 3), optimization (Section 4), unsupervised learning
for data analysis (Section 5) and, lastly, image analysis with
supervised learning techniques (Section 6). Partial overlap
between these applications and the tools used is unavoidable
and is where possible indicated via cross-references. This
is particularly true in the case of neural networks, which
have found a broad usage across applications. Each section
includes introductions to the most common techniques that
address the problems outlined above. We explicitly include
what can be considered as ‘classical’ data-driven techniques
in order to provide a better context for more recent methods.
Furthermore, examples for implementations of specific
techniques in laser–plasma physics and related fields are
highlighted in separate text boxes. We hope that these will
help the reader to get a better idea of which methods might
be most adequate for their own research. An overview of the
basic application areas is shown in Figure 1.

To maintain brevity and readability, some generalizations
and simplifications are made. For detailed descriptions and
strict definitions of methods, the reader may kindly refer to
the references given throughout the text. Furthermore, we
would like to draw the reader’s attention to some recent
reviews on the application of machine learning techniques in
the related fields of plasma physics[80–82], ultra-fast optics[83]

and HEDP[84].

2. Modeling and prediction

Many real-life and simulated systems are expensive to eval-
uate in terms of time, money or other limited resources. This
is particularly true for laser–plasma physics, which either
hinges on the limited access to high-power laser facilities
or requires high-performance computing to accurately model
the ultra-fast laser–plasma interaction. It is therefore desir-
able to find models of the system, sometimes called digital
twins[85], which are comparatively cheap to evaluate and
whose predictions can be used for extensive analyses. In
engineering and especially in the context of model-based
optimization (see Section 4), such lightweight models are
often referred to as surrogate models. Reduced-order models
feature fewer degrees of freedom than the original system,
which is often achieved using methods of dimensionality
reduction (see Section 5.3).

methods, where the former learn from data as it becomes available, and
can therefore be used in an experimental setting, while the latter require
access to the full dataset before learning can begin. Yet another important
distinction can be made between parametric and non-parametric methods,
where the former rely on a set of parameters that is fixed and known in
advance, while the latter do not make this assumption, but rather learn the
model parameters from the data.
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Figure 1. Overview of some of the machine learning applications discussed in this manuscript. (a) General configuration of laser–plasma interaction setups,
applicable to both experiments and simulations. The system will have a number of input parameters of the laser and target. Some of these are known and
actively controlled (e.g., laser energy, plasma density), some are monitored and others are unknown and essentially contribute as noise to the observations.
Predictive models take the known input parameters x and use some models to predict the output y. These models are discussed in Section 2.1 and some of
them are sketched in (b). Inversely, in some cases one will want to derive the initial conditions from the output. These inverse problems are discussed in
Section 3. In other cases one might be interested in a temporal evolution, discussed in Section 2.2. The output from observations or models can be used to
optimize certain objectives, which can then be fed back to the control system to adjust the input parameters (see Section 4). Observations may also require
further processing, for example, the image processing in (c) to detect patterns or objects. Note that sub-figure (a) is for illustrative purposes only and based
on synthetic data.

The general challenge in modeling is to find a good
approximation of f ∗(x) for the real system f (x) based on only
a limited number of examples f (xn) = yn, the training data.
Here xn is an n-sized set of vector-valued input parameters
and yn is the corresponding output. To complicate things
further, any real measurement will be subject to noise, so
yn has to be interpreted as a combination of the true value
and some random noise contribution. Another complication
arises from having imperfect or unrepeatable controllers for
the input parameters xn. This can result in having different
output values for the same set of input parameters.

The predictive models discussed in Section 2.1 below are
mostly used to interpolate between training data, whereas
the related problem of forecasting (Section 2.2) explicitly
deals with the issue of extrapolating from existing data to
new, so-far unseen data. In Section 2.3 we briefly discuss
how models can be used to provide direct feedback for laser–
plasma experiments.

2.1. Predictive models

In this section, we describe some of the most common
ways to create predictive models, starting with the

‘classic’ approaches of spline interpolation and polynomial
regression, before discussing some modern machine learning
techniques.

2.1.1. Spline interpolation
The simplest way of constructing a model for a system, be
it a real-world system or some complex simulation, is to use
a set of n training points and to predict that every unknown
position will have the same value as the nearest neighboring
training point (see Figure 2(a)). A straightforward extension
with slightly higher computational requirements is to con-
nect the training points with straight lines, resulting in a
piecewise linear function. Both methods, however, are not
continuously differentiable, and for instance less suited for
the integration of the model into an optimization process
(see Section 4). A more advanced approach to interpolating
the training points is to use splines (see Figure 2(b)), which
require the piecewise-interpolated functions to agree up
to a certain derivative order. For instance, cubic splines
are continuously differentiable up to the second derivative.
While higher-order spline interpolation works well in 1D
cases, it becomes increasingly difficult in multi-dimensional
settings. Furthermore, the interpolation approach does not
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Figure 2. Illustration of standard approaches to making predictive models
in machine learning. The data were sampled from the function y =
x
(
1+ sinx2)+ ε with random Gaussian noise, ε, for which

〈
ε2〉 = 1. The

data have been fitted by (a) nearest neighbor interpolation, (b) cubic spline
interpolation, (c) linear regression of a third-order polynomial and (d)
Gaussian process regression.

allow for incorporating uncertainty or stochasticity, which is
present in real-world measurements. Therefore, it will treat
noise components as a part of the system, including, for
instance, outliers.

2.1.2. Regression
In some specific cases the shortcomings of interpolation
approaches can be addressed by using regression models.
For instance, simple systems can often be described using a
polynomial model, where the coefficients of the polynomial
are determined via a least-squares fit (see Figure 2(c)), that
is, minimizing the sum of the squares of the difference
between the predicted and observed data. The results are
generally improved by including more terms in the polyno-
mial but this can lead to overfitting – a situation where the
model describes the noise in the data better than the actual
trends, and consequently will not generalize well to unseen
data. Regression is not restricted to polynomials, but may
use all kinds of mathematical models, often motivated by a
known underlying physics model. Crucially, any regression
model requires the prior definition of a function to be fitted,
thus posing constraints on the relationships that can be
modeled. In practice this is one of the main problems with
this approach, as complex systems can scarcely be described
using simple analytical models. Before using these models,
it is thus important to verify their validity, for example, using
a measure for the goodness of fit such as the correlation
coefficient R2, the χ2 test or the mean-squared error (MSE).

2.1.3. Probabilistic models
The field of probabilistic modeling relies on the assumption
that the relation between the observed data and the under-
lying system is stochastic in nature. This means that the
observed data are assumed to be drawn from a probability
distribution for each set of input parameters to a generative
model. Inversely, one can use statistical methods to infer

the parameters that best explain the observed data. We will
discuss such inference problems in more detail in the context
of solving (ill-posed) inverse problems in Section 3.2.

Probabilistic models can generally be divided into two
methodologies, frequentist and Bayesian. At the heart of the
frequentist approach lies the concept of likelihood, p(y|θ),
which is the probability of some outcomes or observations
y given the model parameters θ (see, e.g., Ref. [86] for an
introduction). A model is fitted by maximum likelihood esti-
mation (MLE), which means finding the model parameters
θ̂ that maximize the likelihood, p

(
y|θ̂). When observations

y = (y1,y2, . . . ) are independent, the probability of observing
y is the product of the probabilities of each observation,
p(y) = ∏n

i=1p(yi). As sums are generally easier to handle
than products, this is often expressed in terms of the log-
likelihood function that is given by the sum of the logarithms
of each observation’s probability, that is

logp(y|θ) =
n∑

i=1

logp(yi|θ) . (1)

Probabilities have values between 0 and 1, so the log-
likelihood is always negative and, the logarithm being a
strictly monotonic function, minimizing the log-likelihood
maximizes the likelihood:

θ̂MLE = argmax
θ

{p(y|θ)} = argmin
θ

{logp(y|θ)} . (2)

The optimum can be found using a variety of optimization
methods, for example, gradient descent, which are described
in more detail in Section 4. A simple example is the use of
MLE for parameter estimation in regression problems. In the
case in which the error (Ax− y) is normally distributed, this
turns out to be equivalent to the least-squares method we
discussed in the previous section.

The MLE is often seen as the simplest and most practical
approach to probabilistic modeling. One advantage is that it
does not require any a priori assumptions about the model
parameters, rather only about the probability distributions
of the data. However, this can also be a drawback if useful
prior knowledge of the model parameters is available. In
this case one would turn to Bayesian statistics. Here one
assesses information about the probability that a hypothesis
about the parameter values θ is correct given a set of
data x. In this context the probabilistic model is viewed as
a collection of conditional probability densities p(θ |y) for
each set of observed data y, with the aim of finding the
posterior distribution p(θ |y), that is, the probability of some
parameters given the data observations. This can be done by
applying Bayes’ rule, as follows:

p(θ |y) = p(y|θ)p(θ)

p(y)
, (3)
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where p(y|θ) is known from above as the likelihood function
and p(θ) denotes the prior distribution, that is, our a priori
knowledge about the parameters before we observe any data
y. The denominator, p(y) = ∫

p
(
y|θ ′) · p

(
θ ′)dθ ′, is called

the evidence and ensures that both sides of Bayes’ rule are
properly normalized by integrating over all possible input
parameters θ . Once the posterior distribution is known, we
can maximize it and get the maximum a posteriori (MAP)
estimate:

θ̂MAP = argmax
θ

{p(θ |y)} . (4)

As mentioned above, a particular strength of the Bayesian
approach is that we can encode a priori information in the
prior distribution. Taking the example of polynomial regres-
sion, we could, for instance, set a priori distribution p(θ) for
the regression coefficients θ that favors small coefficients,
thus penalizing high-order polynomials. Another advantage
of using the Bayesian framework is that one can quantify the
uncertainty in the model result. This is particularly simple to
compute in the special case of Gaussian distributions and
their generalization, Gaussian processes (GPs), which we are
going to discuss in the next section.

2.1.4. Gaussian process regression
A popular version of Bayesian probabilistic modeling is
GP regression[87,88]. This kind of modeling was pioneered
in geostatistics in the context of mining exploration and
is historically also referred to as kriging, after the South
African engineer Danie G. Krige, who invented the method
in the 1950s. Conceptually, one can think of it as loosely
related to the spline interpolation method, as it is also locally
‘interpolates’ the training points. Compared to splines and
conventional regression methods, kriging has a number of
advantages. Being a regression method, kriging can deal
with noisy training points, as seen in experimental data. At
the same time, the use of GPs involves minimal assumptions
and can in principle model any kind of function. Lastly,
the ‘interpolation’ is done in a probabilistic way, that is, a
probability distribution is assigned to the function values
at unknown positions (see Figure 2(d)). This allows for
quantifying the uncertainty of the prediction. These features
make kriging an attractive method for the construction of sur-
rogate models for complex systems for which only a limited
number of the function evaluations is possible, for example,
due to the long runtime of the system or the high costs of
the function evaluations. GP regression forms the backbone
of most implementations of Bayesian optimization (BO),
which we will discuss in Section 4.5, including examples for
potential use cases.

Mathematically speaking, a GP is an infinite collection
of normal random variables, where each finite subset is

jointly normally distributed. The mean vector and covariance
matrix of the multivariate normal distribution are thereby
generalized to the mean function μ(x) and the covariance
function σ

(
x,x′), respectively, where we use the short-hand

notation x = (x1,x2, . . . ) to denote the function inputs as a
vector of real numbers.

A GP can be written in the following form:

f (x) ∼ GP (μ(x),σ
(
x,x′)), (5)

denoting that the random function f (x) follows a GP with
mean function μ(x) and covariance function σ

(
x,x′).

The mean function μ(x) is defined as the expectation of the
GP, that is, μ(x) = 〈f (x)〉, whereas the covariance function
is defined as σ

(
x,x′) = 〈

f (x)−μ(x)
(
f
(
x′)−μ

(
x′))〉. Note

that in the special case of the constant mean function
μ(x) = 0 and a constant diagonal covariance function
σ
(
x,x′) = σ 2δ

(
x− x′), the GP simply reduces to a set of

a normal random variable with zero mean and variance
σ 2 commonly referred to as white noise. The covariance
function is also referred to as the kernel. Its value at locations
x and x′ is proportional to the correlation between the
function values f (x) and f

(
x′). A common choice for the

covariance function is the squared exponential function, also
known as the radial basis function (RBF) kernel:

σ
(
x,x′)= exp

(
−
(
x− x′)2

2�2

)
, (6)

where � is the length scale parameter, which controls the rate
at which the correlation between f (x) and f

(
x′) decays. This

kernel hyperparameter can usually be optimized by using the
training data to minimize the log marginal likelihood.

It is possible to encode prior knowledge by choosing a
specialized kernel that imposes certain restrictions on the
model. A variety of such kernels exist. For instance, the
periodic kernel (also known as exp-sine-square kernel) given
by the following:

σ
(
x,x′)= exp

(
−2sin2 (πd

(
x,x′)/λ)

�2

)
, (7)

with the Euclidean distance d
(
x,x′), length scale � and

periodicity λ as free hyperparameters, is particularly suitable
to model systems that show an oscillatory behavior.

A useful property of kernels is the generation of new
kernels through the addition or multiplication of existing ker-
nels[89]. This property provides another way to leverage prior
information about the form of the function to increase the
predictive accuracy of the model. For instance, measurement
errors incorporated into the model by adding a Gaussian
white noise kernel, as for instance done in Figure 2.
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Figure 3. Gaussian process regression: illustration of different covariance functions, prior distributions and (fitted) posterior distributions. Left: correlation
matrices between two values x and x′ using different covariance functions (white noise, radial basis function and periodic). Center: samples of the prior
distribution defined by the prior mean μ(x) = 0 and the indicated covariance functions. Note that the sampled functions are depicted with increasing
transparency for visual clarity. Right: posterior distribution given observation points sampled from y = cos2x + ε, where ε is random Gaussian noise with
σε = 0.1. Note how the variance between observations increases when no noise term is included in the kernel (top row). Within the observation window
the fitted kernels show little difference, but outside of it the RBF kernel decays to the mean μ = 0 dependent on the length scale �. This can be avoided if
there exists prior knowledge about the data that can be encoded in the covariance function, in this case periodicity, as can be seen in the regression using a
periodic kernel.

Figure 3 visualizes the covariance functions and their
influence on the result of GP regression. This includes corre-
lation matrices for the three covariance functions discussed
above (white noise, RBF and periodic kernels). Once the
mean and the covariance functions are fully defined, we
can use training points for regression, that is, fit the GP
and kernel parameters to the data and obtain the posterior
distribution (see the right-hand panel of Figure 3).

2.1.5. Decision trees and forests
A decision tree is a general-purpose machine learning
method that learns a tree-like model of decision rules from
the data to make predictions[90]. It works by splitting the
dataset recursively into smaller groups, called nodes. Each
node represents a decision point, and the tree branches out
from the node according to the decisions that are made.
The leaves of the tree represent the final prediction; see
Figure 4 for an illustration. This can be either a categorical
value in classification tasks (see Section 6) or a numerical
value prediction in regression tasks. An advantage of this
approach is that it can learn nonlinear relationships in data
without having to specify them.

To generate a decision tree one starts at the root of the
tree and determines a decision node such that it optimizes an
underlying decision metric, such as the MSE in regression

Decision Tree 1 Decision Tree 2 Decision Tree n

Prediction 1 Prediction 2 Prediction n

Sub-set 2

Ensemble 

Prediction

Decision node

Leaf node

Random Forest

Dataset

Sub-set 1 Sub-set n

Random sampling

Figure 4. Sketch of a random forest, an architecture for regression or clas-
sification consisting of multiple decision trees, whose individual predictions
are combined into an ensemble prediction, for example, via majority voting
or averaging.

settings or entropy and information gain in a classification
setting. At each decision point the dataset is split and subse-
quently the metric is re-evaluated for the resulting groups,
generating the next layer of decision nodes. This process
is repeated until the leaves are reached. The more decision
layers are used, called the depth of the tree, the more complex
relationships can be modeled.
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8 A. Döpp et al.

Ensemble predictionsTree predictions

y

ytrain − g1(x)

ytrain − g1(x) − g2(x)

ytrain

g1(x)

g2(x)

g3(x)

g1(x)

g1(x) + g2(x)

g1(x) + g2(x) + g3(x)

yΔ

yΔ

Truth

1st Residual tree

2nd Residual tree

1st Decision tree

Figure 5. Example of gradient boosting with decision trees. Firstly, a decision tree g1 is fitted to the data. In the next step, the residual difference between
training data and the prediction of this tree is calculated and used to fit a second decision tree g2. This process is repeated n times, with each new tree gn
learning to correct only the remaining difference to the training data. Data in this example are sampled from the same function as in Figure 2 and each tree
has a maximum depth of two decision layers.

Decision trees are easy to implement and can provide accu-
rate predictions even for large datasets. However, with an
increasing number of decision layers they may become com-
putationally expensive and may overfit the data, the latter
being in particular a problem with noisy data. One method
to address overfitting is called pruning, where branches
from the tree that do not improve the performance are
removed. Another effective method is to use decision-tree-
based ensemble algorithms instead of a single decision
tree.

One example of such an algorithm is the random forest,
an ensemble algorithm that uses bootstrap aggregating or
bagging to fit trees to random subsets of the data and the pre-
dictions of individually fitted decision trees are combined by
majority vote or average to obtain a more accurate prediction.
Another type of ensemble algorithms is boosting, where the
trees are trained sequentially and each tries to correct its pre-
decessor. A popular implementation is AdaBoost[91], where
the weights of the samples are changed according to the suc-
cess of the predictions of the previous trees. Gradient boost-
ing methods[92,93] also use the concept of sequentially adding
predictors, but while AdaBoost adjusts weights according to
the residuals of each prediction, gradient boosting methods

fit new residual trees to the remaining differences at each step
(see Figure 5 for an example).

Compared to other machine learning algorithms, a great
advantage of a decision tree is its explicitness in data anal-
ysis, especially in nonlinear high-dimensional problems. By
splitting the dataset into branches, the decision tree naturally
reveals the importance of each variable regarding the deci-
sion metric. This is in contrast to ‘black-box’ models, such as
those created by neural networks, which must be interpreted
by post hoc analysis.

Decision trees can also be used to seed neural networks
by giving the initial weight parameters to train a deep
neural network. Examples of using a decision tree as an
initializer are the deep jointly-informed neural networks
(DJINNs) developed by Humbird et al.[94], which have
been widely applied in the high-power laser community,
especially in analyzing ICF datasets. The algorithm first
constructs a tree or a random forest with the tree depth
set as a tunable hyperparameter. It then maps the tree
to a neural network, or maps the forest to an ensemble
of networks. The structure of the network (number of
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neurons and hidden layer, initial weights, etc.) reflects
the structure of the tree. The neural network is then
trained using back-propagation. The use of decision trees
for initialization largely reduces the computational cost
while maintaining comparable performance to optimized
neural network architectures. The DJINN algorithm has
been applied to several classification and regression tasks
in high-power laser experiments, such as ICF[95–97] and
LWFA[98].

2.1.6. Neural networks
Neural networks offer a versatile framework for fitting of
arbitrary functions by training of a network of connected
nodes or neurons, which are loosely inspired by biological
neurons. In the case of a fully connected neural network,
historically called a multilayer perceptron, the inputs to one
node are the outputs of all of the nodes from the preceding
layer. The very first layer is simply all of the inputs for the
function to be modeled, and the very last layer is the function
outputs. One of the very attractive properties of neural
networks is the capacity to have many outputs and inputs,
each of which can be multi-dimensional. The weighting of
each connection wi and the bias for each node b are the
parameters of the network, which must be trained to provide
the best approximation of the function to be modeled. Each
node gets activated depending on both weights and biases
according to a pre-defined activation function. The nonlinear
properties of activation functions are widely seen as the
key properties to allow neural networks to model arbitrary
functions and achieve general learning properties.

One of the simplest, but also most common, activation
functions is the rectified linear unit (ReLU), which is defined
as follows:

ReLU(x) =
{

x, if x ≥ 0,
0, otherwise.

(8)

The function argument x = ∑
xiwi + b is the sum of

the weights of incoming connections, multiplied with their
values xi, and the bias of the node. The ReLU function
is easy to compute, and it has the main advantage that it
is linear for x > 0, which greatly simplifies the gradient
calculation in training (see the next paragraph). Drawbacks
are that it is not differentiable at x = 0, it is unbounded, and
since it yields a constant value below 0, it has the potential
to produce ‘dead’ neurons. The last issue is solved in the
so-called leaky ReLU, which uses a reduced gradient for
x < 0, giving an output of αx where 0 < α < 1. Other
common activation functions include the logistic or sigmoid
function, sig(x) = (1+ e−x)

−1, and the hyperbolic tangent
function, tanh(x) = (ex − e−x)/(ex + e−x).

The training is performed iteratively by passing corre-
sponding input–output pairs to the network and comparing

the true outputs to those given by the network to calculate
the loss function. This is often chosen to be the MSE
between the model output and the reference from the training
data, but many other types of loss functions are also used
(see Section 4.1.1) and the choice of loss function strongly
affects the model’s training. The loss is then used to modify
the weights and biases via an algorithm known as ‘back-
propagation’[99]. Here the gradient of the loss function is
calculated with respect to the weights and biases via the
chain rule. One can then optimize the parameters using,
for instance, stochastic gradient descent (SGD) or Adam
(adaptive moment estimation)[100].

A number of hyperparameters are used to control the
training process. Typical ones include the following: the
number of epochs – the number of times the model sees each
data point; the batch size – the number of data points the
model sees before updating its gradients; and the learning
rate – a factor determining the magnitude of the update to the
gradient. Each factor can have a critical effect on the training
of the model.

In the training process, the weights and biases are
optimized in order to best approximate the function for
converting the inputs into the corresponding outputs. The
resulting model will yield an approximation for the unknown
function f (x). However, learning via this method only
optimizes how well the model reproduces the training data
and, in the worst case, the network essentially ‘memorizes’
the training data, and learns little about the desired function
f (x). To quantify this, a subset of the data is kept separate
and used solely for validating the model. Ideally, the loss
should be similar on both training and validation data, and if
the model has a significantly smaller loss on the training data
than on the validation set it is said to overfit, which signifies
that the model has learnt the random noise of the training
set. The validation loss thus quantifies how well this model
generalizes and, with it, how useful it is for predictions
on unseen data.

Common methods to combat overfitting include early
stopping, that is, terminating the training process once the
validation loss stagnates; or the use of dropout layers to ran-
domly switch off some fraction of the network connections
for each batch of the training process, thereby preventing
the network from learning random noise by reducing its
capacity. A further approach is to incorporate variational
layers into the network. In these layers, pairs of nodes are
used that represent the mean μ and standard deviation σ

of a Gaussian distribution. During training, output values
are sampled from this distribution and then passed on the
subsequent layers, thereby requiring the network to react
smoothly to these small random variations to achieve a
small training loss. Both dropout layers and variational layers
provide regularization that smooths the network response
and prevents single nodes from dominating, resulting in
improved interpolation performance and better validation
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Figure 6. Simplified sketch of some popular neural network architectures. The simplest possible neural network is the perceptron, which consists of an
input, which is fed into the neuron that processes the input based on the weights, an individual bias and its activation function. Multiple such layers can be
stacked within so-called hidden layers, resulting in the popular multilayer perceptron (or fully connected network). Besides the direct connection between
subsequent layers, there are also special connections common in many modern neural network architectures. Examples are the recurrent connection (which
feeds the output of the current layer back into the input of the current layer), the convolutional connection (which replaces the direct connection between two
layers by the convolutional operation) and the residual connection (which adds the input to the output of the current layer; note that the above illustration is
simplified and the layers should be equal in size).

loss[101,102] (see Section 3.3 for a brief general explanation
of regularization).

Beyond the classical multilayer perceptron network, there
exists a plethora of different neural network architectures,
as partially illustrated in Figure 6, which are suited to
different tasks. In particular, convolutions layers, which
extract relevant features from one and two dimensions by
learning suitable convolution matrices, are commonly used
in the analysis of physical signals and images. Architecture
selection and hyperparameter tuning are central challenges
in the implementation of neural networks, and are often
performed by an additional machine learning algorithm, for
example, using BO (see Section 4.5).

The great strength of neural networks is their flexibility
and relatively straightforward implementation, with many
openly accessible software platforms available to choose
from. However, trained networks are effectively ‘black-box’
functions, and do not, in their basic form, incorporate uncer-
tainty quantification. As a result, the networks may make
over-confident predictions about unseen data while giving
no explanation for those predictions, leading to false conclu-
sions. Various methods exist for incorporating uncertainty
quantification into neural networks (see, for example, Ref.
[103]), such as by including variational layers (discussed
above) and training an ensemble of networks on different
training data subsets. There are several approaches to try
and make neural network models explainable and a review
of methods for network interpretation is given, for instance,
by Montavon et al.[104].

Another strength of neural networks is that the perfor-
mance of a model on a new task can be improved by
leveraging knowledge from a pre-trained model on a related
task. This so-called transfer learning is typically used in
scenarios where it is difficult or expensive to train a model
from scratch on a new task, or when there is a limited amount
of training data available. For example, transfer learning has
been used to successfully train models for image classifica-
tion and object detection tasks (see Section 6), using pre-
trained models that have been trained on large image datasets
such as ImageNet[105]. In the context of laser–plasma physics,
transfer learning could be used to improve the performance
of a neural network by leveraging knowledge from a pre-
trained model that has been trained on data from previous
experiments or simulations.

Kirchen et al.[29] recently demonstrated the utility of
even seemingly small neural networks for modeling laser–
plasma accelerator performance. Their multilayer percep-
tron design is shown in Figure 7 and, as can been seen
in Figures 7(b) and 7(c), the network accurately predicts
electron beam energy and energy spread. Interestingly,
this performance is achieved without using target param-
eters such as plasma density as an input, thus highlight-
ing the relative importance of laser stabilization in this
context. Gonoskov et al.[106] trained a neural network to
read features in theoretical and experimental spectra from
high-order-harmonic generation (HHG) in high-power
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Figure 7. Real-world example of a multilayer perceptron for beam parameter prediction. (a) The network layout[29] consists of 15 input neurons, two hidden
layers with 30 neurons and three output neurons (charge, mean energy and energy spread). The input is derived from parasitic laser diagnostics (laser pulse
energy Elaser, central wavelength λ0 and spectral bandwidth �λ, longitudinal focus position zfoc and Zernike coefficients of the wavefront). Neurons use a
nonlinear ReLU activation and 20% of neurons drop out for regularization during training. The (normalized) predictions are compared to the training data
to evaluate the accuracy of the model, in this case using the mean absolute �1 error as the loss function. In training, the gradient of the loss function is then
propagated back through the network to adjust its weights and biases. (b) Measured and predicted median energy (E) and (c) measured and predicted energy
spread (�E), both for a series of 50 consecutive shots. Sub-figures (b) and (c) are adapted from Ref. [29].

laser–plasma interactions. Rodimkov et al.[107] used a
neural network to extract information that was not directly
measured in experiments, including the preplasma scale
length and the pulse carrier-envelope phase, from the
spectrum of extreme ultraviolet (XUV) radiation gener-
ated in laser–plasma interactions. Another recent example
of deep learning modeling is the work by Djordjević
et al.[108], where the authors used a multilayer percep-
tron to model the output of a laser-driven ion accel-
erator based on training with 1000 simulations. In the
work of Watt[109], a strong-field QED model incorpo-
rating a trained neural network was used to provide an
additional computation package for the Geant4 particle
physics platform. Neural networks are also trained to
assist hohlraum design for ICF experiments by predicting
the time evolution of the radiation temperature, in the
recent work by McClarren et al.[110]. In the work of
Simpson et al.[111], a fully connected neural network with
three hidden layers is constructed to assist the analysis of
an X-ray spectrometer, which measures the X-rays driven
by MeV electrons produced from high-power laser–solid
interaction. Finally, Streeter et al.[112] used convolutional

neural networks (CNNs) to predict the electron spectrum
produced by a laser wakefield accelerator, taking mea-
surements from secondary laser and plasma diagnostics
as the inputs.

2.1.7. Physics-informed machine learning models
The ultimate application of machine learning for modeling
physics systems would arguably be to create an ‘artificial
intelligence physicist’, as coined by Wu and Tegmark[113].
One prominent idea at the backbone of how we build
physical models is Occam’s razor, which states that given
multiple hypotheses, the simplest one that is consistent with
the data is to be preferred. In addition to this guiding
principle, it is furthermore assumed that a physical model
can be described using mathematical equations. A program
should therefore be able to automatically create such equa-
tions, given experimental data. While a competitive artificial
intelligence (AI) physicist is still years away,2 first steps

2 Recently there has also been astonishing progress in the area of large lan-
guage models such as generative pre-trained transformer (GPT) models[114].
Very similar to the forecasting networks discussed in Section 2.2.3, these
use an attention mechanism to predict the next token (word, etc.) following
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have been undertaken in this direction. For instance, in
2009 Schmidt and Lipson[116] presented a genetic algorithm
approach (Section 4.4) that independently searched and iden-
tified governing mathematical representations such as the
Hamiltonian from real-life measurements of some mechani-
cal systems. More recently, research has concentrated more
on the concept of Occam’s razor and the underlying idea that
the ‘simplest’ representation can be seen as the sparsest in
some domain. A key contribution was SINDy (sparse identi-
fication of nonlinear dynamics), a framework for discovering
sparse nonlinear dynamical systems from data[117]. As in CS
(Section 3.4), the sparsity constraint was imposed using an
�1-norm regularization, which results in the identification of
the fewest terms needed to describe the dynamics.

An important step towards combining physics and machine
learning was undertaken in physics-informed neural net-
works (PINNs)[118]. A PINN is essentially a neural network
that uses physics equations, which are often described in
form of ordinary differential equations (ODEs) or partial
differential equations (PDEs), as a regularization to select
a solution that is in agreement with physics. This is achieved
by defining a custom loss function that includes a dis-
crepancy term, the residuals of the underlying ODEs or
PDEs, in addition to the usual data-based loss compo-
nents. As such, solutions that obey the selected physics
are enforced. In contrast to SINDy, there is no sparsity
constraint imposed on the network weights, meaning that
the network could still be quite complex. Early examples
of PINNs were published by Raissi et al.[119–122] and Long
et al.[123] in 2017–2020. Since then, the architecture has
been applied to a wide range of problems in the natural sci-
ences, with a quasi-exponential growth in publications[124].
Applications include, for instance, (low-temperature) plasma
physics, where PINNs have been successfully used to solve
the Boltzmann equation[125], and quantum physics, where
PINNs were used to solve the Schrödinger equation of
a quantum harmonic oscillator[126]. The work by Stiller
et al.[126] uses a scalable neural solver that could possibly
also be extended to solve, for example, the Vlasov–Maxwell
system governing laser–plasma interaction.

2.2. Time series forecasting

A related problem meriting its own discussion is time series
forecasting. While models in the previous section are based
on interpolation or regression within given data points, fore-
casting explicitly deals with the issue of extrapolating param-
eter values to the future based on prior observations. Most
notably this includes modeling of long-term trends (in a laser

input provided by the user. It was found that large models (∼108 −109

parameters) become increasingly capable with sufficient training, for exam-
ple, gaining the ability to do basic math and to write code, including to some
claims first hints at artificial general intelligence[115].

context often referred to as drifts) or periodic oscillations of
parameters and short-term fluctuations referred to as jitter.

If available, models may also use covariates, auxiliary
variables that are correlated to the observable, to improve
the forecast. These covariates may even extend into the future
(seasonal changes being the traditional example in economic
forecasting).

In this section we are going to first discuss two common
approaches to time series forecasting, autoregressive models
and state-space models (SSMs), followed by a discussion
of modern techniques based on neural networks. Note that
the modeling approaches presented in the preceding section
may also be used, to some extent, to extrapolate data.
We are not aware of any recent examples on time series
forecasting in the context of laser–plasma physics. However,
we feel that the topic merits inclusion in this overview as
implementations are likely in the near future, for example,
for laser stabilization purposes.

2.2.1. Classical models
To model a time series one usually starts with a set of
assumptions regarding its structure, that is, the interdepen-
dence between values at different times. A simple, approxi-
mate assumption is that the observed values in a discrete time
series are linearly related. An important, wide-spread class
of such models is the so-called autoregressive models, which
assert that the next value yt in a time series is given as a linear
function of the p prior values yt−1,yt−2, . . . ,yt−p. In addition,
each value is assumed to be corrupted by additive white
noise εt ∼ N (

0,σ 2
)
, representing, for example, measure-

ment errors or inherent statistical fluctuations of the underly-
ing process, which endows the models with stochasticity. In
its most common form, the autoregressive model of order p,
denoted by AR(p), is defined via the recurrence relation:

yt =
p∑

i=1

ϕiyt−i + εt, (9)

where ϕ1, . . . ,ϕp are the model’s parameters to be estimated.
In this form, the problem of finding the model’s parameters
is a linear regression problem that can be solved via the
least-squares method:

{
ϕ̂1, . . . ,ϕ̂p

}= argmin
ϕ1,...,ϕp

(
yt −

p∑
i=1

ϕiyt−i

)2

. (10)

In another approach we might assume that the next value
yt is instead given by a linear combination of (external)
statistical fluctuations, sometimes called shocks, from the
past q points in time, again encoded in white noise terms
εt ∼ N (

0,σ 2
)
. The corresponding model, called the moving

average model and denoted by MA(q), is defined as follows:
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yt = μ+
q∑

i=1

ϑiεt−i + εt, (11)

where μ is the mean of the time series.
The parameters of the moving average process cannot

be inferred by linear methods such as least squares, but
rather have to be estimated by means of maximum likelihood
methods.

Contrary to the AR(p) model, which is only stationary3 for
certain parameters ϕ1, . . . ,ϕp, the MA(q) model is always
(strictly) stationary per definition. Put loosely, stationarity
can be understood as the stochastic properties (mean, vari-
ance, . . .) of the time series being constant over time.

Another distinction between the autoregressive and the
moving average model is how far into the future the effects
of statistical fluctuations (shocks) are propagated. In the
moving average model the white noise terms are only prop-
agated q steps into the future, while in the autoregressive
model the effects are propagated infinitely far into the future.
This is because the white noise terms are part of the prior
values, which themselves are part of the future values in
Equation (9).

If the time series in question cannot be explained by
the AR(p) or the MA(q) model alone, both models can
be combined into what is called an autoregressive-moving-
average model, denoted by ARMA(p,q):

yt = μ+
p∑

i=1

ϕiyt−i +
q∑

j=1

ϑjεt−j + εt. (12)

Note that for the special cases of p = 0 and q = 0, the
ARMA(p,q) reduces to the MA(q) and AR(p), respectively.

When fitting autoregressive models, special care should be
taken that the time series to be modeled is stationary before
fitting, otherwise spurious correlations are introduced.
Spurious correlations are apparent correlations between two
or more time series that are not causally related, thereby
potentially leading to fallacious conclusions as warned of in
the well-known adage ‘correlation does not imply causation’.

If the time series y is non-stationary in general but sta-
tionary with respect to its mean, that is, the variations
relative to the mean value are stationary, it might be possible
to transform it into a stationary time series. For this we
introduce a new series zt = ∇dyt by differencing the original
series d times, where we defined the differencing operator
∇yt ≡ yt − yt−1. Applying the differencing operator once
(d = 1), for example, removes a linear trend from yt, applying
it twice removes a quadratic trend and so forth. If z is

3 A time series {yt} is said to be strictly stationary, given the joint cumula-
tive distribution F (y0, . . . ,yt), if F (y0, . . . ,yt) = F (y0+τ , . . . ,yt+τ ) ∀τ ∈
N. Correspondingly, all moments of the joint distribution are invariant
under time translation. If this invariance only holds for the first two
moments (mean, variance) the time series is said to be (weakly) stationary.

stationary after differencing y d-times it can be readily
modeled by Equation (12), which leads us to the autoregres-
sive-integrated-moving-average model ARIMA (p,d,q):

zt =
p∑

i=1

ϕizt−i +
q∑

j=1

ϑjεt−j + εt. (13)

Note that in contrast to the ARMA(p,q) model in Equation
(12), the time series zt appearing here is a d-times differ-
enced version of the original series yt. Further extensions
that will only be noted here for completeness are seasonal
ARIMA models, called SARIMA models, that allow the
modeling of time series that exhibit seasonality (periodicity),
and exogeneous ARIMA models, called ARIMAX models,
that allow the modeling of time series that are influenced
by a separate, external time series. Both extensions can be
combined to yield the so-called SARIMAX model, which is
general enough to cover a large class of time series problems.
However, we are still in any case limited to problems in
which the time series is generated by a linear stochastic
process. To cover more general nonlinear problems, we
introduce SSMs.

2.2.2. State-space models
SSMs offer a very general framework to model time series
data[127]. In this framework, presuming that the time series
is based on some underlying system, it is assumed that
there exists a certain true state of the system xt of which
we observe a value yt subject to measurement noise. The
true state xt, usually inaccessible and hidden to us, and the
observed state yt are modeled by the state equation and
the observation equation, respectively. A prominent example
of SSMs in machine learning is hidden Markov models
(HMMs)[128], in which the hidden state xt is modeled as
a Markov process. In general there are no restrictions on
the functional form of the state and observation equations;
however, the most common type of SSM is the linear
Gaussian SSM, also referred to as the dynamic linear model,
in which the state and observation equations are modeled as
linear equations and the noise is assumed to be Gaussian.
The prototypical example of such linear Gaussian SSMs is
the Kalman filter [129], ubiquitous in control theory, robotics
and many other fields[130], including for instance adaptive
optics[131] and particle accelerator control[132]. The term ‘fil-
ter’ originates from the fact that it filters out noise to estimate
the underlying state of a system. The state equations can be
written as follows:

xt = Atxt−1 +Btut +Ctεt,

yt = Dtxt +Etηt, (14)

where the system noise εt and observation noise ηt are
sampled from a normal distribution εt,ηt ∼ N (0,1). Note
that the separation of these two noise terms differs from
the so-far discussed models. This permits the modeling of
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14 A. Döpp et al.

systems that are driven by noise, while also accounting for
observation noise of possibly differing amplitude. Another
difference is the addition of a second process ut, commonly
called the control input in signal processing, which is a
deterministic external process driving the system state. This
permits the modeling of systems with known external inputs
(e.g., a controller-driven motor) or with known deterministic
drivers (e.g., system temperature). Note that we can recover
the autoregressive models discussed earlier as a special case
of the Kalman filter. For example, the AR(1) process is
obtained by setting At = const. = ϕ1, Bt = 0, Ct = const. =
σ 2, Dt = 1 and Et = 0. For a more detailed discussion
on Kalman filters we refer the interested reader to the
literature[133]. Other (nonlinear) ways to perform inference
in SSMs exist, for instance using sequential Monte Carlo
estimation[134].

2.2.3. Forecasting networks
While predictions based on autoregression or SSMs can
suffice for many applications, the nonlinear nature of neu-
ral networks can be harnessed to model time series with
complex, nonlinear dependencies[135,136]. A particularly rele-
vant architecture is the recurrent neural networks (RNNs).
These are similar to the ‘traditional’ neural networks we
discussed in Section 2.1.6, but they have a ‘memory’ that
allows them to retain information from previous inputs. This
is implemented in a somewhat similar way to the linear
recurrence relations discussed in the previous sections, with
a key difference being that the state xt of RNNs is updated
according to an arbitrary nonlinear function. The current
state xt is calculated from the previous states xt−1,xt−2, . . .

through the recurrence equation:

xt = f (wrecxt−1 +brec), (15)

where f is a nonlinear activation function, wrec is a matrix
of recurrent weights and brec is a bias vector. This equation
allows the update to each element of the current state vector,
xt, to be dependent on the whole of the previous state vector,
xt−1. The output yt of the network is calculated from the
current state xt through the output equation:

yt = f (woutxt +bout), (16)

where wout contains the output weights and bout is another
bias vector. Thus, the entire network state is updated from the
previous state through a recurrent equation, and the current
output is calculated from the current state through an output
equation. The network state therefore contains all previous
information about the time series. However, as the network
state is updated by a simple multiplication of the weights
wrec with the previous state xt−1, the so-called vanishing
gradient problem may occur[137,138]. This problem is solved
in a seminal work by Hochreiter and Schmidhuber[139], who
introduced a special type of RNN, the long short-term

memory (LSTM) network. In contrast to the simple update
equation of RNNs, LSTMs use a special type of memory
cell that can learn long-term dependencies. This includes a
so-called forget gate ft to update the previous state xt−1 to the
current state xt:

xt = ft � xt−1 + it �ht, (17)

where � denotes the element-wise Hadamard product,
[A�B]ij = AijBij. In addition, the LSTM uses two more
gates, the input gate it and output gate ot, where the latter
is used to calculate the hidden state ht from the previous
hidden state via ht = ot � ht−1. The three gates ft, it and ot

are calculated from the current input xt, the previous hidden
state ht−1 and the previous gate states ft−1, it−1 and ot−1 using
individually set weights and biases. The gates determine how
much of the previous state xt−1 and the current hidden state
ht are used to calculate the current state xt. The output of the
LSTM network is then calculated from the current state xt

through the same output equation, Equation (16), as used in
the RNN. Despite it being introduced in the early 1990s, the
LSTM architecture remains one of the most popular network
architectures for predictive tasks to date.

A more recently introduced type of neural network that
can learn to interpret and generate sequences of data is the
transformer. Transformers are similar to RNNs, but instead
of processing the time series in a sequential manner, they use
a so-called attention mechanism[140] to capture dependencies
between all elements of the time series simultaneously and,
thus, focus on specific parts of an input sequence. Assuming
again a time series xt,xt−1, . . . , a transformer maps each point
xt to a representation ht using a linear layer, for example,
ht = wxt + b. The transformer network then calculates a
new representation for each point xt using the attention
mechanism:

h̃t =
∑

αtihi, (18)

where the attention weights αti are calculated using the
point representations hi and the previous representation h̃t.
The attention weights αti are used to calculate the new
representation h̃t of each point xt from all previous repre-
sentations h̃i, i < t, of the previous point xi, i < t. The new
representations are then used to calculate the output yt of the
network as in Equation (16). Thus, the attention mechanism
of a transformer network can be interpreted as a nonlinear
function that updates the representation of each point xt from
all previous representations of the previous points xi, i < t.
It can be applied multiple times and enables transformers to
learn complex patterns in data, outperforming RNNs on a
variety of tasks, such as machine translation and language
modeling. It has also been shown that transformers are more
efficient than RNNs, meaning they can be trained on larger
datasets in less time. One recent example of a transformer
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developed for time series prediction is the Temporal Fusion
Transformer[141]. Beyond RNNs, LSTMs and transformers,
there exist many other network architectures that can be used
for forecasting, for example, fully convolutional networks
(FCNs), as discussed by Wang et al.[142].

For longer-term forecasting, predictive networks are usu-
ally employed iteratively, meaning that a single-step forecast
uses only real data, while a two-step forecast will use the
historical data and the most recent prediction value, and so
forth. In the context of laser–plasma physics and experi-
ments, predictive neural networks could be used to model the
time series data from diagnostic measurements in order to
make predictions about the future performance, for example,
for predictive steering of laser or particle beams.

2.3. Prediction and feedback

Both (surrogate) models and forecasts can be used to make
predictions about the state of a system at a so-far unknown
position, in parameter space or time, respectively. This type
of operation is sometimes referred to as open-loop predic-
tion. Closed-loop prediction and feedback, on the other hand,
use predictions and compare them to the actual system state,
continuously updating and improving the surrogate model of
the system. This is particularly relevant for dynamic systems,
where parameters change over time. A complete discussion
on how to implement a closed-loop system using machine
learning goes beyond the scope of this review, as it would
also require an extensive discussion of control systems and
so forth. The following discussion will thus be restricted to a
brief outline of a few relevant concepts.

A feedback loop is most generally a system where a
part of the output serves as input to the system itself,
and we have already discussed some models with feedback
in the context of forecasting (Section 2.2). Another well-
known engineering implementation of closed-loop operation
is the proportional–integral–derivative (PID) controller. A
PID controller adjusts the process variable (PV) with a pro-
portional, integral and derivative response to the difference
between a measured PV and a desired set point. Here the
proportional term serves to increase the response time of
the system to changes in the set point. The integral term is
used to eliminate the residual steady-state error that occurs
if the PV is not equal to the set point. The derivative term
improves the stability of the control, reducing the tendency
of the PID output to overshoot the set point.

In the context of laser–plasma physics, the implementation
of the feedback loop would most likely look slightly differ-
ent. One possible implementation would be that a model is
used to predict the output of the system at a given set of
parameters, which is then compared to the actual output and
used to update the model again. In order to keep improving
the model, it is important that new data should be acquired in
regions of parameter space that deviate from the previously

acquired data. In other words, it is important to explore
parameter space in addition to exploiting the knowledge
from existing data points. This can be done through random
sampling or through so-called BO, as we will discuss in
Section 4.

Such a model that is continuously updated with new data
is sometimes referred to as a dynamic model. There are two
main approaches to updating such models.

• Firstly, completely re-training the model with all avail-
able data, including the newly acquired data points.
This results in an increasingly large training dataset and
training time.

• The second method is to update the model by adding
new points to the training set and then re-training the
existing model on these points in a process known as
incremental learning. This method is thus much faster
and uses less memory than a full re-training.

However, not all techniques we discussed to construct
models are compatible with both training methods. For
instance, GP regression can historically only be trained on
full datasets, hindering its applicability in settings requiring
(near) real-time updates. However, recent work on regression
in a streaming setting might alleviate this problem[143].
Learning dynamic models is further complicated by the
fact that systems may change over the course of time during
which training data are acquired, a problem referred to as
concept drift[144].

Many laboratories are currently stepping up their efforts
to integrate prediction and feedback systems into their
lasers and experiments[145,146]. One of the first groups to
extensively make use of these techniques was the team
around A. Maier at DESY’s LUX facility[26]. Among
the most comprehensive proposals are plans recently
presented by Ma et al. from NIF, proposing an extensive
integration of feedback systems for high-energy-density
(HED) experiments[147]. The system, referred to as a ‘full
integrated high-repetition rate HED laser–plasma experi-
ment’, consists of multiple linked feedback loops. These
are hierarchically organized, starting from a ‘laser loop’,
over an ‘experiment loop’ to a ‘modeling & simulation
loop’ at its highest level.

3. Inverse problems

In the previous section we looked at the forward problem of
modeling the black-box function f (x) = y. In many scientific
and engineering applications, it is necessary to solve the
inverse problem, namely to determine x given y and f (or an
approximation f ∗ ≈ f ). Inverse problems are extremely com-
mon in experimental physics, as they essentially describe the
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measurement process and subsequent retrieval of underlying
properties in a physics experiment.

In many cases the problem takes the form of a discrete
linear system:

Ax = y, (19)

where y is the known observation and A describes the
measurement process acting on the unknown quantity x to
be estimated. In most cases we can assume that the system
behaves linearly with respect to the input parameters x and,
hence, A can be written as a single sensing matrix. However,
more generally, A can be thought of as an operator, which
maps the input vector x to the observation vector y.4

A classical example of an inverse problem is CT, whose
goal is to reconstruct an object from a limited set of pro-
jections at different angles. Other examples are wavefront
sensing in optics, the ‘FROG’ algorithm for ultra-fast pulse
measurements, the ‘unfolding’ of X-ray spectra or, in the
context of particle accelerators, the estimation of particle
distributions from different measurements of a beam.

3.1. Least-squares solution

A common approach to the problem described by Equa-
tion (19) is to use the least-squares approach. Here, the prob-
lem is reformulated as minimizing the quadratic, positive
error between the observation and the estimate:

x̂LS = argmin
x

{‖Ax− y‖2} . (20)

If A is square and non-singular, the solution to this equa-
tion is obtained via the inverse, A−1y. For non-square matri-
ces, the pseudo-inverse can be used, which can for instance
be computed via singular value decomposition (SVD)[148].
Alternatively, a multitude of iterative optimization methods
can be employed, for example, iterative shrinkage-
thresholding algorithms[149,150] or gradient descent, to name
a few. For more details on the solution to this optimization
problem, the reader is referred to Ref. [151].

The approach given by Equation (20) is widely used
in overdetermined problems, where the regression between
data points with redundant information can help to reduce
the influence of measurement noise. Prominent application
areas are, for instance, wavefront measurements and adap-
tive optics[152].

3.2. Statistical inference

As for predictive models (Section 2.1.3), one can also
approach inverse problems via probabilistic methods, for
example, if the underlying model f (x) is stochastic in

4 The sensing matrix/operator is known by different names, for example,
the instrument response, the system matrix, the response matrix, the transfer
function or, most generally, the forward operator.

nature or measurements are corrupted by noise. One popular
approach is to use MLE[153]. As we have seen before, MLE
consists of finding the value that maximizes the likelihood
(see Equation (1)). To this end, one often uses Markov chain
Monte Carlo (MCMC) methods[154] and/or gradient descent
algorithms. Alternatively, expectation-maximization (EM)
is a popular method to compute the maximum likelihood
estimate[155] and is, for instance, often used in statistical
iterative tomography (SIR)[156]. EM alternates between
an estimate step, where one computes the expectation of
the likelihood function, and a maximization step, where
one obtains a new estimate that maximizes the posterior
distribution. By sequentially repeating the two steps, the
estimate converges to the maximum likelihood estimate.

Both the least-squares and MLE approaches suffer from
the issue that the result is a point estimate. Thus, if the
underlying problem is ill-posed or underdetermined, this
estimate is often not unique or representative, or the least-
squares solution is prone to artifacts resulting from small
fluctuations in the observation. Consequently, it is often
desirable to obtain an estimate of the entire solution space,
that is, a probability distribution of the unknown parameter x.
The latter allows one to not only compute the estimate x̂, but
also to obtain a measure of the estimation uncertainty σ̂x.

To this end, one can reformulate the inverse problem as
a Bayesian inference problem and get both an expectation
value and an uncertainty from the posterior probability
p(y|x). As we have seen in Section 2.1.3, calculating the
posterior requires knowledge of the likelihood p(x|y)[153].
However, in some settings the forward problem f (x) can
be very expensive to evaluate, which is for instance the
case for accurate simulations of laser–plasma physics. In
this case the likelihood function p(x|y) becomes intractable
because it requires the computation of f (x) for many val-
ues of x. Historically, solutions to this problem have been
referred to as methods of likelihood-free inference, but more
recently the term simulation-based inference is being used
increasingly[157]. One of the most popular methods in this
regard is approximate Bayesian computation (ABC)[158],5

which addresses the issue by employing a reject–accept
scheme to estimate the posterior distribution p(y|x) without
needing to compute the likelihood p(x|y) for any value of x.
Instead, ABC first randomly selects samples x′ from a pre-
defined prior distribution, which is usually done using an
MCMC[159] algorithm or, in more recent work, via BO[160].
Defining good priors might require some expert knowledge
about the system. Subsequently, one simulates the obser-
vation y′ = f

(
x′) corresponding to each sample. Finally,

the ABC algorithm accepts only those samples that match
the observation within a set tolerance ε, thereby essen-
tially approximating the likelihood function with a rejection

5 While both rely on Bayesian statistics and thus have some conceptual
overlap, approximate Bayesian computation should not be confused with
Bayesian optimization, discussed in Section 4.5.
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probability ρ
(
y,y′). This yields a reduced set of samples,

whose distribution approximates the posterior distribution.
The tolerance ε determines the accuracy of the estimate; the
smaller ε, the more accurate the prediction, but due to the
higher rate of rejection one also requires more samples of the
forward process. This can make ABC prohibitively expen-
sive, especially for high-dimensional problems. Approxi-
mate frequentist computation[161] is a conceptually similar
approach that approximates the likelihood function instead
of the posterior. Information on this method and other
simulation-based inference techniques, including their recent
development in the context of deep learning, for example,
for density estimation in high dimensions, can be found, for
instance, in the recent overview paper by Cranmer et al.[157].

3.3. Regularization

One way to improve the estimate of the inverse in the case of
ill-posed or underdetermined problems is to use regulariza-
tion methods. Regularization works by further conditioning
the solution space, thus replacing the ill-conditioned prob-
lem with an approximate, well-conditioned one. In varia-
tional regularization methods this is done by simultaneously
solving a second minimization problem that incorporates a
desirable property of the solution, for example, minimization
of the total variation to remove noise.6 Such regularization
problems hence take the following form:

x̂REG = argmin
x

{‖Ax− y‖2 +λR(x)
}
, (21)

where λ is a hyperparameter controlling the impact of the
regularization and R is the regularization criterion, for
example, a matrix description of the first derivative. The
effect of the regularization can be further adjusted by the
norm that is used to calculate the residual term, for example,
using the absolute difference, the squared difference or a
mix of both, such as the Huber norm.7 The more complex
optimization problem in Equation (21) itself is typically
solved using iterative optimization algorithms, as already
mentioned in the previous section. As will be discussed in
Section 3.6, there have been recent developments in data-
driven approaches to learning the correct form of R(x), by
representing it with a neural network.

A recent demonstration in the context of LPA is the
work by Döpp et al.[162,163], who presented results on

6 Another class of regularization methods is based on smoothing in
some sense. For instance, filtered back projection can be understood as a
smoothing of the projection line integrals by means of a convolution with a
filter function.
7 It should be noted that a very similar problem formulation can also be
found in the context of training neural networks, where regularization terms
are often added to the cost function.

Figure 8. Tomography of a human bone sample using a laser-driven
betatron X-ray source. Reconstructed from 180 projections using statistical
iterative reconstruction. Based on the data presented by Döpp et al.[162].

tomographic reconstruction using betatron X-ray images
of a human bone sample; see Figure 8. The 180 projection
images were acquired within 3 minutes and an iterative
reconstruction of the object’s attenuation coefficients was
performed. For regularization, a variation of Equation
(21) was used that used the Huber norm and included a
weighting factor in the data term, whose objective was to
adjust the weight of poorly illuminated detector pixels.

3.4. Compressed sensing

Compressed sensing (CS)[164–166] is a relatively new research
field that has attracted significant interest in recent years,
since it efficiently deals with the problem of reconstruct-
ing a signal from a small number of measurements. The
mathematical theory of CS has proven that it is possible to
reliably reconstruct a complex signal from a small number of
measurements, even below the Shannon–Nyquist sampling
rate, as long as two conditions are satisfied. Firstly, the signal
must be ‘sparse’ in some other representation (i.e., it must
contain few non-zero elements). In this case we can replace
the dense unknown variable x with its sparse counterpart
x̃ by using the transformation matrix � corresponding to a
different representation, that is, x = � x̃. Here, � could for
instance be the wavelet transformation. The second condition
concerns the way the measurements are taken (hence com-
pressed sensing): the sensing matrix A must be incoherent
with respect to the sparse basis �, which ensures that the
sparse representation of the signal is fully sampled.

At its core, CS is closely related to the concepts of
regularization discussed in the previous section. In order
to reconstruct the signal from the measurements, the ideal
regularization, R(x̃), is that which sums the number of
non-zero components of x̃ and thus promotes sparsity when
minimized[167]. However, it has been shown that using the
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vastly more computationally efficient �1 norm leads to the
same results on many occasions[168], and thus the CS recon-
struction problem can be written as follows:

x̂CS = argmin
x̃

{
‖A� x̃− y‖2 +λ‖x̃‖1

}
. (22)

It should be noted that CS is not the first method to achieve
sub-Nyquist sampling in a certain domain; see, for example,
band-limited sampling[169]. The strength of the formalism is
rather that it is very flexible, because it only requires the
coefficients of a signal to be sparse, without exactly knowing
beforehand which ones are non-zero.

It should be noted that in the most general case, the basis
on which the signal is sparse, �, is unknown. Nonetheless,
the incoherence with the sampling basis can be satisfied
by sampling randomly. To reconstruct the signal from such
measurements, one returns to solving Equation (21). This
can still be considered as CS, due to the fact that the nature
of the sensing process is designed to exploit the sparsity
of the signal. Therefore, CS can be used alongside deep-
learning-based approaches to solve Equation (21), which will
be discussed in the subsequent sections.

CS has been used in a number of fields related to laser–
plasma physics, for example ultra-fast polarimetric imag-
ing [170] and ICF radiation symmetry analysis[171]. There
exist also several examples from the context of tomo-
graphic reconstruction[172,173]. Such enhanced reconstruc-
tion algorithms can reduce the number of projections
beyond what is usually possible with regression tech-
niques. For instance, in the work by Ma et al.[173] a test
object was illuminated using a Compton X-ray source and
a compressive tomographic reconstruction algorithm[174]

was used to reconstruct the sample’s well-defined inner
structure from only 31 projections.

3.5. End-to-end deep learning methods

In recent years, there has been growing interest in applying
deep learning to inverse problems[175]. In general, these can
be categorized into two types of approaches, namely those
that aim to entirely solve the inverse problem end-to-end
using a neural network and hybrid approaches that replace a
subpart of the solution with a network (see the next section).
Denoting the artificial neural network (ANN) as A, the
estimate x̂A from the end-to-end network could be simply
written as follows:

x̂A = Ay. (23)

ANNs can thus be interpreted as a nonlinear extension
of linear algebra methods, such as SVD[176]. As such, for

well-posed problems, the ANN is acting similarly to the
least-squares method and, if provided with non-biased train-
ing data, directly approximates the (pseudo-)inverse.

However, using neural networks for ill-posed problems is
more difficult, as training tends to become unstable when the
networks need to generate data, that is, the layer containing
the desired output x is larger than the input y. Fortunately,
several network architectures have been developed that per-
form very well at these tasks, such as generative adversarial
networks (GANs)[177]. GANs are two-part neural networks,
one of which is trying to generate data that resemble the
input (the generator), while the other is trying to distinguish
between the generated and real data (the discriminator). As
the two networks compete against each other they improve
their respective skills, and the generator will eventually be
able to create high-quality data. The generator is then used
to estimate the solution of the inverse problem. Training
GANs can still be challenging, with common issues such
as mode collapse[178]. Autoencoders (AEs) are a simpler
architecture that can perform similar tasks with relevance to
inverse problems[179]. U-Nets[180] are a popular architecture
that draws inspiration from AEs and have proven to be very
powerful for inverse problems, especially in imaging. They
essentially combine features of AEs with FCNs, in particular
ResNets (see also Section 6.1.2): similar to an AE, U-Nets
consist of an encoder part, followed by a decoder part that
usually mirrors the encoder. At the same time, the layers
in the network are skip-connected, meaning that the output
from the previous layer is concatenated with the output of
the corresponding layer in the encoder part of the network
(see Figure 6). This allows the network to retain information
about the input data even when it is transformed to a lower
dimensional space.

One sub-class of ANNs that has gained considerable
recent interest in the context of inverse problems is the
invertible neural network (INN)[181]; see sketch in Figure 9.
Mathematically, an INN is a bijective function between
the input and output of the network, meaning that it can
be exactly inverted. Because of this, an INN trained to
approximate the forward function A will implicitly also
learn an estimate for its inverse. In order to be applied to
inverse problems, both forward and inverse mapping should
be efficiently computable. In ill-posed problems there is an
inherent information loss present in the forward process,
which is either counteracted by the introduction of additional
latent output variables z, which capture the information
about x that is missing in y, or by adding a zero-padding of
corresponding size. The architecture and training of INNs
are inspired by recent advances in normalizing flows[182].
The name stems from the fact that the mapping learned by
the network is composed of a series of invertible transfor-
mations, called coupling blocks[183], which ‘normalize’ the
data, meaning that they move the data closer to a standard
normal distribution N (0,1). The choice of coupling block
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Figure 9. Deep-learning for inverse problems. Sketch explaining the rela-
tion among predictive models, inverse models and fully invertible models.

basically restricts the Jacobian of the transformation between
the standard normal latent variable and the output. INNs can
be trained bi-directionally, meaning that the loss function is
optimized using both the loss of the forward pass and the
inverse pass. In addition, an unsupervised loss such as max-
imum mean discrepancy[184] or negative log-likelihood[185]

can be used to encourage the latent variable to be as close
to a standard normal variable as possible.

The loss function of end-to-end networks can also be
modified such that a classical forward model is used in the
loss function. Such PINNs (see Section 2.1.7) respect the
physical constraints of the problem, which can lead to more
accurate and physically plausible solutions for the inverse
problem.

An early example from the context of ultra-fast laser
diagnostics was published by Krumbügel et al. in
1996[186], where the authors tested a neural network for
retrieval of laser pulse profiles from FROG traces. At
the time, numerical capabilities were much more limited
than today and the FROG trace containing some 64 × 64
data points was at the time considered as ‘far too much
for a neural net’. Because of this, the data had to be
compressed and only a polynomial dependence was
trained, limiting reconstruction performance. The vast
increase in computing power over the past decades has
largely alleviated this issue and the problem was revisited
by Zahavy et al. in 2018[187]. Their ‘DeepFROG’ network
is based on a CNN architecture and, now using the entire
2D FROG trace as input, achieves a similar performance
as iterative methods.

Another example for an end-to-end learning of a well-
conditioned problem was published by Simpson et al.[111],
who trained a fully connected three-layer network on
a large set (47,845 samples) of synthetic spectrometer
data to retrieve key experimental metrics, such as particle
temperature.

U-Nets have been used for various inverse problems,
including, for example, the reconstruction of wavefronts
from Shack–Hartmann sensor images as presented by Hu
et al.[188] (see Figure 10).

An example for the use of INNs in the context of
LPA was recently published by Bethke et al.[189]. In their
work they used an INN called iLWFA to learn a forward
surrogate model (from simulation parameters to the beam
energy spectrum) and then used the bijective property
of the INN to calculate the inverse, that is, deduce the
simulation parameters from a spectrum.

3.6. Hybrid methods

In contrast to end-to-end approaches, there exist a variety of
hybrid schemes that employ neural networks to solve part of
the inverse problem. A collection of such methods focuses
on splitting Equation (21) into two subproblems, separating
the quadratic loss from the regularization term. The former
is easily minimized as a least-squares problem (discussed in
Section 3.1) and the optimum form of regularization can then
be learned by a neural network. Crucially, this network can
be smaller and more parameter-efficient than in end-to-end
approaches, as it has a simpler task and less abstraction to
perform. Furthermore, the direct relation that this network
has the regularization R(x) allows one to pick a network
structure to exploit prior knowledge about the data.

There are multiple methods available to perform such a
separation, for example half quadratic splitting (HQS) or
the alternating direction method of multipliers (ADMM).
HQS is the simplest method and involves substituting an
auxiliary variable, p, for x in the regularization term and
then separating Equation (21) into two subproblems, which
are solved iteratively. The approximate equality of p and x
is ensured by the introduction of a further quadratic loss
term into each of the subproblems: β‖x−p‖2. If the same
neural network (with the same set of weights) is used to
represent the regularization subproblem in each iteration, the
method is referred to as plug-and-play, but if each iteration
uses a separate network, the method is deep unrolling[190].
Such methods have achieved unprecedented accuracy whilst
reducing computational cost.

It is worth noting that there exist other similar methods
– for instance, neural networks can be used to learn an
appropriate regression function R(x) in Equation (21), as for
instance done in network Tikhonov (NETT)[191].
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Figure 10. Application of the end-to-end reconstruction of a wavefront using a convolutional U-Net architecture[180]. The spot patterns from a Shack–
Hartmann sensor are fed into the network, yielding a high-fidelity prediction. Adapted from Ref. [188].
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Figure 11. Deep unrolling for hyperspectral imaging. The left-hand side displays an example of the coded shot, that is, a spatial-spectral interferogram
hypercube randomly sampled onto a 2D sensor. The bottom left shows a magnification of a selected section. On the right-hand side is the corresponding
reconstructed spectrally resolved hypercube. Adapted from Ref. [192].

Howard et al.[192] recently presented an implementation of
CS using deep unrolling for single-shot spatio-temporal
characterization of laser pulses. Such a characterization is
a typical example of an underdetermined problem, where
one wishes to capture 3D information (across the pulse’s
spatial and temporal domains) on a 2D sensor. Whilst
previous methods mostly resorted to scanning, resulting
in long characterization times and blindness to shot-
to-shot fluctuations, this work presented a single-shot
approach, which has numerable benefits. The authors’
implementation is based on a lateral shearing interfer-
ometer to encode the spatial wavefront in an interfero-
gram for each spectral channel of the pulse, creating an
interferogram cube. An optical system called CASSI[193]

was then used to randomly sample this 3D data onto
a 2D sensor resulting in a ‘coded shot’, thereby fulfill-
ing the conditions of CS. For the reconstruction of the

interferogram cube, the HQS method was utilized, and
the regularization term was represented by a network
with 3D convolutional layers that can capture correlations
between the spectral and spatial domains. An example for
a successful reconstruction is shown in Figure 11.

4. Optimization

One of the most common problems in applied laser–plasma
physics experiments, in particular LPA, is the optimization
of the performance through manipulation of the machine
controls. Here the goal is to minimize or maximize an objec-
tive function, a metric of the system performance according
to some pre-defined criteria (see Section 4.1.1). A simple
case of this would be to optimize the total charge of the
accelerated electron beam, but in principle, any measurable
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Table 1. Summary of a few representative papers on machine-learning-aided optimization in the context of laser–plasma acceleration and
high-power laser experiments.

Author, year Laser type Optimization method(s) Free parameters Optimization goals
He et al., 2015[194] 800 nm Ti:Sa, 15 mJ, 35 fs, 0.5 kHz Genetic algorithm Deformable mirror (37

actuator voltages)
Electron angular profile,

energy distribution &
transverse emittance,
optical pulse
compression

Dann et al., 2019[195] 800 nm Ti:Sa, 450 mJ, 40 fs, 5 Hz Genetic & Nelder–Mead
algorithms

Deformable mirror or
acousto-optic
programmable dispersive
filter

Electron beam charge, total
charge within energy
range, electron beam
divergence

Shalloo et al., 2020[196] 800 nm Ti:Sa, 0.245 J, 45 fs
(bandwidth limit), 1 Hz

Bayesian optimization Gas cell flow rate & length,
laser dispersion (∂2

ωφ,
∂3
ωφ, ∂4

ωφ), focus position

Total electron beam energy,
electron charge within
acceptance angle,
betatron X-ray counts

Jalas et al., 2021[197] 800 nm Ti:Sa, 2.6 J, 39 fs, 1 Hz Bayesian optimization Gas cell flow rates (H2 front
and back, N2); focus
position and laser energy

Spectral charge density

beam quantity or combination of quantities can be used to
create the objective function.

There are many different general techniques for tackling
optimization problems, and their suitability depends on the
type of problem. Single shots in an LPA experiment (or a
single run of numerical simulation) can be considered the
evaluation of an unknown function that one wishes to opti-
mize. The form of this function is not typically known, due
to the lack of a full theoretical description of the experiment,
and therefore the Jacobian of this function is also unknown.
The input to this function is typically highly dimensional,
due to the large number of machine control parameters that
affect the output, and these input parameters are coupled
in a complex and often nonlinear manner. Evaluation of
this unknown function is also relatively costly, meaning that
optimization should be as efficient as possible to minimize
the required beam time or computational resources. In addi-
tion, the unknown function has some stochasticity, due to
the statistical noise in the measurement and also due to
the natural variation of unmeasured input parameters, which
nonetheless may contribute significantly to variations in the
output. Finally, there are usually constraints placed upon
the input parameters due to the operation range of physical
devices and machine safety requirements. These constraints
might also be non-trivial due to coupling between different
input parameters, and may also depend on system outputs
(e.g., to avoid beam loss in an accelerator).

Due to all these considerations, not all optimization algo-
rithms are suitable and only a few different types have
been explored in published work; see Table 1 for a selec-
tion of representative papers. The following sections will
focus on these methods. The reader is referred to dedicated
reviews, for example, the comprehensive work by Nocedal
and Wright[151] on numerical optimization algorithms, for
further reading.

4.1. General concepts

4.1.1. Objective functions
Most optimization algorithms are based on maximizing or
minimizing the value of the objective function, which has to
be constructed in a way that it represents the actual, user-
defined objective of the optimization problem. Typically, the
objective function produces a single value, where higher
(or lower) values represent a more optimized state.8 The
optimization problem is then a case of finding the parameters
that maximize (or minimize) the objective function.

When the objective is to construct a model, the objective
function encodes some measure of similarity between the
model and what it is supposed to represent, for example, a
measure of how well the model fits some training data. For
example, deep learning algorithms minimize an objective
function that encodes the difference between desired output
values for a given input and actual results produced by the
algorithm. A common, basic metric for this is the MSE
cost function, in which the difference between predicted and
actual values is squared. We already mentioned this metric
at several points of this review, for example, in Section 3.1.
The MSE objective function belongs to a class of distance
metrics, the �-norms, which are defined by the following:

�p (x,y) =
(∑

‖ x− y‖p
)1/p

, (24)

where x and y are vectors, and we use the notation �2 = MSE.
One can also use other �-norms, for example, �1, which is

8 Depending on the context of optimization problems, this function is
referred to using many different names, for example, merit function (using a
figure of merit), fitness function (in the context of evolutionary algorithms),
cost or loss function (in deep learning) or reward function (reinforcement
learning). Some of these are associated with either maximization (reward,
fitness, . . .) and others with minimization (cost, loss). Here, we will use the
general term objective function as used in optimization theory.

https://doi.org/10.1017/hpl.2023.47 Published online by Cambridge University Press

https://doi.org/10.1017/hpl.2023.47
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more robust to outliers than �2 since it penalizes large devia-
tions less severely. Note that the number of non-zero values
is sometimes referred to as the ‘�0’ norm (see Section 3.4),
even though it does not follow from Equation (24).

Another popular similarity measure is the Kullback–
Leibler (KL) divergence, sometimes called relative entropy,
which is used to find the closest probability distribution for
a given model. It is defined as follows:

KL(p|q) =
∑

p(x) log
p(x)
q(x)

, (25)

where p(x) is the probability of observing the value x
according to the model, and q(x) is the actual probability
of observing x. The KL divergence is minimized when the
model prediction p(x) is as close to the actual distribu-
tion q(x) as possible. It is a relative measure, that is, it
is only defined for pairs of probability distributions. The
KL divergence is closely related to the cross-entropy cost
function:

CE(p,q) = −
∑

p(x) logq(x) = KL(p|q)−H(p), (26)

where p(x) and q(x) are probability distributions, and H(p) =
−∑p(x) logp(x) is the Shannon entropy of the distribution
p(x).

Other objective functions may rely on the maximization or
minimization of certain parameters, for example, the beam
energy or energy-bandwidth of particle beams produced by
a laser–plasma accelerator. Both of these are examples of
what is sometimes referred to as summary statistics, as they
condense information from more complex distributions, in
this case the electron energy distribution. While simple at
the first glance, these objectives need to be properly defined
and there are often different ways to do so[198]. In the
example above, energy and bandwidth are examples for the
central tendency and the statistical dispersion of the energy
distribution, respectively. These can be measured using dif-
ferent metrics, such as the weighted arithmetic or truncated
mean, the median, mode, percentiles, for the former; and full
width at half maximum, median absolute deviation, standard
deviation, maximum deviation, for the latter. Each of these
seemingly similar measures emphasizes different features of
the distribution they are calculated from, which can affect the
outcome of optimization tasks. Sometimes one might also
want to include higher-order momenta as objectives, such as
the skewness, or use integrals, for example, the total beam
charge.

4.1.2. Pareto optimization
In practice, optimization problems often constitute multi-
ple, sometimes competing objectives gi. As the objective
function should only yield a single scalar value, one has
to condense these objectives in a process known as scalar-

Figure 12. Pareto front. Illustration of how a multi-objective function
f (x) = y acts on a 2D input space x = (x1,x2) and transforms it to an
objective space y = (y1,y2) on the right. The entirety of possible input
positions is uniquely color-coded on the left and the resulting position in
the objective space is shown in the same color on the right. The Pareto-
optimal solutions form the Pareto front, indicated on the right, whereas the
corresponding set of coordinates in the input space is called the Pareto set.
Note that both the Pareto front and Pareto set may be continuously defined
locally, but can also contain discontinuities when local maxima become
involved. Adapted from Ref. [199].

ization. Scalarization can, for instance, take the form of
a weighted product g = ∏

gαi
i or sum g = ∑

αigi of the
individual objectives gi with the hyperparameters αi describ-
ing the weight. Another common scalarization technique is
ε-constraint scalarization, where one seeks to reformulate
the problem of optimizing multiple objectives into a problem
of single-objective optimization conditioned on constraints.
In this method the goal is to optimize one of the gi given
some bounds on the other objectives. All of these techniques
introduce some explicit bias in the optimization, which may
not necessarily represent the desired outcome. Because of
this, the hyperparameters of the scalarization may have to
be optimized themselves by running optimizations several
times.

A more general approach is Pareto optimization, where
the entire vector of individual objectives g = (g1, . . . ,gN) is
optimized. To do so, instead of optimizing individual objec-
tives, it is based on the concept of dominance. A solution is
said to dominate other solutions if it is both at least as good
on all objectives and strictly better than the other solutions
on at least one objective. Pareto optimization uses implicit
scalarization by building a set of non-dominated solutions,
called the Pareto front, and maximizing the diversity of
solutions within this set. The latter can, for instance, be
quantified by the hypervolume of the set or the spread of
solutions along each individual objective. As it works on
the solution for all objectives at once, Pareto optimization
is commonly referred to as multi-objective optimization.
An illustration of both the Pareto front and set is shown
in Figure 12, where a multi-objective function f ‘morphs’
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the input space into the objective space. In this example f
is a modified version of the Branin–Currin function[200,201],
exhibiting a single, global maximum in y2 but multiple local
maxima in y1. The individual 2D outputs y1 = f1 (x1,x2),
with f1 being the Branin function, and y2 = f2 (x1,x2), with
f2 being the Currin function, are depicted with red and blue
colormaps at the bottom.

4.2. Grid search and random search

Once an objective is defined, we can try to optimize it. One
of the simplest methods to do so is a grid search, where the
input parameter space is explored by taking measurements
in regularly spaced intervals. This technique is particularly
simple to implement, especially in experiments, and there-
fore remains very popular in the setting of experimental
laser physics. However, the method severely suffers from
the ‘curse of dimensionality’, meaning that the number of
measurements increases exponentially with the number of
dimensions considered. In practice, the parameter space
therefore has to be low-dimensional (1D, 2D or 3D at most)
and it is applied to the optimization of selected parameters
that appear to influence the outcome the most. One issue
with grid scans is that they can lead to aliasing, that is, high-
frequency information can be missed due to the discrete grid
with a fixed sampling frequency.

A popular variation, in particular in laser–plasma exper-
iments, is the use of sequential 1D line searches. Here,
one identifies the optimum in one dimension, then performs
a scan of another parameter and moves to its optimum,
and so forth. This method can converge much faster to an
optimum, but is only applicable in settings with a single,
global optimum.

Random search is a related method where the sampling of
the input parameter space is random instead of regular. This
method can be more efficient than grid search, especially
if the system involves coupled parameters and has a lower
effective dimensionality[202]. It is therefore often used in
optimization problems with a large number of free parame-
ters. However, purely random sampling also has drawbacks.
For instance, it has a tendency to cluster, that is, to sam-
ple points very close to others, while leaving some areas
unexplored. This behavior is undesirable for signals without
high-frequency components and instead one would rather opt
for a sampling that explores more of the parameter space. For
this case, a variety of schemes exist that combine features of
grid search and random search. Two popular examples are
jittered sampling and Latin hypercube sampling[203]. For the
former, samples are randomly placed within regularly spaced
intervals, while the latter does so while maintaining an even
distribution in the parameter space.

Grid and random search are often used for initial explo-
ration of a parameter space to seed subsequent optimization
with more advanced algorithms. An example for this is

shown in Figure 15 (a), where grid search is combined with
the downhill simplex method discussed in the next section.

4.3. Downhill simplex method and gradient-based
algorithms

In the downhill simplex method, also known as the Nelder–
Mead algorithm[204], an array of (n+1) input parameter
sets from an n-dimensional space is evaluated to get the
corresponding function values. The worst-performing eval-
uation point is modified at each iteration by translating it
towards or through the center of the simplex. This continues
until the simplex converges to a point at which the function
is optimized. The method is simple and efficient, which
is why it is popular in various optimization settings. The
convergence speed crucially depends on the initial choice of
the simplex, with a large distance between input parameters
leading to a more global optimization, while small simplex
settings result in local optimization.

In the limit of small simplex size, the Nelder–Mead algo-
rithm is conceptually related to gradient-based methods for
optimization. The latter are based on the concept of using
the gradient of the objective function to find the direction of
the steepest slope. The objective function is then minimized
along this direction using a suitable algorithm, such as
gradient descent. Momentum descent is a popular variation
of gradient descent where the gradient of the function is
multiplied by a value, in analogy to physics called momen-
tum, before being subtracted from the current position. This
can help the algorithm converge to the local minimum
faster. These methods typically require more and smaller
iterations than the downhill simplex method, but can be more
accurate.

In both cases, measurement noise can easily result in a
wrong estimation of the gradient. In the setting of laser–
plasma experiments, it is therefore important to reduce such
noise, for example, by taking several measurements at the
same position. While this may be possible when working
with high-repetition-rate systems, as was demonstrated
by Dann et al.[195], gradient-based methods are in general
less suitable to be used in high-power-laser settings. Other
popular derivative-based algorithms are the conjugate
gradient (CG) method, the quasi-Newton (QN) method and
the limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) method, all of which are discussed by Nocedal
and Whright[151].

4.4. Genetic algorithms

One of the first families of algorithms to find application in
field LPA was genetic algorithms. As a sub-class of evolu-
tionary methods, these nature-inspired algorithms start with
a pre-defined or random set, called the population, of mea-
surements for different input settings. Each free parameter is
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Figure 13. Genetic algorithm optimization. (a) Basic working principle of a genetic algorithm. (b) Sketch of a feedback-optimized LWFA via genetic
algorithm. (c) Optimized electron beam spatial profiles using different figures of merit. Subfigures (b) and (c) adapted from Ref. [194].

called a gene and, similar to natural evolution, these genes
can either crossover between most successful settings or ran-
domly change (mutate). This process is guided by a so-called
fitness function, which is designed to yield a single-valued
figure of merit that is aligned with the optimization goal.
Depending on the objective, the individual measurements are
ranked from most to least fit. The fittest ‘individuals’ are then
used to spawn a new generation of ‘children’, that is, a new
set of measurements based on crossover and mutation of the
parent genes. A popular variation in genetic algorithms is
differential evolution[205], which employs a different type of
crossover. Instead of crossing over two parents to create a
child, differential evolution uses three parent measurements.
The child is then created by adding a weighted difference
between the parents to a random parent. This process is
repeated until a new generation is created; see Figure 15(b)
for an example.

One particular strength of genetic algorithms compared to
many other optimization methods is their ability to perform
multi-objective optimization, that is, when multiple, poten-
tially conflicting, objectives are to be optimized. A popular
example would be non-dominated sorting genetic algorithms
(NSGAs)[206]. Here the name-giving sorting technique ranks
the individuals by their population dominance, that is, how
many other individuals in the population the individual dom-
inates. Other multi-objective approaches are, for instance,

based on optimizing niches, similar-valued regions of the
Pareto front[207].

It should be noted that genetic algorithms intrinsically
operate on population batches and not on a single individual.
While this can be beneficial for parallel processing in simu-
lations, it can make it more difficult to employ in an online
optimization setup.

Genetic algorithms have been used since the early
2000s to control high-harmonic generation[208,209],
cluster dynamics[210,211] and ion acceleration[212]. An
influential example in the context of high-power lasers
was published by He et al. in 2015[194], and a sketch of
their feedback-looped experimental setup is presented
in Figure 13. In the paper, a genetic algorithm is
used to optimize various parameters of a laser–plasma
accelerator, namely the electron beam angular profile,
energy distribution, transverse emittance and optical
pulse compression. This was done by controlling the
voltage on 37 actuators of a deformable mirror (DM),
which was used to shape a laser pulse before it entered a
gas jet target. The genetic algorithm was initialized with
a population of 100 individuals and each subsequent
generation was generated based on the 10 fittest
individuals[213]. A similar experiment was performed
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using self-modulated LWFA[214] driven by a mid-infrared
laser pulse. The electron beam charge, energy spectra and
beam pointing have been optimized. The combination
of genetic algorithm and DM has been applied to other
high-power laser experiments as well[215–219].

Streeter et al.[220] used a similar technique to opti-
mize ultra-fast heating of atomic clusters at joule-level
energies, but instead of controlling the spatial wavefront,
they controlled the spectral phase up to its fourth order.
The genetic algorithm was based on a population of 15
individuals and 4−8 children generations were evaluated.
This method can also be used for optimizing other laser
parameters, such as focal spot size, focus position and
chirp [195].

Another example is the use of differential evolution
for optimization of the laser pulse duration in a SPIDER
and DAZZLER feedback loop, as presented by Peceli and
Mazurek[221]. The genetic algorithm method has also been
employed in ion acceleration in a laser–plasma accel-
erator, where Smith et al.[222] optimized the conversion
efficiency from laser energy to ion energy by exploring
thousands of target density profiles in 1D particle-in-cell
(PIC) simulations.

4.5. Bayesian optimization

BO[223,224] is a model-based global optimization method
that uses probabilistic modeling, which was discussed in
Section 2.1.3. The strength of BO lies in its efficiency with
regard to the number of evaluations. This is particularly
useful for problems with comparably high evaluation costs
or long evaluation times. To achieve this, BO uses the
probabilistic surrogate model to make predictions about the
behavior of the system at new input parameter settings,
providing both a value estimate and an uncertainty.

At the core of BO lies what is called the acquisition
function, a pre-defined function that suggests the next points
to probe on a probabilistic model. The latter is usually9

a GP fitted from training points (see Section 2.1.4), thus
providing a cheap-to-evaluate surrogate function. A simple
and intuitive example of an acquisition function is the upper
confidence bound:

UCB(x) = μ(x)+κσ(x), (27)

which weighs the mean prediction μ versus the variance
prediction σ , with a user-chosen hyperparameter κ . For
κ = 0 the optimization will act entirely exploitatively, that
is, it will move to the position of the highest expected

9 While most work on BO is done using GP regression, the method is
in principle model agnostic. This means that other types of (probabilistic)
surrogate models of the system can be employed, such as decision trees (see
Section 2.1.5) or deep neural networks (see Section 2.1.6).

return, whereas a large κ incentivizes the reduction of
the uncertainty and exploration of the parameter space.
Other common acquisition functions are the expected
improvement[225], knowledge gradient[226] and entropy
search[227]. As the surrogate model can be probed at
near-negligible evaluation cost, this optimization can be
performed using numerical optimization methods, such as
the gradient-based methods discussed in Section 4.3. The
position of the acquisition function’s optimum is then used
as an input parameter setting to evaluate the actual system.
This process is repeated until some convergence criteria are
achieved, a pre-defined number of iterations is reached or
the allocated resources have been otherwise exhausted.

BO provides a very flexible framework that can be fur-
ther adapted to various different optimization settings. For
instance, it has proven to be a valid alternative to evolu-
tionary methods when it comes to solving multi-objective
optimization problems. The importance of this method for
LPA stems from the fact that many optimization goals,
such as beam energy and beam charge, are conflicting in
nature and require the definition of a trade-off. The goal
of Pareto optimization is to find the Pareto front, which is
a surface in the output objective space that comprises all
the non-dominated solutions (see Section 4.1.2). A common
metric that is used to measure the closeness of a set of
points to the Pareto-optimal points is the hypervolume. The
BO algorithm works by using the expected hypervolume
improvement[228] to increase the extent of the current non-
dominated solutions, thus optimizing all possible combina-
tions of individual objectives. Note that the Pareto front,
like the global optimum of single-objective optimization, is
usually not known a priori.

Another possible way to extend BO is to incorporate
different information sources[229]. This is often done by
adding an additional information input dimension to the data
model. This method is often referred to as multi-task (MT)
or multi-fidelity (MF) BO. Both terms are used somewhat
interchangeably in the literature, although MT often refers
to optimization with entirely different systems (codes, etc.),
whereas MF focuses on different fidelity (resolution, etc.) of
the same information source. The core concept behind these
methods is that the acquisition function not only encodes
the objective, but also minimizes the measurement cost.
These multi-information-source methods have the potential
to speed up optimization significantly. They can also be
combined with multi-objective optimization, as shown by
Irshad et al.[199].

A first demonstration of BO in the context of LPA was
presented by Lehe[230], who used the method to determine
the injection threshold in a set of PIC simulations. The
use of BO in experiments was pioneered by Shalloo
et al.[196] (Figure 14), who demonstrated optimization
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Figure 14. Bayesian optimization of a laser–plasma X-ray source. (a) The
objective function (X-ray counts) as a function of iteration number (top)
and the variation of the control parameters (bottom) during optimization.
(b) X-ray images obtained for the initial (bottom) and optimal (top) settings.
Adapted from Ref. [196].

of electron and X-ray beam properties from LWFA by
automated control of laser and plasma control parameters.
Another work by Jalas et al.[197] focused on improving
the spectral charge density using the objective function√

QẼ/EMAD, thus incorporating the beam charge Q, the
median energy Ẽ and the energy spread defined here
by the median absolute deviation EMAD. In contrast to
Shalloo et al., they used shot-to-shot measurements of
the control parameters to train the model rather than
relying on the accuracy of their controllers, reducing
the level of output variation attributed purely to stochas-
ticity. BO has also been applied to the optimization
of laser-driven ion acceleration in numerical simula-
tions[231] and experiments[232]. A first implementation of
multi-objective optimization in numerical simulations of
plasma acceleration was published by Irshad et al.[198],
who showed that multi-objective optimization can lead
to superior performance compared with manually trying

Figure 15. Illustration of different optimization strategies for a non-trivial
2D system, here based on a simulated laser wakefield accelerator with
laser focus and plasma density as free parameters. The total beam charge,
shown as contour lines in plots (a)–(c) serves as the optimization goal.
The position of the optimum is marked by a red circle, located at a focus
position of −0.74 mm and a plasma density of 8 × 1018 cm−3. In panel
(a), a grid search strategy with subsequent local optimization using the
downhill simplex (Nelder–Mead) algorithm is shown. Panel (b) illustrates
differential evolution and (c) is based on Bayesian optimization using the
common expected improvement acquisition function. The performance for
all three examples is compared in panel (d). It shows the typical behavior
that Bayesian optimization needs the least and the grid search requires the
most iterations. The local search via the Nelder–Mead algorithm converges
within some 20 iterations, but requires a good initial guess (here provided by
the grid search). Individual evaluations are shown as shaded dots. Note how
the Bayesian optimization starts exploring once it has found the maximum,
whereas the evolutionary algorithm tends more towards exploitation around
the so-far best value. This behavior is extreme for the local Nelder–Mead
optimizer, which only aims to exploit and maximize to local optimum.
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different trade-off definitions or settings for the individual
objectives, in this case, the beam charge, energy spread
and distance to a target energy. An example of MT BO
in laser–plasma simulations was recently published by
Pousa et al.[233], who combined the Wake-T and FBPIC
codes, while Irshad et al.[198] used the FBPIC code at
different resolutions for MF optimization.

4.6. Reinforcement learning

Reinforcement learning (RL)[234] differs fundamentally from
the optimization methods discussed so far. RL is a method
of learning the optimal behavior (the policy π) to control
a system. The learning occurs via repeated trial and error,
called episodes, where each episode is started in an initial
state of the system, and then the agent (i.e., the optimizer)
interacts with the system according to its policy. The agent
then receives a reward signal, which is a scalar value that
indicates the success of the current episode and its goal is
to maximize the expected reward, analogous to the objective
function in other optimization methods. The agent is said to
learn when it is able to improve its policy to achieve a higher
expected reward.

The policy itself has traditionally been represented using a
Markov decision process (MDP), but in recent years deep
reinforcement learning (DRL) has become widely used,
in which the policy is represented using deep neural net-
works[235,236]. However, while we commonly update weights
and biases via back-propagation in supervised deep learning,
the learning in DRL is done in an unsupervised way. Indeed,
while the agent is trying to learn the optimal policy to max-

imize the reward signal, the reward signal itself is unknown
to the agent. The agent only knows the reward signal at the
end of the episode, so it is not possible to perform back-
propagation. Instead, the policy network can, for instance,
be updated using evolutionary strategies (see Section 4.4),
where the agents achieving the highest reward are selected
to create a new generation of agents. Another common
approach is to use a so-called actor–critic strategy[237], where
a second network is introduced, called the critic. At the end
of each episode, the critic is trained to estimate the expected
long-term reward from the current state, called the value.
This expected reward signal is then used to train the actor
network to adjust the policy. The policy gradient[238] is a
widely used algorithm for training the policy network using
the critic network to calculate the expected reward signal.

RL algorithms can be further divided into two main
classes: model-free and model-based learning. Model-free
methods learn as discussed above directly by trial and error,
only implicitly learning about the environment. Model-based
methods, on the other hand, explicitly build a model of
the environment, which can be used for both planning and
learning (somewhat similar to optimization using surro-
gate models discussed earlier). The arguably most popular
method to build models in RL is again the use of neural
networks, as they can learn complex, nonlinear relationships
and are also capable of learning from streaming data, which
is essential in RL. A crucial advantage of the model-based
approach is that it can drastically speed up training, although
performance is always limited by the quality of the model. In
the case of real-life systems this is sometimes referred to as
the ‘reality gap’.

One crucial advantage of RL is that once the training
process is completed, the computational requirements of
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Figure 16. Sketch of deep reinforcement learning. The agent, which consists of a policy and a learning algorithm that updates the policy, sends an action
to the environment. In the case of model-based reinforcement learning, the action is sent to the model, which is then applied to the environment. Upon the
action to the environment, an observation is made and sent back to the agent as a reward. The reward is used to update the policy via the learning algorithm
in the agent, which leads to an action in the next iteration.
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running an optimization are heavily reduced. A simplified
representation of the RL workflow is sketched in Figure 16.

An example of an RL application is the work of Kain
et al.[239] for trajectory optimization in the Advanced
Wakefield (AWAKE) experiment in plasma wakefield
acceleration, which found the optimum in just a few
iterations based on 300 iterations of training. There are
many other examples for the use of RL at accelerator
facilities, for example, Refs. [240–243].

5. Unsupervised learning

In this section we are going to discuss unsupervised learning
techniques for exploratory data analysis. The term ‘unsuper-
vised’ refers to the case where one does not have access to
training labels, and therefore the aim is not to find a mapping
between training data and labels, as is often the case for deep
learning. Rather, the aim is to detect relationships between
features of the data.

For high-power laser experiments, many parameters will
be coupled in some way such that there are correlations
between different measurable input quantities. For example,
increasing the laser energy in the amplifier chain of a
high-power laser can affect the laser spectrum or beam
profile. To understand the effect a change to any one of
these parameters will have, it is important to consider their
correlation. However, an experimental setup can easily
involve tens of parameters and interpreting correlations
becomes increasingly difficult. In this context, it can be
useful to distill the most important (combinations of)
parameters in a process called dimensionality reduction.
The same method also plays a crucial role in efficient data
compression, which is becoming increasingly important due
to the large amount of data produced in both experiments and
simulation. These methods are also closely related to pattern
recognition, which addresses the issue of automatically
discovering patterns in data.

5.1. Clustering

Data clustering is a machine learning task of finding similar
data points and dividing them into groups, even if the data
points are not labeled. This can, for instance, be useful to sep-
arate a signal from the background in physics experiments.

A popular centroid-based clustering algorithm is the
K-means algorithm, which consists of two steps. First, the
algorithm randomly assigns a cluster label to each point.
Then, in the second step, it calculates the center point of each
cluster and re-assigns the cluster label to each point based on
the proximity to the cluster center. This process is repeated
until the cluster assignment does not change anymore. The
K in the algorithm’s name represents the number of clusters,

Figure 17. Data treatment using a Gaussian mixture model (GMM). Top:
10 consecutive shots from a laser wakefield accelerator. Middle: the same
shots using a GMM to isolate the spectral peak at around 250 MeV. Bottom:
average spectra with and without GMM cleaning. Adapted from Ref. [245].

which can be guessed or – more quantitatively – be estimated
using methods such as the ‘silhouette’ value or the ‘elbow
method’[244]. As the method is quite sensitive to the initial
random choice of the cluster assignment, it is often run
several times with different initial choices to find the optimal
classification.

In contrast to centroid-based clustering, in which each
cluster is defined by a center point, in distribution-based
clustering, each cluster is defined by a (multivariate) proba-
bility distribution. In the simplest case this can be a Gaussian
distribution with a certain mean and variance for each clus-
ter. More advanced methods use a Gaussian mixture model
(GMM), in which each cluster is represented as a combina-
tion of Gaussian distributions. A popular distribution-based
clustering method is the EM algorithm[155].

An example for the application of a GMM in data pro-
cessing is shown in Figure 17. There a number of energy
spectra from a laser wakefield accelerator are displayed. As
the spectra exhibit multiple peaks, standard metrics such as
the mean and standard deviation are not characteristic of
either the peaks’ positions or their widths. To avoid this
problem a mixture model is used that isolates the spectral
peaks. To this end, a combination of Gaussian distributions
is fitted to the data and then a spectral bin is assigned with a
certain probability to each distribution.

5.2. Correlation analysis

A simple method for exploring correlations is the correlation
matrix, which is a type of matrix that is used to measure
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Figure 18. Correlogram – a visualization of the correlation matrix – of different variables versus yield at the NIF. Color indicates the value of the correlation
coefficient. In this particular representation the correlation is also encoded in the shape and angle of the ellipses, helping intuitive understanding. The
strongest correlation to the fusion yield is observed with the implosion velocity Vimp and the ion temperature Tion. There is also a clear anti-correlation
observable between the down-scattered ratio (DSR) and Tion and, in accordance with the previously stated correlation of Tion and yield, a weak anti-
correlation of the DSR and yield. Note that all variables perfectly correlate with themselves by definition. Plot was generated based on data presented by Hsu
et al.[96]. Further explanation (labels, etc.) can be found therein.

the relationship between two or more variables. We can
calculate its coefficients, also known as Pearson correlation
coefficients, on a set of n measurements of each pair of
parameters xi and yi as follows:

rxy =
∑n

i=1 (xi − x)(yi − y)√∑n
i=1 (xi − x)2

√∑n
i=1 (yi − y)2

, (28)

where x and y are the mean values of variables x and
y, respectively. The correlation coefficient r is a number
between –1 and 1. A value of 1 means that two variables
are perfectly correlated, while a value of –1 means that two
variables are perfectly anti-correlated. A value of 0 means
that there is no correlation between two variables.

The correlation matrix and its visualization, sometimes
called a correlogram, allow for a quick way to look for
interesting and unexpected correlations. An example of this
is shown in Figure 18. Note that by reducing correlations to
a single linear term one can miss more subtle or complex
relationships between variables. For such cases more general
measures of correlation exist, such as the Spearman correla-
tion coefficient that measures how well two variables can be
described by any monotonic function.

5.3. Dimensionality reduction

Many datasets contain high-dimensional data but are gov-
erned by a few important underlying parameters. Signal
decomposition and dimensionality reduction are processes
that reduce the dimensionality of the data by separating a
signal into its components or projecting it onto a lower-
dimensional subspace so that the essential structure of the
data is preserved. There are many ways to perform dimen-

sionality reduction, two of the most common ones being
principal component analysis (PCA) and AEs.

PCA is a very popular linear transformation technique
that is used to convert a set of observations of possibly
correlated variables into a (smaller) set of values of lin-
early uncorrelated variables, called the principal compo-
nents. This transformation is defined in such a way that the
first principal component has the largest possible variance,
and each succeeding component in turn has the highest
variance possible under the constraint that it is orthogonal
to the preceding components. One method to perform PCA
is to use SVD, which is used to decompose the matrix of data
into a set of eigenvectors and eigenvalues. PCA shares a close
relationship with correlation analysis, as the eigenvectors
of the correlation matrix match those of the covariance
matrix, which is utilized in defining PCA. In addition, the
eigenvalues of the correlation matrix equate to the squared
eigenvalues of the covariance matrix, provided that the data
have been normalized. Kernel PCA[246] is an extension of
PCA that uses a nonlinear transformation of the data to
obtain the principal components. A relatively new variation,
with some relation to the priorly discussed CS (Section
3.4), is robust principal component analysis (RPCA)[247].
RPCA is a modification of the original algorithm, which is
better suitable to handle the presence of outliers in datasets.
PCA should not be confused with the similarly named inde-
pendent component analysis (ICA)[248], which is a popular
technique to decompose a multivariate signal into a sum of
statistically independent non-Gaussian signals.

There are also many neural network approaches to dimen-
sionality reduction, one of the most popular ones being
AEs. The purpose of an AE is to learn an approximation
to the identity function, that is, a function that reproduces
the input. In a standard AE, a neutral network is created
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with an intermediate bottleneck layer with a reduced number
of nodes, known as the latent space. During training, the
neural network hyperparameters are optimized so that the
output matches the input as closely as possible, typically
by minimizing the MSE. Due to the bottleneck, the AE
automatically discovers an efficient representation for the
data in the latent space. The hidden layers up to the latent
space are known as the decoder and the hidden layers from
the latent space to the output layer are the encoder. The
encoder can then be used separately to perform dimension
reduction, equivalent to lossy data compression. With the
corresponding decoder, an approximation of the original data
can be extracted from its latent space.

There exist many different types of AE architecture, a par-
ticularly popular one being variational autoencoders (VAEs).
VAEs replace deterministic encoder–decoder layers with a
stochastic architecture (c.f. Figure 6) to allow the model to
provide a probability distribution over the latent space. As
a result, a VAE’s latent space is smooth and continuous in
contrast to a standard AE’s latent space, which is discrete.
This allows VAEs to also generate new data by sampling
from the latent space.

AEs have also shown a strong potential as advanced
compression techniques that can be highly adapted to many
kinds of inputs. In this case, one trains an AE model to
find an approximation of the identity function for some
raw data. After training, the raw data are sent through the
encoding layer; only the dimensionality reduces and highly
compressed latent space representation in the bottleneck
layer is saved. Decompression is achieved by sending the
data through the decoding layer. This method is not only
relevant to reduce disc space occupied by data; AEs are
nowadays frequently used as an integral part of complex
machine learning tasks, where the latent space is used as
a lower-dimensional input for, for example, a diffusion net-
work (as part of what is called a latent diffusion model[249])
or a Bayesian optimizer[250].

An example of the modeling using the latent space of
an AE was recently published by Willmann et al.[251].
Working on the problem of simulating shadowgrams
from plasma probing, they used an AE to reduce the 3D
input data and then trained a small four-layer perceptron
network to learn how to approximate the shadowgram
formation. An example of pure compression was recently
presented by Stiller et al.[252], who applied an AE to
compress data from PIC simulations, showing promising
first results.

6. Image analysis

In the previous section we discussed how to analyze datasets
by looking for correlations or compressed representations.
A closely related group of tasks occurs when dealing with

image data, that is, image recognition or classification, object
detection and segmentation. While the methods in the previ-
ous section dealt with features learnt from the data itself, the
techniques discussed in this section aim to identify or locate
specific features in our data (in particular images). As such,
these are all considered supervised learning methods.

6.1. Classification

The classification problem in machine learning is the prob-
lem of correctly labeling a data point from a given set of
data points with the correct label. The data points are labeled
with a categorical class label, such as ‘cat’, ‘dog’, ‘electron’
or ‘ion’ (see Figure 19(a)).

In the following we are going to briefly discuss some
of the most important machine learning techniques used
for classification. It should be noted that classification is
closely related to regression, with the main difference being
essentially that the model’s output is a class value instead
of a value prediction. As such, methods for working in
regression can in general also be applied to classification
tasks. One example is the decision tree method, which we
already discussed in Section 2.1.5.

6.1.1. Support vector machines
Support vector machines (SVMs) are a popular set of
machine learning methods used primarily in classification
and recognition. For a simple binary classification task, a
SVM draws a hyperplane that divides all data points of
one category from all data points of the other category.
While there could be many hyperplanes, an SVM looks
for the optimal hyperplane that best separates the dataset
by maximizing the margin between the hyperplane and the
data points in both categories. The points that locate right

Class: 

a Classi cation

b Detection

c Segmentation

Bounding box

Exact boundary

Figure 19. Illustration of common computer vision tasks. (a) Classification
is used to assign (multiple) labels to data. (b) Detection goes a step further
and adds bounding boxes. (c) Segmentation provides pixel maps with exact
boundaries of the object or feature.
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on the margin are called ‘supporting vectors’. For a dataset
with more than two categories, classification is performed
by dividing the multi-classification problem into several
binary classification problems and then finding a hyperplane
for each. In practice, the data points in two categories can
mix together so that they cannot be clearly divided by a
linear hyperplane. For such nonlinear classification tasks,
the kernel trick is used to compute the nonlinear features of
the data points and map them to a high-dimensional space,
so that a hyperplane can be found to separate the high-
dimensional space. The hyperplane will then be mapped
back to the original space.

The ideal application scenario for an SVM is for datasets
with small samples but high dimensions. The choice of
various kernel functions also adds to the flexibility of this
method. However, an SVM would be very computation-
ally expensive for large datasets. Besides, its accuracy can
significantly decrease when analyzing datasets with large
noise levels, as the hyperplanes cannot be defined precisely.
Therefore, especially in the context of high-power laser
experiments, one has to be cautious when applying SVMs
if there are considerable stability issues.

6.1.2. Convolutional neural networks
CNNs are a type of neural network (cf. Section 2.1.6) that is
particularly well-suited for image classification[253], but are
also used in various other problems.

Such a network is composed of sequential convolutional
layers, in each of which an N × N kernel (or ‘filter’ matrix)
is convolved with the output of the previous layer. This
operation is done by sliding the kernel over the input image,
and each pixel in the output layer is calculated by the
dot product of the kernel with a sub-section of the input
image centered around the corresponding pixel. Resultingly,
convolutional layers are capable of detecting local patterns in
the N × N region of the kernel. The kernel is parameterized
with weights, which are learned via back-propagation as
in a regular neural network. Within a layer, there can also
be multiple channels of the output, practically thought of
as multiple kernels being passed over the image, allowing
for different features to be detected. The early layers of a
CNN detect simple structures such as edges, but by adding
multiple layers with varying kernel sizes, the network can
perform high-level abstraction in order to detect complicated
patterns.

The convolutional layer makes the CNN very efficient
for image classification. It allows the network to learn
translation-invariant features – a feature learned at a certain
position of an image can be recognized at any position on
the same image.

In order to detect patterns that are non-local in the image,
pooling is often applied. There exist many schemes of
pooling, but the general concept is to take a set of pixels in
the input and to apply some operation that turns them into 1

pixel. Examples include max-pooling (taking the maximum
of the set of pixels) and average pooling. This operation
decreases the dimensions of the image, and therefore allows
a subsequent convolutional layer with the same N ×N kernel
to detect features that were much further apart in the original
image. Typical CNNs will use multiple pooling layers to
decrease the dimensions until a kernel can nearly span the
whole image to detect any non-local patterns. The output
is then flattened and several fully connected layers can be
used to manipulate the data for the relevant (i.e., regression
or classification) task.

While the use of deeper CNNs with an increasing number
of layers tends to improve performance[254], architectures
can suffer from unstable gradients in training via back-
propagation[255], showing that some deeper architectures are
not as easy to optimize. One particularly influential solution
to this problem was the introduction of the residual shortcut,
where the input to a block is added to the output of the
block. In back-propagation, this enables the ‘skipping’ of
layers, effectively simplifying the network and leading to
better convergence. This was first proposed and implemented
in ResNet [256], which has since become a standard for deep
CNN architectures[257], with any number of variations. It
should be mentioned though that a number of competi-
tive networks without residual shortcuts exist, for example,
AlexNet [258].

6.2. Object detection

In the context of image data, object detection can be seen
as an extension of classification, yielding both a label as in
classification tasks and the position of that object, illustrated
in Figure 19(b). The main challenge is that complex images
can contain many objects with different features, while the
number of objects can also differ from one image to another.
Therefore, object detection techniques require a certain flex-
ibility regarding their structure.

The Viola–Jones algorithm[259] is one of the most popular
object detection algorithms from the 2000s, pre-dating the
recent network-based object detectors. Generally, it involves
detecting objects by looking at the image as a set of small
patches, and identifying so-called Haar-like features. The
latter are patterns that occur frequently in images, and can
be used to distinguish between different objects. The Viola–
Jones algorithm detects objects by first analyzing an image
at different scales. For each scale, it looks for features by
scanning the image with a sliding window, and for each
window, it computes a list of features used to identify the
object. If the object is detected, the algorithm returns the
bounding box of the object. The Viola–Jones framework
does not allow for simultaneous classification and instead
requires a subsequent classifier, such as an SVM, for that
task. Compared to its network-based alternatives, the Viola–
Jones algorithm is worse in terms of precision but better in
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terms of computational cost, allowing real-time detection at
high frame rates[260].

Object detection networks are more complicated than a
regular CNN, because the length of the output layer of the
neural network cannot be pre-defined due to the unknown
number of objects on an image. A possible solution is
to divide the image into many regions and to construct a
CNN for each region, but that leads to significant compu-
tational cost. Two families of networks are developed to
detect objects at reasonable computational cost. The region
proposal network (RPN) takes an image as input and outputs
a set of proposals for possible objects in the image. A CNN
is used to find features in each possible region and to classify
the feature into known category. The RPN is trained to
maximize the overlap between the proposals and the ground
truth objects. The state-of-the-art algorithm in this family is
the Faster-RCNN[261].

An alternative to region-based CNNs is the YOLO[262]

family. YOLO stands for ‘You Only Look Once’ as it only
looks at the image once with a single neural network to make
predictions. This is different from other object detection
algorithms, which often employ many neural networks for
the image. As a result, YOLO is typically much faster,
allowing for real-time object detection. The disadvantage is
that it is not as accurate as some of the other object detection
algorithms. Nevertheless, the fast inference speed of YOLO
is particularly appealing to high-power laser facilities with
high-repetition-rate capability.

6.3. Segmentation

Semantic segmentation[263] is a related task in computer
vision that seeks to create a pixel-by-pixel mapping of the
input image to a class label, not only a bounding box as in
object detection (see Figure 19(c)). By doing so, segmenta-
tion defines the exact boundary of the objects.

Many semantic segmentation architectures are based on
FCNs[264] and have evolved considerably in recent years.
Since FCNs suffered from the issue of semantic gaps, where
the output has a much lower resolution than the input, skip
connections were introduced to allow the gradient to back-
propagate through the layers to improve the performance.
Examples of such advanced network architectures are the
U-Net[180] and the DeepLab network[263], which are based
on ResNet-101. Both of these architectures use residual skip
connections to maintain gradient flow. The advantage of
semantic segmentation compared to standard object detec-
tion is that the network can easily localize multiple objects
of the same class in an image. The disadvantage is that one
needs to train a separate network for each class.

Related is instance segmentation[265], which goes a step
further and distinguishes each individual instance of an
object, not just the class. Instance segmentation is a sig-
nificant challenge, as it requires the network to be able

Figure 20. Application of object detection to a few-cycle shadowgram of a
plasma wave: the plasma wave, the shadowgram of a hydrodynamic shock
and the diffraction pattern caused by dust are correctly identified by the
object detector and located with bounding boxes. Adapted from Ref. [273].

to distinguish between two instances of the same object,
for example, two cats. Instance segmentation architectures
are typically based on mask R-CNN[266], which combines a
CNN with a region-based convolutional neural network (R-
CNN)[267] and an FCN[264]. Note that the mask R-CNN can
be used for both semantic and instance segmentation.

One of the prime examples for machine-learning-assisted
image analysis is the automated detection and classi-
fication of laser damage. Researchers at the NIF have
pioneered this approach with several works on neural
networks for damage classification. For instance, Amorin
et al.[268] trained CNNs based on the AlexNet and Incep-
tion architectures to distinguish between different kinds
of laser damage. Another example for the use of both
SVM- and CNN-based classification in high-power laser
systems was recently presented by Pascu[269], who used
both techniques for (supervised) anomaly detection in a
laser beam profile at the ELI-NP facility. Chu et al.[270]

presented a first application of image segmentation to
locate laser-induced defects on optics in real time using
a U-Net. Ben Soltane et al.[271] recently presented a deep
learning pipeline to estimate the size of damages in glass
windows at the Laser Mégajoule (LMJ) facility, using a
similar U-Net architecture for segmentation. Li et al.[272]

combined damage detection via a deep neural network
with postprocessing to position laser damages in 3D
space. The axial distance between the damage site and the
imaging system is obtained numerically by the principle
of holographic focusing. More examples for applications
of object detection in a high-power laser laboratory have
been reported in the work of Lin et al.[273]. In addition
to the aforementioned case of optical damages in a high-
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power laser beamline, the authors fine-tuned the YOLO
network for object detection in the few-cycle shadowg-
raphy of plasma waves and electron beam detection in
an electron spectrometer. An example of the detected
features in a shadowgram is presented in Figure 20. The
position and size of the detected objects are used to
determine information about the physical quantities, such
as the plasma wavelength and plasma density distribution.

7. Discussion and conclusions

In this paper, we have presented an overview of techniques
and recent developments in machine learning for laser–
plasma physics. As we have seen, early proof-of-concept
papers appeared in the late 1990s and early 2000s, but the
computing power available at the time was typically not
sufficient to make the approaches competitive with estab-
lished methods or to reach a suitable level of accuracy. In
the mid-2010s, a resurgence of interest in the field began,
with an ever-increasing number of publications. A significant
fraction of the papers that have been reviewed here are
experimental in nature, especially regarding optimization
(see Table 2). On one hand, this can be attributed to the
increasing digitization of the laboratory environment, with
control systems, data acquisition and other developments
providing access to large amounts of data. On the other hand,
the complexity of modern experiments acts as a catalyst for
the development of automated data analysis and optimization
techniques. Deployment of machine learning techniques in
a real-world environment can however be challenging, for
example, due to noise, jitter and drifts. This is certainly
one of the reasons why the most advanced machine learning
techniques, such as multi-objective optimization or deep CS,
tend to be first tested with simulations.

Among the methods being employed we also observed
some general trends. For instance, while genetic algorithms
have been very popular in the past for global optimization,
there has been an increasing number of papers focusing
on BO. This is likely due to the fact that both simulations
and experiments in the context of laser–plasma physics are
very costly, making the use of Bayesian approaches more
appealing. In most experimental settings, local optimization
algorithms, such as gradient descent or the Nelder–Mead
algorithm, are less suitable because of the large number of
iterations needed and their sensitivity to noise. RL, espe-
cially in its model-free incarnation, suffers from the same
issue, which explains why only very few examples of its use
exist in adjacent research fields. While rather popular among
data scientists due to their simplicity and interpretability,
decision tree methods have not seen wide application in
laser–plasma physics. In part, this is likely due to the fact
that these methods are often considered to have more limited

capabilities in comparison to neural networks, making it
more attractive to directly use deep neural networks. In the
context of ill-posed inverse problems it is to be expected
that end-to-end neural networks or hybrid approaches will
gradually replace traditional methods, such as regularization
via total variation. That said, the simplicity and bias-free
nature of least-squares methods are likely to ensure their
continued popularity, at least in the context of easier to solve
well-posed problems.

Much of the success of machine learning techniques stems
from the fact that they are able to leverage prior knowledge,
be it in the form of physical laws (e.g., via PINNs) or in the
form of training data (e.g., via deep learning). Regarding the
latter, the importance of preparing input data cannot be over-
stated. A popular saying in supervised learning is ‘garbage
in, garbage out’, meaning that the quality of a model’s output
heavily depends on the quality of the training data. Important
steps are, for instance, pre-processing[276] (noise removal,
normalization, etc.) and data augmentation[277] (rotation,
shifts, etc.). The latter is of particular importance when
dealing with experimental data, for which data acquisition is
usually costly, making it challenging to acquire enough data
to train a well-performing model. Furthermore, even when
using regularization techniques, diversity of training data is
very important to ensure good generalization capabilities and
to avoid bias.

Two outstanding issues for the wide adoption of machine
learning models in the laser–plasma community are inter-
pretability and trustworthiness, both regarding the model
itself and on the user side. While some machine learning
models such as decision trees can be interpreted comparably
easily, the inner workings of advanced models such as deep
neural networks are often difficult to understand. This issue
is amplified by the fact that integrated machine learning
environments allow users to quickly build complex models
without a thorough understanding of the underlying princi-
ples. We hope that this review will help to alleviate this issue,
by providing a better understanding of the origin, capabilities
and limitations of different machine learning techniques.
Regarding trustworthiness, quantification of aleatoric uncer-
tainty in training data and epistemic uncertainty of the model
remains an important research area[278]. For instance, well-
tested models may break down when exposed to unexpected
input data, for example, due to drifts in experimental condi-
tions or changes in the experimental setup. Such issues can
for instance be addressed by incorporating uncertainty quan-
tification into models to highlight unreliable predictions.

As our discussion has shown, there is an ever-increasing
interest in data-driven and machine learning techniques
within the community and we hope that our paper provides
useful guidance for those starting to work in this rapidly
evolving field. To facilitate some hands-on experimentation,
we conclude with a short guide on how to get started in
implementing the techniques we have discussed in this paper.
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Table 2. Summary of papers used as application examples in this review, sorted by year for each section.

Author, year Problem type ML technique Sim. Exp. Research field
Humbird et al., 2018[94] Forward model Neural net & decision tree � ✗ Inertial confinement fusion
Humbird et al., 2018[95] Forward model Transfer learning � � Inertial confinement fusion
Gonoskov et al., 2019[106] Forward model Neural network � � High-harmonic generation
Maier et al., 2020[26] Forward model Linear regression � ✗ Laser wakefield acceleration
Kluth et al., 2020[97] Forward model Autoencoder & DJINN � � Inertial confinement fusion
Kirchen et al., 2021[29] Forward model Neural network ✗ � Laser wakefield acceleration
Rodimkov et al., 2021[107] Forward model Neural network � ✗ Noise robustness in PIC codes
Djordjević et al., 2021[108] Forward model Neural network � ✗ Laser-ion acceleration
Watt, 2021[109] Forward model Neural network � ✗ Strong-field QED
McClarren et al., 2021[110] Forward model Neural network � ✗ Inertial confinement fusion
Simpson et al., 2021[111] Forward model Neural network ✗ � Laser–solid interaction
Streeter et al., 2023[112] Forward model Neural network ✗ � Laser wakefield acceleration
Krumbügel et al., 1996[186] Inverse problem Neural network ✗ � Spectral phase retrieval
Sidky et al., 2005[274] Inverse problem EM algorithm ✗ � X-ray spectrum reconstruction
Döpp et al., 2018[162] Inverse problem Statistical iterative reconstruction ✗ � X-ray tomography with betatron

radiation
Huang et al., 2014[171] Inverse problem Compressed sensing � ✗ ICF radiation analysis
Zahavy et al., 2018[187] Inverse problem Neural network ✗ � Spectral phase retrieval
Hu et al., 2020[188] Inverse problem Neural network ✗ � Wavefront measurement
Ma et al., 2020[173] Inverse problem Compressed sensing ✗ � Compton X-ray tomography
Li et al., 2021[275] Inverse problem Compressed sensing � ✗ ICF radiation analysis
Howard et al., 2023[192] Inverse problem Compressed sensing/deep unrolling � ✗ Hyperspectral phase imaging
Bartels et al., 2000[208] Optimization Genetic algorithm ✗ � High-harmonic generation
Yoshitomi et al., 2004[209] Optimization Genetic algorithm ✗ � High-harmonic generation
Zamith et al., 2004[211] Optimization Genetic algorithm ✗ � Cluster dynamics
Yoshitomi et al., 2004[209] Optimization Genetic algorithm ✗ � Cluster dynamics
Nayuki et al., 2005[212] Optimization Genetic algorithm ✗ � Ion acceleration
He et al., 2015[194,213] Optimization Genetic algorithm ✗ � Laser wakefield acceleration
Streeter et al., 2018[220] Optimization Genetic algorithm ✗ � Cluster dynamics
Lin et al., 2019[214] Optimization Genetic algorithm ✗ � Laser wakefield acceleration
Dann et al., 2019[195] Optimization Genetic & Nelder–Mead algorithms ✗ � Laser wakefield acceleration
Shalloo et al., 2020[196] Optimization Bayesian optimization ✗ � LWFA, betatron radiation
Smith et al., 2020[222] Optimization Genetic algorithm � ✗ Laser-ion acceleration
Kain et al., 2020[239] Optimization Reinforcement learning � � Plasma wakefield acceleration
Jalas et al., 2021[197] Optimization Bayesian optimization � � Laser wakefield acceleration
Pousa et al., 2022[233] Optimization Bayesian optimization � ✗ Laser wakefield acceleration
Dolier et al., 2022[231] Optimization Bayesian optimization � ✗ Laser-ion acceleration
Irshad et al., 2023[198] Optimization Bayesian optimization � ✗ Laser wakefield acceleration
Loughran et al., 2023[232] Optimization Bayesian optimization ✗ � Laser-ion acceleration
Irshad et al., 2023[245] Optimization Bayesian optimization ✗ � Laser wakefield acceleration
Chu et al., 2019[270] Image analysis Neural network ✗ � Laser damage segmentation
Amorin et al., 2019[268] Image analysis Neural network ✗ � Laser damage analysis
Li et al., 2020[272] Image analysis Neural network ✗ � Laser damage detection in three

dimensions
Hsu et al., 2020[96] Feature analysis Six supervised learning methods ✗ � Inertial confinement fusion
Lin et al., 2021[98] Feature analysis Four supervised learning methods ✗ � Laser wakefield acceleration
Willmann et al., 2021[251] Dimensionality reduction Autoencoder � ✗ Laser wakefield acceleration
Stiller et al., 2022[252] Data compression Autoencoder � ✗ Laser wakefield acceleration
Pascu, 2022[269] Image analysis SVM/neural network ✗ � Laser anomaly detection
Ben Soltane et al., 2022[271] Image analysis Neural network ✗ � Laser damage segmentation
Lin et al., 2023[273] Image analysis Neural network ✗ � Laser wakefield acceleration and

damage detection

Most of these are readily implemented in several extensive
libraries, Scikit-learn[279], TensorFlow[280] and PyTorch[281]

being among the most popular ones. Each of these libraries
has its own strengths and weaknesses. In particular, deep
learning libraries such as TensorFlow and PyTorch are tai-
lored for fast computations on graphics processing units
(GPUs), whereas libraries such as Scikit-learn are designed

for more general machine learning tasks. Higher level frame-
works exist to facilitate the training of neural networks, for
example, MLflow or PyTorch lightning.

The Darts library[282] contains implementations of various
time series forecasting models, and also acts as a wrapper for
numerous other libraries related to forecasting. Many numer-
ical optimization algorithms, such as derivative-based meth-
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ods and differential evolution, can be easily explored using
the optimization library of SciPy[283]. While this includes,
for instance, differential evolution, more sophisticated evo-
lutionary algorithms such as multi-objective evolutionary
methods require dedicated libraries such as pymoo[284] or
PyGMO[285]. BO can for instance be implemented within
Scikit-learn or using the experimentation platform Ax. The
highly optimized BoTorch library[286] can be used for more
advanced applications, including for instance multi-objective
MF optimization. Some libraries are specifically tailored to
hyperparameter optimization, such as the popular optuna
library[287].

While all of the above examples are focused on Python
as an underlying programming language, machine learning
tasks can also be performed using many other programming
platforms or languages, such as MATLAB or Julia. Jupyter
notebooks provide a good starting point, and some online
implementations, such as Google Colab, even give limited
access to GPUs for training. The reader is encouraged to
explore the various frameworks and libraries to find the one
that best suits their needs.
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